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ABSTRACT OF THE DISSERTATION

Data-Driven Modeling and Analysis for Trustworthy Cyber-Physical Systems

By

Sina Faezi

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2021

Professor Mohammad Al Faruque, Chair

In the age of digitization, a layer of cyber software sits on a hardware circuit and controls

the physical systems around us. The tight integration of cyber and physical components is

referred to as Cyber-Physical Systems (CPS). The interactions between cyber and physical

components brings unique challenges which traditional modeling tools struggle to resolve.

Remarkably, they often fail to model the unintentional physical manifestation of cyber-

domain information flows (side-channel signals), resulting in trust issues in the system.

This thesis takes a data-driven approach to model CPS behavior when exposed to various

information flows. First, we demonstrate how to extract valuable cyber-domain information

by recording the acoustic noise generated by a DNA synthesizer. Then, we consider an

integrated circuit as a CPS by itself and monitor the chip through electromagnetic and

power side-channels to detect hardware Trojans (HT) in the chip.

HT is a malicious modification of the hardware implementation of a circuit design which

may lead to various security issues over the life-cycle of a chip. One of the major challenges

for HT detection is its reliance on a trusted reference chip (a.k.a golden chip). However, in

practice, manufacturing a golden chip is costly and often considered infeasible. This thesis

investigates a creative neural network design and training methodology which eliminates the

need for a golden chip. Furthermore, it proposes using hierarchical temporal memory (HTM)

xiii



as a data-driven approach which can be updated over the chip’s life-cycle and uses that for

run-time HT detection.
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Chapter 1

Introduction

1.1 Cyber-Physical Systems

“A cyber-physical system (CPS) is an orchestration of computers and physical systems [78].”

The concept of CPS has grabbed a lot of attention recently as the computation paradigm

has shifted from one powerful central computer to distributed embedded computers for an

intelligent environment. Initially, a central computer with many users was the available com-

putation platform until the next generation of computers such as PCs and laptops appeared.

With further technological advancement, smartphones were proposed as a new computa-

tional revolution. Along the same line, embedded computing was developed as the next

trend, which introduced new concepts and technologies such as the Internet of Things (IoT)

and wearable devices. An intelligent environment is the new computation trend that aims

to integrate the physical environment with the embedded computing to remove the human

from the loop and build large-scale smart systems. The three key factors leading to this new

paradigm are device/data proliferation, integration at scale, and autonomy which points out

the limited human ability the consume the increasing information generated by the expo-

1



nential proliferation of embedded devices. In response to these challenges, the study of CPS

is proposed. Some of the main applications of CPSs are automotive, autonomous avionics,

smart grid, manufacturing, smart city (smart infrastructure), and health care.

CPS consists of the tight integration of cyber and physical components, which interact with

each other in an inseparable manner. Traditionally, there have been various simulation and

modeling tools to solve physical complications and read the environment as a deterministic

component controlled by algorithmic cyber domain software. Over the past decades, re-

searchers have studied miscellaneous methods for design and automation tools that target

hardware/software co-design, physical modeling, networking, control systems simulation, etc.

These methods often take a singular obstacle under consideration and provide a solution that

perfectly fits the problem. However, the interaction of physical elements with cyber domain

modules results in a new set of problems/opportunities which may cause catastrophic failures

in the system or favorable circumstance for improving various aspects of CPS systems.

This thesis takes a data-driven approach to study the surface created by CPS components’

interactions. Notably, in chapter 2, we show how it is possible to take advantage of a

biomedical device (DNA synthesizer) to steal valuable cyber domain information. Then, in

chapter 3 and 4 we devise data-driven solutions to model the physical side-channel emissions

of integrated circuits (ICs) and use that for hardware Trojan detection.

2



1.2 Data-Driven Modeling

CPS modeling tools commonly represent CPS as a component-orientated model, actor-

oriented model, multi-agent-based model, and event-based models [52]. The type of modeling

representations are chosen based on different system characteristics and modelings require-

ments, and they mostly consist of formal methodologies for design and the engineering of

CPS. The majority of available CPS modeling tools rely on first-principle (established laws

of physics) derived by the domain experts. The examples of CPS modeling languages and

simulation tools are UML [15], CyPhyML [133], Modelica [45], MATLAB Simulnik [21],

LabView[13], Ptolemy [109], etc. While these CPS tools create a model with provable de-

terministic properties that can be used for detecting design defects, they often show a poor

capability for capturing stochastic properties of CPS. In particular, when a model is phys-

ically implemented, some non-deterministic behavior can be expected from the system due

to environmental noise or unaccounted interactions of system components [78]. Tradition-

ally, during the CPS development, this challenge is met by employing rigorous testing of the

system after implementation and addressing unseen probabilistic problems only if needed.

In this thesis, we tackle the unpredictable and unaccounted behavior of a CPS using a data-

driven approach. The data-driven approach for CPS utilizes the collectible data from a

specific system to model/estimate/infer the relationship between different variables of the

given system without requiring detailed domain knowledge [127]. Currently, CPSs encompass

a large number of sensors providing abundant data that enables data-driven approaches for

such systems. Furthermore, throughout this thesis, we show that it is possible to collect

side-channel data to expand the data-driven modeling techniques using different CPS cases.

We show how it is possible to incorporate the latest advancements in data-driven modeling

(artificial intelligence, machine learning, etc.) to solve trustworthiness issues in CPS.
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1.3 Trustworthy CPS

The concept of trust has a broad definition that involves various aspects of human life. Over

the years, scholars and practitioners have widely acknowledged the importance of trust [97].

The aggressive infusion of CPS into human beings’ life in the form of the digitization of

everything (from toothbrushes to inter-personal interactions, complex business processes,

healthcare) entails the need for a high degree of trust in these systems. While trusting is

an act carried out by an end-user, trustworthiness is a quality of the system that has the

potential to influence the end-users’ trust in the system in a positive way [98]. As a definition,

trustworthiness is subject to the interpretation of the end-user. For example, organizations

require confidence in the secure handling of their business-critical data, whereas end-users

may be more concerned about the usability of the final product [98].

In this thesis, we narrow down the general definition of the trustworthiness of CPS in terms of

confidentiality, integrity, and availability (the CIA Triad). The CIA Triad is considered to be

the core foundation of information security. In the information age, CPSs play an important

role in collecting a high volume of data from various phenomena while consuming a large

amount of cyber and physical domain information. In CPS, confidentiality measures are

designed to ensure the lockdown of sensitive information from unauthorized access attempts.

Meanwhile, CPSs are often employed to carry mission-critical tasks such as saving a human

life or landing a spacecraft on Mars. The integrity of CPS involves maintaining the expected

behavior of the system while blocking intruders’ attempts to change the the behavior of

the system over its life cycle. Moreover, in terms of availability, a trusted CPS should

guarantee its services to authorized users whenever needed. Along the lines of our definition

for trustworthy CPS, through this thesis, we choose various CPS examples to either challenge

the CIA properties of those systems or strengthen the trust in the considered system.
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1.4 Side-channel Signals

Depending on the nature of a CPS, the designers choose to monitor the system using different

mediums such as temperature, pressure, etc. On many occasions, the sensors installed in the

system are limited only to those necessary for the system’s control and health monitoring.

Therefore, not all the observable behavior of a CPS is captured through embedded sensors

in the system. In this thesis, we observe the system not only through originally collected

observable signals but also via side-channel signals acquired by secondary sensors added to

the system. Over the last decades, scholars have shown the use-case of side-channel signals for

attacking electronic devices beyond traditional cryptanalysis [62] [93]. The scholars have used

side-channel analysis to exploit the information leaking from the physical implementation of

electronic devices to discover cryptographic keys or other secrets.

In this thesis, similar to the traditional side-channel analysis for cryptographic devices, we

use the analog emission from the physical domain of CPS to infer about different states of the

system. We argue that, in CPSs, the cyber domain information flow of the system is often

manifested in the form of observable energy flows such as vibration/acoustic, electromagnetic,

power, heat, etc. By monitoring these energy flows, we show how it is possible to steal

valuable cyber domain information as an attacker, and also show that it can be used to

assure integrity of the system.
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1.5 Major Challenges and Thesis Contribution

The major challenges for designing a trustworthy CPS are as follows:

• Finding the trust issues which may arise due to the interactions between cyber and

physical components in the system.

• Modeling non-deterministic behavior of CPS.

• Choosing modeling methodologies that can be updated as the system ages within the

system budget.

To address these challenges, this thesis makes the following contributions:

• Various data-driven approaches are examined to model the behavior of CPS test cases.

• A novel attack methodology is introduced to steal cyber domain information through

side-channel analysis of a CPS.

• The malicious activities in ICs as a CPS are detected by a creative neural network

model.

• A data-driven approach that can be updated over time is proposed to keep track of

ICs during their life cycle.

1.6 Thesis Structure

This thesis is structured as follows: Chapter 2 investigates the commonly used DNA synthe-

sizers’ vulnerability against new attack vectors which are possible due to cyber and physical

components interactions in these devices; Chapter 3 presents a novel neural network design
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(a.k.a HTnet), along with a creative training methodology which can be used for golden chip

free hardware Trojan detection; Chapter 4 suggests using a hierarchical temporal memory

that can be effectively trained in run-time and used for anomaly detection in integrated

circuits behavior.
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Chapter 2

Oligo-Snoop: A Non-Invasive Side

Channel Attack Against DNA

Synthesis Machines

2.1 abstract

Synthetic biology is developing into a promising science and engineering field. One of the en-

abling technologies for this field is the DNA synthesizer. It allows researchers to custom-build

sequences of oligonucleotides (short DNA strands) using the nucleobases: Adenine (A), Gua-

nine (G), Cytosine (C), and Thymine (T). Incorporating these sequences into organisms can

result in improved disease resistance and lifespan for plants, animals, and humans. Hence,

many laboratories spend large amounts of capital researching and developing unique se-

quences of oligonucleotides. However, these DNA synthesizers are a CPS with cyber-domain

processes and physical domain components. Hence, they may be prone to security breaches

like any other computing system. In our work, we present a novel acoustic side-channel
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attack methodology which can be used on DNA synthesizers to breach their confidentiality

and steal valuable oligonucleotide sequences. Our proposed attack methodology achieves an

average accuracy of 88.07% in predicting each base and is able to reconstruct short sequences

with 100% accuracy by making less than 21 guesses out of 415 possibilities. We evaluate

our attack against the effects of the microphone’s distance from the DNA synthesizer and

show that our attack methodology can achieve over 80% accuracy when the microphone is

placed as far as 0.7 meters from the DNA synthesizer despite the presence of common room

noise. In addition, we reconstruct DNA sequences to show how effectively an attacker with

biomedical-domain knowledge would be able to derive the intended functionality of the se-

quence using the proposed attack methodology. To the best of our knowledge, this is the first

methodology that highlights the possibility of such an attack on systems used to synthesize

DNA molecules.

2.2 Introduction

The ability to rapidly sequence and synthesize DNA has profound implications for society.

Large libraries of different DNA sequences play an essential role in genomics research, es-

pecially for genetic analysis. Synthetic DNA is poised for widespread consumption if its

costs can be lowered dramatically. Based on current trends, the global market for synthetic

biology is projected to reach $38.7 billion by 2020 [124]. Beyond biological applications,

researchers are beginning to construct DNA-based archival storage systems, which can store

up to 215 petabytes of data per gram, with centuries to millennia of endurance if properly

stored in a cool and dry environment [114].

Unfortunately, technological advancement often creates new security concerns as technolo-

gies mature. To date, the foremost security threat in this field involves the physical safety

of synthesized DNA. Present efforts to reduce or eliminate misuse of synthetic DNA include
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biosecurity regulations, training and licensing programs for authorized agents, and the em-

bedding of screening chips into DNA synthesizers (modeled on parental control of television

access) [102, 18, 118]. However, these threat models implicitly assume that the value is

inherent in the DNA itself, as opposed to the information that is encoded in the DNA.

Somewhat more generally, the cyber-physical nature of biotechnology workflows creates new

security risks, which the corresponding research community has mostly neglected [104]. One

recent example is the now-demonstrated ability to encode information into a DNA sequence

that can trigger a buffer overflow error in DNA sequencing software; this exploit can be used

to inject malware into the computer running the sequencing algorithm [100]. A subsequent

concern is the confidentiality of DNA sequences stored in human biobanks. If the genetic

information of the earth’s population is exposed, then an attacker may be able to create a

contagious virus that is fatal to individuals or a small group, but is otherwise benign to the

general population [96].

Confidentiality concerns also extend to synthetic DNA sequences. In synthetic biology, the

objective is often to engineer an organism with desired traits or functions. Investors only

reap the rewards of their investments after the engineered organism passes all regulatory

requirements and the investor obtains intellectual property ownership in the form of a patent

or copyright. However, while the organism is still under development, the research remains

vulnerable to industrial espionage or academic intellectual property theft [125]. In this case,

the actual secret to be protected may be an amino acid sequence within a protein (which is

derived from DNA) as opposed to the DNA itself. Within this larger context, knowledge of

the DNA can still help an attacker determine the amino acid sequence, and the attacker can

further benefit if he or she has knowledge of the desired traits or functions of the organism

under development. The content of this chapter is provided from [37].

10



2.2.1 Motivation and Overview

This thesis presents Oligo-Snoop: a novel, acoustic, side-channel, analysis-based attack model

that can breach the confidentiality of DNA synthesizers. The attack model leverages the

physical implementation of the synthesizer to infer the DNA sequence being synthesized. By

publishing this attack, we hope to encourage commercial DNA synthesizer manufacturers

to strengthen their confidentiality, especially to protect against attack vectors that may be

discovered in the future.

As a motivating example, Gibson et al. synthesized the genome of a living bacterium out of

one million bases of synthetic DNA [50]; eavesdropping on that DNA synthesis run would

provide the attacker with the blueprints of a complete organism. More often, instead of

synthesizing an entire genome from scratch, researchers add synthetic DNA to an existing

organism’s genome, thereby imparting desired traits to that organism. For example, for many

years the anti-malaria drug artemisinin was available only from a rare plant; however, in 2006

Ro et al. added DNA to yeast cells, inducing the modified yeast to produce artemisinin [113],

which dramatically reduced the cost of producing a lifesaving drug. In a more recent (and

rather controversial) example, Galanie et al. added DNA to yeast cells to force them to create

prescription opioid drugs [46]. Synthetic DNA plays a key role in each of these examples, and

for these and similar efforts to remain secure, it is necessary to develop further protection

against eavesdropping.

From a different perspective, the ability to eavesdrop on a DNA synthesizer could be useful in

the fight against bioterrorism. Although DNA synthesis has several beneficial applications,

there are many ways that it can be used maliciously. Since pathogens are composed of

DNA, synthesis methods can be used for artificial pathogen creation. For years, researchers

and government agencies have warned that an aspiring terrorist could use synthetic DNA

and the techniques of synthetic biology to create deadly pathogens [18] . For example, the

11



deadly Ebola virus has a genome of only about 18,960 bases [19] and could be built from

scratch using synthetic DNA, as could genes from the eradicated disease smallpox, which was

responsible for 300-500 million deaths in the 20th century alone [138] . The risk of synthetic,

pathogenic DNA is significant enough that in 2010 the US Department of Health and Human

Services issued a statement to commercial DNA synthesis companies, warning them to be

on the lookout for customers ordering “sequences of concern,” or snippets of DNA from the

genomes of anthrax, Ebola, smallpox, and several other deadly pathogens [1]. With second-

hand DNA synthesizers available on the online auction site eBay for less than $1000, it is

feasible that an aspiring bioterrorist could try to use synthetic DNA to create their own tools

of biological warfare. The ability to eavesdrop on a suspected terrorist’s DNA synthesizer

could potentially allow an intelligence or law enforcement officer to ascertain whether or not

the suspect is trying to manufacture a deadly biological weapon.

2.2.2 Research Challenges

Technical challenges associated with DNA synthesizer confidentiality are as follows:

• Understanding the DNA synthesis process and its physical implementation.

• Identifying vulnerable components of a DNA synthesizer which can be leveraged under a

practical threat model.

• Analyzing attack methodologies which an attacker may utilize.

• Understanding the ways in which an attacker may post-process side channel data to ac-

curately reconstruct the DNA sequences that were synthesized.
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2.2.3 Technical Contributions

In this chapter, this thesis makes the following technical contributions, which directly address

the challenges listed above:

• We provide a feasibility analysis (Section 2.5) to identify potential sources of side-channel

information leakage in the system which have never been considered before.

• We present an attack model and propose a practical design approach (Section 2.4 and

2.6) that an attacker may use to breach the confidentiality of the DNA synthesizer and

reconstruct the DNA sequences using information leaked by the acoustic side-channel.

• We propose an algorithm (Section 2.7) that allows an attacker to obtain the other most

likely reconstructions of the synthesized DNA sequence if the originally reconstructed DNA

sequence is faulty.

• Due to the uniqueness of the proposed attack, in Section 2.8, we propose new methods to

evaluate our work in terms of performance. For instance, in Section 2.8.5 we show how

to model the distance between the DNA synthesizer and microphone without exhaustive

experimentation.

• We propose using a free tool designed for a different purpose to map imperfect attack

model predictions onto more meaningful DNA sequences.

2.2.4 Chapter Organization

The chapter is organized as follows: Section 4.3 presents the background necessary to un-

derstand the system and process and summarizes related work on confidentiality in cyber-

physical systems; Section 2.4 presents the threat model used to breach DNA synthesizer
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confidentiality; Section 2.5 analyzes potential sources of acoustic emissions from the syn-

thesizer; Section 2.6 presents the proposed attack methodology; Section 2.7 explains how

an attacker can reconstruct synthesized DNA sequences from acoustic measurements with

a small number of guesses; Section 2.8 reports experimental results; Section 2.10 discusses

potential countermeasures to the attack; and Section 4.8 concludes the chapter.

2.3 Background & Related Work

2.3.1 Oligonucleotide Synthesis
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Figure 2.1: Nucleotide bases and oligonucleotide sequence.

Oligonucleotides are the building blocks of DNA and RNA molecules. As shown in Figure

2.1, an oligonucleotide is a sequence of nucleotides. Each nucleotide comprises one of four

nitrogen-containing nucleobases (Adenine (A), Cytosine (C), Guanine (G), and Thymine

(T)) attached to a sugar (deoxyribose) and a phosphate group. The oligonucleotide is formed

by constructing an alternating sugar-phosphate backbone, which joins the nucleotides to one

another in a chain of covalent bonds. DNA, which is double-stranded, is formed by joining
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Figure 2.2: Oligonucleotide synthesis cycle.

two complementary oligonucleotides according to base pairing rules (A with T and C with

G) where complementary base pairs are joined by hydrogen bonds.

The term “DNA synthesis” is somewhat of a misnomer: so-called DNA synthesizers typi-

cally produce oligonucleotides, not double-stranded DNA. If DNA is desired, the user must

synthesize two complementary oligonucleotides (typically multiple copies of each) and in-

duce bonding via chemical or enzymatic means. Oligonucleotide synthesis produces short

chains of nucleic acids with a defined sequence of bases. The most common form of oligonu-

cleotide synthesis uses the phosphoramidite method [95], which produces multiple chains

simultaneously by anchoring bases to a solid support and building upwards. DNA or RNA

molecules have groups of 5 carbon atoms in the deoxyribose backbone. These carbon atoms

are numbered 1’ to 5’. While building the chains, a protective dimethoxytrityl (DMT) group

is attached to the open 5’ end of each chain. This prevents them from reacting or bonding

with undesired materials before a new base is attached.

Figure 2.2 illustrates the process of adding a new base to an oligonucleotide:

• Detritylation: The protective DMT groups of the current chains are stripped away so
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the 5’-terminal can bond to the next base.

• Delivery: The next nucleoside phosphoramidite base to be attached is delivered to the

solution.

• Coupling: A coupling agent, which contains a catalyst that causes the nucleoside to bond

with the existing oligonucleotide, is delivered to the solution.

• Capping: A small percentage of the chains do not react in the coupling stage and thus

do not receive a new base. The base support holding the oligonucleotide is treated with a

capping solution that suppresses the addition of further nucleosides.

• Oxidation: The attachment point between the current oligonucleotides and the newly

added base takes the form of a tricoordinated phosphate triester linkage. This structure

is not natural and has limited stability. To improve the stability of this attachment point,

the oligonucleotides are treated with iodine and water in the presence of a weak base to

oxidize the phosphate triester, transforming it into a tetracoordinated phosphate triester.

This form of linkage is natural, stable, and protected.

The oligonucleotides are now ready to receive their next base. The process repeats for every

new base addition. Once all the bases have been attached, the oligonucleotides are cleaved

from their solid support structures and collected for use.

2.3.2 DNA Synthesizer

DNA synthesizers use a pressure-driven system, shown in Figure 2.3, to deliver chemicals to

the output columns where synthesis takes place. A pressurized inert gas pushes chemicals

through common pathways and delivers them to the synthesis columns. Blocks containing

solenoid valves open and close certain pathways to route chemicals to the synthesis columns.
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Figure 2.3: (a) Experimental setup. (b) Simplified schematics of a DNA synthesizer. Refer
to [6] for a detailed explanation of this schematic. (c) The internal structure of the DNA
synthesizer.

During each iteration of the synthesis procedure, the common pathways are flushed to remove

any leftover residue from the previous iteration.

Our experiments use an Applied Biosystems (AB) 3400 DNA Synthesizer [6]. This specific

machine performs 48 valve operations during each synthesis cycle (Figure 2.2). Each step

of the synthesis cycle requires multiple valve actuations to clean and prime the delivery

lines before issuing step-specific valve operations that deliver the requisite chemicals to the

columns.

Some large-scale DNA synthesis machines deliver multiple bases per delivery operation or

deliver the same base to different columns at the same time. These machines can complete

batch synthesis operations with higher throughput than single-operation synthesis machines

such as the AB 3400. However, they still follow the same sequence of steps as shown in

Figure 2.2 and produce similar results, albeit in larger quantities.
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2.3.3 Side-channel and Information leakage

Side-channel analysis has been studied extensively in various systems to determine their vul-

nerability. Analog emissions (acoustics, power usage, electromagnetic emissions, vibrations,

etc.) are one of the primary side-channels known to leak information. Acoustic emissions

have been used to infer fill patterns in additive manufacturing systems [41, 10, 22, 36, 23] and

carry out physical attacks on magnetic hard disks [16]. Authors in [131] provided extensive

results on the usability of light, seismic and acoustic side-channels by providing their channel

characteristics such as rate and path loss. A power side-channel was used in [25] to detect

malware in medical embedded systems. Authors in [149] utilized a memory side-channel

to detect the activity of unwanted co-resident’s virtual machine and the authors of [150]

presented cache-based side-channel attacks which can be mounted on existing commercial

clouds to steal cross-tenant information. Electroencephalography (EEG) signals obtained

from a brain-computer interface were used in [92] to infer private user information. Authors

in [20] demonstrated how network traffic based side-channels can be quantified for secur-

ing web applications. Timer interrupts and cache based side-channels were used in [54] to

achieve a higher success rate than page-fault based side-channel attacks on untrusted op-

erating systems. Authors in [7] demonstrated how accelerometer based side-channels can

be used to infer user login details on smartphones. Each of these works demonstrates how

various side-channels can be utilized to either infer information or provide better defense

mechanisms in various systems.

2.3.4 Acoustics

Vibration of a system in contact with air molecules generates a mechanical wave called an

acoustic signal. Commonly, the intensity of this acoustic signal is expressed in terms of

18



sound pressure level (SPL) using

Lp = 20log(
p

p0
), (2.1)

where p is root-mean-square (RMS) of acoustic pressure and p0 is the minimum hearable

acoustic level by human ears [40]. For a quiet office Lp = 50 dB; normal conversations

Lp = 60 dB; vacuum cleaner Lp = 70 dB; and hair dryer Lp = 80 dB. Human ears

barely detect a 3 dB difference in SPL while a 5 dB change can be easily noticed under most

conditions.

2.4 Attack Model

Figure 2.4 depicts an attack model that can breach the confidentiality of a DNA synthesizer

via information leaked in the acoustic side-channel. The components of the attack model

are described as follows:

Adversary Intent: Industrial espionage for stealing intellectual property (IP) and moni-

toring for bioterrorism activities are covered by this attack model but speak to the intent

rather than the identity of the attacker.

Outcome of an Attack: The attacker recovers the sequence of states of the target DNA

synthesizer, Ŝtarget, which translates to the order and types of the bases that are synthesized

by the machine.

Target System: DNA synthesizers can connect to computers, external drives, and Ethernet

cables. However, operators generally keep the machine disconnected from the Internet and

local networks or use secured protocols to eliminate the possibility of cyber-attacks. In

addition, we assume that tampering with the machine or accessing the output DNA sequence
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is not possible so the attack must be non-invasive. This is because fluids in the machine are

sealed and are driven by pressurized argon. Any exposure to air would result in significant

quality degradation, raising an alert.

Existing Vulnerabilities of the System: The DNA synthesizer is vulnerable to physical

emissions that can leak system data during operation. Minimizing system observability

can hide the system states from the attacker; however, DNA synthesizers are optimized for

efficiency (throughput) and accuracy, not security.

Attack Medium: The attacker acquires information about the state of the DNA synthesizer

via acoustic side-channel (A).

Attacker Capabilities: We assume that the attacker has the capability to place at least

one microphone within close physical proximity to the DNA synthesizer. Such an attacker

could be a disgruntled employee or a visitor with low-level access to the machine (meaning

physical proximity, and no access to cyber components). In this scenario, the attacker can

surreptitiously and non-intrusively place an audio recording device (such as a phone) near

(or on) the DNA synthesizer. Placing the recorder requires one-time access if we assume

that it has wireless transmission capabilities; otherwise, a second physical visit is required to

recover the recorder and the data it has collected. Since the authorized users of the target

DNA synthesizer are unaware of the attack model introduced in this section, most probably,

they would neglect the security implications of any recording device around the machine.

Furthermore, if an attacker is able to breach the other systems in the same laboratory (i.e.

remote monitoring systems [120], employee phone/laptop, etc.), he will be able to record

the information leaked in the acoustic side-channel of the DNA synthesizer through existing

microphone(s) of those systems.

Attacker Resources: We assume that the attacker not only has domain knowledge about

the synthesis process, but also has access to the user manual of the machine explaining the
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Figure 2.4: Attack model.

machine specific procedures for DNA synthesis. Furthermore, we assume that the attacker

has the opportunity to carry out as many experiments as needed to profile the machine and

build an accurate model (Ŝ = f̂(A), see Figure 2.4) that can infer the order of synthesized

bases based on recorded acoustic signals collected from the target machine. If the attacker

is a disgruntled employee who has unlimited access to the target system, the profiling DNA

synthesizer can be same as the target machine. However, if access is not provided, the

attacker could use a replica for profiling purposes (the same model with a structure that is

identical to the target machine). For the rest of this chapter, we consider the former scenario

where the target and profiling DNA synthesizers are the same machine.

Cost: For an attacker to profile the target machine, the cost of an attack is just the value

of the chemical materials used and the time spent during the profiling process (estimating

(f̂)).
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2.5 Feasibility Analysis

While oligonucleotide synthesis is in progress, the physical activity of different components

of the system such as solenoid valves, cooling system fans, pressure regulators, and fluids

flowing in pipes causes vibration which results in structural acoustic noise emission from

the system. We hypothesize that various solenoid valves opening/closing and the flow of

fluid through various pipes emit information about the various states of the oligonucleotide

synthesis cycle, and that we may be able to identify which nitrogenous bases (A, G, C or T)

are deposited during the delivery state of the oligonucleotide synthesis cycle. An attacker

may thus eavesdrop on the acoustic emissions, that behave as side-channels, to infer the

cycles and the type of the base being delivered.

2.5.1 Structural Acoustics caused by the pipes

DNA synthesizers use plastic pipes (lines) to deliver the nucleotide bases and other chemical

materials from the source reservoirs to the output columns and other containers attached to

the system. The internal turbulence of the fluid flow running in the pipe causes the walls of

the pipe to vibrate, resulting in acoustic noise (i.e. vibro-acoustic) radiation from the pipes.

Over the last few decades, a substantial body of research has been dedicated to modeling

fluid-structure interactions to simulate and predict vibro-acoustic signal emissions of pipe

structures [81, 139]. Work in this area has shown that the magnitude and frequency of a

generated vibro-acoustic signal can be determined based on the spatial structure of the pipes,

pipe wall thickness, internal pipe pressure, internal fluid speed, the mass density of the fluid

and the pipe, and several other features. Authors in [126] have demonstrated how minute

changes in the curvature of the elastic pipes can result in different vibro-acoustic footprints.

As shown in Figure 2.3c, the delivery lines in the DNA synthesizer have different spatial

shapes and curvatures and also deliver fluids with different mass densities. Based on the
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work in [126], we suspect that these changes will result in close but unique wavenumbers.

2.5.2 Structural Acoustics caused by the solenoids

DNA synthesizers employ electric solenoids to open and close the valves that control the flow

of chemicals to each column; each valve opening or closing operation emits an audible click.

Although each solenoid emits a near-identical sound, the DNA synthesizer is an enclosed

structure and each valve is located at a different position within the machine. As stated in

[146], the enclosed space creates measurable reverberations when a valve emits sound. The

equation to calculate reverberation time is given in [146] as:

T = 0.049
V

Sa
, (2.2)

where V is the volume of the enclosure, S is the surface area which reflects sound, and a

is the average Sabine coefficient of the enclosure. As each valve occupies a distinct position

within the DNA synthesizer, the surface area that causes reflections, which impacts the

reverberation time, is unique for each valve. Consequently, the collected acoustic signals are

likewise unique for each valve due to their unique channel distortions. Similar to the sound

generated from the fluids moving through the machines piping, the distinctions between valve

noises may be near-inaudible for human listeners. However, a properly trained algorithm

should be able to identify key features that distinguish different valve operations.

2.6 Attack Model Design

Here we present the design of the attack model, which we introduced earlier in Section 2.4.

In order to accurately infer the physical and cyber-domain states of the system (S) from the

acoustic side-channel (A), an optimal attack could first use principle-based equations to de-
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rive a function (A = f(S)) to explain the sound produced by the individual components of

the system based on the DNA sequence. Then, using techniques like finite element analysis,

the attacker may acquire an accurate acoustic emission profile of the DNA synthesizer. Af-

terward, the attacker may use the inverse function to estimate the sequence (Ŝ = f−1(A)).

However, this approach would require an attacker to have complete design details of the in-

dividual components, their chemical composition, etc., to accurately simulate the acoustics

from the system. To overcome this problem, we propose to use a data-driven approach, by

treating the DNA synthesizer as a black-box, to estimate the function (Ŝ = f̂(A)). This

approach requires less domain knowledge and achieves faster attack model implementation

time for an attacker.

As shown in Figure 2.5, to estimate the function that describes the relationship between

the acoustic signal and the oligonucleotide sequences, our proposed attack model consists

of two main phases: the training phase and the attack phase. This function may be

abstracted as S = f̂(A, θ), where θ is the parameter that needs to be trained, S =

[S1, S2, . . . , Sn], Si ∈ {A,G,C, T} is the sequence of oligonucleotides with length n, and

A represents the acoustic signal gathered from the side-channel. In the training phase,

an attacker randomly selects an arbitrary number of training oligonucleotide sequences

(Strain). These sequences are then passed to a profiling DNA synthesizer. Then for

each of the Si ∈ {A,G,C, T}, the attacker collects the corresponding acoustic emission

(Ai1, Ai2, . . . , Aik), where k is the length of the acoustic emission. The attacker must ini-

tially find an optimal location to place the acoustic sensors, which, in our work, are placed

next to the DNA synthesizer in close proximity to the solenoids and the pressure valves.

We then perform preprocessing and feature extraction on these acoustic emissions and label

them with their corresponding nucleotide bases {A,G,C, T}. Using a supervised learning

approach [115], a classifier function is estimated to predict the particular nucleotide base

given the acoustic emission Ŝi = f̂(Ai, θ). In the attack phase, the attacker surreptitiously

places sensors on the target DNA synthesizer and collects the acoustic emissions, and infers
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the target oligonucleotide sequence (Starget). The details of the each of the steps of the

attack model design are as follows:

Preprocessing. In this stage, the attacker uses a set of bandpass filters combined with

heuristic methods to reduce the effect of background environmental noise, which is added to

the acoustic signal generated by the DNA synthesizer. For instance, the attacker may use

Anormalized = diag(
1√

diag(Rnn) + ε
×A) (2.3)

similar to what it has been used in [60] to model the background noise and normalize the

signal in relation to it. In this model, Rnn is the background noise covariance matrix based

on a portion of a recording when the machine is idle; A is the recorded signal, and ε =

1×e−10 is used to avoid division by zero. In our experience, the background environmental

noise is usually more prominent in lower frequency ranges. Hence, if the attacker determines

that the DNA synthesizer does not leak information in lower frequencies, he/she can simply

use a high-pass filter to eliminate low-frequency components from the signal.

Preliminary feature extraction. Once background noise is removed from the recorded

signal, the attacker needs to extract the portions of the signal that correspond to base de-

liveries {A,G,C, T}. As shown in Figure 2.2, the oligonucleotide synthesis process goes

through various stages, base delivery being one of them. An attacker needs to know the

time taken by various stages in order to accurately segment the acoustics for just the nu-

cleotide base delivery stage. As shown in Figure 2.6, opening and closing the solenoid valves

introduces peaks in the acoustic signal. These peaks may help an attacker track various

stages.

However, difficulties may arise when multiple valves open and close at the same time, which

would result in peaks with variable intensity. To mitigate this issue, an attacker could use

an approach proposed in [30] to detect the peaks by using their shape with the help of
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Figure 2.6: Sample acoustic signal emission from DNA synthesizer.

wavelet transforms. Furthermore, since the properties of the solenoid valves are assumed

to be known to the attacker, he/she can specify the minimum distance between peaks to

increase the accuracy of the peak detection algorithm.

Signal segmentation. Since an attacker has access to the user manual for the DNA

synthesizer, he/she knows duration of each stage. Then, using the peak detection algorithm

and the timing data from the user manual, the attacker can segment the nucleotide delivery

stage. Since all the other stages of the synthesis remain the same for adding each new base,

an attacker only needs the base delivery stage to reconstruct the sequence. Although this

step can be done manually for shorter sequences, an attacker who wishes to reconstruct

long DNA sequences may consider more sophisticated techniques, such as Hidden Markov

Models (HMMs) [31] or Long Short-Term Memory (LSTM) neural networks [59], which

have historically been used in voice recognition, to track the different states of the machine.

Since the relative distance between the peaks is a known constant (as is described in the

user manual), both of these models will achieve high accuracy; however, our experience has

shown that neither of these models is perfect, and that a successful attacker will need to

manually segment the data to obtain 100% accuracy. 100% accuracy is needed, since any

error in this stage will jeopardize the attack model’s subsequent steps.

Feature extraction. As shown in Figure 2.6, the base delivery segment of the signal consists
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of three sections: the first peak, which is the result of opening the valve that controls the

flow of a certain base to the output column; a longer section in which the pipes deliver the

base; and a final peak, which is the result of closing the valve whose opening generated the

first peak. Since the duration of each solenoid valve operation is known, the attacker can

divide the delivery segment into three sections and engineer a specific set of features for

each. Extractable features range from simple calculations such as the standard deviation

of the signal to complex calculations such as coefficients of Fourier and wavelet transforms.

Since the length of the signal is short for a delivery segment (less than 5.5 seconds in our

experiments), we can assume that the attacker has enough computational power to calculate

any of these features for all three sections of the delivery segment. However, extracting all

possible features will significantly affect the convergence rates of the classifiers that will use

them. Hence, in the training phase, the attacker creates models using a subset of all available

features, either by feature projection (e.g. PCA [137], LDA[89]) or feature selection (e.g.

[24, 9]). Based on our experiments, the latter approach works much better for acoustic side-

channel attacks on the DNA synthesizer because even small environmental background noises

mask most of the useful features when PCA or LDA projects them onto lower dimensions.

The outcome of this stage is the conversion of an acoustic signal (Ai1, Ai2, . . . , Aik) into a

set of features (fi1, fi2, . . . , fil) with l� k.

Nucleotide base classifier. In this stage, the attacker selects and trains the best classi-

fication algorithm to estimate the function (Si = f̂(fi1, fi2, . . . , fil, θ)) that correlates a

given set of features to one of the four nucleotide bases. To find the best algorithm, he/she

trains multiple classifiers such as neural networks [58] and random forests [17] and calculates

the accuracy of each classifier. Each of these functions will have a certain method of training

θ = {θ1, θ2, . . . , θm}, where m depends on the type and architecture of the classification

algorithm used. The accuracy of a classifier is defined as the percentage of correct predic-

tions divided by the total number of predictions made over the test data-set. To ensure

that enough training samples have been provided to the models, the attacker monitors the
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corresponding accuracy of predictions in terms of the number of training points. If the accu-

racy stops improving when new samples are added to the training dataset, the attacker can

assume that the classifiers have converged. Once the attacker identifies the most accurate

classification algorithms, then he/she can use an ensemble of algorithms to improve the accu-

racy even further. To do this, the attacker computes the normalized probability distribution

for each base (A,G,C, T ) for each classification algorithm and selects the most probable

base as a result. The caveat of having a classifier only predict a single nucleotide base is

that an attacker still needs to reconstruct the whole chain, which can introduce additional

complexities. In order to tackle this issue in our attack methodology, we propose using an

algorithm that produces the k-best sequences of oligonucleotides based on the output of the

nucleotide classifier. The details of the k-best algorithm are presented in Section 2.7. In

the training phase, an attacker constructs a nucleotide classifier; in the attack phase, the at-

tacker can use the k-best sequencing algorithm, along with domain-specific post-processing,

to reconstruct the sequence. Finding the first best sequence is trivial since the attacker only

needs to choose the type with the highest probability for each delivery to achieve the highest

confidence in the whole sequence prediction. However, finding the next best sequences are

not straightforward, and he/she can use the K-best DNA sequences algorithm.

Post-processing. The classification algorithms described in the previous stage provide

results based on the features present in the given segment of the signal; they ignore any

relation of the current base delivery to past or future base deliveries. In practice, the or-

der of the bases in an oligonucleotide sequence follows certain rules based on the synthesis

technology, machine capabilities, and the specific domain for which it is being synthesized.

For instance, authors of [100] identify three major limitations for DNA synthesis. The first

limitation involve homopolymers, which are repeated sequences of the same base; this elim-

inates the chance of synthesizing an oligonucleotide sequence more than ∼10 consecutive

instances of the same base as a substring. The second limitation is that a reasonable ratio of

G and C bases should always appear in the sequence. The last limitation involves secondary
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structures, in which an oligonucleotide sequence contains multiple complementary subse-

quences that may bind to one another, creating a physical loop. In addition, domain-specific

knowledge can improve the accuracy of predictions. For example, there are well-known se-

quences in synthetic biology that are responsible for certain functions. An attacker with this

knowledge will be able to correct errors in the algorithm if he/she notices similarities in the

extracted sequences to those mentioned. The same can be found in most other applications

of synthesized DNA. For example, in the case of storing data in DNA molecule, if the data

is coupled with error detection/correction bits, then identifying the errors will be possible

for the attacker as well.

The classification and domain-specific post-processing schemes report a reconstructed oligonu-

cleotide sequence, which the attacker has effectively stolen. Further laboratory experiments

can then confirm the correctness of the reconstructed sequence. If the attacker concludes

that the reconstructed sequence is incorrect, he/she will want to consider other probable se-

quences, until he/she discovers a reconstructed sequence that he/she believes to be correct.

2.7 K-best DNA sequences

A nucleotide base classifier predicts q = 4 possible output classes (A,G,C,T) for each

base. The classifier first estimates the conditional probability distribution of possible outputs

(Y = {c1, ..., cq}) for the set of given input features f . Then, the classifier reports the

class S = ck ∈ Y, k ∈ (1, 2, . . . , q) with the highest probability as the result:

f is assigned to class ck ⇐⇒ p(ck|f) ≥ p(cr|f)∀k 6= r. (2.4)

where r ∈ (1, 2, . . . , q). The confidence of a classification algorithm for a certain prediction

is defined to be equal to the probability of the predicted class. Since the prediction for each
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base delivery is independent from the others, the classifier computes the confidence value for

the sequence as

Confidence =
n∏

i=1

p(cki|fi), (2.5)

where Si = cki is the predicted class for the ith nucleotide base, based on the input features

fi. The confidence defined in Equation 2.5 represents the chance of predicting the target

sequence with 100% accuracy. An attacker would want to maximize this value. Choosing

a class such that p(cki|xi) ≥ p(cri|xi)∀ki 6= ri, will maximize the confidence value,

thereby increasing the probability that the predicted sequence exactly matches the original

sequence. However, as explained in the previous section, there exist scenarios where the

attacker would prefer more candidate sequences in addition to the best-predicted one. In

response, we propose an algorithm to predict the K-most probable orders of bases in a

sequence by keeping the value of confidence as close as its possible to its maximum value.

Our algorithm is inspired by the Viterbi algorithm [43] which is commonly used to find the

most probable sequence of hidden states in an HMM for a given sequence of observations.

Algorithm 1 accepts as input a two-dimensional array P which contains the conditional

probability distribution of the four base types with n delivery stages. The value of array

entry P (i, j) is equal to p(cj|fi) where cj ∈ {A, G, C, T} and fi is the given input (set of

features [fi1, fi2, . . . , fil ]) to the classifier for the ith nucleotide base prediction. Algorithm

1 converts P into a Directed Acyclic Graph (DAG). The first step is to instantiate two

dummy nodes to represent the beginning and end of the sequence. Second, four nodes with

{A, G, C, T} labels are added as a layer between the start and end nodes to represent the four

possible outputs of each classification step. The start node is connected to the four nodes

labeled in the first layer by directed edges with weights set to p(cj|fi), where cj corresponds

to the label of the destination node. The process repeats iteratively to add subsequent layers:

the nodes in layer i are connected to the nodes in layer i + 1 by instantiating a directed
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edge with a weight equal to p(cj|fi+1). Directed edges with weight 1 are added from the

four nodes in the final layer to the end node. The DAG enables simple and intuitive way to

calculate the confidence of the reconstructed sequence.

Algorithm 1: DAG generation algorithm.

Input: Probability distributions of base type prediction (P )

Output: Directed acyclic graph (G)

// node (<label>,<index>)

// edge (<from index>,<to index>,<weight>)

// Order of probability distribution rows in P : AGCT

Procedure GenerateDAG
n deliveries← length of P

n nodes← 4× n deliveries

// Creating the nodes

G← node(start,-1), node(end,n nodes)

for i = 0; i < n deliveries; i = i+ 4 do

G← node(A,i),node(G,i+1),node(C,i+2),node(T,i+3)

// Adding the first and last layer edges

for i = 0; i < 4; i+ + do

G← edge(−1, i, P (0, i)) // from source

G← edge((n nodes− 1)− i, n nodes, 1) // to end

// Adding internal layers edges

for t = 0; t < n nodes− 4; t = t+ 4 do
i offset← t

j offset← t+ 4

for i = 0; i < 4; i+ + do
i idx← i offset+ i

for j = 0; j < 4; j + + do

j idx← j offset+ j

delivery id← t
4

+ 1 // next delivery

G← edge(i idx, j idx, P (delivery id, j))

return G
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Assumption 1: Algorithm 1 generates a DAG.

Remark 1: Algorithm 1 generates a graph layer-by-layer and only adds edges between layers

i and i+ 1.

Assumption 2: A path from the start to the end node in the DAG represents a candidate

reconstructed sequence. The confidence of the corresponding sequence is equal to the product

of the weights of the edges along the path.

Remark 2: A path in the DAG emanating from the start node will pass through each layer

exactly once. Choosing the node’s label as be the delivery base type yields a nucleotide

sequence whose length is equal to the number of layers in the graph. All input edges to a

node with a given label will weight equal to the probability of that label being correct for its

corresponding base delivery. Considering that the value of the last edge in the path, which

terminates at the end node, is 1, the product of the weights on the path is equivalent to the

definition of the confidence shown in Equation 2.5.

We first call Algorithm 1 to generate DAG G from input P . We then replace all the weight

values with their corresponding log base values for mathematical simplicity in later steps.

We also define the length of a path to be equal to the summation of edge weights on the path.

In this case, the k longest paths in the graph will represent the k-most probable sequences.

Notice that the summation of the log of a set of values is equal to calculating the log of the

multiplication of those values.

There exist multiple algorithms that compute the K longest paths from a source node to sink

node in a DAG [34]. The algorithm presented in [35] achieves an optimal asymptotic time

complexity of O(m + nlogn + k), where n is the number of nodes and m is the number

of edges in the DAG. This algorithm has an O(1) time complexity per pathfinding attempt,

after a preprocessing stage that uses Dijkstra’s Algorithm to identify the shortest path. This

is a substantially more efficient than a brute-force approach, which would enumerate all 4n
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length-n base sequences and compute their confidence values in O(n) time per sequence,

yielding an overall time complexity of O(n4n).

Table 2.1: Probability distribution of base types for three consecutive deliveries.

Base Name Delivery #1 Delivery #2 Delivery #3

A 0.9 0.03 0.12
G 0.05 0.8 0.4
C 0.01 0.15 0.35
T 0.04 0.02 0.13

Table 2.1 presents a sample probability distribution of base types for a DNA synthesis

procedure consisting of three delivery stages. Based on this table it is easy to infer that

the most probable sequence is AGG with confidence of 0.9 ∗ 0.8 ∗ 0.4 = 0.288. However,

since the probability of delivering base C in the last stage is very close to the probability

of delivering base G, if the sequence does not support our requirements, then we would

intuitively consider the sequence AGC. If the attacker determines that both AGG and AGC

are incorrect sequences, then he/she would turn to Algorithm 1 to generate the DAG shown

in Figure 2.7. A top-11 analysis of the DAG generates the following sequences, in order:

AGG, AGC, AGT, AGA, ACG, ACC, ACC, ACT, ACA, GGG, GGC.

G
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C

T

G

A

C

T

G

A

C

T

Start End

Figure 2.7: A DAG corresponding to the probability distribution provided in Table 2.1
(Thicker arrows represents higher probabilities for the destination nodes.)
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2.8 Results and case study

This section presents the experimental results obtained by implementing the proposed attack

methodology on an Applied Biosystems Inc. (ABI) 3400, one of the most widely used

commercial DNA synthesizers. To validate this choice, we contacted a DNA synthesizer

sales expert who stated: ”I strongly recommend you consider either the ABI 394 or the

ABI 3400. They are by far the workhorses of the industry. 95% of our customers use the

ABI 394.” - [Email]). This section also presents a test cases where we reconstructed the

complete oligonucleotide sequences using the proposed K-best DNA sequences algorithm

and post-processing steps.

2.8.1 Test Bed

As shown in Figure 2.3, the experimental setup consists of an AB 3400 DNA Synthesizer

[6] and a Zoom H6 audio recorder to acquire the acoustic signal. We record the signals

through three channels simultaneously at a sampling frequency of 48 kHz with a resolution

of 24 bits per sample. For every DNA synthesis run, we randomly place a recorder with

two condenser microphones near the DNA synthesizer (on top of the machine or on the

setup desk, no further than 10 cm from the machine). We also use a contact microphone

to record acoustic signals with almost no environmental noise. Our attack methodology is

implemented in Python 3.6. We use the tsfresh [24] library package for feature extraction;

scikit-learn [105] for profiling model generation; and networkx [53] for modeling the network

discussed in Section 2.7. We also use MATLAB [94] to represent the Short-Time Fourier

Transform (STFT) results.
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2.8.2 Evaluations Assumptions

We used the Zoom H6 portable handy recorder tool kit, which has publicly available coil

condenser microphone characteristics, to carry out our attack. The Zoom H6 is similar to

an iPhone 4, which contains two similar internal microphones. As a ubiquitous consumer

product, an iPhone 4 placed in a discreet location near a DNA synthesizer, would seem

innocuous to the typical user of such a machine, and could easily collect days’ worth of data

without detection.

We assume that the DNA synthesizer is used exclusively for oligonucleotide synthesis. DNA

synthesizers have various cycle scripts for producing different polymerases. If a user in-

tends to synthesize DNA, the same script should be used, without modification, regardless

of the target sequence; modification of the cycle script can cause erroneous synthesis be-

havior. (Over six months of studying this machine in an active biomedical laboratory, we

observed that the settings were never changed. We verified that the cycle script that was run

repeatedly by different users always matched the cycle script for oligonucleotide synthesis

in the AB 3400 synthesizer manual. This assertion was subsequently confirmed by direct

communication with the machine operators).

Although the AB 3400 can synthesize four columns in parallel, in practice, the deliveries to

output columns do not occur simultaneously, as described in Chapter 6 of the user manual

[6]; for each output column, the same solenoid valves and pipes are used. The only difference

is setting the Front Reagent Block to a different output column before the next delivery cycle.

Since the same script is used for every column, extracting the delivery stages for each output

is straightforward. To avoid unnecessary complication, we focus on single output column

DNA synthesis.
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2.8.3 Training and Evaluation

The attack model described in Section 2.6 consists of functions (f̂(., θ)) that need to be

trained before they are used for a specific synthesizer. Since the objective of each model is

known, we use supervised learning to estimate the functions. We initially synthesized seven

different 60-base oligonucleotide sequences, each consisting of 15 A’s C’s G’s and T’s in

varying orders. An attacker could increase the number of synthesis runs if the classification

results do not converge, however, as shown in this section, the initial runs were sufficient.

Each synthesis run took 7 hours, 29 minutes, and 53 seconds. As an attacker, we label the

acquired signals into different stages: ‘initialization’, ‘repetitive cycle’, and ‘base delivery’.

The labeling is possible because the user manual for the synthesizer machine lists the opera-

tions which take place during synthesis and the corresponding duration of each operation [6].

Based on the manual, it is easy to infer that the DNA synthesizer initialization stage takes

approximately 787 seconds and only occurs at the beginning of the synthesis procedure. The

‘repetitive cycle’ stage takes approximately 463 seconds, and the ‘base delivery’ stage takes

approximately 5 seconds inside the ’repetitive cycle’ stage.

To pre-process the signals, first the STFT spectrum is calculated. The analysis of the

acquired signals reveals there is no difference in the magnitude of frequency components

below 300 Hz between the portion of the signal which belongs to environment noise versus

actual DNA synthesis (see Figure 2.8). Hence, we chose 300 Hz as a cutoff frequency and

filter the signal frequency components below this limit using a high-pass filter. We apply

Equation 2.3 to normalize the signal before further processing.

In Figures 2.6 and 2.8, each valve operation produces an audible click from the machine

which is clearly visible as a peak in the recorded waveforms. When operational, the DNA

synthesizer executes the cycle script, for which the sequence and duration of valve operations

during the synthesis run are known. By correlating valve operation timings between the
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Figure 2.8: Recorded acoustic signal from the DNA synthesizer during synthesis followed
by an idle state (top). Short-Time Fourier Transform (STFT) of the corresponding signal
(bottom).

waveform and cycle script, sections of the waveform can be labeled with the corresponding

valve operations. On the AB 3400 DNA synthesizer, the base delivery stage contains six

valve operations with a unique sequence of timings relative to other stages in the synthesis

process. With practice, the base delivery stage can be visually identified and extracted from

the waveform. Additionally, the specific valve operation that delivers the base always occurs

at the same time in the delivery stage. Therefore, this operation can be extracted and used for

base identification in the classification step of the attack model. Since a human can manually

extract the base delivery operation using these features, we implemented an algorithm to

extract the base deliveries using the same process. First, we identify the peak locations in

the signal using continuous wavelet transforms [30]. Then, based on the cycle script, the

algorithm identifies the sequence of distances that correspond to the base delivery stage. For

each stage, the algorithm references the cycle script again and extracts the segment that

corresponds to the base delivery valve operation.
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Once the base delivery segment is extracted from the signal (similar to what is shown in

Figure 2.6), we train six classifiers as shown in Table 2.2. Feeding the raw base delivery

acoustic signal to these classifiers results in random classification (≤ 25% accuracy), so a

feature extraction step is required before classification. We select the best set of features

to be used for classification in two steps. First, we extract all the features introduced with

the tsfresh [24] library. These features consist of the time domain, frequency domain, and

wavelet-based features. Next we calculate the significance of each feature and carry out

multiple test procedures [11] to select the most relevant features with the lowest dependency

score [24].

This procedure reduced the number of features from 57,018 to 75 (selected features in Table

2.2). The selected features include the magnitude of the Fourier transform components of

the input signal in certain frequencies as well as the autocorrelation of the signal with a

lag of 2 and 3 samples. The selected set of features matches what was expected from the

feasibility analysis of the attack described in Section 2.5. The structural differences between

the pipes used for different base deliveries causes each base delivery to generate slightly

different frequencies. However, for practicality, the tsfresh library with default settings does

not generate all of the frequency components. To discover all of the possible features in the

frequency domain while keeping computational resources fixed, we calculate the frequency

components with an accuracy of 200 mHz, but only at frequencies above 300 Hz with local

peaks in the frequency transform (see Figure 2.8). We reran the same feature selection

algorithm and identified 310 features within those frequency bands (improved selected features

in Table 2.2).

To ensure that the amount of training data is sufficient for the models, we analyze the

prediction accuracy based on the number of base delivery samples in the training dataset.

We selected AdaBoost [55], linear Support Vector Machine (SVM) [26], Näıve Bayes [147],

Neural Network [58], and Random Forest [17] classifiers to estimate the function f̂(., θ). We

40



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 20 36 52 68 84 100 116 132 148 164 180 196 212 228

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

 (
1=

10
0

%
)

Number of Training Samples

AdaBoost

Linear SVM

NaiveBayes

NeuralNet

RandomForest

VotingClassifier

Classifier algorithms starts 
converging

Slower convergence rate compared to 
other classifier algorithms

Highest accuracy obtained

Figure 2.9: Learning curve of various classifiers for nucleotide base classification.

also implemented a weighted majority rule voting [107] based ensemble that uses random

forest and neural network as the base classifiers; for simplicity we set the weights of both

classifiers to be equal. As shown in Figure 2.9, around 200 samples is sufficient to train

the models to achieve maximum accuracy when classifying nucleotide bases based on the

selected features. We used 80% of the dataset for training and 20% for validation, coupled

with 10-fold cross validation [73] to produce the results reported in Figure 2.9 and Table

2.2. The reported accuracy numbers shown are averaged across the 10 folds. Figure 2.9 and

Table 2.2 show that the majority rule voting-based ensemble of classifiers achieves faster

convergence and higher classification accuracy than the other classifiers for the improved

selected features. This can be explained by the fact that each individual classifier effectively

searches a space H of hypotheses in search of the hypothesis with the highest accuracy.

Different classifiers identify different hypotheses with similar, if not the best overall, accuracy.

If each classifier’s hypothesis has uncorrelated errors with error rates exceeding 50%, then

the voting-based ensemble method is likely to increase overall accuracy [29]; however, this

improved performance is obtained at the cost of increased computing power and training

time for the ensemble of classifiers used in voting.

The next step in the attack model, as discussed in Section 2.6, is post-processing the recon-
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Figure 2.10: The impact of added noise effects on the side-channel attacks against DNA
synthesizers.

structed DNA sequence with domain-based knowledge after generating the K-best sequences.

Since the accuracy of the classifiers is reported based on random delivery samples, we did

not integrate this stage into our initial experiments. Instead, we evaluate the value of such

techniques for reconstructing meaningful DNA sequences in Section 2.8.6.

2.8.4 Noise Effect on Accuracy

Although the pre-processing stage used in the attack reduces the effect of environmental

noise and normalizes the acquired signals, significant ambient noise might obfuscate the

information leaked in the side-channels, reducing the effectiveness of the attack. Hence, it is

important to evaluate the robustness of the trained models against potential environmental

noises. To this end, we generate six types of different noises and add them to the recorded raw

signals for the test samples: brown noise, which has very high intensity in lower frequencies

(β = 2); pink noise, which has high intensity in lower frequencies (β = 1); white noise,

which has same intensity in all frequencies (β = 0); blue noise, which has high intensity in

higher frequencies (β = −1); violet noise, which has very high intensity in higher frequencies

(β = −2); and conversation noise, which is a recorded conversation between two persons
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(the power spectral densities of the color noises are proportional to 1
fβ

).

As shown in Figure 2.10, adding any noise with a high-decibel sound pressure level (SPL)

reduces the attack model accuracy. We observe that the noises, which have a medium to high

emphasis on their higher frequency components, can mask the leaked signal with lower SPL.

If a noise generator is added as a countermeasure against acoustic side channel attacks, then

to be effective, it must generate high-frequency noises in close proximity to the synthesizer.

General noises in the laboratory, such as employee conversations or air conditioner emission

(pink), are unlikely to be effective countermeasures.

2.8.5 Microphone Distance Effect on Accuracy

The SPL induced by the DNA synthesizer is inversely proportional to the distance between

the DNA synthesizer and the microphone. If an SPL is measured to be L1 at distance r1,

it will reduce to L2 at distance r2 according to the following equation [40]:

L2 = L1 − |20log(
r1

r2
)|. (2.6)

We used this equation to evaluate the effect of microphone distance to the target DNA

synthesizer. During the delivery stages, our experiments yielded an average SPL of 81.15

dB and 77.1 dB for the contact and condenser microphones. We assume that the acoustic

signal collected by the contact microphone is free of environment noise. In this scenario,

decreasing the SPL of the recorded signal by the contact microphone while adding a constant

room noise is equivalent to placing the recorder at a further distance.

Figure 2.11 shows the result of decreasing the SPL of a recorded signal near the contact

microphone in 1 dB increments while keeping the added room noise level constant. Since we

know the SPL of the signal within 10 cm of the machine, we add a secondary horizontal axis
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to the top of the chart to show the distance of the microphone from the DNA synthesizer

using Equation 2.6. If we assume that there is no noise in the environment, the degradation

of the SPL of a signal at a further distance would have no effect on the accuracy of a given

voting classifier, since a normalization step can revert the SPL back to its expected value; in

practice, environment noise is unavoidable. As shown in the figure, increasing the distance

decreases the accuracy for all types of classifiers. Once the distance between the microphone

and DNA synthesizer exceeds 0.7 meters, the accuracy of all classifiers noticeably degrades,

although the exact amount of degradation varies among the classifiers. For example, the

Neural Network classifier has a higher accuracy than the Random Forest classifier in close

proximity to the DNA synthesizer; however, the Random Forest classifier has higher accuracy

when the microphone is placed further away from the synthesizer. The ensemble voting

classifier used in the attack methodology can often reach and exceed the accuracy of these

two classifiers individually, regardless of the distance.
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Table 2.3: Results for reconstructing the test cases.

The bold colors with larger font size in oligonucleotide sequence  represents the misclassified  nucleotide bases

Predicted Oligonucleotide sequencev N=3 N=2 N=1 N=0

CGCAAGTACTCCTGC

CGCAATTACTCCTGA

GGAATAGTAGAAGAATGCTGCACAAGCATATGCAGCCTATACGAACTAGAAGACTACTGCGAC

GGAATAGTAGAAGCGTGCTGCACAATCATATGCAGCCTACACGAACTAGAAGACGACTGCGAG

TGGCGACATGATAACCCGTCGGAGGATCCGGGGCGGGGGCACCTC

TGGCGACATTATAACCCGTCGGATGATCCGGGTCGTGTTCACCTC

TTTTTCGACCGGTATGATTCCGCCCGTGACCCAGGACGCTTGCTT

TTTTGCGACCGGTCTTCTGCCGCCCGTGACCCAGGACGCTTGCTT

Brute Force 

Com plexity

15x4^15

63x4^63

45x4^45

45x4^45>100

BLAST  

m atch

Sequence 

Length

29

3

3

3

>100

19

35

Yes

Accuracy  

(%)

86.67

90.48

86.67

88.89 Yes

1

12

1

14 45

15

63

45

Number of guesses to have 

N or less mispredicted amino acid

11

2

3

Yes

Yes

Case 

#

21

>100

>100

Original Oligonucleotide sequence

2.8.6 Test Case Evaluation

This section evaluates the impact of our proposed attack methodology by reconstructing

four DNA sequences which were synthesized using the DNA synthesizer shown in Figure 2.3.

To ensure fairness, the test cases considered here were chosen by an author different than

the attacker, and the original sequence was provided to the attacker only after the results

were submitted for comparison. The attacker makes only one assumption: the sequence is

later going to be implanted in a living organism to create some type of protein. Every three

oligonucleotide bases translate to a certain amino acid (the building block of a protein)

based on this table [123]. As discussed in Section 2.6 this assumption may help during

post-processing. The DNA sequence test cases evaluated are:

1- Conotoxins. We synthesized part of a DNA sequence that translates to a lethal pro-

tein: conotoxin. Conotoxins are recognized by the US Government as potential agents of

bioterrorism [42]. We assume that the attacker is potentially a government agency or a

similar entity.

2- Human insulin. We synthesized the DNA that encodes the alpha chain of human

insulin. Insulin was originally extracted from pig pancreases; in 1979 Goeddel et al. added

DNA encoding human insulin to bacteria to produce actual human insulin [51]. This was

the first major drug produced by synthetic biology and led to the founding of Genentech,
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a multi-billion-dollar pharmaceutical company.

3 & 4- Peptide. We synthesized two DNA sequences which encoded peptides that were

isolated by in vitro selection to bind the protein target streptavidin. The peptides have

been characterized in [77] and function as high-affinity ligands to the protein target. These

peptides could be used as protein affinity tags to purify other proteins from crude cellular

lysate or cell-free translation systems.

For the test cases, we use the majority voting rule-based ensemble of classifiers trained in

Section 2.8. We first collect the acoustic signal generated by the machine while synthesiz-

ing the aforementioned sequences. After preprocessing and background noise elimination,

we manually ensure that the correct signal delivery segments are extracted from the given

signals. After segment extraction, the model extracts the same set of features that were

used for training. Next, the trained classifier predicts the probabilities for each base type for

each delivery. As shown in Table 2.3, choosing the base type with the highest probability

results in average accuracies close to the classifier accuracy which is calculated in Section

2.8. Since we assume that the reconstructed sequences will be used in a biological applica-

tion, we also provide the number of errors in terms of mispredicted amino acids. We use

the K-best sequence algorithm described in Section 2.7 to show the number of trials that an

attacker would need to reconstruct the original sequence with perfect accuracy. The results

show that, for short sequences, it is possible to reconstruct the sequence with a reasonable

number of trials. However, as sequences grow in length, due to the limited accuracy of the

classifiers, finding the exact location of the errors in the sequence becomes more difficult.

Hence, we conclude that if the number of bases is long enough, achieving 100% accuracy

for reconstructing the whole sequence with the given attack methodology solely based on

acoustic side-channel data may not be possible. However, failing to reconstruct the sequence

with perfect accuracy does not translate to the absolute confidentiality of the data passed to

the machine. An attacker can acquire enough information to determine the intended purpose
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of a reconstructed DNA sequence even if some base predictions are incorrect. As it turns

out, reading the sequence of bases in a DNA molecule have always been error-prone.

Publicly available software such as BLAST [5] store DNA sequence, their functionality, and

can readily determine the most similar known DNA sequences, along with their application,

for a given amino acid sequence. If the attacker is a government agency, tools like BLAST

may be used to determine if a hostile user is synthesizing DNA sequences that have structural

similarities to known hazardous sequences.

In an industrial setting an attacker may work for a competitor whose objective is industrial

espionage; in this case, the attacker can use tools like BLAST to derive the likely amino

acid sequence of a protein being developed by the company under attack. To quantify the

relevant information in the reconstructed sequences, we import amino acid sequences that

correspond to the original and reconstructed test cases to the BLAST and then compare

output reported for each sequence. Table 2.3 summarizes the result of this experiment. If

BLAST reports a similar set of candidates for the original and the reconstructed sequences,

Table 2.3 reports YES in the ”BLAST match” column.

2.9 Discussion

2.9.1 Attack Cost and its Implications

We spent 56 hours collecting training data on the AB 3400 DNA synthesizer; during this

time, human supervision was required for less than one hour in total. We dedicated 5

hours to understanding the structure of the AB 3400 and the scripts used for oligonucleotide

synthesis. Manual segmentation of the signal took 20 minutes per synthesis run (less than 3

hours in total); an Intel Core i7-7820X CPU with 16 gigabytes of RAM extracted the features,
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selected the best features, and trained 6 models in 14 minutes and 28 seconds. Although

access to the DNA synthesizer was granted by its operator (a university laboratory) at no

cost, the synthesis runs consumed $300 worth of raw chemical materials. Once the models

are trained, the attack phase requires 20 minutes to manually segment 60 base deliveries and

less than one second per delivery to predict the base.

These costs are negligible in comparison to the cost of real-world drug production in industry.

In 2004, for example, the Bill and Melinda Gates Foundation dedicated $42.6 million to the

development of an anti-malaria drug [12]. The recipients of the award published their initial

results two years later, and completed the research project by the end of the third year. This

particular drug was not patented and its recipe was made freely available as a humanitarian

gesture; however, the key point is that the drug cost tens millions of dollars to produce,

while an attacker could steal its DNA sequence (if kept a secret) in less than one week of

time and at a cost of several hundred dollars. This could easily doom a for-profit private

sector drug development project.

2.9.2 Limitations of Attack Methodology and Experiments

The AB 3400 DNA synthesizer is a widely used commercial product, but is not the only

one on the market. The feasibility analysis in Section 2.5 implies that the proposed attack

methodology is could be applied to any DNA synthesizer that employs solenoid valves and

pipes for chemical delivery; future work will validate this attack methodology against similar

machines.

This thesis used the same machine for training and validation of the attack model and eval-

uated its robustness to minute differences between the profiling system and target through

the additional of artificial noise (Section 2.8.4). Further investigation is required to evaluate

the effectiveness of the attack model when different AB 3400 machines are used for profiling
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and targets of the attack.

2.10 Countermeasures

Secured structure: One way to prevent acoustic side-channel attacks is to ensure that all

the physical components responsible for the delivery stage are similar: identical solenoids,

pressure valves, and pipe lengths must be chosen, and they must be placed in a geometrically

identical manner; for example, bends in fluid pipes must be identical to eliminate variations

in accoustic emissions. Additionally, anti vibration pads (a.k.a. vibration isolators) could

be integrated into the inner layers of the DNA synthesizer to reduce the intensity of any

emitted observable acoustic noise.

Artificial noise: Redundant physical components may be added to introduce additional

noise and decrease the signal to noise ratio, making it difficult to infer the cyber and physical

states of the DNA synthesizer. Although intuitive, adding loud noise may bother employees

who work in the same environment as the DNA synthesizer. Thus, proper methods, such as

those described in Section 2.8.4, will be needed to search for low intensity noises that can

mask information emitted from the acoustic side channel.

Delivery segment obfuscation: The DNA synthesizer’s delivery stage is the critical point

of vulnerability for this particular attack. A number of opportunities exist to potentially

obfuscate this stage exclusively, such as adding redundant steps of varying time length, which

are benign to the DNA synthesis process, and randomly selecting them prior to delivery;

however, this may increase DNA synthesis time. Another possibility is to randomly select

and execute steps unrelated to base delivery, such as cleaning other pipes or waste disposal,

concurrently with base delivery. Although the system will remain observable, the cyber

and physical-domain states will be obfuscated, which will increase the difficulty of using
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data-driven approaches to infer the actual states.

Secured laboratory environment: The most effective practice to assure confidentiality

of the synthesized DNA sequences is to prevent any visitor or unauthorized personnel from

entering any room that contains a DNA synthesizer. Along similar lines, any unauthorized

device found in the same room as a DNA synthesizer should be reported as a security threat.

Furthermore, the cyber-security of every electronic device with recording capabilities that

enters the laboratory environment, even if authorized, should be considered; the device itself

may be compromised by a malicious adversary who can remotely activate acoustic signal

recording.

2.11 Conclusion

We proposed and implemented a novel acoustic side-channel attack methodology on DNA

synthesizers to steal the type and order of the bases which were synthesized. We tested our

attack model against one of the most widely used DNA synthesizers and showed that ignoring

such a confidentiality vulnerability can result in a significant research investment loss. We

were able to predict the type of each base delivery with an average accuracy of 88.07%. We

introduced a novel way to evaluate the effect of microphone distance without exhaustive

experiments which revealed that high accuracy can be expected from the proposed attack

methodology with up to a 0.7 m gap between the microphone and the DNA synthesizer. In

addition, we showed how a reconstructed sequence can be leveraged using a post-processing

approach in a biological domain (such as using the publicly available tool BLAST) to identify

the protein that the original sequence intended to encode, despite any errors.
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Chapter 3

HTnet: Transfer Learning for Golden

Chip-Free Hardware Trojan Detection

3.1 Abstract

Design and fabrication outsourcing has made ICs vulnerable to malicious modifications by

third parties known as hardware Trojans (HT). Over the last decade, the use of side-channel

measurements for detecting the malicious manipulation of the ICs has been extensively

studied. However, the suggested approaches often suffer from three major limitations: 1)

reliance on a trusted identical chip (i.e. golden chip), 2) untraceable footprints of subtle

hardware Trojans which remain inactive during the testing phase, and 3) the need to identify

the best discriminative features that can be used for separating side-channel signals coming

from HT-free and HT-infected circuits. To overcome these shortcomings, we propose a novel

neural network design (i.e. HTNet) and a feature extractor training methodology that can

be used for HT detection in run time. We create a library of known hardware Trojans and

collect electromagnetic and power side-channel signals for each case and train HTnet to learn
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the best discriminative features based on this library. Then, in the test time we fine tune

HTnet to learn the behavior of the particular chip under test. We use HTnet followed by an

anomaly detection mechanism in run-time to monitor the chip behavior and report malicious

activities in the side-channel signals. We evaluate our methodology using TrustHub [117]

benchmarks and show that HTnet can extract a robust set of features that can be used for

HT-detection purpose.

3.2 Introduction

The CPSs are not only limited to digital machines with moving parts. An Integrated Circuit

(IC) which hosts a cyber-domain software/algorithm is also considered to be a CPS by itself.

Given the growing demand for low-cost ICs, companies tend to have their chips designed and

fabricated by untrusted third-party entities over the globe. This has raised security concerns

about intentional malicious modification of the integrated circuits, referred to as Hardware

Trojans (HT).

The ICs are deployed in many sensitive applications, such as medical devices, critical defense

technologies, and municipal support systems, which highlights the paramount importance of

resolving this security issue. The attacker may tamper with the circuit in order to change

the functionality, degrade performance, leak information, or deny service [121]. For in-

stance, the malicious circuit manipulation in implantable medical devices can cause physical

harm either by altering the functionality or through a Denial-of-Service attack. The HTs

inserted in military devices, can leak sensitive data through side-channels and compromise

the confidentiality of the information inside the chip such as encryption keys. In the last

decade, HT detection has been deeply investigated in the literature; nevertheless, the pro-

posed techniques have several shortcomings. The investigated techniques include destructive

and non-destructive methods. Destructive methods have the IC decapsulated and delayered
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to obtain the images of physical layers of the chip and utilize reverse engineering techniques

to detect malfunction in the circuit. Although this method is able to provide high levels

of confidence, it is costly and time-consuming, and it can authenticate only a single chip

which is often not usable after the invasive process. Thus, the non-destructive approaches,

which rely on the HT impact on host circuit functionality or side-channel parameters, are

typically better choice if proven to be effective. HTs are designed to have a small area and

power consumption. They usually contain two primary part: trigger and payload. After a

series of particular events in external or internal signals, the trigger activates the payload

to perform malicious behavior. An inactive Trojan does not alter the functionality and its

effect on chip parameters is not significant enough to be distinguished from process variation

and measurement noise.

Side-channel signal analysis is another approach for HT detection based on the malicious

circuit side-effects on the side-channel parametric profile of the chip. In this method, side-

channel parameters are measured and compared to the expected values to identify the pres-

ence of additional structure. Most of the side-channel based works depend on a trusted chip,

called golden chip, to create the reference model for comparison. However, in practice, the

golden chip does not exist since the integrated circuits supply chain is susceptible to HT

insertion in any stage [142].

Various works in the literature have studied golden chip-free approaches to address this

limitation. In [85], the authors propose the idea of utilizing the Process Control Monitors

(PCM) and statistical side-channel fingerprinting to construct the reference for chip verifi-

cation. It is assumed that the PCM are reliable since manipulating them is very difficult

for attackers and any systematic modification of them results in notable deviation. Another

approach introduced in [99] is self-referencing. When the HT is triggered, it creates uncor-

related temporal variation in the transient current signature of the chip which is detectable

by side-channel measurement.
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Due to the stealthy nature of HTs, they may evade detection in the IC testing phase with

drastic consequences that are not acceptable in critical application. Thereafter, the idea of

run-time HT detection is discussed to act as the last line of defense. The chip behavior is

monitored during run-time to guarantee proper and secure IC operation. For instance, the

method described in [33] provides an early alert for triggered HTs by monitoring performance

counters. The advancement of semiconductor technology has brought about the issue of

deterioration of circuit profile over time, known as circuit aging. This phenomenon can

cause the run-time HT detection frameworks to fail since a predefined constant model cannot

address the impact of the circuit aging on the circuit parameters and it is not considered in

most approaches.

In this chapter, we develop a novel neural network design (i.e. HTNet) and a training

methodology for HT detection in run time without the golden-chip requirement. We create

a library of known HTs and collect electromagnetic (EM) and power side-channel signals for

each case and train HTnet to learn the best discriminative features based on this library.

Then, during the testing phase, we fine tune the HTnet to learn the behavior of the particular

chip under test. We use HTnet followed by an anomaly detection algorithm in run-time to

monitor the side-channel signals emitted from the chip and report malicious behaviors related

to a triggered HT. The content of this chapter is provided from [38].

3.2.1 Research Challenges

In a nutshell, the state-of-art approaches for HT detection often experience the following

challenges:

• Reliance on a reference golden chip, which in practice is costly to obtain or unavailable

in some HT threat models such as untrusted IPs.
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• Detection of HTs often requires activating them while the probability of triggering an

HT during testing is very low due to their stealthy nature.

• For each new IC design, a new feature space needs to be defined to extract the most

relevant features in the side-channel signals that can be used for detecting HTs.

3.2.2 Technical Contributions

This chapter makes the following technical contributions to address the aforementioned chal-

lenges:

• We devise a custom neural network architecture that performs the same or better than

any available approach in the literature for HT detection.

• We propose a methodology to transfer the knowledge learned based on known HT

benchmarks to a new circuit which may or may not contain an HT.

• With this work, we publish our collected electromagnetic and power side-channel data

for hardware implementation of AES infected by various forms of HTs. We provide

our source codes for our model implementation.1

3.3 Background

3.3.1 Related Works

The potential threat of HT has motivated many studies where side-channel analysis is a

widely used strategy for HT detection. The idea is to measure side-channel parameters

1https://github.uci.edu/AICPS/HTnet
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Figure 3.1: Two power time series samples for a benchmark.

including supply power leakage [111, 4, 108, 141], transient current [99], delay [68, 143],

temperature[63], or EM emission[154, 129] and determine if the IC is contaminated by com-

paring the measurements with the expected reference values. Although in some side-channel

analysis approaches, golden chip-free methods such as temporal self-referencing [99] are uti-

lized for HT detection, they mainly depend on availability of a golden chip. To overcome this

shortcoming, reference-free methods are introduced which rely on the other characteristic

of the chip. The authors of [116] use controllability and observability analysis of gate-level

netlist along with unsupervised clustering to provide the HT related signal lists and assert

the insertion of the HT. In [112], the authors propose that they used deep learning to extract

Trojan features from gate-level netlist and detect infected nodes by clustering the nodes. The

approach explained in [154] modifies the fill cells in a standard cell library to be observable

in an optical image taken through the backside of the chip. Using the optical image, the

circuit layout is extracted and used malicious manipulation detection.

56



3.3.2 Time Series Classification and Anomaly detection

Feature Engineering Based Models

As depicted in Figure 3.1, distinguishing between an inactive HT and a triggered HT signal

is not a trivial task as the differences are very small. The majority of the machine learning

approaches used in the literature such as Support Vector Machines (SVM) define a distance

function for comparing the similarity/dissimilarity between two signals. Given that a side-

channel signal with T samples is defined as X = [x1, x2, ..., xT ], the distance functions are

typically in the form of Lp norm defined as,

Lp = ||X −X ′||p = (
∑
i

|xi − x′i|
p)1/p (3.1)

where p = 1 and p = 2 denote Manhattan distance and Euclidean distance, respectively.

However, in practice, the length of the two signals might be different, small shifts in the signal

may occur, and it is computationally expensive to determine the Lp value for large values of

T . To overcome these challenges, various techniques have proposed using a set of features for

representing the time series signal. Time domain features such as local min/max/average,

frequency domain features extracted by Short-Time Fourier Transform (STFT), and features

extracted by Discreet Wavelet Transform (DWT) have been among the most widely used

features for the time series representation. Besides the spectral approaches, representative

eigenvalue analysis methods such as Principle Component Analysis (PCA) [86] and Singular

Value Decomposition (SVD) have been widely used in the literature to compress the signal

and focus on the most relevant features in the signal. Often, some of these features are pruned

with human supervision to select the best set of features. In most cases, the accuracy of the

models heavily rely on the chosen features.
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End-to-end Models

In recent years, deep learning has gained incredible popularity. In particular, Convolutional

Neural Networks (CNN) have been widely used in various applications due to their capability

of extracting the most relevant features under most scenarios automatically. The details of

CNN formulation for time series classification is provided in [152]. Under this formulation,

each convolutional layer acts as a filter with trainable weights that can adjust to the input

shape during the training phase. In contrast to the other methods, neither training nor using

CNN based models does not involve a separate feature-engineering step; for this reason they

are referred as end-to-end models.

3.4 Methodology

In this section, we describe our methodology for designing and training a neural network to

extract the most relevant features from side-channel signals in a compact form. Then, we

use a self-referencing approach to detect anomalous behavior.

3.4.1 Library Construction

The first step in our methodology is to gather a dataset of side-channel signals. We use

TrustHub [135] benchmarks that are implemented in the FPGA platform as the reference

circuits. For each benchmark, we collect N EM and power traces under two scenarios: HT-

inactive and HT-triggered. In the HT-inactive scenario, the HT is disabled to stay inactive

during data collection. In the HT-triggered scenario, we enforce the trigger condition and

the HT is always active. The side-channel signal dataset collected for the jth benchmark

is defined as Dj = {(Xj
1, Y

j
1 ), (Xj

2, Y
j
2 ), ..., (Xj

2N , Y
j
2N)} which is a collection of pairs
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(Xj
i , Y

j
i ) where Xj

i is a univariate time series signal resulted from concatenation of various

side-channel signals (EM and power for this chapter) and Y j
i ∈ {0, 1} as it is corresponding

label (0 - HT-inactive, 1 - HT-triggered).

3.4.2 HTnet Model design

To design a virtually perfect neural network structure for the detection of triggered HTs, we

perform an exhaustive search on the available state-of-the-art architectures for CNNs to find

the best design for classifying the collected signal into Trojan triggered and inactive classes.

Figure 3.2 represents HTnet that is the result of this exhaustive search with fine-tuned

hyperparameters. HTnet consists of two Convolutional Layers (CL) with ReLU activations,

each immediately followed by a dropout and max-pooling mechanisms to avoid overfitting.

The output of these CLs is a preliminary discriminative set of features from the input signal.

To further purify the extracted features, we implement an attention mechanism after CLs.

We divide the output of the second CL into half, apply a softmax on half of the features and

multiply it to the other half. Afterward, a CL with a small number of filters followed by a

dense layer with a small number of nodes is added to the network to compress the extracted

features. For the rest of this chapter, these compressed features will be referred to as latent

features. In the end, there is one more dense layer with a softmax activation function for

the classification purpose.

3.4.3 Modeling Side-channel Footprints of Known HTs

In this chapter, we propose a transfer learning approach to avoid the need for a golden

chip. Inspired by [106], we first train the HTnet H to learn our previous knowledge about

the existing HTs. Assuming that we are going to evaluate our methodology over the mth
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benchmark, we train HTnet to perform a 2(L− 1) classification task over Rm defined as,

Rm =
i=L⋃
i=0

Di −Dm (3.2)

where L is the total number of benchmarks (each benchmark has inactive and triggered sam-

ples). During training, the weights in H are tuned such that it extracts a set of descriptive

latent features that can be used to discriminate between previously known HT-inactive and

HT-triggered samples. We consider the weights of H as our initial knowledge for previously

known HT-infected circuits.

3.4.4 Knowledge Transfer for One-class Feature Learning

Once an IC is manufactured, we can only acquire unlabeled side-channel signals from the

chip. In the case of HTs with a trigger mechanism, it is often assumed that they will not

get triggered during the chip test phase otherwise they would be detected. This means that

during this phase we can assume that we have access to a number of side-channel signals that

are mostly likely labeled as HT-inactive. Based on this assumption, we construct a model

that learns to extract features for only one class of available data which is HT-inactive during

the chip testing phase.

Architecture

As shown in Figure 3.3, we discard the last dense layer in H , call it H ′, and create two

new models: a reference model Hr and a target model Ht. Hr consists of H ′ followed by

a new softmax dense layer with 2(L − 1) nodes. Ht consists of only H ′ which shares the

same weights with H ′ part of the reference model and is responsible for one-class feature

extraction. To train Hr and Ht we use a reference dataset R′m ⊂ Rm, and a target dataset
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D′m ⊂ {(X,Y ) : (X,Y ) ∈ Dm and Y 6= 1} accordingly.

Loss functions

The extracted features by the network should be both compact and descriptive. A compact

feature space will result in a similar feature representation for samples of our target class

(HT-inactive - D′m). A descriptive feature space will produce distinct representations for

samples of different classes (other benchmarks, HT-triggered, and HT-inactive -R′m). To

ensure these two qualities, we incorporate two loss functions: compactness loss (lC) and

descriptiveness loss (lD). We formulate, our optimization objective to be,

ĝ = min
g
lD(R′m) + λlC(D′m) (3.3)

where λ is a constant. Here, lC computes the mean squared intra-batch distance within a

given batch of target class samples. Define X = {x1, x2, ..., xn} ∈ Rn×k to be the input

to the loss function, where n is number of samples in the batch and k is length of each

sample. The distance of ith sample with other samples can be defined as,

zi = xi −meani (3.4)

where meani = 1
n−1

∑
j 6=i xj is the mean of the rest of samples in the batch. From there,

compactness loss is defined as average Euclidean distance as in,

lC =
1

nk

n∑
i=1

zTi zi. (3.5)

We calculate lC over target network (Ht) outputs. To perform back-propagation using this

loss function on this network, it is necessary to assess the contribution of each element over

the final loss. Thereby, let xi = {xi1, xi2, ..., xik} and mi = {mi1,mi2, ...,mik}. Then,
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Figure 3.3: Training reference and target networks.

the gradient of lC with respect to the input xij can be calculated as,

∂lC

∂xij

=
2

(n− 1)nk
[n× (xij −mij)−

n∑
k=1

(xik −mik)]. (3.6)

For descriptiveness loss lD we use classical cross-entropy formulation of multiclass classifica-

tion tasks with regard to the reference dataset and calculate it over the reference network.

Training

Initially, both Hr and Ht contain the pre-trained model H weights. During training, the

first two CLs in H ′ are frozen as commonly done for network fine-tuning and only later

layers in the network can be trained. Furthermore, a relatively lower learning rate is chosen

for the model training process to avoid sudden deviations from the initially trained model.

During every iteration of training, in the forward pass, two sample batches each from the

target dataset (D′m) and reference dataset (R′m) are feed to the Ht and Hr respectively

to calculate lC and lD. Since the weights W are shared between the two networks, the
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composite loss can be defined as,

l(R′m, D
′
m) = lD(R′m|W ) + λlC(D′m|W ). (3.7)

During training, we back-propagate over two networks and learn the network parameters to

minimize this composite loss function which leads to the minimization of the optimization

objective in 3.3.

3.4.5 HT detection through self-referencing

In this chapter, our major contribution is constructing a model that can extract the most

useful features from side-channel signals for HT detection. Once these features are extracted,

any self-referencing anomaly detection approach can detect HTs with high accuracy based

on these features. Here, we use One-class Support Vector machines (OC-SVM), K Nearest

Neighbors (KNN), and Local Outlier Factor (LOF) as candidates for anomaly detection in

the side-channel signal. These models are trained during the testing phase using our feature

extractor and used in run time for HT detection.

3.5 Results

3.5.1 Experimental Test Bed

We build an automated testbed (Figure 3.4) to measure the EM and power side-channel

signals of various circuits. The device under test is a Sakura-G Board on which two Spartan-

6 FPGA are integrated. One controller FPGA handles the USB connection with computer

for data transmission and the main FPGA is used to implement the target circuit which
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is AES-128 encryption core along with a variety of hardware Trojan circuits in our tests.

The board provides the power consumption of target circuit as an output voltage that is

measured by the Tektronix TDS2022C oscilloscope. We use H-field probe to measure and

amplify the magnetic emissions of FPGA. Then, the Agilent Spectrum Analyzer N1996A

reads the signal. The computers sends random test vectors to AES core and collect the

power and EM data from the devices. The measurements are synchronized by a trigger from

board that determine the start of encryption process of each input.

Figure 3.4: The automated testbed for side-channel signals collection.

3.5.2 Evaluation Method

For each benchmark, we collect 1000 HT-inactive and active samples (N = 1000) and utilize

80% of data for training the feature extractors and use the rest of the data to perform the

tests (validation) in rest of this chapter. We incorporate same number of HT-inactive and

HT active samples for our evaluations. Hence, we simply report our results in terms of

accuracy defined as,

Accuracy =
NTP +NTN

NTP +NTN +NFP +NFN

(3.8)
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Table 3.1: HTnet comparison with the methods in [48] to classify power side-channel signals.

Benchmark SVM Naive Bayes Random Forest HTnet
AES-T400 0.6646 0.7400 0.7012 0.8975
AES-T500 0.9967 0.9971 0.9900 0.9793
AES-T600 0.6738 0.7321 0.7175 1
AES-T700 1 1 1 1
AES-T800 1 1 1 1
AES-T1000 0.6800 0.7213 0.6925 0.7135
AES-T1100 0.6783 0.7371 0.6929 0.7758
AES-T1300 0.6746 0.9833 0.9721 1
AES-T1400 0.6738 0.7392 0.6704 0.8525
AES-T1600 0.6629 0.7421 0.7008 0.7570
AES-T1800 0.6596 0.7379 0.7204 0.9345
AES-T2000 0.6575 0.7267 0.7225 0.9295

Mean 0.7518 0.8214 0.7984 0.9033

where NTP , NTN , NFP and NFN are number of true positive, true negative, false positive

and false negative accordingly. A positive side-channel signal segment means that an HT

is triggered, and a true indication means that the detection method has correctly identified

the type of that segment.

3.5.3 HTnet Evaluation

Given that we have access to both HT-inactive and HT active samples for each benchmark,

we first evaluate the performance of HTnet to classify these two types of samples for each

benchmark. Note that in this scenario, access to a golden chip is guaranteed and the purpose

of this evaluation is to compare HTnet to the other methods available in the literature. Table

3.1 compares the performance of HTnet to the methods proposed in one of the latest works

in the literature [48] (2020). This table shows the accuracy of each method using only power

side-channel signals. To improve the accuracy of each of the rival methods, we first extract

and select the best set of features using [24] and report their best performance. The results

show that HTnet outperforms any of these methods over AES benchmarks even when the

best type of features are extracted for them.
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3.5.4 Golden Chip-Free Feature Extraction Evaluation

We set the value of λ to 0.1 and follow the training mechanism described in Section 3.4. We

use Stochastic Gradient Descent (SGD) optimizer with learning rate of 0.001 for training H

and learning rate of 0.000001 for Hr and Ht. Figure 3.5 shows the outputs of Ht for some

of the HT-inactive and the HT-triggered samples. As shown in this figure, each sample input

(EM concatenated with power) is converted to a compact form of 32 features. In this feature

space, all the HT-inactive samples posses a similar set of features while multiple features of

HT-triggered samples vary from the HT-inactive samples. These variations can be used for

reporting the sample as a HT-triggered case using an anomaly detection mechanism.

3.5.5 HT Detection Evaluation

As described in Section 3.4.5, we incorporate various off-the-shelf anomaly detection mech-

anisms from [153] to evaluate the effectiveness of our extracted set of features from EM and

power side-channel signals for HT detection. As shown in Table 3.2, our proposed methodol-

ogy for extracting relevant features can increase the accuracy of anomaly detection methods

in most of the cases. Particularly, LOF and OC-SVM cannot detect any anomalous behavior

in side-channel signals without using our feature extraction mechanism for AES-1100 bench-

mark. Note that collecting EM side-channel signals highly depends on the probe placement

over chip. Thereby, here, we only provide evaluations for benchmarks that we were able to

collect reliable EM traces. As shown in 3.2, EM and power side-channel signals fusion can

boost the accuracy of our golden chip-free approach to pass the results presented in Table

3.1 in some cases.
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Figure 3.5: Extracted features for four HT-inactive and HT-triggered samples from AES-500
benchmark.

3.5.6 Robustness of Extracted Features

The side-channel signals tend to vary over the life span of an IC due to various reasons,

such as aging and temperature change. To evaluate the robustness of our extracted features,

we add a synthetic white noise N (0, σ2) to the scaled (0 to 1) test samples. Figure 3.6

shows the changes in the accuracy of KNN when it is using HTnet extracted features versus

when it is directly monitoring the input signal in two benchmarks. The results show that

small variations in the side-channel signal can significantly affect a trained anomaly detector

accuracy if it does not use our approach for feature extraction. In other terms, an HTnet en-
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Figure 3.6: Robustness evaluation of KNN with two different input types.

abled anomaly detection method can endure more noise in the collected side-channel signals

during run time (more than two times resiliency for these two benchmarks).

3.6 Discussion

As a last line of defense, run-time HT detection approaches play a crucial role in detecting

subtle HTs which are not detected in the verification phase. In this chapter, we provide

evidence that it is possible to extract robust features that can be used for HT detection

using our previous knowledge about HTs. However, running a neural network along with

the main circuit will consume considerable amount of energy which will make our approach

Table 3.2: Accuracy of various anomaly detection algorithms over concatenated EM and
Power side-channel signals.

KNN LOF OC-SVM
Model Input HTnet Raw HTnet Raw HTnet Raw
AES-T500 0.936 0.895 0.928 0.858 0.928 0.919
AES-T700 0.986 0.927 0.975 0.901 0.972 0.946
AES-T800 0.983 0.937 0.961 0.941 0.981 0.916
AES-T1000 0.972 0.914 0.975 0.953 0.983 0.962
AES-T1100 0.803 0.798 0.656 0.491 0.822 0.478
Mean 0.936 0.894 0.899 0.829 0.937 0.844
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mostly suitable for applications which do not rely on limited power resources. Furthermore,

the self-referencing approach that we discussed in this chapter is a naive approach which can

be significantly expanded using the other works discussed in the related literature. Here, we

provided a proof of concept for golden chip-free HT detection using recent developments in

artificial intelligence. We leave the details of efficient implementation of HTnet and using

more advanced self-referencing approaches to our future work.

3.7 Conclusion

In this chapter, we introduced HTnet which outperforms any existing approaches for detect-

ing triggered HTs through side-channel signals given that a reference golden chip is available.

Furthermore, we introduce a novel training methodology to utilize our previous knowledge

about known HT-infected circuits to design a robust HT-related feature extractor. We show

that it is possible to use off-the-shelf anomaly detection algorithms and incorporate HTnet

as a feature extractor to detect triggered HTs in run time with 93.7% accuracy on average.
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Chapter 4

Brain-Inspired Golden Chip Free

Hardware Trojan Detection

4.1 Abstract

The subtle changes in the side-channel measurements of integrated circuits are not always

indicator of triggered hardware Trojan. The variations in the side-channel signal may occur

due to various other reasons such as temperature change, aging, etc. In this chapter, we

propose using a brain-inspired architecture called Hierarchical Temporal Memory (HTM) for

hardware Trojan detection. Similar to the human brain, our proposed solution is resilient

against natural changes that might happen in the side-channel measurements while being

able to accurately detect abnormal behavior of the chip when the Hardware Trojan gets

triggered. We use a self-referencing method for HT detection, which eliminates the need

for the golden chip. The effectiveness of our approach is evaluated using TrustHub [117]

benchmarks, which shows 92.20% detection accuracy on average.
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4.2 Introduction

As discussed in the previous chapter, companies tend to use third-party IP cores and out-

source the chip fabrication process to the foundries worldwide, which has raised security

concerns referred to as Hardware Trojan (HT). One of the incidents that attracted the at-

tention of the research community toward the threat of HT is the failure of Syrian radars

in 2007. As a result of this failure, a suspected Syrian nuclear installation was bombed

by Israel. Further investigation revealed that the commercial off-the-shelf microprocessors

inside the radar were infected with HT, which was triggered through a hidden back door and

disabled the system [2].

Due to their stealthy nature, most HTs are designed to be minuscule and remain inactive

with a negligible impact on the circuit specification until a rare specific event triggers them.

Ideally, any drift from the original circuit design should be detectable by post-fabrication

testing and verification. However, these methods fall short to detect HT because the prob-

ability of triggering the HT is usually low.

Therefore, some other methods are required to ensure circuit security. To this end, two ma-

jor paths are pursued in literature: i) imaging techniques, and ii) side-channel and covert-

channel analysis. Destructive approaches mainly involve following steps: de-layering the

chip, imaging the die, reverse-engineering the image of the circuit, and conducting element

by element comparison. Although these methods are relatively capable of guaranteeing trust

on the fabricated IC [132, 27, 32], they are destructive, impractical, time-consuming, expen-

sive, and inapplicable to detect the contaminated third-party IPs. In contrast, the second

approaches are non-destructive and assess the behavior of the chip through side-channel

(e.g. power, temperature, electromagnetic, and timing) or embedded sensor measurements.

In these methods, the parameters are measured and compared to the expected values to

identify the presence of additional structure.
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The fundamental shortcoming of the majority of side-channel based HT detection method-

ologies is the reliance on a trusted chip (a.k.a golden chip) to create a reference model of

the expected side-channel values. Reliance on golden chip is a problem since, in practice,

a trusted supply chain to manufacture the golden chip is not available, or it would be too

expensive and unaffordable for most of SoC designers [79]. A few works in the literature have

tried to resolve this issue by using self-referencing techniques [61], or using accurate trusted

simulations combined with embedded sensors in the chip to analyze the side-channel emis-

sions [85]. However, similar to other side-channel based HT detection methodologies they

often perform poorly when HT is not triggered. Their poor performance occurs because in-

active HT has an insignificant footprint that fits in the process variation margin[64]. Despite

the efforts for triggering the HT during the testing of the chip [64], the HT may remain

inactive. Therefore, complimentary run-time monitoring and validation mechanisms such as

[14, 69, 44, 74] are introduced to provide a last line of defense against HTs in the mission

critical systems. Nevertheless, these methods come with the area overhead. Additionally,

they will have a high false-positive detection rate if they cannot adapt to the acceptable

alteration of the IC side-channel profile over its life span [71, 74].

The HTnet model introduced in Chapter 3 provides a great medium to extract features that

can be used for run-time HT detection. However, continuously updating HTnet over the

lifetime of the chip is costly and infeasible. In this chapter, we develop another novel golden

chip-free method for post-silicon HT detection. We have the premise that the culprit can

be in any entities in the IC supply chain, including the design vendors and foundries. We

construct the model based on the power consumption of the chip, which monitors the side-

channel emissions during the testing and at the run-time. Our proposed model is hierarchical

temporal memory (HTM), which mimics human brain behavior to interpolate the side-

channel data and pinpoint anomalies that indicate the existence of a HT in the IC. The

content of this chapter is provided from [39].
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4.2.1 Research Challenges

In a nutshell, the state-of-art ideas for HT detection research have shortcomings to address

the following challenges:

• Reliance on a reference golden chip, which is costly and even impossible in some cases

such as untrusted IPs.

• HT detection methods are doomed to fail due to process variation in chip fabrication

if proper measures are not taken to eliminate this factor.

• Probability of triggering HT during testing is very low due to the stealthy nature of

them.

• Run time HT detection mechanisms are often considered to be unfeasible due to their

costly hardware overhead and changes in chip characteristics.

4.2.2 Technical Contributions

This chapter makes following technical contributions to address the aforementioned chal-

lenges:

• We devise an HTM architecture that performs the same or better than state-of-the-art

approaches for HT detection.

• Our proposed method is trained on side-channel data from the Device Under Test

(DUT) rather than a golden chip.

• The process variation has no effect on our proposed detection mechanism since it relies

on DUT for training.
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• HTM training has virtually no cost in terms of power consumption. Hence, sporadic

retraining of the model is feasible to cope with aging/temperature effects on the side-

channel data.

• With this work, We publish our dataset of power side-channel signals for AES and

RS232 circuits infected by various HTs.1

Rest of the chapter is organized as follows: Section 4.3 presents the background for under-

standing IC fabrication supply chain, related works for HT detection, and why it is absolutely

necessary to use adoptable models for HT detection; Section 4.4.1 defines the HT problem

that we solve in this thesis; Section 4.5 explains the HTM solution that we propose to use

for HT detection; Section 4.6.4 presents our test bed and reports the experimental results;

Section 4.7 discusses the limitations of this chapter and possible future works; and Section

4.8 concludes the chapter.

4.3 Background
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Figure 4.1: Semiconductor supply chain, HT injection points, and our detection mechanism
stage in this supply chain.

1http://ieee-dataport.org/3599
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4.3.1 Semiconductor Supply Chain

The semiconductor supply chain, as shown in Figure 4.1, involves many stages which are

distributed among entities around the world. The design flow starts with designing the

components in Register Transfer Level (RTL) based on the specification. In addition to

in-house designs, third-party vendors provide IP cores in different level of abstraction. The

different design components are integrated and go through multiple stages of synthesis and

verification using the Electronic Design Automation (EDA) tools and eventually the physical

layout is generated. The foundry fabricates the IC which is tested and packaged in the next

stages.

4.3.2 Same IC, Different Power Traces

The total power consumption of an IC can be summarized as,

Ptotal = Pdyn + Pshort + Pleak (4.1)

where Pdyn is the dynamic power usage; Pshort is the power consumption contributed by

shorting the supply to ground for a brief moment when transistors switch; and Pleak is due

to the static current leakage from transistors. Each one of these components may change

over time. In the following, we set the physical bases on why it is absolutely necessary to

evaluate the side-channel data using only models which are frequently updated to match the

existing state of the system under monitoring.

Voltage Level Effect. A change in voltage of power supply source (Vd) directly affects
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the total power consumption:

Pdyn = V 2
d ∗ f ∗ Ceff ;

Pleak = Vd ∗ Istatic;

Pshort = Vd ∗
n∑

i=1

αi ∗ Isci,

(4.2)

where f is the operating frequency of the IC, Ceff is the effective capacity observed by the

power supply, αi∗Isci are the current leaking when both transistors are on during switching,

n is number of transistors switching in the IC on average, and Istatic is the total current

leaking in the steady-state. The Vd provided by the voltage regulator may be intentionally

changed to provide power-saving, high-performance, etc. modes for a given IC, or it might

unintentionally face minute shifts due to temperature changes and process variations.

Temperature Effect. The difference in temperature results in subtle variations in the

physical characteristics of IC. Table 4.1 represents some of the models in the literature

which can capture the relationship between Pleak and temperature change. Although each

one of these models is a viable representation for the particular fabrication technology that

the authors have considered, further research is required to craft a model for a new design

and fabrication technology. Hence, even if a run-time HT detection mechanism uses the

internal temperature as a complementary side-channel to power, it might fail to adopt to a

given new IC since power and temperature relation might be significantly different from the

mechanism’s expectation.

Table 4.1: Models to capture the temperature and currents leakage relationship. (a∗: scalars,
T : temperature)

Authors Models
Su [130] Pleak ∝ a2T

2 + a1T + a0

Liao [83] Pleak ∝ a2e
−a0/T−a1

Liu [84] Pleak ∝ a2 + a2(T − a1)
Skadron [151] Pleak ∝ a2(1− ea1/T )ea0/T
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Aging Effect The continuous usage of IC’s internal components results in change of their

physical characteristic. In particular, the switching voltage of transistors, Vth, starts to

slowly increase over time. As it is stated in [90], although an increase in Vth does not affect

Pdyn, it has a strong impact on Pleak since Istatic has an exponential relationship to Vth:

Istatic ∝ eVgs−Vth,

where Vgs is the gate-source voltage and remains mostly the same as long as Vd is constant.

Furthermore, [90] shows that the increase in Vth results in small decrease in Pshort as well.

4.3.3 Related Works

A detailed taxonomy of HTs and their detection mechanisms are presented in [136, 79, 65].

Here, we review the works in literature which are most closely related to the work presented in

this chapter to acknowledge their similarities and discriminative features from our proposed

methodology.

Side-channel based HT detection. A circuit connected to a power supply emits un-

intended information in various side-channels. Each circuit has unique side-channel finger-

prints and any modification, such as HT, will disrupt it. This variation caused by HT can

be leveraged to detect HT presence. Power consumption rate [122, 80, 101, 88, 87, 66],

electromagnetic emissions [57, 67, 134], heat generation [44, 103], and timing information

[68, 145, 76] have been extensively studied as a medium for HT detection. In this chapter,

we use power consumption since it has been the most popular choice for side-channel based

HT detection in the literature.

Machine learning models for side-channel analysis. HT detection is quite challeng-

ing since the effect of HT is often insignificant and may lie in the process variation margin.
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Thus, various statistical models and Machine Learning (ML) techniques for studying side-

channel information have been used to identify the presence of HT in the circuit. ELM [140],

BPNN [80, 101], KNN/DT/Navie Bayse/Deep Learning [88, 87], clustering [28, 144, 103],

SVM [66], OC-SVM [67, 86] are among the most popular choices for inspecting side-channel

information for HT detection. In this chapter, we propose using HTM which to the best of

our knowledge has never been used in literature for hardware Trojan detection.

Golden chip free HT detection. While the earlier approaches for HT detection have

frequently assumed access to a golden chip for acquiring training samples, recent works

have suggested various ideas to overcome this limitation. In [85], the authors use trusted

simulations to generate the needed HT-free samples for initial training of their model. Then,

in post-fabrication stage, they use process control monitor sensors data to eliminate the

process variation effect. In [134], the authors suggest using thermal maps and its active

area shape from the GDS II file which is not affected with process variation for training

the model. In [57], an electromagnetic spectrum modeling method from the early stage of

IC production is introduced which can be used as a golden reference. The authors of [61]

propose a temporal self-referencing approach which compares the current signature of the

chip at two different time windows to isolate the Trojan effect. Similar to [61], in this chapter,

we propose a temporal self-referencing approach but without windowing requirement. HTM

gets one sample point at a time and evaluates that point’s relationship to other sample

points.
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Figure 4.2: HT with a trigger mechanism and a payload.

4.4 Problem Definition

4.4.1 Threat Model

We consider any malicious modification to a circuit as HT. As it is depicted in Figure 4.1,

we assume that, HT attacks occur under two scenarios (i) a third party IP used in the IC

design phase contains unspecified malicious functionalities, or (ii) an attacker in the foundry

modifies the layout of the chip before fabrication. Furthermore, we assume that the HT used

in the chips is always composed of a trigger mechanism and a payload. Note that with this

assumption, our proposed methodology will not cover all types of HTs. However, it is still

highly desirable due to its golden-chip free characteristics for mission critical ICs as a last

line of defense.

As shown in Figure 4.2, the trigger mechanism monitors the chip and activates the payload
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under rare condition to evade possible HT detection solutions in the post-fabrication testing.

In this chapter, we do not set any assumption on type of the trigger mechanism. There-

fore, the HT may not have an explicit added hardware for monitoring [49]. The payload

of hardware Trojan may result in change of functionality, denial of service, or data leakage

from IC. Among these outcomes, this thesis focuses on the data leakage and subtle change

of functionalities (such as power drain) that can happen over the life span of the chip with-

out leaving any obvious immediate trace in the system. In particular, we test our defense

mechanism against HT attacks which result in less than 3σ variation in the side-channel

footprints even when they are activated.

In this chapter, we assume that the EDA tools used for design, simulation, and verification

are trusted; hence, the formal verification methods can be used in post-fabrication testing

of semiconductor supply chain to assure correct functionality of the chip if the HT is not

triggered.

4.4.2 Defense Evaluation Method

The statistical side-channel analysis methods used in the literature have various assumptions

for training their statistical models. The two common assumptions are (i) access to golden

chip and (ii) knowledge of possible HT types. While the first assumption is rarely feasible,

since the majority of side-channel based HT detection methods employ this assumption, we

include them as the best possible outcomes in our comparisons. Furthermore, although the

research community has revealed various forms of HTs, there is always the possibility of

new HT vulnerabilities that have not been discovered before. Hence, we evaluate defense

mechanism in terms of their capability for detecting unknown HTs (zero-day) as well as

known HTs. We assume that all the methods compared in this chapter are capable of

monitoring the chip in run-time. With this assumption, once each detection method is
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trained, we use it to infer whether or not the HT is triggered at each segment of the side-

channel signal. We compare HT detection methods in terms of accuracy as follows,

Accuracy =
NTP +NTN

NTP +NTN +NFP +NFN

(4.3)

where NTP , NTN , NFP and NFN are number of true positive, true negative, false positive

and false negative accordingly. A positive side-channel signal segment means that a HT is

activated, and a true indication means that the detection method has correctly identified the

type of that segment. Note that we use the same number of positive and negative samples in

our comparisons; hence, Equation 4.3 is unbiased and it reflects possible high false positive

rates.

4.5 Neuro-Inspired architecture

In this section, we discuss the structure of an HTM model. We first introduce various

components of an HTM model and then explain how the temporal learning algorithm works,

which makes it suitable for run-time HT detection.

4.5.1 Human Neocortex and HTM Model

The Neocortex in brain is responsible for life-long learning, cognitive processes, and per-

ceptive functionalities. The Neocortex consists of billions of pyramidal neuron cells stacked

beside and on top of each other to create various levels of abstraction inside the human

brain. The functionalities of these biological neurons are partially modelled inside the small-

est building block of the HTM architecture which are known as the HTM neuron cells[56].

One layer of HTM is made of mini-columns that have a fixed number of HTM neurons

stacked upon one another. Multiple mini-columns are stacked side by side to form a cortical
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column (Fig. 4.3) in a layer. For the rest of the chapter, column and mini-column are used

interchangeably. Similar to biological neurons, HTM neuron cells can connect with other

nearby neurons under two types of connective dendrite segments (i) proximal, to get feed-

forward input from the input space and other cells at lowers levels, and (ii) distal, which

provides the connections to the lateral cells in the same layer. The distal synapses are usu-

ally different for each cell while cells of the same column share the same proximal synapses.

A biological cell has an apical dendrite segment connections from the layer above as well;

however, in this chapter we consider only a single layer of HTM neurons which do not require

connections to higher levels.

4.5.2 HTM components

Encoder

The human neocortex receives different sensory signals coming from different sensory organs

and combines them together. HTM works similarly. HTM has an encoder which is the

first stage of the HTM model. Different incoming signals (X1, X2....Xn) are first encoded

into separate high dimensional Sparse Distributed Regions (SDRs) by the encoder. Then all

separate SDRs are combined together to form a single SDR which acts as an input to the next

HTM block (Fig. 4.3). SDRs are binary sparse matrices, and these matrices are distributed

representations of the input signals. SDRs have typically less than 2% active values (i.e.,

neuron set to 1) for every input. In SDRs only a few neurons overlap across different inputs

which is different from the dense representations of the state-of-the-art Neural Networks

(NN) where the activity of many neurons can overlap (i.e., fully connected NN). This sparse

nature of the activations enables HTM to learn to make accurate HT detection, regardless of

the noise in the collected signals. Currently, various types of encoders have been suggested

in the literature [110]. In this chapter we use a random distributed scalar encoder which
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we found to be the most suitable for the side-channel data analysis. This encoder maps a

scalar value into a random SDR while preserving an overlapping representation of the input

data. Concurrently, the encoder dynamically changes the min/max range of the input data

without affecting the performance. It also ensures that similar inputs have high overlap and

their representations do not change over the times.

Spatial Pooler

The next block after the encoder is the spatial pooler, which receives the SDRs generated

by the encoder. For the spatial pooling mechanism, each column is connected to a subset of

the input SDR by a potential synaptic connection. A distinct permanence value is assigned

to each potential synapse. This permanence value can be incremented/decremented while

learning/forgetting of features from the input SDRs. The increment of the permanence

value means a synaptic connection is strengthened between the input SDR and the column,

whereas a decrement weakens the synaptic connections to forget the input. The spatial

pooler learns the spatial features from the input SDRs and creates a new SDR of the same

size at every time step.

Temporal Pooler

The temporal pooler region consists of multiple columns. Each neuron of the columns can

comprise two and sometimes up to a dozen distal dendrite segments. Each distal dendrite

segment is connected to afferent synapses from multiple cells of the neighboring columns

in the same layer. A neuron in a column become active if the sum of the active synapses

connected to the proximal segment exceeds a certain threshold. We discuss the activation

process in detail in the next section.
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4.5.3 Activation

The activation and learning jointly happen in the Spatial Pooler and the Temporal Pooler

regions. Similar to biological neurons, each HTM neuron cell can be in three possible states:

inactive, predictive, and active, with inactive as the default state. The predictive state of

a neuron is determined by the activity of the distal segments which in turn is determined

by the activation state of the other neurons. A neuron becomes active only if it was in the

predictive state at the previous instant, with an exception that will be described later.

To formulate the aforementioned statement, let us consider a M × N matrix where M is

the number of cells per column and N is the number of columns in the layer. Let us denote

this matrix by At. The matrix At represents the current activation state of the cells in a

particular layer at time t and at
i,j is the i, jth element of At. The term at

i,j denotes the

activation state of cell i in column j. Let us denote a distal dendrite segment of a column

by d. Each dendrite segment has a synaptic connection. Let us denote the weights of the

synaptic connections of the dth dendrite segment of the ith cell and jth column by Dd
i,j .

We note that the synaptic connections are considered to have been established when the

weights are above a specific threshold. Let us denote a matrix D̃d
i,j , which has the weights

of established connection. The weights below the specific threshold in D̃d
i,j are considered

to be zero.

In the spatial pooler, a large part (50%) of the input SDR is initially connected to the

proximal synapses of each cell in each column. The initial connections are random and remain

the same for the time onward. A proximal synapse becomes active when the corresponding

element’s value in the input becomes one. The total number of active proximal synapses is

calculated for each column at every instant, and 2% of the columns that have the maximum

number of active proximal synapses are activated. Let us denote the set of activated columns

at every instant t by Ct
a. The rest of the columns are inhibited and become inactive.
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Every neuron has several distal segments. If the total activations in at least one of the distal

segments of a neuron (i, j) exceeds a specific threshold of θd, that neuron enters a predictive

state. If the predictive state of a neuron is denoted by πi,j , then πi,j can be expressed in

the following form,

πi,j =


1 if ∃d

∥∥∥D̃d
ij ◦At

∥∥∥
1
> θd

0 otherwise

(4.4)

where ◦ denotes the element-wise multiplication operation. In the current time step, the

activation happens only in the cells of the columns, which are already active. If no cells in

an active column are in a predictive state, all the cells in that column will be activated.

Time

t -1 (first pattern) t t +1 (last pattern)

Lateral 

Connection
Active Cell Predictive Cell Inactive Cell

Figure 4.4: HTM cells activation process.

Figure 4.4 depicts HTM cells activation process. If any cell is in a predictive state within an

active column, then this cell is preferred over the other cells for activation while the other

cells in that active column are inhibited. The inhibition of the other cells within a column

ensures that the activations are sparse which allows the HTM to capture multiple temporal

contexts from the input data. Putting it all together, the activation of a cell (i, j) is given
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by,

at
i,j =


1 j ∈ Ct

a and πt−1
i,j = 1

1 j ∈ Ct
a and

∑
i π

t−1
i,j = 0

0 otherwise.

(4.5)

4.5.4 Learning

Learning happens following the Hebbian Learning [128] rules. This learning algorithm is

designed to reinforce the synaptic connections of the segments which correctly predicted

the activation at the next time step following three major acts: (i) The learning rule only

updates the weights of the cells that were predicted to become active at the current time

step in the previous step (they were in a predictive state); (ii) The weights of the synapses

from the cells that were active in the previous step (which had an important role in taking

this node to a predictive state), are increased; (iii) The weights of the synapses from the

cells that were not active in the previous time step, are decreased. Formally, the fractional

increase of the weights Dd
i,j of the active distal segment d of the active cell (i, j) at time t

are determined by the adaptation rule,

∆Dd
i,j = r+D̂d

i,j ◦A
t−1 − r−D̂d

i,j ◦ (1−At−1) (4.6)

where r+ and r− are the increase and decrease rates of the permanence values of the synaptic

connections. If a column becomes active and no cell in the active column is in the predictive

state, then the cell with more activated dendrite segments is selected for the update as

described above. Furthermore, if the weights Dd
i,j of the active distal segment d of the

active cell (i, j) are wrongly predicted to become active, the weights are decreased by,

∆Dd
i,j = −r−f D̂d

i,j where at
i,j = 0 and

∥∥∥D̃d ◦At−1
∥∥∥
1
> θd (4.7)
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where r−f is a decrease rate much smaller than r−. In other words, forgetting (i.e., for-

getting/dropping the temporal context that incorrectly predicted the next step) occurs at

a much slower rate than learning (i.e., remembering the temporal context that correctly

predicted the next step).

In summary, the learning algorithm explained here updates the lateral connections between

the cells of columns by observing one point at a time (i.e., online). This update of the lateral

connections between the cells occurs based on the temporal context provided by the earlier

data point to the current data point. Due to contextual inhibition in the cells, the activations

of the cells are sparse. Thus the temporal contexts are learned by a sparse distributed

representation of the active cells and is continually updated as new data is received.

4.5.5 Hardware Trojan Detection

HTM provides a medium to build a representative model of the spatial temporal relationship

between different points in a given signal. We initialize HTM by training it over collected

power side-channel data for a short period of time (about 10 minutes), where we insure that

HT is not activated by applying only basic test vectors that would not trigger the HT. Here,

we assume that the triggered HT designer chooses a sequence of events and inputs that

normally will not happen during the testing phase of the chip.

After initial training, we use Algorithm 2 for detecting HT activation in run time. At

every time step t, we first calculate the input SDRt. Then, spatial pooler generates the

SpatialSDRt which is equivalent to Ct
a. After that, activation and learning happens in

temporal pooler which gives us list of active columns and predictive columns. The difference

between ActiveColt and PredictiveColt−1 determines whether or not the input signal
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at time step t is anomalous.

Algorithm 2: Using HTM for HT detection.

Input: Input side-channel data at time step t:{xt}

Output: Anomaly Score: Scoret

t←: T imesteps

RandomScalarEncoder, SpatialPooler ← Initialize

TemporalPooler ← Initialize

for each xt from input data do

InputSDRt = Encode xt using RandomScalarEncoder

Feed the InputSDRt to SpatialPooler

SpatialSDRt = Column Activation in SpatialPooler

Feed the SpatialSDRt to TemporalPooler

TemporalSDRt = Activation and Learning

{ActiveColt,PredictiveColt} = TemporalSDRt

if ActiveColt - PredictiveColt−1 > Threshold then

Scoret ← ActiveColt - PredictiveColt−1

return Scoret

else

Scoret ← 0

return Scoret

An illustrative example of how HTM works for HT detection is shown in Figure 4.5. When-

ever HTM encounters a previously seen data Xt at time t, some columns enter the active

state. Simultaneously, temporal memory at time step t predicts the next time step data

and as a result, some of the columns enter the predictive state as well. Again, whenever

HTM sees next data xt+1 at time step t+1, some columns enter the active state. If the

difference between the number of active columns in time step t+1 and predictive columns

in t is equal or less than a threshold value, then the data at time step t+1 is considered as

a non-anomalous data (scenario 1). But if the difference between the number of the active
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columns in the next time step and predictive columns in previous time step is greater than

a threshold value, then the data at the next time step is considered as an anomalous data

(scenario 2).

Cortical Column

Mini 
Column

Active Column
Predictive Column
Inactive Column

Scenario 1: Active Columns =< 
Predictive Columns:

 No Anomaly

Scenario 2:
Active Columns > 

Predictive Columns:
Anomalous dataXt 

Xt+1   

Xt+2  

Figure 4.5: An example of anomaly detection with HTM.

4.5.6 Thresholding

In this thesis, we extended the thresholding concept following [3]. For a given current input

xt, a(xt) is a binary vector which represents the current active columns and π(xt−1) is

a binary vector which represents the predictive columns. Let the prediction error, st, be

a scalar value inversely proportional to the number of bits common between a(xt) and

π(xt−1),

st = 1−
a(xt).π(xt−1)

|a(xt)|
(4.8)

where |a(xt)| is the scalar norm, i.e. the total number of 1 bits in a(xt). If there is a shift

in the behavior of the system, the prediction error will be high at the point of shift, but will

automatically degrade to zero as the model adjusts itself to the ”new normal”. Furthermore,
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Equation 4.8 results in an instantaneous measure of the predictability of current signal

stream. However, in practice, the input signal is noisy and shifts in the system are common

paradigm which we do not want to detect them as abnormalities. To address these issues, we

model the distribution of error as an indirect metric to check for the likelihood that current

state has abnormal behavior. We model the distribution of the prediction error values over

a window of size W as a rolling normal distribution where the error mean, µt, and variance,

σ2
t , are continuously updated as follows:

µt =

∑i=W−1
i=0 st−i

W
, σ2

t =

∑i=W−1
i=0 (st−i − µt)

2

W − 1
. (4.9)

Next, over a window of size W ′, we calculate the recent short term average prediction error

rate (W ′ �W ), and the complement of the Gaussian tail probability (Q-function [70]) as

our anomaly likelihood:

Lt = 1−Q(
µ̃t − µt

σt

) (4.10)

where µ̃t =
∑i=W ′−1
i=0 st−i

W ′
. Then, we threshold lt using a predefined parameter ε to report

an anomaly:

AnomalyDetectedt ≡ Lt ≥ 1− ε. (4.11)

Since thresholding Lt involves thresholding a tail probability, there is an inherent upper

bound limit on number alerts and false positive. If the value of ε is very close to 0, it would

be unlikely to get alerts with probability much higher than ε. Therefore, we directly follow

the findings of [3] and set the value of ε to 10−5 which is claimed to work well across a large

range of domain.
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4.6 Evaluation

4.6.1 Experimental Setup
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Figure 4.6: Test bed for power side-channel data collection.

To evaluate our model, we measure the power side-channel of HT benchmarks using our

automated testbed. Our experimental setup is composed of a Sakura-G FPGA board, Tek-

tronix TDS2022C oscilloscope, and computer. We implement the HT benchmarks from

TrustHub [135] on the FPGA. The benchmarks include different HT added to a base circuit

that is either an AES cryptography core with a 128 bits secret key or an RS232 UART serial

communication circuit. The list of benchmarks is summarized in table 4.2. The computer

programs the FPGA with the benchmark bitstream, sends the input test vectors, receives

the output through the USB port communication, validates the output, and stores the mea-

sured power trace from the oscilloscope. For the AES circuit, the input vectors are the

secret key and plain text, and the output is the encryption result (ciphertext), whereas the
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RS232 circuit receives an arbitrary input vector and outputs the same. A trigger signal is

generated by the FPGA that indicates the start of the operation, encryption in AES, or data

transmission in RS232. The trigger signal is used by the oscilloscope to synchronize the data

collection with circuit operation. In order to address the process variation, we collect the

power data randomly using two Sakura-G boards. Since our approach is golden chip-free,

the side-channel data is collected in the presence of HT under two scenarios: when the HT

is inactive and when it is activated. Consequently, all the measured power data include the

static power of HT in addition to base circuit power consumption, which makes the detec-

tion more challenging. The only difference between the two data collection scenarios is the

dynamic power consumption of HT.

Table 4.2: Hardware Trojan Benchmarks. Number of LUTs for HT free AES circuit is 9707.

Benchmark Trojan payload
AES-T500 Causes denial of service by draining the battery
AES-T600 Leaks the secret key through leakage current
AES-T700 Leaks the secret key through a power covart channel based on CDMA
AES-T800 Leaks the secret key through a power covart channel based on CDMA
AES-T1600 Leaks the secret key through RF transmission
RS232-T100 Causes denial of service by forcing the data ready signal value in receiver to 0

Benchmark HT infected circuit size (# of LUT) #HT LUT
#Base LUT

(%)

AES-T500 9763 0.58
AES-T600 9735 0.29
AES-T700 9779 0.74
AES-T800 9787 0.82
AES-T1600 10037 3.4
RS232-T100 117 4.46

4.6.2 Model Parameters

Since we propose a truly golden-chip free approach, we avoid fine-tuning the HTM model

parameters to have the best performance for the given benchmarks. Instead, the results in

this section are provided using the parameter values from [3]. In that work, the number
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of columns is 2048 with 32 cells per column, the max number of segments per each cell is

128, and the max number of synopsis per segment is 32. In the spacial pooler, synaptic

permanence values are increased by 0.003 and decreased by 0.0005 and the connections are

made/abolished at the 0.2 thresholds. For the temporal pooling, the activation threshold is

13, initial permanence values are 0.21, and the value of r+ and r− is set to 0.1.

4.6.3 Rival Detection Methods

Table 4.3 compares our approach proprieties to the most closely related works in the litera-

ture. HTM training does not involve power-hungry backpropagation or any other optimiza-

tion mechanism. Hence, our proposed model is the only approach that is capable of online

training to cope with physical changes such as aging and operating temperature variation

that may affect the collected side-channel data. Also, we do not include any infected IC

data for training the model. Hence, it is capable of detecting zero-day attacks by construct.

Furthermore, our approach is a run-time detection method, which makes it suitable for de-

tecting triggered HTs. On the downside, since our model always runs along with the target

IC, it adds an overhead to the system, which is discussed in detail in Sec. 4.6.4. HTM is

resilient to process variation noise because it is trained for each chip independently.

Table 4.3: Qualitative Comparison of HT detection methods.

Method Side-Channel Golden-chip
Free

Online
Learning

Zero-day
Defense

Run-time Noise
Resilient

[85], [148] Power 3 7 7 7 N/A
[57] EM 3 7 7 7 N/A
[103] Thermal 7 7 7 3 3

MLP/CNN Power 7 7 7 3 7
[61] Power 3 7 N/A 3 3

OC-SVM Power 3 3 3 3 3
HTM(Ours) Power 3 3 3 3 3

For quantitative comparisons, due to the lack of open-source HT detection projects, the

reproduction of state-of-the-art HT detection approaches for our collected side-channel data

95



is not feasible. Instead, based on what has been reported in a recent survey on machine

learning methods for hardware security [32], we compare our detection mechanism against

One-Class Support Vector Machine (OC-SVM) [8, 75] and two powerful statistical models;

A Multi-Layer Perceptron (MLP), and a Convolutional Neural Network (CNN). Here, we

use a variation of OC-SVM which can be trained in an online fashion to be more comparable

to HTM [47]. We report OC-SVM results with Radial Basis Function (RBF) kernel, which

had the best performance among the other OC-SVM settings on the collected side-channel

signals based on our preliminary experiments. The MLP consist of three fully connected

layers, each with 500 nodes and ReLU activation, which is immediately followed by dropout

layers with a rate of 0.2 to avoid overfitting. The CNN is composed of two convolutional

layers. The numbers of filters for these two layers are 6 and 12 accordingly, while the kernel

sizes are 7 and 10. These parameters are optimized with a heuristic Brute-force approach to

assure the best performance of all methods that we compare our algorithm with.

The training data set for MLP and CNN includes both HT infected and HT free side-channel

data for each benchmark. In this fashion, the models learn the discriminative features

between the golden chip behavior and known HT infected data. Intuitively, the models that

learn discriminative features will perform better for detecting known HTs. In contrast, our

HTM detection approach and OC-SVM try to learn the descriptive features that describe the

correct behavior of the system and detect the possible anomalies. Hence, they do not require

any HT infected data for training. Although it is only fair if we compare our approach with

other anomaly detection methods, we intentionally choose to compare our models with these

two classifiers to demonstrate that it can achieve the best possible performance for the given

given side-channel data.
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4.6.4 Results

Accuracy

We use anomaly detection accuracy as a performance metric for evaluation and report our

results for 6 HT benchmarks in Figure 4.7. During each benchmark operation -encryption

in the AES benchmarks or data transmission in the RS232 benchmark- the circuit’s power

consumption is measured under two circumstances: inactive HT and triggered HT. Each

model’s goal is to mark the power signals as a positive sample when HT is triggered. In

this figure, CNN-Z and MLP-Z have the same architecture as CNN and MLP; however,

they are trained for zero-day HT attacks. The training dataset for zero-day attacks includes

positive and negative samples from all the benchmarks except for the benchmark being

tested. Figure 4.7 shows that the proposed HTM approach detects the activated Trojan

with a high accuracy, comparable with state-of-the-art classification methods. Notably,

HTM outperforms OC-SVM, which is one of the widely used unsupervised techniques for

HT detection, by 15.61% accuracy margin.

Furthermore, as explained in Section 4.4.1, the high accuracy illustrates low false positive

rate for all the compared models, which means that the models would not raise a false alarm

when the chip operation is normal.

Case Study

We investigate the effect of HT on power side-channel in a case study on RS232-T100 bench-

mark that implements a pair of UART serial communication transmitter and receiver. In this

study, we collect the power consumption of the circuit during one operation cycle of sending

a test vector and receiving it in two cases of inactive HT and active HT. The normalized

side-channel signal and its anomaly likelihood are depicted in Figure 4.8. Anomaly likeli-
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hood plot is the output of HTM followed by the thresholding process discussed in Section

4.5.6. In the figure, the notable difference between the two signals demonstrates that the

activation of HT has altered the power side-channel in multiple data points. Consequently,

our model identifies several anomalous data points in the signal and marks this sample as

HT triggered.
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Figure 4.8: Anomaly likelihood in two side-channel signals. (a) Normalized side-channel
power signals (b) Calculated anomaly likelihood based on HTM.

Temperature Effect

Figure 4.9 presents the effect of temperature change on the accuracy of different HT detection

method for the AES-T800 benchmark. Using the heater in our testbed, we increase the

temperature in the chip’s environment. For each 10◦C rise in temperature, we collect power

side-channel measurements in the cases of HT inactive and HT active. In this experiment, we

keep the retraining feature of HTM and OC-SVM on to adapt to the temperature variation.

Solely for comparison reasons, we also assume that it is possible to collect golden chip data
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in different temperatures for training MLP and CNN. Therefore, the accuracy of MLP and

CNN in this figure shows the best possible achievable accuracy by a statistical model. As

Figure 4.9 demonstrates, the rise in temperature results in an immediate accuracy drop for

OC-SVM while our proposed approach is designed to be immune to such changes in the

system. Indeed, even in 85◦C, HTM has 80% accuracy, which is comparable to the best

achievable HT detection accuracy.
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Figure 4.9: Effect of temperature change on different methods.

Noise Effect

In addition to temperature changes, other factors such as process variation, aging, and

voltage level variation may cause changes in the power consumption patterns. Here, we

model these changes by adding a synthetic white noise N (µ, σ2) to the test signals. Figure

4.10 shows the change in the accuracy of different HT detection methods when encountering

varying levels of noise in the collected signal for the AES-T800 benchmark. Since continuous

retraining of neural network-based detection algorithms is not feasible in practice, training

data set of CNN, MLP, CNN-Z, and MLP-Z does not include the added noise. However,

online learning is always active for OC-SVM and HTM. Therefore, they learn the effect of
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the added noise while working on the test signals, and they report a consistent accuracy

regardless of the added noise. As shown in Figure 4.10, the accuracy of CNN and MLP

immediately drops because these methods infer all the noisy test signals as HT infected

(high false-positive detection rate). CNN-Z and MLP-Z have never been trained with the

collected training signal for the AES-T500 benchmark, and they show an arbitrary reaction

to the added noise, as expected.
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Model Parameters Change

The majority of HTM advantages are because they perform simplistic tasks over high di-

mensional data points. To elaborate on this, we change the number of columns and cells per

column to evaluate our model sensitivity to these factors. As shown in Table 4.4, the accu-

racy of HTM for AES-700 benchmarks drops when we use a small number of cells/columns.

Note that, in this chapter, we use 2048 columns with 32 cells per column, as it is suggested

by [3] to work for a wide range of anomaly detection applications. In other terms, we do not

refer to this table to choose optimal values for our HTM model parameters.
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Table 4.4: The effect of model parameters change for HT detection accuracy over AES-T700
benchmark.

``````````````̀# Cells
# Columns

4 8 16 32 64

128 0.5 0.5 0.5 0.5 0.5
512 0.5 0.5 0.73 1 1
1024 0.5 0.5 0.61 1 1
2048 0.5 0.5 0.79 0.98 1

Model Overhead

This work focuses on proposing a methodology for golden-chip free zero-day HT detection as

a proof of concept. As described in Section 4.6.1, we use an oscilloscope for data collection

and process the data in a separate computer system. However, in practice, a hardware im-

plementation of HTM should be utilized to provide an efficient run-time monitoring system.

To this end, we include the information regarding the overhead of HTM usage compared to

other available models.

For hardware implementation of HTM, we borrow the neuromorphic architecture proposed

by Zyarah et al. [155] due to its competitive performance. In this architecture, each cell

is a minor core within 2D columns that can establish lateral synaptic connections with

other cells to learn sequences. In addition, a memory unit is associated with each column

to syntactically establish the dynamic behavior of the interconnections rather than rigid

wires among the cells, which allows us to implement HTM on an FPGA platform. For OC-

SVM implementation with online learning, we use hardware implementation of the sequential

minimal algorithm that can be found in [91]. Neural network acceleration through FPGA is a

rapidly evolving research field. In order to be fair, rather than implementing CNN and MLP,

we report the latest achievements for implementing MobileNet [82] over the FPGA platform,

which has a middling number of parameters between CNN and MLP. Table 4.5 represents
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the essential resource utilization and power consumption of hardware implementation of

each model on FPGA platform. Among these three methods, HTM has minimum power

consumption. Also, note that the reported power for MobileNet includes only inference

phase of this model while the power for HTM and OC-SVM includes both training and

inference.

Table 4.5: Resource utilization and power consumption.

Methods MobileNet OC-SVM HTM (Ours)
Platform Zynq7z045 Zynq7z020 Zynq7z045
Frequency(MHz) 100 100 100
LUT 9203 14529 6349
LUTRAM 746 591 9108
Power(W)∗ 2.15 0.524 0.417

∗ Does not include the ARM core power consumption.

In this chapter, we run our experiments on a 3.7 GHz Intel Core i7 windows platform. On

average, our experiments show that a delay of 7.2ms for learning and making prediction of

each sample should be expected. However, the recent advances for hardware implantation

of HTM have shown that more 1000X speed up for HTM is achievable. For instance, the

authors of [155] show that an FPGA implementation of HTM model will require only 5.75µs

for spatial pooling and 5.052µs for performing temporal memory tasks.

4.7 Discussion

4.7.1 Run-time HT Detection

As the last line of defense, run-time HT detection approaches play a crucial role in detecting

subtle HTs that are not detected in the verification phase. This chapter provides evidence

that HTM can be used as a powerful run-time HT detection mechanism robust to the system
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variation. Similar to other HT detection methodologies, our approach consumes a consid-

erable amount of energy. Hence, it is not suitable for circuits that rely on limited power

resources. In such cases, we suggest to decouple the detection mechanism from the main

circuit and use it as a service in the cloud. Recent advances in communication technolo-

gies (5G) make it possible to establish a high speed, low power, and low latency connection

between the cloud and the target chip to transfer raw measurements.

4.7.2 Using local and other side-channels

In addition to the power side-channel, various other modalities can be used to monitor the

chip. Currently, many ICs are equipped with sensors that provide fine grid thermal and

power consumption information. Multiple works in the literature have shown that the use

of electromagnetic side-channel of the chip can result in high accuracy HT detection. In this

work, we only use the power side-channel for evaluating the performance of our detection

approach due to ease of access. However, incorporating other modalities can improve the

results, which we leave for our future work. Furthermore, we have considered only one point

for our power measurements which was sufficient for the tested benchmarks. In practice, we

suggest to use a more fine grid points for side-channel signals collection.

4.7.3 HTM Characteristics for HT Detection

The high dimensional form of encoded input in SDRs followed by spatial and temporal

pooling gives HTM the capacity to capture complex patterns in the signal with minimum

required computations. The complexity of all the operations in the HTM is at most n logn,

where n is the size of the encoder. Moreover, the high dimensionality of the data flow in

HTM makes it highly resilient against noise in the input signal compared to neural networks

and other ML techniques. Furthermore, the majority of unsupervised ML techniques cannot
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adapt to changes in the signal since retraining the model in real-time is not feasible. However,

HTM uses Hebbian Learning rules that are a light training methodology and can be applied

in real-time. Last but not least, in our experiments, we notice that training HTM requires

much less number of samples than other unsupervised ML techniques.

4.8 Conclusion

In this chapter, we proposed a novel idea of using an HTM for IC behavior monitoring to

detect stealthy HTs which cannot be detected during chip verification process. Our model

is solely trained based on DUT, hence it is golden chip free and does not require access to a

library of known HTs. Furthermore, our proposed method can adopt to effects such as aging,

process variation, and temperature change due to its low-overhead real-time retraining. The

results show that our proposed detection mechanism can detect 92.20% of triggered HT in

five benchmarks while consuming less power compared to state-of-the-art machine learning

techniques.
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