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REPdenovo: Inferring De Novo Repeat Motifs
from Short Sequence Reads
Chong Chu1, Rasmus Nielsen2*, YufengWu1*

1Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, United
States of America, 2Department of Integrative Biology, University of California, Berkeley, CA 94720, United
States of America

* rasmus_nielsen@berkeley.edu (RN); ywu@engr.uconn.edu (YW)

Abstract
Repeat elements are important components of eukaryotic genomes. One limitation in our

understanding of repeat elements is that most analyses rely on reference genomes that are

incomplete and often contain missing data in highly repetitive regions that are difficult to

assemble. To overcome this problem we develop a new method, REPdenovo, which

assembles repeat sequences directly from raw shotgun sequencing data. REPdenovo can

construct various types of repeats that are highly repetitive and have low sequence diver-

gence within copies. We show that REPdenovo is substantially better than existing methods

both in terms of the number and the completeness of the repeat sequences that it recovers.

The key advantage of REPdenovo is that it can reconstruct long repeats from sequence

reads. We apply the method to human data and discover a number of potentially new

repeats sequences that have been missed by previous repeat annotations. Many of these

sequences are incorporated into various parasite genomes, possibly because the filtering

process for host DNA involved in the sequencing of the parasite genomes failed to exclude

the host derived repeat sequences. REPdenovo is a new powerful computational tool for

annotating genomes and for addressing questions regarding the evolution of repeat fami-

lies. The software tool, REPdenovo, is available for download at https://github.com/

Reedwarbler/REPdenovo.

Introduction
Most genomes, and in particular mammalian genomes, consist of large amounts of repeat ele-
ments. A repeat is a segment of DNA that appears multiple times in the genome in identical or
near-identical form. In this paper, we use “repeat” to refer to a consensus of all the copies of the
same repeat element. There are many types of repeats [1–3]. Transposable elements (TEs) are
perhaps the most well-known. They are believed to constitute 25% to 40% of most mammalian
genomes [2–5] and can amplify themselves in the genome using various mechanisms, typically
involving RNA intermediates. In humans the most common TEs are Long Interspersed Ele-
ments (LINE-1s or L1s), Short Interspersed Element (SINEs), and Long Terminal Repeats
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(LTRs), comprising approx. 17%, 11% and 8% of the human genome, respectively. Other com-
mon repeat elements include various types of satellites.

Identifying repeats in a genome is a long-standing research problem. There are many
computational approaches and software tools for the analysis of repeat composition [6–10].
One type of repeat analysis tools rely on curated repeat libraries to identify repeats. The most
popular of these is RepeatMasker [6], which aligns genomic sequences to known consensus
repeat sequences given by libraries such as Repbase [11] and Dfam [12]. While RepeatMasker
has been used extensively in the literature and led to many interesting discoveries, a limitation
is that it needs a library of known repeat consensus sequences. Such repeat sequences are usu-
ally not available for many newly sequenced organisms. Alternatively, many existing methods
[7–10] identify repeats by analysis of reference genomes. However, many genomes are poorly
assembled, particularly in regions of high repeat content. Therefore, most existing methods can
not find novel repeats that are not present in the curated library of repeats or in a reference
genome. For organisms with little repeat annotation and without a good reference genome,
there are few tools available for characterizing repeat content. Even for organisms such as
humans with good reference genomes, there are often missing bases in regions of high repeat
content. The human genome may therefore still harbor uncharacterized repeat elements.

In principle, finding repeats directly from sequence data may be appropriate for situations
where there is no good reference genome or we want to find repeats that are not present in the
reference genome. Recently, methods that analyze repeats based on sequence data start to
appear. One such method is RepARK [13]. RepARK can assemble repeats directly from
sequence reads without reference genomes. However, experiments on RepARK show that there
is still great room to improve the repeat assembly.

In this paper, we present a new approach for de novo assembly of repeat elements, called
REPdenovo. Similar to RepARK, REPdenovo constructs repeats from sequence reads directly
and does not need a reference genome. REPdenovo aims at constructing repeats that have rela-
tively high copy numbers and low sequence divergence within copies of the repeats. The
repeats can be of various types, e.g. TE or satellites. The main advantage of REPdenovo is that
it implements more accurate repeat assembly algorithms than RepARK. Using real data, we
demonstrate that REPdenovo outperforms RepARK in terms of completeness and number of
long repeats constructed. We also analyze sequence data from humans, and report potentially
new human repeat elements missed by previous analyses. We also provide supporting evidence
which shows many of these repeats are likely to be real.

Background
There are several existing computational approaches for finding TEs from short sequence
reads [13, 14]. The method in [14] assumes a reference genome is available, and finds repeats
from sequence reads using the reference. A major drawback is that there is no high-quality ref-
erence genomes for many organisms. In principle, one can use short reads to assemble a refer-
ence genome. However, repetitive regions are usually more difficult to assemble. This leads to
reduced power for repeat analysis if one uses the assembled reference genome for the purpose
of repeat finding.

There are also methods which directly assemble repeats from sequence reads. RepARK [13] is
such a method developed recently for repeat elements assembly. RepARK is based on k-mer
counting. K-mers are substrings of k nucleotides. As shown in Fig 1, k-mer counting aims to
count the occurrence of length-k substrings in all sequence reads. The result of k-mer counting is
a vectorOCC of size 4k, where OCCi is the number of times the i-th k-mer appears in the reads.
For example, in Fig 1, there is a single read. CGG appears two times while AAC and ACG appear
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once each. There exist efficient algorithms for k-mer counting, e.g. [15]. RepARK uses an
approach which reconstructs segments of repetitive regions directly from sequence reads by first
counting the k-mers from the sequence reads and then assembling all frequent k-mers (whose
frequencies exceed some fixed threshold) [13]. The key idea is that k-mers in repeats may be
more frequent than k-mers not in the repeats due to the high copy numbers of repeats. [13]
showed that some contigs assembled this way are fairly long and many contigs can be mapped to
the reference genome. Here, a contig is a segment of assembled genomes. This is encouraging
since it demonstrates that estimation of repeats such as TEs can be done de novo from raw short-
read sequencing data. However, as we will show in this paper, the method implemented in
RepARK tends to only construct partial repeats. This may lead to considerable uncertainty when
analyzing the evolution of repeat elements and to reduced detection rates of new repeat elements.

Methods
The new repeat assembly method, REPdenovo, performs de novo estimation of low-divergent
and highly frequent repeats from sequence reads. Similar to RepARK [13], REPdenovo first
identifies the frequent k-mers and then assembles these k-mers. This step leads to a set of
repeat contigs (called raw contigs). Raw contigs are the final results of RepARK. However, raw
contigs are often only fragments of complete consensus repeats. This is because repeats usually
contain regions of higher sequence divergence than other regions. K-mers within higher diver-
gence regions tend to have much smaller frequencies and thus may not be identified to be

Fig 1. Illustration of the k-mer counting. Long sequence: a sequence read. Length-3 sequence: k-mer. Here, k = 3. The table on the right shows the k-mer
counting result.

doi:10.1371/journal.pone.0150719.g001

REPdenovo: Inferring De Novo Repeats

PLOS ONE | DOI:10.1371/journal.pone.0150719 March 15, 2016 3 / 17



frequent. The frequent k-mer assembly only leads to segments that have low divergence (i.e.
more conserved) in repeat copies. Therefore, assembly of frequent k-mers alone does not pro-
duce contigs spanning complete repeats. To address this issue, REPdenovo performs a second
assembly step by connecting raw contigs into long repeats. The key steps of REPdenovo algo-
rithm are illustrated in Fig 2 and are explained below:

1. Assembly of raw contigs from frequent k-mers.

2. Merging of raw contigs into larger contigs ideally representing the entire repeat motif. This
step is conceptually analogous to the idea of merging contigs into scaffolds in regular
genome-assembly.

3. Verification and filtering of the assembled repeats. By aligning reads back to the constructed
repeats and checking the read depth, some wrongly assembled repeats can be filtered out.

0.1 Construction of raw contigs
REPdenovo first constructs raw contigs directly from sequence reads by constructing a catalog
of highly represented kmers, i.e. k-mers with frequencies over average k-mer frequency times a
threshold value fK. The default value of fK is 10, which means the frequency of a frequent k-mer
is over 10 times the average k-mer frequency. This step could be improved in the future by

Fig 2. Illustration of the main steps of REPdenovo. Thick bars: genomic sequences. Thin bars: k-mers. K-mer counting step: yellow parts are repeats
(with some mismatches). Colored squares within thick bars: mutations (substitutions and indels) within repeats.

doi:10.1371/journal.pone.0150719.g002
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using k-mer probabilities that take nucleotide or di-nucleotide frequencies into account. The
current implementation uses Jellyfish [15] for k-mer counting, although other k-mer counting
algorithms can also be used.

Once frequent k-mers are identified, the next step of REPdenovo is assembling frequent k-
mers into contigs (called raw contigs). This is done by treating the frequent k-mers as sequence
reads and then assembling these k-mers by existing short read assembly tools. Currently, Vel-
vet [16] is used for this step. REPdenovo implements several additional techniques for more
accurate construction of raw contigs and classification of repeats. First, REPdenovo takes a
“frequency-based assembly” approach. That is, REPdenovo does not assemble all frequent k-
mers in one step as in RepARK [13]. Instead, it groups and assembles k-mers with similar
binned frequencies. A bin is a range of frequency based on a target frequency. By default, the
range is [0.2f, 5f], where f is the target k-mer frequency. REPdenovo selects a number of evenly
spaced target frequencies based on the collected k-mer frequencies from the reads as follows.
REPdenovo starts from the k-mers in the highest frequency bin. Each time, REPdenovo assem-
bles frequent k-mers within the current frequency bin. The range is then decreased (by default
two times from the previous one) for the next round in a way that there is overlap in ranges of
two consecutive steps. Users can also change the ranges in the settings of REPdenovo. Fre-
quency-based assembly may reduce assembly error under the assumption that k-mers from the
same repeat tends to have similar frequencies.

We use multiple k values (e.g. 20, 30 and 40) for assembly. Raw contigs assembled from dif-
ferent k-values are then combined to form a single list of raw contigs.

0.2 Assembly of raw contigs into long repeats
Most current next-generation sequencing platforms, like Illumina, generate paired-end reads
with length around 100bp. Paired-end reads allow users to sequence both ends of a fragment
and generate high-quality, alignable sequence data.

Empirical results show that most assembled raw contigs tend to be close to 100 bp in length
for real sequence reads. However, many repeats are much longer than 100 bp. For example,
many L1 elements in humans are 5 kbp or longer. Thus, raw contigs alone usually do not give
complete repeat consensus sequences. To address this problem, REPdenovo performs a second
assembly step by connecting the raw contigs into long repeats as follows.

For the raw contigs, we build a directed contig graph G, which is similar to the overlap
graph in sequence assembly [17]. Each node in G corresponds to a raw contig. There is an edge
from node v1 to v2 if there is significant overlap between contig v1 and contig v2. We say v1 has
significant overlap with v2 if the length of the overlap between v1 and v2 is longer than a thresh-
old value (15 bp by default) and the number of mismatches (substitutions and indels) is small
(< 5% by default). The analysis is performed using standard pairwise sequence alignment
based on dynamic programming, e.g. [18]. The overlap detection step allows errors in the over-
lapped regions of the raw contigs. This is because the overlapped regions of two connecting
raw contigs usually don’t match exactly. Performing the alignment for all O(n2) pairs can be
slow when n is large. REPdenovo therefore only aligns pairs of raw contigs containing common
length k0 substrings. REPdenovo uses k0 = 5 in the current implementation. Such preprocessing
speeds up the computation significantly in practice.

Overlap alone may not be very reliable especially when the length of the overlap region is
small. To allow an edge from v1 to v2 in G, REPdenovo also requires the existence of read pairs
where one end maps (using “bwa mem” with default parameters) to v1 and the other maps to
v2, when such read pairs are expected given the insert size of the library and the relative posi-
tions of v1 and v2 in the merged contig. We use the default settings of BWA for reads mapping.

REPdenovo: Inferring De Novo Repeats
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Once the contig graph G is constructed, REPdenovo then searches for long paths between
two nodes in G. Each path corresponds to an assembled long repeat. There are often cycles in
G and it is usually impractical to enumerate all paths in G. To address the issue of cycles,
REPdenovo first finds the strongly connected components in G. A strongly connected compo-
nent (SCC) contains one or multiple nodes where any two nodes are mutually reachable. Sup-
pose we treat a SCC as a node. Then G implies a new graph G0, where the nodes of G0 are the
SCCs and there is an edge from SCC1 to SCC2 if a node in SCC2 is reachable from a node in
SCC1 in G. The definition of SCC ensures G0 is acyclic. We then run the standard topological
sort algorithm (e.g. [19]) on each SCC (i.e. subgraph G1 containing only nodes in the SCC1).
When G1 is acyclic, topological sort arranges the nodes of G1 in a linear topological order so
that all edges of G1 point to the same direction in the linear order. That is, topological order
means for every directed edge u! v from vertex u to vertex v in G, u is prior to v in the order-
ing. When G1 contains cycles, topological sort can still run but it does not lead to a perfect
topological linear order. Our experience shows that while cycles exist in G, G is often near-acy-
clic and the strongly connected components are usually small. Thus, we simply rely on the lin-
ear order produced by the topological sort algorithm even when the linear order is not strictly
topological order. REPdenovo then enumerates (possibly a subset of) paths that traverse one or
several components in a heuristic way. The path finding generally follows the topological order
when traversing the graph. Within each component, REPdenovo takes a heuristic approach for
finding a valid path that allows the traversal to find long paths. In particular, when there are
multiple edges to follow from the current node during the path finding, edges that agree with
the linear order and lead to the nearest node in the linear order are preferred. To avoid cycles,
REPdenovo assumes each raw contig may only appear in a path at most once. That is, each
path contains distinct nodes in G. REPdenovo only outputs the maximal paths in G (i.e. paths
that are not sub-paths of another path). Empirical results show that this path finding approach
works reasonably well in practice.

0.3 Improving assembly quality by filtering
To further improve assembly REPdenovo uses two filtering steps. First, before assembling the
raw contigs, contigs that have no (or very low) sequence read coverage are removed. Second,
we truncate a raw contig if its coverage is uneven. We align the raw reads back to the raw con-
tigs using “bwa mem” [20] with “-a” option. Then, we calculate the coverage for each base of
each raw contig. If the average coverage is lower than a threshold value (2 by default), then this
contig is considered to be wrongly assembled and is discarded. For example, in Part (e) of Fig
2, the raw contig marked in red color is discarded since it has no mapped reads. Sometimes a
contig has uneven coverage, which means parts of the contig have high coverage and other
parts have very low coverage (lower than the threshold). Such contigs are truncated so that
only the high coverage parts are kept. For example, in Part (e) of Fig 2, the right part of the
lower right raw contig (marked with the purple color) is truncated due to low read coverage.

0.4 Evaluation and comparison of methods
Throughout this paper, we use NCBI Blast (the output of blastn with default cutoff parameters
which is considered to be “significant hits”) to compare a query sequence against a set of refer-
ence sequences. We define “matching cutoff” as the ratio between the length of the matched
part (between the query sequence and the reference sequence) and the length of the query
sequence. Notice that we use Blast searches in two different settings:

REPdenovo: Inferring De Novo Repeats
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1. To compare a query sequence against a set of reference sequences such as the reference
genome of a species or a set of estimated repeats (e.g. Blast a constructed repeat against
Repbase). We call this use of Blast “Blast”.

2. Sometimes we want to search for a query sequence in the entire known nucleotide database
at NCBI. We call this use of Blast as “NCBI Blastn”.

For a mapping between a repeat and the reference genome, we use a matching cutoff of 0.0
as default, which means we allow any matches that are considered to be significant by Blast
(with default parameters). For other matchings, unless otherwise stated, the default matching
cutoff is at least 85%. See the supplemental materials (S1 File) for more details about the
settings.

In order to evaluate the performance of REPdenovo on repeat assembly, we first analyze
raw sequence data from a human individual: individual NA12889 from the 1000 Genomes
Project [21]. In the following, the repeats are assembled from the NA12889 reads, unless other-
wise stated. To evaluate the consistency of REPdenovo, we also use REPdenovo to assemble
repeats with three other 1000 Genomes individuals: HG01890, NA18641 and NA19206. See
Table 1 for information on the reads data. See S1 File for the source of data. We first compare
two different k-mer frequency cutoff fK values of 10 and 100 to evaluate the performance of
REPdenovo on different parameters. We thereafter mainly use fK = 10 unless otherwise stated.

Results
The results section is organized as follows: First, we evaluate the performance of REPdenovo
using sequence reads from four human individuals. We show that the found repeats are likely
to be real and many are absent from the human reference genome. Then, by comparing with
repeat annotations stored in existing repeat libraries and latest long human sequence reads, we
identify and validate a set of potentially novel repeats in the human genome that are not
included in existing repeat annotations. At last, we show REPdenovo outperforms RepARK in
terms of the accuracy and completeness of the constructed repeats.

0.5 Constructed human repeats are likely to be real
Classification of constructed repeats. We use REPdenovo to construct consensus repeats

from reads data of the human individual NA12889. For each repeat, we address the following
two questions:

1. Is the repeat mappable to the human reference genome?

2. Can the repeat find homologs in a NCBI Blastn search?

In general, if a repeat can be mapped to the human reference, the repeat is more likely to be
real (i.e. not introduced by assembly artifact). Since many existing methods rely on the

Table 1. Sequence reads information from four human individuals from the 1000 Genomes Project. # of reads: in millions. Coverage: average
sequence depth per base.

Individual Population # of reads Read length Coverage

NA12889 CEU 229M 101 7.2

HG01890 ACB 394M 100 12.3

NA18641 CHB 254M 101 8.0

NA19206 YRI 172M 100 5.4

doi:10.1371/journal.pone.0150719.t001
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reference genome in repeat analyses, reads identified from reference genomes are likely to be
incorporated in such analyses (e.g., in Repbase). Novel repeats (i.e, not previously reported in
humans) in contrast are not mappable to the human reference. However, inferred new repeats
that do not map to the genome may in reality be assembly artifacts. In order to identify repeats
that are more likely to be real, we search for homologs of the each consensus repeat using
NCBI Blastn. If the consensus repeat is represented in the ntNCBI database it is unlikely to be
an assembly artifact.

For NA12889, 5,479 out of 6,200 for fk = 10, and 589 out of 669 for fk = 100, estimated repeats
from REPdenovo are mappable to the human genome. Furthermore, 190 out of 721 for fk = 10,
and 78 out of 80 for fk = 100 can find high quality NCBI Blastn hits even when they are not map-
pable to the human reference (see Table 2 for details). This suggests that the vast majority of
constructed repeats are real and not assembly artifacts. It also suggests the possibility that a sig-
nificant number of human repeats may be absent from the current human genome reference.

Length distribution of matched repeats. Fig 3 shows the length distribution of the human
repeats that are either mappable to the reference or have good NCBI Blastn hits for fK = 10 and
100. The solid bars show the matching length distribution for repeats that are mappable to the
reference. The bars with patterns are for those not mappable to the reference but having good
NCBI Blastn hits. Most repeats have matching ratios of 100% or nearly 100% (i.e. the entire
repeat can be mapped) for both reference matching and NCBI Blastn hits. That is, when a repeat
is matched, it is quite likely the whole repeat can be matched to the reference genome or to the
NCBI nt database. This suggests assembly accuracy of the constructed repeats may be high.

REPdenovo constructs repeats with high copy numbers and low sequence divergence.
REPdenovo works better for low divergent than for high divergent repeats. To illustrate this,
we show a distribution of constructed repeats as a function of copy number and repeat diver-
gence in Fig 4. We use matching cutoff 0.0 when comparing with Repbase repeats. To get the
copy number and divergence of repeats, we use UCSC annotation [22], which utilizes a copy
number generated by RepeatMasker. There are 1,119 human repeats in Repbase. Here, we only
use 1,001 repeats out of all repeats which exist in the UCSC annotation. 283 out of the 1,001
repeats have a hit among the constructed repeats. From Fig 4, it is clear that most of the hits are
on repeats of low divergence and high copy number.

Consistency of different human individuals. To evaluate the consistency of REPdenovo,
we use REPdenovo to construct repeats from four human individuals using data from the 1000
Genomes Project. The results are shown in Table 2. It can be seen that the numbers of repeats

Table 2. The number of classified repeats constructed by REPdenovo on four different human individuals for fK = 10 and 100. Classified into: (i)
mappable to the reference genome, (ii) unmappable to the reference but have NCBI Blastn hits, and (iii) unmappable to the reference and no NCBI Blastn
hits. The repeats in (ii) and (iii) may potentially be previously unknown repeats.

fK Individuals Mappable Unmappable Total

NCBI Blastn hits No NCBI Blastn hits

10 NA12889 5,479 190 531 6,200

NA18641 5,626 189 764 6,579

NA19206 6,055 150 603 6,808

HG01890 5,606 171 691 6,468

100 NA12889 589 78 2 669

NA18641 610 83 8 701

NA19206 646 57 11 714

HG01890 609 80 6 695

doi:10.1371/journal.pone.0150719.t002
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in different categories are overall consistent for different individuals for both fK = 10 and fK =
100 cases. Differences might reflect the variations in repeats in different human individuals,
differences in read quality and sequencing depth between individuals.

0.6 Comparison to Repbase and RepeatMasker and finding novel
repeats in human genome
One of our main goals is finding novel human repeats that are previously unknown. For this
purpose, we first map the constructed repeats to human reference. As expected, repeats that
are mapped to the reference are more likely to find matches in Repbase. Repeats unmappable
to human reference may be novel. We rely on two means to validate whether a repeat is novel:
(i) perform NCBI Blastn search: a repeat with good hits is likely to be real; (ii) compare with
the latest long human reads: if a repeat matches the long reads data, it is likely to be real.

Repeats with Repbase hits and/or masked by RepeatMasker. Table 3 shows the overall
results on the number of constructed repeats. For both mappable and unmappable repeats, first
we examine whether the repeats can find matches in Repbase. Then we run RepeatMasker on
the inferred repeats to examine whether the repeats can be classified into a particular type. Here,

Fig 3. Distribution of repeat matching lengths relative to their total length for fK = 10 and fK = 100. Solid bars: repeats mappable to the reference
genome. Bars with patterns: repeats unmapped to reference and having NCBI Blastn hits. The figure shows the relative matching length as the mapping ratio
(0%-100%), which is the ratio between the length of mapped part and total length of the repeat. A majority of constructed repeats can match fully to the
reference genome or have NCBI Blastn hits.

doi:10.1371/journal.pone.0150719.g003
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the matching cutoff for NCBI Blastn is 0.0, and is also 0.0 for both Repbase hits and “masked”
by RepeatMasker. As expected, repeats mappable to the reference are more likely to find match-
ing Repbase repeats, while unmappable repeats have no Repbase hits. RepeatMasker can give
results on many repeats, although sometimes only small parts of repeats can be masked.

Potentially novel repeats in human. There are 190 repeats for NA12889 in Table 2 that do
not have significant hits on the human reference (GRCh37) but find significant and nearly com-
plete hits in NCBI Blastn. In Table 4 (the first column) we give out a detailed statistic of these
hits. Note that, one repeat may have more than one hits and here only the top one (blast with
option “-max_target_seqs 1”) is used. We believe that these 190 repeats are potentially novel

Fig 4. Hits of Repbase repeats found by REPdenovo. X axis: divergence rate (mismatches per 1,000 bases) of repeats given by Repbase. Y axis: number
of copies from the UCSC genome browser annotation. Dots: Repbase repeats. Red dots: hits found by REPdenovo. Blue dots: repeats not found by
REPdenovo.

doi:10.1371/journal.pone.0150719.g004

Table 3. Numbers of repeats that hit Repbase (with matching cutoff 0.0) andmasked by RepeatMasker (with matching cutoff 0.0). We classify the
repeats based on whether they are mappable to the human reference and whether they have matches in Repbase. Masked: RepeatMasker can classify the
repeat. Unmasked: RepeatMasker cannot classify the repeat.

fK Mappable to reference Unmappable to reference

Hit Repbase No-hit Repbase Hit Repbase No-hit Repbase

Masked UnMasked Masked UnMasked Masked Unmasked Masked Unmasked

10 3,426 26 1,239 788 0 0 683 38

doi:10.1371/journal.pone.0150719.t003
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repeats in human, although some may be assembly artifacts. We run Blast on these 190 repeats
against the constructed repeats of the other three individuals. Out of the 190 repeats, 152, 156
and 157 repeats can find Blast hits on NA18641, NA19206 and HG01890, respectively. We also
run RepeatMasker on these 190 repeats. Among the 190 repeats, 129 are masked, and among
these, 101 are identified to be “Satellite repeat”, 25 are “Simple repeat”, and three are “centro-
meric”. We note that RepeatMasker tends to mask the shorter ones among these 190 repeats.
This is illustrated in Table 5. Note that fewer repeats are masked by RepeatMasker than those in
Table 3 because here we require near complete matching when running RepeatMasker.

Compare novel repeats with long reads data. To further validate that the 190 repeats
indeed are present in the human genome, we compare them against the Pacific-Bio long reads
released in [23]. These reads are generated from a human hydatidiform mole cell line (CHM1)
from SMRT sequencing [23]. As the error rate of the Pacific-Bio reads is usually high, we use
the released error-corrected reads which are corrected by a multiple read alignment procedure.
164 and 161 out of the 190 repeats match one or more of the Pacific-Bio reads with matching
cutoff 0.85 and 0.95, respectively.

There are two recently released human reference genomes based on Pacific-Bio reads, and
we also Blast the 190 novel repeats against these. One reference is directly assembled from
Pacific-Bio reads [23], while the other is based on extending the gaps in GRCh37 using Pacific-

Table 4. Classification of the 190 un-mappable repeats with NCBI Blastn hits. The numbers in parentheses are the numbers of repeats in each
category.

NCBI Blastn hit description All (190) Long read reference hits (164) Masked (129)

Epstein-Barr virus 2 0 0

Homo FOSMID clone 8 8 4

Homo BAC clone 8 8 2

Homo related 35 33 29

Gossypium hirsutum clone 2 2 0

Haemonchus placei genome 51 51 50

Human herpesvirus 19 0 0

Onchocerca flexuosa genome 6 5 3

Protopolystoma xenopodis genome 18 18 5

Spirometra erinaceieuropaei genome 40 38 36

Toxoplasma gondii ME49 1 1 0

doi:10.1371/journal.pone.0150719.t004

Table 5. Length distribution of the 190 potentially novel repeats. The numbers in parentheses are the
numbers of repeats in each category. For each range of repeat lengths, the number is the percentage of
repeats falling in the range.

length All (190) Mappable to long reads
reference

Masked by RepeatMasker

Yes (164) No (26) Yes (129) No (61)

100–300 79.4 87.8 27.0 86.8 63.9

301–500 9.5 9.2 11.6 9.3 9.9

501–750 1.1 0.6 3.8 0.8 1.6

751–1,000 2.6 2.4 3.8 3.1 1.6

1,001–1,500 0.5 0 3.8 0 1.6

1,501–2,000 1.1 0 7.7 0 3.3

2,001–5,000 1.1 0 7.7 0 3.3

5,001–50,000 4.7 0 34.6 0 14.8

doi:10.1371/journal.pone.0150719.t005
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Bio reads [24]. We get different results when blasting the repeats against these two references.
For the directly assembled reference [23], we find 164 hits with matching cutoff 0.85, while for
the patched reference [24] we only find 1 hit using the same cutoff. It is possible that the refer-
ence constructed by GRCh37 has missed some hard-to-assemble regions.

There are 531 repeats in Table 2 for NA12889 that cannot map to the reference and have no
NCBI Blastn hits. We also Blast these 531 repeats against the corrected long reads. 18 and 16
out of the 531 repeats match at least one long read with matching cutoff 85% and 95%, respec-
tively. Thus, there appears indeed to be a small number of novel valid repeats even among the
ones that do not have a significant NCBI Blastn hit.

Overall, the fact that a majority of repeats match at least one Pacific-Bio read with at least
95% identity across the entire repeat sequence provides additional support for our belief that
the majority of inferred reads are real and are not assembly artifacts. However, we note that
this does not completely rule out the possibility of assembly errors.

Further analysis of potentially novel repeats in Human. Among the 26 repeats with no
long reads hits, but with significant NCBI Blastn hits, the average NCBI Blastn identity is
99.5%. Average coverage (alignment length/repeat length) is 98.5%. The largest E-value of the
26 repeats is 2.0e-49 and 17 repeats have E-value reported to be 0.0. We also note that the aver-
age length of the 26 repeats is 7,988 bp, while the average length of all 190 repeats is 1,266 bp
(see Table 5). This may suggest that the long repeats are poorly assembled even in the Pacific-
Bio reference genome.

We classify all 190 potentially new repeats according to whether they find matches in the
new reference sequence or are masked by RepeatMasker in Table 4. The general pattern mir-
rors that for the 26 repeats with not long read hits. However, we now observe an increased pro-
portion of repeats that previously have been classified as human, for example to sequenced
BAC clones that are not incorporated into an assembly. We also observe an increase in hits to
specific blood parasites, particularly Haemonchus placei and Spirometra erinaceieuropaei.

We see that a substantial proportion of the hits are viral. The EBV virus is not surprising as
it has been used to transfect the sequenced cell lines. Matches to other viruses (e.g., herpes
virus) may be caused by contamination of the sequencing libraries or the cell cultures or by
homology with the transfecting virus. We note that three herpesvirus have high sequence
homology with parts of two EBV virus. We also note that there is no hits to the long reads ref-
erence for the repeats among the viruses. This supports our hypothesis that these repeats in
fact reflect homolgy with transfecting viruses or contamination.

The remaining hits are all blood parasites. It is likely that these are real repeats that have
been incorporated into the parasite assemblies by error, as sequencing of parasites typically is
based on samples contaminated with the host DNA, which can be removed by filtering. How-
ever, if the host reference sequence is missing the sequence motif, such filtering may fail.
Repeats motif not present in the reference genome of the host and not caught by RepeatMasker
are likely to fall into this category.

We take a closer look at the 26 repeats that do not hit the new long reads reference. Table 6
shows the top hits from NCBI Blastn for these 26 repeats, and the number of repeats masked
(all are masked as “Simple repeats”) by RepeatMasker for each type. The numbers inside paren-
theses are the number of occurrences of the repeats of the specific types.

0.7 Comparison of assembly quality of REPdenovo and RepARK
We compare REPdenovo to RepARK repeat assemblies by comparing both to the repeats rep-
resented in Repbase [11]. In the following, “hits” refer to constructed repeats that are repre-
sented in Repbase, and we use the following metrics to compare REPdenovo to RepARK:
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1. The number of Repbase hits with> 85% sequence identity across the length of the Repbase
represented repeat sequence.

2. Average Repbase coverage. For a Repbase hit, this is the average fraction of the Repbase
repeat covered by the assembled sequence. For a single position of a hit, there can be multi-
ple assembled repeats covering it. When calculating the average coverage, we use the set of
non-overlapping assembled repeats that achieve the largest coverage. This statistic can be
computed by a simple greedy algorithm.

3. Average Repbase coverage by the longest assembled repeat. One repeat in Repbase may be
covered by several constructed repeats. When calculating the average coverage, we choose
the longest one. This statistic is used to examine how well the methods can construct long
repeats (not just fragments of repeats).

4. N50 of the assembled repeats.

We run REPdenovo and RepARK with same kmer frequency and assembly parameters
(both use velvet [16] as the assembler). The results of REPdenovo and RepARK on individual
NA12889 are given in Table 7. REPdenovo outperforms RepARK in all quality metrics. In par-
ticular, REPdenovo can assemble longer repeats while RepARK tends to assemble smaller frag-
ments of repeats. REPdenovo also achieves higher average coverage of Repbase repeats than
RepARK. The N50 of REPdenovo assembled repeats is about 27 times of that of RepARK
assembled repeats. As an example, we use one Repbase repeat, AluYd3, for an illustration. This
is shown in Fig 5, generated by mapping the assembled repeats on Repbase repeats and then
visualizing with the program IGV [25]. The length of the AluYd3 repeat is approximately 270
bp. In this case REPdenovo almost assembles the complete repeat while RepARK only assem-
bles two small fragments. This illustrates the stark difference in completeness and length of
constructed repeats between the two methods as measured by N50 and other statistics.

To further compare the performance of REPdenovo and RepARK, we run REPdenovo and
RepARK on four 1000 Genomes individuals: NA12889, HG01890, NA18641 and NA19206.
We use Blast to identify matches in Repbase and investigate how well long repeats are con-
structed with matching cutoff tL.

Table 6. Classification of the 26 (out of the 190 potentially novel repeats) repeats that have no Blast
hits on long reads reference. The numbers in parentheses are the numbers of repeats in each category.

NCBI Blastn hit description All (26) Masked (18)

Homo sapiens isolate satellite 2 2

Human herpesvirus 19 11

Onchocerca flexuosa genome 1 1

Spirometra erinaceieuropaei genome 2 2

Epstein-Barr virus 2 2

doi:10.1371/journal.pone.0150719.t006

Table 7. Assembly quality comparison of REPdenovo and RepARK. N: the number of assembled contigs.Nh: the number of complete Repbase hits
from theN repeats (with 85% coverage cutoff).C: average coverage of hits. Cm: maximum coverage of hits by single assembled repeats. N50: N50 of assem-
bled repeats.

fK Method N Nh C Cm N50

10 REPdenovo 6,200 91 0.88 0.53 3,141

RepARK 7,894 1 0.74 0.06 116

doi:10.1371/journal.pone.0150719.t007
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Table 8 shows the repeat assembly performance on all four individuals (including
NA12889). We can see that results from REPdenovo overall keep consistent as the matching
cutoff tL changes from 0.0 to close to 1.0 (by default, tL is chosen to be 0.85). Also, REPdenovo
outperforms RepARK in terms of the completeness and the number of long repeats con-
structed. This is benefit from the assembling raw contigs and filtering steps. As copies of a
repeat are diverged from each other, lots of short pieces (of copies) will be assembled because
of the variations on the copies, and assembling these raw contigs will help to construct the
complete repeats, while RepARK only reports these pieces. Thus, REPdenovo works better for
constructing more diverged repeats. However, it is still possible for REPdenovo to wrongly
assemble contigs, even though there is a filtering step.

Fig 5. Assembled repeats matching AluYd3 (a Repbase repeat) by REPdenovo (bottom panel) and RepARK (top panel). The matched assembled
repeats are shown on their mapped positions where the AluYd3 consensus repeat sequence serves as the reference.

doi:10.1371/journal.pone.0150719.g005

Table 8. The number of repeats in Repbase that match (over the minimum threshold tL) one de novo repeat. The numbers outside and side the paren-
theses are REPdenovo and RepARK results, respectively. tL: matching cutoff.

fK tL NA12889 HG01890 NA18641 NA19206

10 0.95 86 (1) 81 (0) 84 (0) 84 (1)

10 0.85 91 (1) 87 (0) 94 (0) 94 (1)

10 0.75 102 (1) 100 (1) 104 (1) 102 (3)

10 0.5 141 (9) 138 (10) 135 (12) 139 (12)

10 0.0 295 (278) 307 (294) 312 (293) 313 (296)

doi:10.1371/journal.pone.0150719.t008
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0.8 Running time
For a small genome and low-coverage sequence data, REPdenovo usually runs fast. It takes
about 19 hours (including the k-mer counting time) to analyze the human individual NA12889
(read length 100bp with read depth 7.2X) on a 3.2 GHz eight core Xeon X5482 computer with
32G of memory.

Discussions and Conclusion
In this paper, we develop REPdenovo, a new repeat analysis approach that reconstructs repeat
sequences from raw sequence reads and does not rely on prior knowledge of repeats. REPde-
novo can be applied to genomes that have been sequenced but for which no good reference
genomes and repeat annotations are available. REPdenovo improves upon a previous
approach, RepARK, by providing better assemblies of repeat consensus sequences in terms of
completeness and number of long repeats constructed, as demonstrated by our analyses of
human annotated repeats. REPdenovo can assemble full (or nearly full) repeat consensus
repeats, while RepARK usually only produces small fragments of long repeats (see Tables 7 and
8). This is especially important for downstream analyses of the identified repeat sequences.
While REPdenovo may only identify recently expanded repeat families, these are also the fami-
lies that are of greatest interest in comparative studies, as older repeats tend to be shared
among species.

Like most bioinformatics tools, REPdenovo requires specification of several parameters,
which can significantly affect the results. The most important parameter is the relative k-mer
frequency cutoff fK, which specifies the lowest k-mer frequency that a k-mer is considered to be
frequent and assembled. The default value of fK is 10, which means the frequency of a frequent
k-mer is over 10 times of the read depth. When a higher value is used for fK, fewer repeats will
be assembled. Also, the running time of REPdenovo will increase when fK decreases. Another
important parameter is LK, the length of k-mers. There is no rigorous way for choosing a single
value of LK. Shorter k-mers are more robust against variations within repeats but may give less
accurate assemblies due to ambiguity in assembly process. Longer k-mers may give more accu-
rate assemblies but may miss some segments that contain more variations within the repeats.
Thus, REPdenovo uses multiple LK values when assembling raw contigs, while RepARK only
uses a fixed LK value (i.e. 30). Table 9 shows the number of repeats in Repbase that match (over
the minimum threshold 0.85) one de novo repeat for different LK. The results show that differ-
ent LK values may generate different sets of repeats, and combining these repeats may provide
more accurately assembled repeats.

We applied the method to human data and identified 190 potentially new repeats. We note
that top Blast hits are non-human for some REPdenovo assembled repeats. For example, the
top two hits for one assembled human repeat from NA12889 are for Onchocerca Flexuosa (a
deer parasite) and Protopolystoma Xenopodis (an amphibian parasite). We also find the
assembled repeats that have top Blast hits (with 100% coverage) on Onchocerca Flexuosa and
Protopolystoma Xenopodis exist in the other three human individuals as well. One explanation
is that there are homologous repeats with high sequence identity between humans and the

Table 9. The number of repeats in Repbase that match (over the minimum threshold 0.85) one de novo repeat for different k-mer length LK. By
default, REPdenovo use different k-mer length (29, 39, and 49) together, and its result is marked as “Combined”.

LK 21 29 39 49 59 69 79 89 99 Combined

Hit Repbase 13 49 61 71 75 71 54 57 46 91

doi:10.1371/journal.pone.0150719.t009
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parasites, perhaps because these are sequences that have jumped genomically, through
unknown mechanisms, between hosts and parasites. A more likely explanation is that these are
repeats caused by human contamination in the parasite sequencing projects.

Moreover, the newly available long Pacific-Bio reads provided additional support that the
novel human repeats we constructed may indeed be real. For the 190 potentially novel human
repeats, 129 repeats are masked by RepeatMasker to be mostly simple repeats or satellite
repeats. Further studies are needed to find the types of the remaining repeats.
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