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Translating nonclinical findings to prioritize sterilizing multidrug regimens for tuberculosis 

Jacqueline P. Ernest 

Abstract 

Tuberculosis (TB) is second only to COVID-19 as the most lethal infectious disease in 

the world, claiming 1.6 million lives per year. Novel, potent, and safe drug combinations are 

needed to shorten treatment durations, improve outcomes, and combat resistance against 

available therapeutics. While the TB drug development pipeline is rich with new and repurposed 

drug classes with novel mechanisms of action and novel drug combinations, there is no 

consensus on how best to prioritize multidrug regimens for clinical trials and no modus operandi 

for nonclinical-clinical translation of TB therapeutics. An increasingly applied solution for the 

accurate translation and integration of nonclinical findings and emerging clinical data is through 

model-based approaches. The work presented in this dissertation aims to develop data-driven 

models integrating a compendium of experimental data to predict clinical efficacy and to 

contribute toward development of model-based translation methods.  

In the first half of this dissertation, site-of-action models to predict lesion-centric 

pharmacokinetics (PK) and pharmacodynamics (PD) in patients were developed for three drugs. 

Kanamycin and amikacin do not reach therapeutic concentration at the site-of-action, 

highlighting their limited clinical utility. Clarithromycin accumulates in all tissues compared to 

plasma; however, its lack of bactericidal activity limits its utility in nontuberculous mycobacteria 

pulmonary disease (NTM-PD). The approach establishes a platform for future lesion penetration 

investigations for both TB and NTM-PD. In the second half of this work, semi-mechanistic 

models based on murine PK-PD data were developed to predict early bactericidal activity in 

active TB. Our predictive tool, built using nine approved drugs, can predict first-in-patient trials 

and de-risks entrance into clinical development. The approach was extended to compare 

efficacy of rifapentine alone and in combination in patients with latent TB infection. Our results 
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suggest that ultra-short course therapy of six weeks with rifapentine is equivalent to approved 

latent TB regimens.    

The findings in this dissertation demonstrate model-based translational approaches to 

predict PK-PD at the site of action and to translate murine drug response in active and latent 

TB. The model-based tools developed and implemented in this dissertation contribute to 

regimen development – one of the greatest challenges in TB clinical development – and 

establish a basis for nonclinical-clinical translation in TB drug development. 

  



 xii 

Table of Contents 

Chapter 1: Development of new tuberculosis drugs: Translation to regimen composition 

for drug-sensitive and multidrug-resistant tuberculosis ......................................................... 1 

Abstract .................................................................................................................................... 1 

Introduction .............................................................................................................................. 2 

Data available for modeling ..................................................................................................... 4 

Translational approaches: Importance, advantages, and disadvantages .............................. 9 

Translational toolbox.............................................................................................................. 17 

Conclusion ............................................................................................................................. 27 

References ............................................................................................................................. 28 

Chapter 2: Lesion Penetration and Activity Limit the Utility of Second-Line Injectable 

Agents in Pulmonary Tuberculosis .......................................................................................... 45 

Abstract .................................................................................................................................. 45 

Introduction ............................................................................................................................ 46 

Methods ................................................................................................................................. 49 

Results ................................................................................................................................... 58 

Discussion .............................................................................................................................. 72 

References ............................................................................................................................. 75 

Supplementary Material ......................................................................................................... 86 

Chapter 3: A Rabbit Model to Study Antibiotic Penetration at the Site of Infection for 

Nontuberculous Mycobacterial Lung Disease: Macrolide Case Study ................................ 97 

Abstract .................................................................................................................................. 97 

Introduction ............................................................................................................................ 99 

Methods ............................................................................................................................... 103 



 xiii 

Results ................................................................................................................................. 111 

Discussion ............................................................................................................................ 125 

References ........................................................................................................................... 130 

Supplementary Material ....................................................................................................... 141 

Chapter 4: Spatially and temporally resolved diffusion kinetics of bedaquiline and 

TBAJ-587 in hard-to-treat sites of tuberculosis disease ..................................................... 147 

Abstract ................................................................................................................................ 147 

Introduction .......................................................................................................................... 148 

Methods ............................................................................................................................... 150 

Results ................................................................................................................................. 152 

Discussion ............................................................................................................................ 157 

References ........................................................................................................................... 158 

Chapter 5: Translational predictions of phase 2a first-in-patient efficacy studies for 

bedaquiline and rifapentine ..................................................................................................... 159 

Abstract ................................................................................................................................ 159 

Introduction .......................................................................................................................... 160 

Methods ............................................................................................................................... 163 

Results ................................................................................................................................. 169 

Discussion ............................................................................................................................ 176 

References ........................................................................................................................... 179 

Chapter 6: Comparative efficacy of rifapentine alone and in combination with isoniazid 

for latent tuberculosis infection: a translational pharmacokinetic-pharmacodynamic 

modelling study ........................................................................................................................ 181 

Abstract ................................................................................................................................ 181 



 xiv 

Introduction .......................................................................................................................... 182 

Methods ............................................................................................................................... 184 

Results ................................................................................................................................. 187 

Discussion ............................................................................................................................ 194 

References ........................................................................................................................... 198 

Supplementary Material ....................................................................................................... 202 

Chapter 7: Conclusions ........................................................................................................... 210 

 

 
  



 xv 

List of Figures 

 

Figure 1.1 Examples of empirical and mechanistic models. ........................................................ 10 

Figure 1.2. Pathway to translating nonclinical to clinical outcomes for tuberculosis (TB). .......... 12 

Figure 1.3. Modeling tools important for a translational platform. ................................................ 14 

Figure 2.1. Distribution of KAN and AMK in lung, necrotic lesions and cavities. ........................ 60 

Figure 2.2. KAN distribution in human lung lesions. .................................................................... 62 

Figure 2.3. Model structure and visual predictive checks (VPC) for plasma-to-tissue 

distribution of AMK and KAN. ....................................................................................................... 64 

Figure 2.4. Potency of aminoglycosides against typical Mtb subpopulations found in lesions. .. 68 

Figure 2.5. Clinical plasma and site-of-action PK simulations for a 24-hour steady-state 

profile in a typical TB patient. ....................................................................................................... 71 

Figure 3.1. Comparative histopathology of human clinical NTM infection, human clinical Mtb 

infection and Mtb infection in the rabbit model. .......................................................................... 112 

Figure 3.2. Distribution of clarithromycin from plasma into major pulmonary lesion 

compartments. ............................................................................................................................ 117 

Figure 3.3. Visual predictive check of clarithromycin rabbit plasma-to-tissue 

multicompartment model. ........................................................................................................... 118 

Figure 3.4. Clinical simulations of clarithromycin PK-PD coverage in plasma and four lung 

compartments. ............................................................................................................................ 122 

Figure 3.5. Predicted target attainment expressed as AUC/potency across compartments 

against M. abscessus and M. avium disease............................................................................. 124 

Figure 4.1. Representative images of caseous lesions from TB-infected rabbits. .................... 149 

Figure 4.2. Model structure of parent-metabolite plasma-lesion multicompartment model. ..... 151 

Figure 4.3. Spatial data available for BDQ, TBAJ-587, and their metabolites. ......................... 152 

Figure 4.4. Visual predictive check of BDQ and TBAJ-587 spatial model................................. 154 



 xvi 

Figure 4.5. Clinical simulations at varying depths into lesions. ................................................. 155 

Figure 4.6. Predicted clinical lesion coverage. ........................................................................... 156 

Figure 5.1. The translational pharmacology approach to predicting early bactericidal 

efficacy in patients. ..................................................................................................................... 162 

Figure 5.2. Mouse pharmacokinetic and pharmacodynamic data available for rifapentine 

and bedaquiline. .......................................................................................................................... 164 

Figure 5.3. Visual predictive check of bedaquiline and rifapentine pharmacokinetics in mice. 171 

Figure 5.4 Visual predictive check of bedaquiline and rifapentine PKPD models in mice. ....... 172 

Figure 5.5. Clinical simulations using translational PKPD model and clinical observations. .... 174 

Figure 5.6. Model-based prediction of daily change in log10 CFU/mL correlates well with 

clinically observed daily change in log10 CFU/mL for nine TB drugs at multiple dose levels 

of monotherapy treatment between day 0 to 2 (left) and day 2 to 14 (right). ............................ 175 

Figure 6.1. Predicted rifapentine exposure in patients............................................................... 187 

Figure 6.2. Steady state rifapentine pharmacokinetics in mice and humans. ........................... 189 

Figure 6.3. Concentration-response relationship of rifapentine-containing regimens. .............. 191 

Figure 6.4. Predicted bacterial load over time in humans following LTBI treatment with 

rifapentine-containing regimens. ................................................................................................ 192 

Figure 6.5. Kaplan-Meier plot. .................................................................................................... 193 

 

 

  



 xvii 

List of Tables 

 

Table 2.1. Final parameter estimates for the rabbit plasma-to-lesion PK model. ....................... 65 

Table 2.2. In vitro lesion PK properties of the aminoglycosides. ................................................. 67 

Table 2.3. Summary of in vitro potency of the aminoglycosides in relevant assays. .................. 69 

Table 3.1. In vitro lesion pharmacokinetic profiling of macrolides, clarithromycin and 

azithromycin. ............................................................................................................................... 114 

Table 3.2. Clarithromycin plasma pharmacokinetic parameters in rabbits compared to 

human at the clinical dose. ......................................................................................................... 115 

Table 3.3. Plasma-to-tissue model parameters. ........................................................................ 119 

Table 3.4. In vitro potency of clarithromycin in representative growth inhibitory and 

bactericidal assays...................................................................................................................... 120 

Table 4.1. Final model parameter estimates. ............................................................................. 153 

Table 5.1. Mouse PKPD data available for bedaquiline and rifapentine. .................................. 163 

Table 5.2. Published population PK models and EBA trial information. .................................... 165 

Table 5.3. Mouse PK and PKPD parameter estimates. ............................................................. 170 

Table 6.1. PK/PD indices for rifapentine-containing LTBI regimens.......................................... 188 

Table 6.2. Pharmacological parameters of rifapentine-containing regimens in latent TB 

mouse study. ............................................................................................................................... 190 

 

  



 1 

Chapter 1: Development of new tuberculosis drugs: Translation to regimen 
composition for drug-sensitive and multidrug-resistant tuberculosis* 

Abstract 

Tuberculosis (TB) kills more people than any other infectious disease. Challenges for 

developing better treatments include the complex pathology due to within-host immune 

dynamics, interpatient variability in disease severity and drug pharmacokinetics-

pharmacodynamics (PK-PD), and the growing emergence of resistance. Model-informed drug 

development using quantitative and translational pharmacology has become increasingly 

recognized as a method capable of drug prioritization and regimen optimization to efficiently 

progress compounds through TB drug development phases. In this review, we examine 

translational models and tools, including plasma PK scaling, site-of-disease lesion PK, host-

immune and bacteria interplay, combination PK-PD models of multidrug regimens, resistance 

formation, and integration of data across nonclinical and clinical phases. We propose a workflow 

that integrates these tools with computational platforms to identify drug combinations that have 

the potential to accelerate sterilization, reduce relapse rates, and limit the emergence of 

resistance. 

  

 
* Modified from the publication: Ernest JP, et al. Annual Reviews of Pharmacology and Toxicology. 2021. 
61:495–516 
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Introduction 

With over 1.4 million deaths in 2018, tuberculosis (TB) claimed more lives than any other 

infectious disease. In addition, 10 million new cases of TB were estimated globally. Though the 

incidence rate has declined, the cumulative reduction in incidence rate from 2015 to 2018 was 

only 6.3%, noticeably short of the 20% milestone set by the End TB Strategy for 2020 (1). 

First-line treatment can be highly effective against drug-susceptible tuberculosis (DS-

TB). In clinical trials, the standard 4-drug, 6-month regimen produces cure rates of over 95% (2–

4). However, in practice, this complex regimen often fails to meet these cure rates due to the 

lengthy duration of therapy, excessive toxicity, and general lack of adherence (5). Furthermore, 

drug-resistant TB remains a major threat (roughly 500,000 new cases in 2018) (1), highlighting 

the need for more treatment options. 

Fortunately, recent successes in TB drug discovery and development have produced a 

number of new drug approvals, late-stage drug candidates, and new compounds entering the 

clinical phases of development (6, 7). This progress has resulted in a new challenge in TB drug 

development: With many possible combinations, how do development teams prioritize regimens 

to test in resource- and cost-intensive clinical trials? 

Rational selection of new drugs is challenging for several reasons, including the need for 

multidrug regimens, the challenges inherent in translating nonclinical results into predictions of 

clinical outcomes, and the lack of consistent biomarkers across development phases (8–15). 

Large, late-phase clinical trial failures emphasize the need for better tools in the nonclinical and 

early clinical spaces to address these challenges. Although there is no consensus on a 

definitive TB drug development pathway, it is clear that efforts spanning all levels of research 

provide new and distinct insights (8). It is not the lack of data but a lack of data integration 

across these platforms that remains the greatest challenge in constructing a rationally designed 

treatment regimen (9). 
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Quantitative pharmacology and model-informed drug development are recognized as 

methods to overcome the limitations of individual models and single experiments and combine 

data derived from multiple platforms (15–19). This review focuses on current approaches to 

translate nonclinical experiments into safer, shorter treatment for DS-TB and multidrug-resistant 

tuberculosis (MDR-TB). Specifically, we focus on computational methods spanning empirical, 

pharmacokinetic-pharmacodynamic (PK-PD), and systems approaches that complement 

experimental models to strengthen clinical predictions. We discuss tools that are being 

implemented to address unique challenges in translating between species, and we summarize 

previous work that uses computational approaches to predict clinical outcome. 
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Data available for modeling  

Nonclinical data form the cornerstone of rational drug selection. Here, we highlight 

experimental models that are used to inform translational modeling. These experimental models 

have been extensively reviewed elsewhere (10, 19–21). 

In Vitro  

Most TB drug discovery and development programs rely on potency metrics obtained 

through in vitro assays. In vitro assays are the most rapid approach to determine drug efficacy, 

and assay parameters can be easily adjusted to test efficacy in different conditions. 

Traditionally, fixed drug concentrations are tested, but assays that use changing, or dynamic, 

drug concentrations such as the hollow fiber system (HFS) have also been developed. 

Fixed concentration assays. 

Static concentration growth inhibitory and time-kill assays obtained from high-throughput 

screening in early discovery are used to calculate PK-PD target calculations in late preclinical 

development and clinical trial simulations (19). Today, the field is evolving rapidly to design 

more sophisticated assays that, while still resorting to static concentrations, integrate a variety 

of growth media and assay conditions to partially recapitulate the microenvironment found at 

sites of active TB disease (13, 14) and to specifically target persisters (22). The major limitations 

of static concentration assays are the relatively short testing period, compound instability, and 

the absence of the dynamic drug exposures seen in vivo. Despite these limitations, one could 

argue that the two latest additions to the TB drug arsenal, bedaquiline (BDQ) and delamanid, 

were developed using these potency metrics to support in vivo dose finding and efficacy 

studies. While these assays have thus proven useful and effective, optimizing new regimens will 

require more refined approaches and PK-PD translational tools. 
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Dynamic concentration using the hollow fiber system. 

The HFS has been used extensively to test the activity of antibiotics under conditions 

that simulate a desired PK profile (23). The HFS adds a critical dynamic layer to the in vitro 

assessment of drug activity, since the shape of the concentration-time profile influences 

microbial kill rates and resistance emergence (19, 20, 24). Outputs include colony-forming unit 

(CFU) counts as well as time to positivity (TTP) in the Mycobacteria Growth Indicator Tube 

culture system, but the model is also amenable to sampling bacterial and host cell products 

useful for profiling metabolites or gene or protein expression (20). The HFS has recently been 

qualified by the European Medicines Agency as a predictive nonclinical model for TB drug 

development (24, 25) and endorsed by the US Food and Drug Administration. 

The major limitation of the HFS is the absence of components of the immune response, 

although it has been adapted to assess the response of Mycobacterium tuberculosis (Mtb) to 

fluctuating drug concentrations inside of macrophages (26). Additional challenges relate to 

reproducing drug exposures at the various sites of infection, accounting for highly protein-bound 

and/or tissue-avid drugs and the tendency of some drugs to bind to system components (19). 

These issues are particularly relevant to modeling TB treatment, given the heterogeneous 

pathology and bacterial phenotypes observed and the recent trend toward advancing TB drug 

candidates with high lipophilicity and other challenging physicochemical and pharmacological 

traits. For these reasons, the outputs from the HFS and other in vitro systems are best utilized in 

tandem with outputs from in vivo infection models. 

In Vivo 

In vivo models allow assessment of drug efficacy within a complex system that includes 

the presence of an immune system and physiological processes that contribute to drug 

exposure. In vivo models can be adapted for longer testing periods than in vitro models, can 

study multiple bacterial subpopulations at one time, and have more relevant outputs like relapse 
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rates. Here, we discuss three commonly used in vivo models in TB research: mouse, rabbit, and 

nonhuman primate models. 

Mouse models. 

Typically, mouse models are used for the first test of efficacy in vivo due to the relatively 

low logistical requirements, including low costs and ease of handling (10). Although several 

different inbred and outbred strains are available, experiments using BALB/c mice have 

provided the largest database for in vivo efficacy studies of TB drugs (27). Data outputs such as 

bacterial burden (most commonly reported as CFU counts) over time in whole-lung 

homogenates and the proportion of relapse over time have shown predictive value for 

determining the efficacy of drug regimens and quantifying exposure-response relationships (14, 

15). Comprehensive data sets exist for drugs used as monotherapy and in combination with 

others (27–33). 

In mouse infection models, parameters such as the size of the infectious dose and the 

length of the incubation period prior to treatment can be modulated to establish distinct infection 

models with varying bacterial burdens, replication rates, and host immune effects (27, 34). 

Genetically immune-deficient athymic nude mice, which do not develop an effective adaptive 

immune response to Mtb infection, have been used to estimate the effect of the adaptive 

immune response on bacterial number and drug activity. Athymic nude mice require longer 

treatment durations and are more prone to resistance emergence, suggesting that there is utility 

in modeling treatment outcomes in the context of advanced immune-compromising conditions 

(35, 36). As such, the type of infection model (e.g., the inoculum size and incubation period) and 

the underlying development of the adaptive immune response (e.g., host genetic background) 

are essential factors determining bacterial burden, survival, and drug response, which in turn 

can affect the interpretation of the drug’s effect (10, 14, 34). 

Despite the spectrum of experimental controls of infection, most mouse strains fail to 
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show caseation necrosis, a hallmark of human TB pathology (20). Therefore, mouse infection 

models using BALB/c, C57BL/6, Swiss, athymic nude, and other commonly used strains are 

principally models of intracellular infection. Certain mouse strains have shown a propensity to 

develop caseating lung lesions upon Mtb infection (e.g., C3HeB/FeJ, Nos2−/−) and now enable 

studies of large populations of bacteria residing extracellularly in the necrotic centers of these 

lesions (37–39) and lesion drug distribution (33, 40). Thus, C3HeB/FeJ and other similar mouse 

strains provide an economic way to generate lesion-level PK-PD data. 

Rabbit model. 

The rabbit model of active TB presents multiple pulmonary lesion types, each taking 

different trajectories over time in response to immune pressure and drug treatment, thus 

reproducing the dynamic pathology observed in humans (41–43). These aspects allow the 

rabbit model to be useful in PK-PD and target attainment investigations in plasma and at the site 

of the disease. Recent technological advances have improved the quantification of lesion-level 

TB drugs (44–46). Specifically, laser-capture microdissection followed by drug quantitation 

combines the fully quantitative feature of LCMS (liquid chromatography coupled to mass 

spectrometry) analysis of tissue homogenate with the high spatial resolution (up to 30–50 mm) 

of MALDI (matrix-assisted laser desorption/ionization) mass spectrometry imaging. For 

example, drug levels can be measured in uninvolved lung, the outer cellular rim rich in 

lymphocytes, the inner cellular rim rich in foamy macrophages, the outer edge of the necrotic 

core or caseum, and the center of the caseum. Measured drug concentrations can be related to 

the concentrations required to inhibit growth or kill resident bacterial populations. Extensive 

plasma and lesion PK data sets are available for rifampin (RIF), isoniazid (INH), pyrazinamide 

(PZA) (47, 48), and several fluoroquinolones (47, 49–51). Comprehensive data sets, including 

plasma PK, lesion PK, potency against persisters in caseum, and lesion-centric efficacy 

measured by CFU counts and chromosome equivalents, are available for PZA (43, 47, 48, 52) 
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and three fluoroquinolones (46). 

Nonhuman primate model. 

Compared with other animal models, nonhuman primates (NHPs) often closely 

recapitulate the plasma PK and metabolism of small-molecule drugs in humans. In addition, 

NHP models best capture most of the disease pathologies seen in human TB. FDG-PET/CT 

(fluorodeoxyglucose positron emission tomography/computed tomography) has been used to 

track longitudinal lesion-level responses to immune pressure and drug treatment within the 

same animal (53–55). When combined with measurements of bacterial burden and drug 

concentrations in plasma and lesions, PET-CT imaging is a powerful tool for generating plasma-

based and lesion-centric PK-PD models. PK and efficacy studies in rhesus and cynomolgus 

macaques, as well as in marmosets, have delivered comprehensive data sets for 

metronidazole, RIF and INH (56), several oxazolidinones (57), and the standard four-drug 

regimen compared to a combination of INH and streptomycin (58). Most live births in marmosets 

are twins, thus comparison of results from siblings treated with different drugs or regimens 

allows for direct comparisons that exclude host factors as a source of variability in drug 

response (59). 
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Translational approaches: Importance, advantages, and disadvantages 

Translational approaches can be divided into two broad categories: empirical and 

mechanistic (Figure 0.1). Empirical methods build relationships between variables and 

outcomes without the need for or an explanation of the mechanism. Conversely, mechanistic 

models approximate biological phenomena. In drug discovery and development, mechanistic 

and semi-mechanistic models include integration of relevant physiological and pharmacological 

relationships between the host, the drug(s), and the bacteria (17, 27). Here, we summarize the 

approaches and reflect on the potential advantages and disadvantages of each approach. 
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Figure 0.1 Examples of empirical and mechanistic models.  
(a) Empirical models use a top-down approach to link predictive variables to outcomes. Clemens et al. 
(64) use in vivo dose-response data and a parabolic response surface to empirically predict effective 
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drug-dose combinations. (b) Mechanistic models use a bottom-up or middle-out approach to recapitulate 
biological processes. Pienaar et al. (80) simulate host-drug-bacteria dynamics at a molecular level to 
compare efficacies of fluoroquinolones. Figure adapted with permission from References 64 and 80. 

Empirical (Nonpharmacological) Approach 

Empirical models are considered to be simpler models, as they are easier to implement 

than mechanistic models (60). The era of big data has led to increasing artificial intelligence 

techniques that provide predictive algorithms and has made empirical approaches highly 

efficient (61). 

A challenge in selecting the best TB drug regimen is the number of experiments required 

as the number of drugs increases. Using machine learning, Horwitz and colleagues (62) were 

able to show that multidrug-dose relationships from in vitro assays can be described by a 

parabolic surface using stepwise regression, which was further optimized by machine-learning 

algorithms and tested in BALB/c mice (63, 64) (Figure 0.1). This approach reduced a theoretical 

30.5 billion experiments needed to test 14 drugs to only three phases of 85–155 drug-dose 

combinations at each phase. Although only a narrow range of combinations was tested in mice, 

one of the selected regimens (clofazimine, BDQ, and PZA) prevented relapse in mice after only 

3 weeks of treatment (64), confirming prior evidence of its rapid sterilizing activity in mice (65). 

Regression analysis methods could also be applied to increasing amounts of in vivo data in 

efforts to evaluate the predictive accuracy of nonclinical models and to validate an optimized 

approach to better translate clinical outcomes from nonclinical data. 

A limitation to this approach is that extrapolation of nonclinical efficacy data to the 

human system of disease and clinical outcomes is not straightforward, and drug targets or 

pathways that are important to translation could be missed. Additionally, a layer of data is lost, 

as continuous data are not utilized. Integrating changes over time that are essential to 

describing disease progression and drug cure would require a mechanistic approach. 
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Mechanistic (Pharmacological) Approach 

Mechanistic approaches that examine drugs at a pharmacological level and may 

improve the translation of TB drugs are summarized in Figure 0.2. 

 

 

Figure 0.2. Pathway to translating nonclinical to clinical outcomes for tuberculosis (TB). 
Different pathways exist to translate preclinical to clinical outcomes. Two methods reviewed here include 
a pharmacokinetic (PK) approach and a systems approach. The PK approach can be used to predict 
equivalent drug exposure between nonclinical models and humans. Here, the assumption is that the 
outcomes will be comparable between species if drug exposure is matched. However, with the complexity 
of TB disease, a more systems-like approach may be necessary, as species differences in disease 
pathology do not capture the full spectrum of outcomes in patients. This approach therefore incorporates 
host-specific differences and models host-bacteria-drug dynamics at the site of action to make more 
accurate predictions in patients. 

Pharmacokinetics-pharmacodynamics. 

Traditionally, PK-PD translation involves identifying the human dose that produces the 

exposure with demonstrated efficacy in an animal model (13). While this approach gives a 

broad idea of a safe and effective dose, it relies on strong assumptions, including (a) that 

scaling between species is predictable and reliable, (b) that the antibacterial effects of the host 

immune system are equivalent between species, and (c) that drug exposures and effects are 
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not impacted by other drugs through drug-drug interactions. Thus, PK-PD approaches are an 

attractive option to refine predictions and incorporate additional knowledge. 

In general, the purpose of PK-PD studies is to define a relationship between dose and 

response. With this, PK-PD models can identify the optimal dose and dosing schedule and can 

simulate alternate regimens. PK-PD modeling has evolved from empirical, descriptive 

approaches to mechanistic approaches that include properties such as host antimicrobial 

effects, disease progression, and target site drug distribution (66). The movement toward 

models with more biological plausibility has improved the predictive accuracy and our ability to 

extrapolate from them. Mechanism-based PK-PD methods consider time, unlike time-collapsed 

methods/measures such as AUC, Cmax, or time relative to minimum inhibitory concentration 

(MIC), and reflect gradual killing effects, with changes in concentration as opposed to a binary 

kill–no kill measure assumed by MIC. 

In addition to the time course of drug concentration and response, PK-PD models can 

include submodels that describe the underlying biological system (66–68). The biological 

system is the setting in which the drug-bacteria interplay takes place. The primary effect of the 

biological system is often attributed to the adaptive immune system of the host organism, which 

can combat the infection and limit growth or reduce bacterial burden without drugs (27, 34). 

Thus, capturing its effect in a model is critical to establish an uninflated and translatable drug 

effect (28). Additionally, the heterogeneous lesions of active TB are primarily driven by the 

immune response (69). These structures add an additional obstacle for drug movement to the 

site of the disease. Therefore, the time delay for distribution into the site of action is an 

important component in a PK-PD model. 

PK-PD modeling and simulation can substantially reduce uncertainty, time, and cost in 

high-level decision-making in all phases of development (11, 12, 70). Section 4 of this review 

highlights both addressable and ongoing challenges in TB drug development that PK-PD 

modeling can improve, including site-of-disease or lesion PK, immunology, and combination 
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regimens. The translational toolbox is composed of key components that we believe must be 

implemented in order to accurately translate from nonclinical experiments to clinical outcomes 

(Figure 0.3). 

 

 

Figure 0.3. Modeling tools important for a translational platform. 
Each modeling tool listed is an essential component for predicting clinical outcomes. (c) Plasma 
pharmacokinetics (PK) studies are a cornerstone to translation. Efficacy, safety, and tissue distribution 
parameters can be linked to plasma concentration, and plasma PK can inform first-in-human dosing. (d) 
Lesion PK studies can determine whether a new drug is likely to reach the site of action, including 
heterogeneous lesions. Mechanistic PK models can simulate predicted levels in patient lesions. (e) 
Comparing and modeling responses in immune-competent and immune-compromised animal models can 
predict anticipated differences in host immune response and natural disease progression. (f,g) 
Monotherapy and combination pharmacokinetics-pharmacodynamics (PK-PD) models link drug 
concentration to drug effect and are a cornerstone of defining optimal drug combinations. (h) Resistance 
models incorporate mechanisms related to the emergence of resistance to therapy over time. (i) 
Biomarkers of disease progression and treatment response in different species should be aligned using 
statistical models to link nonclinical and clinical readouts that determine outcome. 
  



 15 

Systems pharmacology. 

Systems pharmacology models use a bottom-up approach to characterize networks of 

pharmacology, pathology, and biological systems. The increase in nonclinical data available to 

TB researchers ranges from in vitro assays to unique animal models, making a quantitative 

systems pharmacology (QSP) approach useful for integrating data and uncovering optimal 

therapeutics. Differing time scales, specific sites of disease compartments, immune 

considerations (71), population PK (72), drug resistance (73), and bacterial dynamics, including 

intracellular survival and metabolomic changes in bacteria (74), can be integrated using QSP 

methodology. 

Existing systems pharmacology models of TB have focused on the host-bacteria 

relationship. Kirschner et al. (71) have become the leading group in describing within-host 

infection, which is summarized in their review. Their systems pharmacology models are capable 

of describing the spectrum of latent to active TB and account for how patients move between 

these states (75, 76). These models aim to reconstruct the immune response involved in 

forming granulomas and has culminated in GranSim, an agent-based model that provides two- 

and three-dimensional spatial models of the lung parenchyma, immune cells, and their 

interaction over time (73, 77–81) (Figure 0.2). This work has further been expanded by other 

groups to include oxygen dynamics and antibiotic treatment within granulomas and the 

modeling of the access of drugs and oxygen to bacteria in relation to their distance from blood 

vessels (82). A multiscale, whole-lung and lymphatic model has been built based on these 

principles that can integrate heterogeneity similar to that found in patients, potentially leading to 

the opportunity to consider a cure across multiple sites of infection within the same patient (83). 

This work has provided a scaffold to examine factors that limit the efficacy of 

antimycobacterial drugs and how systems pharmacology models can guide optimization for 

current and future drugs. Importantly, when building a systems model, care is needed to reduce 

the model to its essential parts. Large systems models can cause a loss of confidence when 
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they become unwieldy and contain pathways and networks that may not offer real insights. 
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Translational toolbox 

The translational toolbox refers to the essential components for translating nonclinical 

data to clinical outcomes (Figure 0.3). In this section, we summarize seven essential 

components and highlight published work.  

Plasma Pharmacokinetics 

Before testing in vivo efficacy of a new compound, developers test oral bioavailability 

through PK studies (14). Animal plasma PK is essential to determine the potential of a 

compound to attain reasonable exposures in vivo and, later, to establish PK-PD indices in 

efficacy studies and determine first-in-human dosing projections. Dose-ranging and dose 

fractionation studies establish human-equivalent doses, drivers of efficacy, and important 

nonlinearities in absorption and clearance. Allometric scaling is a weight-based empirical 

approach to extrapolate animal PK to humans (84). However, protein binding, metabolic 

pathways, and transport may be species-specific and thus limit the utility of allometric scaling 

(though renally excreted drugs are generally well predicted). Physiologically based PK modeling 

(models using parameters based on physiology) improves scaling between species but is much 

more complex (85). Additional absorption, distribution, metabolism, and excretion studies like 

human hepatocyte studies to identify drug-drug interactions and investigation of maximal 

tolerated dose and food effects add insight to drug behavior in patients. 

Lesion Pharmacokinetics 

Drug distribution to the site of action has become increasingly appreciated as a core PK-

PD determinant (9, 66). Pulmonary lesions begin as cellular granulomas, organized structures 

made of various immune cell types, and evolve to necrotizing granulomas as a result of host cell 

and bacterial lysis. Thus, TB lesions are primarily made of two major compartments: cellular and 
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necrotic, the latter being devoid of vascular supply (86). Drugs vary greatly in the manner in 

which they partition into cellular and necrotic portions of lesions, which can create stark 

differences in drug exposures between intracellular and extracellular sites of infection (and even 

into foamy and non-foamy macrophages) in the same lesion and alter PK-PD relationships 

based on plasma exposure. Differential vascularization and vascular efficiency (87), immune 

cell types (51), protein binding (88), drug physicochemical properties (89), and interindividual 

PK variability (90) all affect tissue distribution. In addition, the microenvironments and bacterial 

phenotypes differ at these sites of infection, which can further alter PK-PD relationships (33, 91, 

92). Bacterial populations exhibit differential persistence in the face of immune pressure (93) 

and drug exposure (52), due to various metabolic and physiologic adaptations to the local 

environment (22). Mtb isolated from caseum in rabbit lung lesions is profoundly drug tolerant 

compared to bacteria grown in laboratory media (52). 

PK modeling of lesion compartments implements an effect compartment to describe 

drug distribution from plasma (66),  

( )lesion
pl-lesion pl-lesion plasma lesionK RdC C C

dt
= u − , 1. 

 

and has been used to model PK in rabbits (47) as well as in patients undergoing lung resection 

(90). Moxifloxacin (MFX) was predicted to be the most efficacious fluoroquinolone (80) using 

these methods, and PZA was demonstrated to be active against Mtb residing in difficult-to-

sterilize necrotic lesions (33, 43, 94). Incorporation of differential drug exposure and drug 

susceptibility in the calculation of lesion-centric PK-PD parameters can improve translation to 

PK-PD models. Taking lesion-centric PK-PD parameters into consideration could lead to the 

rational design of combination regimens made of agents that together reach and kill all bacterial 

populations. 
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Immune System Quantification/Bacterial Growth Dynamics 

Due to the important role of the host adaptive immune response on impacting treatment 

effect, various mathematical models have been developed to describe bacterial infection and 

the resulting immunological responses in animal models of TB (71, 73, 81, 83, 95–98). The 

enormous amount of data from mouse models of TB has provided great advantages in modeling 

the bacterial infection and the underlying development of immune responses. In a bacterial 

growth submodel, the net change in bacterial number (B) over time on growth is described by a 

one-compartment model with one first-order rate for bacterial replication (Kg) and one first-order 

rate for natural death (Kd): 

g dK KdB B B
dt

= u − u        2. 

In addition, a logistic function can describe a growth plateau as it approaches a 

maximum population (Bmax) (99–101): 

g
max

K 1
B

dB BB
dt

§ ·
= u u −¨ ¸

© ¹
  3. 

The decrease of bacterial replication rate and plateau of bacterial burden are believed to 

be mainly caused by the onset and development of the adaptive immune response. The impact 

of the adaptive immune response on bacterial replication was previously described as a 

nonlinear (sigmoidal) function of bacterial load, with maximal immune effect (KB) and a bacterial 

load that stimulates half of the maximal effect (B50) (102–105): 

B
g

max 50

KK 1  
B B

BdB BB B
dt B

§ · u
= u u − − u¨ ¸ +© ¹

        4. 

This effect has also been described using a sigmoidal function of time of incubation with 
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maximal immune effect (KT) and incubation time that stimulates half of the maximal effect (T50) 

(28): 

T
g

max 50

KK 1  
B T

tdB BB B
dt t

§ · u
= u u − − u¨ ¸ +© ¹

  5. 

The effect has been further described by two sigmoidal functions depending on both 

bacterial number and time of incubation in order to differentiate the immune effect at the same 

incubation time but with different bacterial load or the effect with the same bacterial load but at 

different incubation time (27). Considering the evolution of bacterial populations in vivo from 

actively replicating bacilli to nonreplicating bacilli, this adaptive immune effect is added onto the 

bacterial growth as an inhibitory effect to slow bacterial replication (27): 

T

T T

γ γ
B T

g dγ γ γ γ
50 50

K KK 1 1 K
B T

B

B B

B tdB B B
dt B t

§ · § ·u u
= u u − u − − u¨ ¸ ¨ ¸+ +© ¹ © ¹

 6. 

Incorporation of the immune system is a critical step in PK-PD modeling. Without it, the 

drug effect becomes inflated, and the efficacy predictions can be overshot or overly optimistic. 

Pharmacokinetics-Pharmacodynamics 

As previously discussed, static MIC does not consider the change in drug exposures 

over time or in different lesions, while a PK-PD approach does so and can therefore provide 

better predictions. Clewe et al. (106) developed a multistate tuberculosis pharmacometric (MTP) 

model based on in vitro time-kill studies. The MTP model consists of three bacterial growth 

states (fast, slow, and nonmultiplying) and could serve as a framework for accurate 

characterization of drug effects on different bacterial states. The model was extended by Wicha 

et al. (107) to successfully predict treatment outcomes in an HFS model, a mouse TB model, 

and a human phase IIa study. 
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Establishing PK-PD relationships from in vivo experiments requires integrating the 

contribution of the immune system. Using BALB/c mouse data, we modeled the interplay 

between bacterial growth, the adaptive immune response, lung pathology, and TB drugs (28). 

Our translational model platform includes a quantitative model of the interplay of bacterial 

growth and immune response, allowing the characterization of the net exposure-response 

relationships of rifapentine (RPT), RIF, and MFX. This translational PK-PD model adequately 

predicted long-term outcomes observed in recent clinical trials, including REMox-TB (4) and 

RIFAQUIN (2). In addition, this model showed that it had the ability to be applied to ongoing 

trials, in which it predicted minimal risk of relapse at 1 year following 4 months of treatment with 

high-dose, RPT-containing regimens in TBTC study 31 (ClinicalTrials.gov identifier 

NCT02410772) and with high-dose, RIF-containing regimens in the RIFASHORT trial 

(ClinicalTrials.gov identifier NCT02581527). These works illustrate that experimental data, when 

combined with appropriate considerations of differential bacterial states and the immune 

system, can improve predictions of clinical outcomes. 

Combination Regimens 

Combination therapies are the cornerstone for TB treatment, based on superior efficacy 

and reduced risk of drug resistance (108). With multiple diverse sites of infection and bacterial 

subpopulations, it is unlikely that a single drug will ever replace combination therapy. 

Much effort has been devoted to exploring the interaction between drug pairs. The most 

commonly used methods can be summarized as effect based and dose-effect based. Effect-

based methods compare the effect resulting from the combination of two drugs (EAB) directly to 

the effects of its individual components (EA, EB). The Bliss independence model is one of the 

most popular effect-based methods. It quantifies interaction with a combination index (CI), 

where the combination effect can be less than (CI > 1), similar to (CI = 1) or greater than (CI < 

1) the expected additive effect from individual agents (109–111):  
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A B A B

AB

CI E E E E
E

+ −
=  7. 

Alternatively, dose-effect-based methods compare the amount or concentration of each 

drug that produces the same effect (112) and are based on the mathematical framework known 

as Loewe additivity (113). Under the assumption that the mathematical relation of single dose A 

and B to reach the combination effect by pair of doses (a, b) is  

+ 1
A B
a b

= ,               8. 

CI could be defined as 

+ = CI
A B
a b

, 9. 

where CI > 1 indicates an effect produced by the dose pair (a, b) that is less than the expected 

effect from additivity. Graphical approaches such as isobologram and response surface analysis 

are also widely utilized, as they are conceptually straightforward, but crucial drawbacks include 

difficulties in quantitative interpretation and the inability to use graphical analysis for longitudinal 

data. 

As combinations of three or more drugs are typically administered for TB, an urgent task 

is to develop an analytical framework for when drug pair analysis cannot be applied. Wood et al. 

(114)  developed a simple equation for drug combinations in Escherichia coli and 

Staphylococcus aureus, and Zimmer et al. (115) have extended the Bliss independence model 

in which the effects of all drugs in the mixture are the product of their effective doses (calculated 

by the model) rather than true doses (dose administered). CI could be evaluated using the ratio 

of effective and true doses for individual drugs. The general pharmacodynamic interaction 

(GPDI) model was built on this work and developed for the analysis of TB drug combinations 
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(116). The GPDI model was adapted from a competitive inhibition model (117); however, it uses 

an estimable interaction term (INT) that allows both positive and negative shift of the PD 

parameter (EC50): 

INT ,AB

INT ,AB INT,AB

maxA A 
A

AB B
50 A A 

50INT,AB B

E

INTEC 1
EC

H

H H

CE
C C
C

u
=
§ ·§ ·u¨ ¸u + +¨ ¸¨ ¸¨ ¸+© ¹© ¹

  10. 

The GPDI model considers that two drugs could simultaneously be both a perpetrator 

and victim drug, and thus both positive and negative shifts of EC50 are allowed by the value INT, 

which could be between −1 and ∞. One of the highlights of the GPDI model is that, for the first 

time, PD interactions are considered a function of concentration, which could be bidirectional 

with a change in time. Such a model has been implemented in three- and four-drug 

combinations (118, 119). 

A major limitation to studying drug combinations is the number of experiments required 

to capture all possible combinations at multiple dose levels. Diagonal measurement of N-way 

drug interactions (DiaMOND) was recently proposed to address this problem (120). DiaMOND 

assumes that in a checkerboard assay, only regions with the most information about the shape 

of the contour are needed. Therefore, for a triplet drug interaction, only dose responses of single 

drugs and the combination 1:1:1 mixtures are required to be sampled for analysis of interactions 

within the combination, making the DiaMOND method a more efficient method to inform 

experimental design of drug combinations. 

Using these approaches, synergy and antagonism can be established early in 

development to evaluate the efficacy of novel regimens. 
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Drug Resistance Models 

Resistance to TB drugs has been an inevitable consequence of clinical usage. 

Resistance to the new TB drugs BDQ and delamanid has already occurred (121–123). New 

regimens that are designed to prevent resistance before reaching patients are required. 

Two resistance mechanisms can be considered in modeling approaches, namely genetic 

resistance and phenotypic resistance (drug tolerance). The Mtb genome mutates spontaneously 

at random, with frequencies ranging between 10−6 and 10−10 per generation for standard drugs 

(124). Genetic resistance due to chromosomal mutations leads to acquired MDR-TB and 

extensively drug-resistant TB. Phenotypic resistance can occur due to epigenetics, protein 

modification, and metabolic and physiologic reversible adaptations in the presence of drugs and 

can lead to prolonged treatment and relapse (125, 126). Phenotypic resistance can ultimately 

promote genetic resistance (121). 

To model resistance, in vitro methods can predict the minimum selection concentration 

of drugs, explained as the minimum concentration at which resistant bacteria are selected for 

but not killed (127). This work follows the mutant selection window paradigm that hypothesizes 

that drug-resistant mutants are selected within a window that spans from the MIC of wild-type 

growth and the upper boundary of concentration-inhibiting growth for the most resistant strains 

(128, 129). These windows of resistance selection may be pronounced in heterogeneous 

lesions like granulomas (90, 130, 131), in which differential drug distribution into lesion 

compartments may result in low drug exposures. 

Mechanistic PK-PD models can quantify longitudinal wild-type and resistant bacteria 

data using genetic and phenotypic principles (102). To model genetic resistance, a preexisting 

subpopulation model can be used, whereby the resistant compartment is initiated with an 

estimated fraction of already-resistant bacteria that may have a fitness cost modeled through 

slower growth (132, 133). Drugs preferentially kill the more drug-sensitive, wild-type bacteria, 



 25 

leading to an increase of the less susceptible bacteria. Different EC50 or Emax values can be 

estimated for the two subpopulations (134). Alternatively, the appearance of new mutants can 

be modeled with a first-order rate constant (99, 135). Expansion of this model has included 

sequential mutations in which bacteria mutate with a relative loss in fitness and then mutate 

again to regain fitness (136). A similar approach in the GranSim platform is used to model 

mono-resistance in heterogeneous granulomas (137). 

Phenotypic resistance models include adaptive and persister models. For adaptive 

modeling, changes in Emax, EC50, or growth rate are modeled over time in discrete populations, 

allowing for a gradually increasing resistant subpopulation that changes the initial mixed 

population to a homogeneous population that is more difficult to kill (101). Variants of this model 

include on-off binding to increase or decrease this process in the presence of drugs (138). The 

persister model uses phenotype switching between a normal-growing population and a slow-

growing persister population that is assumed to be responsible for poor outcomes (139). 

Multidrug-resistant models likely require additional mechanisms of resistance. The 

mutation rate of INH+RIF-resistant bacteria has been estimated to be 1,000-fold higher than the 

respective mono-resistant rates, which suggests that with each resistant generation, bacteria 

are primed for further resistance (140). 

Biomarkers 

While there are many new biomarkers under investigation, animal models of TB and in 

vitro assays measure bacterial burden by counting CFUs. CFU counts are the gold standard of 

bacterial burden and are used across historical data to measure and compare new drug 

performance in clinical development programs (141). Translation of preclinical solid-culture CFU 

counts to clinically used liquid culture TTP, time to culture conversion (TTCC), and sputum 

smear tests is necessary to accurately predict patient outcomes in clinical trials. 

Animal models study the total population of Mtb in the lung, including bacteria in closed 



 26 

lesions (142), whereas clinical measures use sputum samples from patients that reveal only 

those bacteria at the surface of lung and cavities and are often discrete or binary measures. A 

translational model to consolidate these different data types, from different infection sites and 

possibly measuring different bacterial subpopulations, is required. 

Diacon et al. (143) showed that CFU counts can be replaced by faster and less laborious 

TTP measures to assess early bactericidal activity (144). Models to describe liquid-culture CFU 

and TTP measurements have revealed negative correlations with a gradient shift to higher 

bacterial burden in TTP compared to CFU counts at later time points, showing that, over time, 

the increase in TTP is inflated compared to the decrease of CFU counts (145). Therefore, TTP 

seems to be able to account for a subpopulation of bacteria not reflected in CFU counts (145, 

146). This relationship between CFU counts and TTP in patients was modeled using machine 

learning with a Gompertz model, which was reported to be the best fit:  

0.195
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1.002
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This model was included in the MTP model discussed under PK-PD tools (106). CFU and TTP 

values are made available at early clinical trial stages (phase IIa), and TTCC has become an 

important end point for later-stage trials. Several studies showed that TTCC could be an early 

predictor of treatment success in drug-resistant TB patients after the first 2 months (147–150). 

To our knowledge, no study has reported a mathematical relationship between CFU/TTP and 

TTCC. As one of the most important end points and a potential predictor for resistance, filling 

the gap between CFU/TTP and TTCC could serve as a powerful translational tool. 
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Conclusion  

The arsenal of new drugs in the pipeline imposes new challenges for the TB community, 

and quantitative tools are needed to refine results and predict clinical outcomes with higher 

confidence. In the wake of clinical trial failures, TB drug developers must utilize lessons learned 

and find new ways to provide safe, novel regimens for testing in TB patients. Importantly, the 

growing body of technological and methodological advances should be implemented and 

integrated. As an essential component to modern drug development, translational modeling 

serves as a platform to connect experimental data and create networks of knowledge. We 

believe that the use of the translational tools presented here can build confidence into deciding 

which regimens should be tested; fill in the gaps of experimental uncertainty; and ultimately 

produce safe, effective, and novel regimens for testing in TB clinical trials.  
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Chapter 2: Lesion Penetration and Activity Limit the Utility of Second-Line 
Injectable Agents in Pulmonary Tuberculosis* 

Abstract 

Amikacin and kanamycin are second-line injectables used in the treatment of multidrug 

resistant tuberculosis (MDR-TB), based on the clinical utility of streptomycin, another 

aminoglycoside and first line anti-TB drug. While streptomycin was tested as a single agent in 

the first controlled TB clinical trial, introduction of amikacin and kanamycin into MDR-TB 

regimens was not preceded by randomized controlled trials. A recent large retrospective meta-

analysis revealed that compared with regimens without any injectable drug, amikacin provided 

modest benefits, and kanamycin was associated with worse outcomes. Although their long-term 

use can cause irreversible ototoxicity, they remain part of MDR-TB regimens because they have 

a role in preventing emergence of resistance to other drugs. To quantify the contribution of 

amikacin and kanamycin to second-line regimens, we applied 2-dimensional MALDI mass 

spectrometry imaging in large lung lesions, quantified drug exposure in lung and lesions of 

rabbits with active TB, and measured the concentrations required to kill or inhibit growth of the 

resident bacterial populations. Using these metrics, we applied site-of-action pharmacokinetic 

and pharmacodynamic (PK-PD) concepts and simulated drug coverage in patients’ lung lesions. 

The results provide a pharmacological explanation for the limited clinical utility of both agents 

and reveal better PK-PD lesion coverage for amikacin than kanamycin, consistent with 

retrospective data of contribution to treatment success. Together with recent mechanistic 

studies dissecting antibacterial activity from aminoglycoside ototoxicity, the limited but rapid 

penetration of streptomycin, amikacin and kanamycin to the sites of TB disease supports the 

development of analogs with improved efficacy and tolerability. 

 
* Modified from the publication: Ernest JP, et al. Lesion Penetration and Activity Limit the Utility of 
Second-Line Injectable Agents in Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy. 
2021. 65:10 
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Introduction 

Kanamycin (KAN) and amikacin (AMK) are injectable aminoglycoside antibiotics 

discovered in the 1950-70’s and were among the first agents approved to treat gram-negative 

and gram-positive bacterial infections (1). They were repurposed to treat multi-drug resistant 

tuberculosis (MDR-TB) based on the clinical utility of streptomycin (SM), an earlier injectable 

aminoglycoside tested as a single agent in the first controlled clinical trial with TB patients in 

1946 (2). In recent years, however, large retrospective studies and meta-analyses provided 

limited evidence that use of second-line injectable aminoglycosides KAN and AMK is associated 

with an increased likelihood of treatment success (3; 4). Consistent with these observations, 

unfavorable outcomes were similar in patients susceptible versus resistant to KAN and AMK (5). 

Prospective observational studies and randomized placebo-controlled trials were lacking at the 

time of their introduction in MDR-TB regimens. The results of early bactericidal activity (EBA) 

trials with AMK and liposomal AMK were published in 2001, showing barely detectable and 

negligible effect, respectively (6-8).  

Second-line injectables can cause serious and irreversible ototoxicity, resulting in 

permanent hearing loss in 3% to more than 60% of the patients across studies (4; 9-12). This 

comes in addition to the logistical challenge and pain associated with daily injections for many 

months. Since the risks of severe ototoxic and nephrotoxic reactions are sharply increased in 

patients who receive prolonged therapy (12), aminoglycosides are only recommended for short-

term treatment of severe infections, not to exceed 7 to 10 days, except in the case of TB and 

nontuberculous mycobacterial infections.  

Given the limited evidence of clinical utility and irreversible side effects, why were KAN 

and AMK introduced and kept in MDR-TB regimens? SM was the first antibiotic approved to 

treat TB and remained in use as a first-line agent in resource-limited countries until 2019 (13). 

Since KAN and AMK exhibit in vitro potency four- and two-fold lower than SM against 
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Mycobacterium tuberculosis, respectively (14), it was assumed they may achieve similar or 

minimally reduced efficacy. In mice and guinea pigs, high doses of AMK and KAN provided 

limited efficacy compared to SM and isoniazid (15). Efficacy was slightly improved when 

animals received high infectious doses via the intravenous or intracardial route and treatment 

started immediately for up to 90 days (16; 17), and in J-IFN knockout mice (18). When AMK and 

KAN were tested side by side, AMK appeared more efficacious at comparable doses (17). 

Intrapulmonary delivery did not provide any benefit compared to subcutaneous injection of AMK 

(19). Liposomal formulation of AMK showed improved activity compared to free AMK in mice 

during the acute phase (20), which has been attributed to the liposomes favoring drug 

penetration into macrophages and retarding its clearance from the site of action (21). The 

predictive value of these efficacy studies is limited by the lack of a pharmacological rationale to 

select a dose that reproduces the pharmacokinetic-pharmacodynamic (PK-PD) target of 

aminoglycosides in TB patients (8; 22). While peak plasma concentration relative to minimum 

inhibitory concentration (Cmax/MIC) is considered the PK-PD driver of efficacy for 

aminoglycosides against most bacterial infections (23), no systematic in vivo studies have been 

conducted to confirm this for TB and establish PK-PD targets of efficacy (8). Based on PK-PD 

threshold of efficacy versus toxicity in patients  (24), dose fractionation studies in the hollow 

fiber system (25) and PK-PD targets in other bacterial infections (26), the WHO recommends 

doses that achieve Cmax/MIC of 10 for KAN and AMK (27; 28). Because most animal efficacy 

studies described above were performed in the “pre-PK” era, there were no PK data reported to 

assess PK-PD parameters. However, PK data from other studies ((29) and our unpublished 

results) indicate that Cmax/MIC must have been in excess of the WHO-recommended target and 

may have exceeded KAN and AMK exposures that are tolerated in humans. Despite the 

disappointing EBA trials, AMK and KAN were kept in MDR-TB regimens because they were 

believed to have a role in preventing emergence of resistance to other drugs (6). They are 
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therefore considered 'companion drugs', used to avert treatment failure due to acquired 

resistance against core drugs (30-32). 

To provide a pharmacological rationale for the limited contribution of AMK and KAN to 

second-line regimens, we applied site-of-disease PK-PD concepts and measured drug 

exposure at the site of infection in rabbits with active TB, relative to concentrations required to 

kill or inhibit growth of the resident bacterial populations. Using these metrics for assessing 

lesion PK-PD coverage in patients, we provide a pharmacological explanation for the limited 

clinical utility of both agents and the slightly more favorable contribution of AMK to MDR-TB 

regimens in retrospective studies, compared to KAN. 

  



 49 

Methods 

In vivo pharmacokinetics in naïve and TB infected rabbits 

All animal studies were performed in Biosafety Level 2 and Biosafety Level 3 (BSL3) 

facilities and approved by the Institutional Animal Care and Use Committee of the New Jersey 

Medical School, Rutgers University, Newark, NJ; Hackensack Meridian Health, NJ, or the 

National Institute of Allergy and Infection Disease, NIH, Bethesda, MD (LCIM-3). All studies 

followed the guidelines and basic principles in the United States Public Health Service Policy on 

Humane Care and Use of Laboratory Animals. All samples collected from M. tuberculosis 

infected animals were handled and processed in the BSL3 in compliance with protocols 

approved by the Institutional Biosafety Committee of the New Jersey Medical School, Rutgers 

University, Newark, NJ, and Hackensack Meridian Health, NJ. 

For pharmacokinetic studies in rabbits, female New Zealand White (NZW) rabbits 

(Charles River Laboratories, Canada), weighing 2.2 to 2.6 kg, were maintained under specific 

pathogen-free conditions and fed water and chow ad libitum. In dose finding pharmacokinetic 

studies in uninfected animals, rabbits received a single 60 mg/kg dose of AMK formulated in 

0.9% saline administered via the intramuscular route.  

For plasma and tissue pharmacokinetics in TB infected animals, NZW rabbits were 

infected with a high inoculum of M. tuberculosis HN878, using a nose-only aerosol exposure 

system as described (33). Approximately 1,000 to 3,000 CFU were recovered from 2 rabbits 

analyzed 3 h post infection. At 14 to 20 weeks post infection, once mature cellular and necrotic 

lesions had developed, rabbits received three daily doses of AMK or KAN at 25 mg/kg, or a 

single 20 mg/kg dose of SM. Blood was collected from the central ear artery of each rabbit pre-

dose, and at several time points between drug administration and necropsy (typically 0.5, 1, 2, 

4, and 6 h following drug administration, until the time of euthanasia). Groups of 3 to 6 rabbits 

were euthanized 2 h (selected as the earliest time point allowing for distribution from plasma to 
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tissue) and 6 h (the latest practical time point that minimizes the risk of plasma or tissue levels 

falling below the limit of quantitation) post-dose for AMK and KAN. For SM, a single time point 

was selected at 3 h post-dose for SM. Due to the rapid clearance of AMK and KAN, and the 

analytically challenging nature of the aminoglycosides, plasma and lesions collected at 24 h 

post dose could have delivered a large percentage of BLOQ data points. All blood samples 

were centrifuged at 4,000 rpm for 5 min and the supernatants (plasma) were transferred and 

stored at -80°C until analyzed by high-pressure liquid chromatography coupled to tandem mass 

spectrometry (LC/MS-MS).  

Collection of human tubercular tissues 

Patients undergoing elective resection surgery to debulk MDR or XDR M. tuberculosis 

infected lung segments were recruited into a previously reported multicenter clinical study 

(ClinicalTrials.gov identifier NCT00816426, (34; 35)) with written consent. The institutional 

review boards of the National Institute of Allergy and Infectioous Disease, National Institutes of 

Health, Bethesda, Maryland USA and the Asan Medical Center, Seoul, ROK, approved the 

study. All procedures were in accordance with the ethical standards of the Helsinki Declaration. 

The patients received a single dose of 1,000 mg KAN if the drug was not part of their current 

drug regimen at specific times prior to surgery and subsequent tissue removal. During surgery, 

the exact time of pulmonary artery ligation was recorded and used to calculate the time of drug 

administration relative to surgery (Supplementary Table 2.2). Upon lung resection, the tissue 

was immediately dissected into individual tubercular lesions that were snap frozen in liquid 

nitrogen vapor for sectioning and laser capture microdissection and stored at -80°C until 

analyzed.  
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Lesion dissection and processing 

From each lung lobe, individual granulomas, mediastinal lymph nodes and uninvolved 

(non-diseased) lung tissue areas were dissected, sized, weighed, and recorded. Special care 

was taken to remove the uninvolved lung tissue surrounding each granuloma. The samples 

were classified as lymph node, uninvolved lung (devoid of macroscopically visible lesions, 

though known to be infiltrated with various immune cell types and may contain cellular micro-

lesions), cellular granuloma (appears opaque and feels hard to the touch), necrotic granuloma 

(shows a white/yellow center under the cellular rim and feels soft to the touch) or cavity 

(presents a large open and opaque ring with a central air pocket and variable amounts of 

caseum remaining)  When necrotic granulomas were greater than 7mm, they were dissected so 

that the lesion wall and the caseous material within could be stored and analyzed separately. 

Lesions collected for laser-capture microdissection and MALDI mass spectrometry imaging 

were left embedded in the surrounding tissue, and snap-frozen in liquid nitrogen vapor as 

described previously (36). All samples were stored in individual 2 mL tubes at -80°C.  

Prior to drug quantitation by LC-MS/MS, all tissue samples were homogenized in 

approximately, but accurately recorded, 5 volumes of phosphate buffered saline (PBS). 

Homogenization of tissue samples was achieved using a FastPrep-24 instrument (MP 

Biomedicals) and 1.4mm zirconium oxide beads (Precellys). Lung and lesion homogenates 

were stored at -80°C prior to KAN, AMK and SM quantitation by LC-MS/MS analysis. 

In vitro pharmacokinetic assays  

Caseum binding assay 

The caseum binding assay was carried out by rapid equilibrium dialysis using a 

disposable rapid equilibrium dialysis (RED) device (ThermoFisher Scientific, MA) as previously 

described (37; 38). Briefly, caseum was diluted 10-fold in PBS, homogenized, and spiked at a 
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final incubation concentration of 5 µM. An aliquot (200 µL) of the spiked matrix was placed in 

the sample chambers and the buffer chambers were filled with 350 µL of PBS. The plates were 

then covered with adhesive seals and incubated at 37°C for 4 h on an orbital shaker set at 300 

rpm. Following incubation, samples were removed from both chambers and extracted with water 

containing 33% trichloroacetic acid prior to LC-MS/MS quantitation. The fraction unbound (fu) in 

diluted caseum was calculated as the ratio between free (buffer chamber) and total (sample 

chamber) drug concentrations.  

Macrophage uptake assay 

Aminoglycoside uptake assays in THP-1 cells were performed as previously reported 

(39). Briefly, THP-1 cells (ATCC TIB-202), grown in RPMI 1640 medium supplemented with 

10% fetal bovine serum and 2 mM L-glutamine in a CO2 incubator, were seeded into wells of a 

96-well tissue culture-treated plate at 5x 104 cells / well. THP-1 monocytes were differentiated 

overnight to macrophages with 100 nM phorbol 12-myristate 13-acetate (PMA). Culture medium 

was carefully removed and media containing 5 μM of AMK, KAN or SM was added. After 30 min 

at 37°C, the cells were gently washed twice with ice-cold PBS to remove extracellular drug. 

Cells were lysed with deionized water for 1 h at 37°C. The drug content of cell lysates was 

analyzed by LC/MS-MS, and subsequently normalized to (i) the number of cells per well after 

drug treatment and washing of dead (non-adherent) cells if any and (ii) the average cellular 

volume to calculate the intracellular concentration of each aminoglycoside. The drug 

accumulation factor is expressed as a ratio between the intracellular concentration and 

extracellular concentration (IC/EC). 
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In vitro pharmacodynamic assays  

Intracellular M. tuberculosis potency assay in THP-1 derived macrophages 

To measure aminoglycoside activity against intracellular bacteria, THP-1 monocytes 

were cultured as mentioned above, differentiated to macrophages with PMA on 24-well cell 

culture-treated plates seeded with 5 x 105 cells / well. The macrophages were infected with the 

Erdman strain of M. tuberculosis at a multiplicity of infection of 1:1. After 4 h of infection, the 

wells were washed three times with PBS to remove extracellular bacteria. Fresh media 

containing 1, 5, 20, 50 or 100 µM of each study drug was added, with vehicle-only wells 

included as controls. After 1, 2 and 3 days at 37°C and 5% CO2, the THP-1 macrophages were 

detached with 5 mM ethylenediaminetetraacetic acid (EDTA), lysed with 0.05% sodium dodecyl 

sulfate (SDS), and serial dilutions of the lysates were plated on Middlebrook 7H11 agar for CFU 

enumeration. 

Caseum minimum bactericidal concentration assay 

The minimum bactericidal concentration assay against M. tuberculosis found in rabbit 

caseum (MBC90 in ex vivo caseum) was performed as described previously (40). Briefly, rabbit 

caseum was homogenized and incubated with SM, AMK or KAN at concentrations ranging from 

0.03125 to 512 µM for 7 days and then plated on Middlebrook 7H11 agar for CFU enumeration, 

including no-drug controls. The MBC in caseum or casMBC90 is defined as the minimum 

concentration that kills 90% of endogenous bacteria residing in caseum. 

Analytical methods for quantitation and imaging of AMK, KAN and SM  

LC-MS/MS method for quantitation of aminoglycosides in plasma and tissue homogenates  

KAN, AMK and SM internal standards were purchased from Sigma Aldrich. Drug free 

K2EDTA plasma and lungs from NZW rabbits were obtained from BioIVT for use as blank 

matrices to build standard curves. Neat 1 mg/mL Milli-Q stocks were serially diluted in water 
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containing 1% formic acid to create neat standards. Control tissue and study sample 

homogenates were created by adding 9-parts PBS buffer to 1-part tissue (10x dilution) and 

shaking the samples using a Fisher Bead Mill for 1 minute at 6,000 g with zirconia beads. 

Standard, quality control, and study samples were extracted by combining 10 µL of tissue 

homogenate or plasma, 10 µL of 500 ng/mL internal standard, and 100 µL of water containing 

33% trichloroacetic acid.  AMK was used as internal standard for SM sample analysis, and SM 

was used for AMK and KAN sample analysis. Extracts were vortexed for 5 minutes and 

centrifuged at 4,000 rpm for 5 minutes. An aliquot (100 µL) of supernatant was transferred to a 

96-well plate for LC-MS/MS analysis. LC-MS/MS analysis was performed on a Sciex Applied 

Biosystems Qtrap 6500+ triple-quadrupole mass spectrometer coupled to a Shimadzu Nexera 

X2 UHPLC system to quantify each drug in plasma. Chromatography was performed on an 

Agilent Zorbax SB-C8 column (2.1x30 mm; particle size, 3.5 µm) using a reverse phase gradient 

elution with aqueous. Milli-Q deionized water with 0.1% formic acid (FA) and 0.1% 

heptafluorobutyric acid (HFBA) was used for the aqueous mobile phase and 0.1% FA and 0.1% 

HFBA in ACN for the organic mobile phase. Representative chromatograms are shown in 

Supplementary Figure 2.5. Multiple-reaction monitoring (MRM) of precursor/fragment transitions 

in electrospray positive-ionization mode was used to quantify the analytes. MRM transitions of 

586.70/163.20, 485.40/163.00, and 582.30/263.30 were used for AMK, KAN and SM 

respectively. Sample analysis was accepted if the concentrations of the quality control samples 

were within 20% of the nominal concentration. Data processing was performed using Analyst 

software (version 1.6.2; Applied Biosystems Sciex). 

Laser-capture microdissection 

Laser-capture microdissection (LCM) was carried out as previously described (36). 

Briefly, 𝛾-irradiated frozen lung biopsies were sectioned at 10 µm for histology and 25 µm for 

LCM using a CM1810 cryostat (Leica). Sections for histological analysis were taken immediately 
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adjacent to those taken for LCM and data were correlated. LCM sections were thaw-mounted 

onto 1.4 µm thick PET membrane slides (Leica). Regions of necrotic caseum, their 

corresponding cellular rim and normal lung tissue, were dissected using a LMD7 scope (Leica) 

until an area of 3 million µm2 had been collected for each region. Dissected regions of interest 

were stored at -80°C until analysis.  

LC-MS/MS method for quantitation of AMK and KAN in laser capture microdissected samples 

Laser-capture microdissection (LCM) sample quantification was carried out according to 

a previously published protocol (36).  Briefly, neat 1 mg/mL Milli-Q stocks of AMK and KAN 

were serial diluted in water containing 1% formic acid to create neat standards. Control tissue 

homogenate was created by adding 25.6 parts PBS buffer to 1-part tissue (26.7x dilution) and 

shaking the samples using a Fisher Bead Mill for 1 minute at 6,000 rpm with zirconia beads. 

Standard, quality control, and control samples were extracted by adding 2 µL of blank 

homogenate, 10 µL of neat standard, 5 µL of 500 ng/mL SM as internal standard, and 50 µL of 

water containing 33% trichloroacetic acid. LCM study samples were extracted identical to 

standards using 2 µL of PBS in place of tissue homogenate. Extracts were bath sonicated 10 

minutes and centrifuged at 4,000 rpm for 5 minutes. An aliquot (50 µL) of supernatant was 

transferred to a 96-well plate for HPLC-MS/MS analysis. HPLC-MS/MS analysis was performed 

as described in the whole tissue analysis methods. 

MALDI mass spectrometry imaging 

Sample Preparation and Data Acquisition 

Mass spectrometry imaging experiments were carried out on 10 µm sections taken 

adjacent to those used for histological registration of the LCM sections, as described above. 

Tissue washing was carried out prior to matrix deposition by submerging the slides in 

chloroform for 15 s at -20°C as previously published (41). The slides were then allowed to air-
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dry for 10 min prior to matrix deposition. The DHB matrix solution (20 mg/mL in 50% methanol, 

5 mM sodium chloride and 0.1% trifluoroacetic acid) was deposited over the tissue sections 

using the HTX M5 sprayer (HTX Technologies LLC, Chapel Hill, NC, USA) using the following 

parameters: 60°C nozzle temperature, 50 μl/min flow rate, 900 velocity, 8 p.s.i, 26 passes and 

crisscross spray pattern. Data acquisition was carried out using a Bruker solariX 7 Tesla FT-ICR 

mass spectrometer (Bruker Daltonics, Billerica, MA, USA), equipped with a dual ESI/MALDI ion 

source and Smartbeam II Nd:YAG (355 nm) laser. The instrument was operated in the positive 

ion mode within the mass range of m/z 150-3,000, utilizing the continuous accumulation of 

selected ions (CASI) function, in which the quadrupole mass was set to m/z 550 with an 

isolation window of 200. Images were acquired at 50 µm resolution using the small laser setting 

and 200 laser shots per pixel. The transient length was 0.7340, which resulted in an estimated 

resolving power of 99,000 at m/z 400 (full width at half maximum). Following data acquisition, 

the slides were washed with 70% ethanol to remove the matrix and stained with hematoxylin 

and eosin (H&E). The stained sections were then co-registered with the MSI data for analysis. 

Data Analysis 

Data analysis was carried out using the SCiLS Lab MVS, version 2020a Pro (Bruker 

Daltonics, Billerica, MA, USA). The data files for the 2- and 6-hour post-dose time-points were 

combined and imported into a single file for each drug compound to enable comparison across 

time-points and for statistical analysis. MS images of KAN and AMK were processed using the 

weak denoising function and presented using the rainbow scale color scheme. Regions of 

interest (ROIs) were drawn around the different histologically identifiable areas of TB infected 

lung tissue, these included inner and outer caseum, the cellular layer and normal tissue lung 

parenchyma. From each of these regions ~350 spectra were acquired from individual pixels 

(50x50 mm) used to create relative pixel intensity plots of KAN and AMK ion abundance in each 
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region. The spectral data obtained from the polygonal ROIs in SCiLS Lab were exported and 

further analyzed in GraphPad Prism (GraphPad Software, San Diego, CA, USA). 

Pharmacokinetic-pharmacodynamic modelling and simulations 

Data from a single dose of 60 mg/kg AMK in uninfected rabbits were used to develop a 

plasma PK model. Simulations were performed to match exposure in rabbits predicted to be 

equivalent to a 1,000 mg dose in humans. To describe the movement of drug from plasma to 

sites of action, nonlinear mixed effects models were built for KAN and AMK using available 

rabbit data (Supplementary Table 2.1). Tissue density was assumed to be 1 g/mL of 

homogenate.  Plasma and lesions were modeled sequentially, where plasma data were 

modeled first. The plasma parameters were fixed, and effect compartments were added for 

each distinct tissue. Samples quantified by both homogenate/LCMS and LCM/LCMS methods 

were pooled together and treated equally. A rate (kpl-lesion), ratio (PCpl-lesion), and residual error 

were estimated for each lesion type. Model building was guided by goodness of fit plots, 

objective function value, and visual predictive checks. One thousand simulations using inter-

individual variability and residual error as variability were performed to confirm model fit to raw 

data. NONMEM version 7.4.2, R software version 3.6.1, and the R packages ggplot2, xpose4, 

and PKPDsim were used for model building, data visualization, and simulations. A translational 

model was developed by linking lesion parameters estimated in rabbits to previously published 

clinical plasma PK models (35; 42). Clinical simulations were compared to in vitro targets and 

unbound Cmax, AUC, and time relative to in vitro targets were quantified. Fraction unbound was 

assumed to be > 0.99 for KAN (43) and 0.9 for AMK (44).  
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Results 

AMK and KAN penetrate major TB lesion compartments to similar extents 

To build a translational model of lesion penetration for second line injectables AMK and 

KAN, we first identified a rabbit dose that achieves exposure comparable to that of TB patients 

receiving a 1,000 mg intramuscular dose (42; 45-49). The AMK concentration time profile was 

established in naïve (uninfected) rabbits following a single intramuscular 60 mg/kg dose 

(Supplementary Table 2.1A). The ratio between peak plasma concentration (Cmax) and MIC is 

considered the primary PK-PD parameter driving antibacterial effect of the aminoglycosides 

(50), though a recent review and reappraisal of available literature and updated guidelines 

suggest that the area under the concentration-time curve (AUC)/MIC ratio may be a more 

reliable indicator of bacterial killing and clinical efficacy for these agents (51; 52). Overall, 

rabbits clear AMK faster than humans, leading to higher Cmax at human equivalent AUC. To 

achieve a compromise between matching human Cmax and human AUC, a dose of 25 mg/kg 

was selected, given daily for three days to reach steady state (Supplementary Figure 2.1 and 

Supplementary Table 2.1).  Since AMK and KAN display similar PK profile and exposure in 

patients (26; 53; 54) and in rabbits (45; 55-57), the same dose of 25 mg/kg was selected for 

both agents. Next, the PK profile of AMK and KAN was obtained in TB infected rabbits following 

three daily doses of 25 mg/kg, confirming identical exposure of AMK and KAN and reaching a 

compromise between matching Cmax and AUC of TB patients receiving a daily dose of 1,000 mg 

(Supplementary Figure 2.2 and Supplementary Table 2.1).  

To visualize the partitioning of AMK and KAN in necrotic lesions and surrounding lung 

tissue, we generated drug heat maps using MALDI mass spectrometry imaging (MSI) in thin 

tissue sections collected 2 h and 6 h after the third dose (Figure 0.1A). Sections imaged by 

MALDI MSI were washed and subsequently stained with hematoxylin and eosin (H&E) to reveal 

the underlying lesion structure and cellular composition. At 2 h post-dose, penetration of both 



 59 

drugs was homogeneous throughout uninvolved lung, cellular and necrotic lesion 

compartments, with apparent higher abundance in denser tissue areas. Given the rapid 

clearance of aminoglycosides, plasma levels had fallen below 1 mg/mL at 6 h post dose 

(Supplementary Figure 2.1A). This was reflected by the low drug concentrations in uninvolved 

lung and cellular lesion areas, which are well vascularized. In contrast, AMK and KAN were 

partially retained within caseous foci at 6 h, leading to highest signal intensity in the center of 

the necrotic cores. Lesions collected at 6 h post-dose are larger than at 2 h due to inter-animal 

variability in pathology. To obtain semi-quantitative data from these drug ion maps, individual 

pixel intensities were plotted in regions of interest (ROI) manually delineated based on 

immunopathology staining by H&E: uninvolved lung, cellular rim and caseum. Outer and inner 

caseum were sampled separately when large necrotic lesions were present. The data confirmed 

the partitioning of AMK and KAN visualized by MALDI MSI (Figure 0.1B). To measure absolute 

drug concentrations in defined lung and lesion areas, we collected samples in adjacent tissue 

sections by laser-capture microdissection (LCM) (36) in 5 to 9 lesions per drug at 2 and 6 h 

post-dose. AMK and KAN concentrations were measured in microdissected areas and 

concomitantly collected plasma by conventional mass spectrometry. As anticipated based on 

MALDI MSI images and pixel intensities, we found higher AMK and KAN concentrations in 

caseum than in cellular lesion rims. Both drugs were higher in plasma than in tissues at 2 h post 

dose, while the opposite was observed at 6 h. Absolute drug levels decreased in all 

compartments between 2 and 6 h post-dose (Figure 0.1C and Supplementary Figure 2.3).  
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Figure 0.1. Distribution of KAN and AMK in lung, necrotic lesions and cavities. 
(A) MALDI mass spectrometry (MS) ion maps of AMK and KAN in representative rabbit lung tissues 
collected 2 and 6 h post-dose at steady state. MS images of AMK and KAN distribution are displayed in 
the top panel. The hematoxylin and eosin (H&E) stains of the sections used for MSI are shown in the 
middle panel, and merged H&E and MS images in the bottom panel. Scale bar = 3 mm. (B) Scatter plots 
of relative pixel (50x50 mm) intensities within regions of interest (ROI) drawn to encompass approximately 
350 pixels within lung and lesion compartments as indicated; L: uninvolved lung; Ce: cellular rim; oC: 
outer caseum; iC: inner caseum. (C) Absolute concentrations of AMK and KAN in plasma and infected 
lung regions determined by laser-capture microdissection and LC/MS-MS. P: plasma; L: uninvolved lung; 
Ce: cellular rim; C: caseum; oC: outer caseum; iC: inner caseum. 
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To complement the rabbit dataset and determine whether the partitioning of KAN 

between uninvolved lung, cellular and caseous rabbit lesion compartments extends to humans, 

we applied LCM to 20 large necrotic lesions and cavities collected in a previous clinical study 

from 10 subjects who had received 1,000 mg KAN by intramuscular injection (34; 35). TB 

patients who undergo lung resection usually present with drug refractory cavitary disease, thus 

enabling lesion PK investigations in a wider spectrum of lesion type and size (34). These 

subjects had MDR- or XDR-TB and either received KAN as part of their optimized drug regimen 

or received a single dose of KAN in addition to their background regimen on the day of 

scheduled lung resection (Supplementary Table 2.2). Although within-subject and across 

subject variability was higher than in rabbits as expected, we observed similarly rapid diffusion 

into caseum in all subjects, both following a single dose and at steady state (Figure 0.1). KAN 

concentrations were higher in caseum than surrounding cellular and lung tissue in a minority of 

lesions, which did not appear to be associated with steady state (Supplementary Table 2.2). 

There was no trend of increased partitioning into caseum relative to the surrounding tissue at 

steady state, regardless of the time point post dose. Overall, KAN concentrations decreased 

rapidly over the course of the dosing interval, as seen in rabbits.  
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Figure 0.2. KAN distribution in human lung lesions. 
(A) Typical examples of histology staining and laser-capture microdissection (LCM) of thin human lesions 
sections. Two large necrotic lesions were collected from the resected lung tissue of human subject G-108 
and G-109. Adjacent lesion sections were used for hematoxylin and eosin (H&E) staining (left) to guide 
LCM sample collection (right): 1. Inner caseum; 2. Outer caseum; 3. Cellular rim; 4. Uninvolved lung. 
Laser-dissected pieces belonging to the same tissue compartment were pooled for quantitation by LC-
MS/MS. (B) Concentrations of KAN in plasma and 20 resected human lesions from 10 subjects, collected 
at various times from 3 to 26 h after a single or multiple doses of 1,000 mg KAN injected intramuscularly 
(35). Concentrations were determined in thin section samples collected by LCM, analyzed by LC/MS-MS 
(36). Each color corresponds to one subject.  
 

To build a translational model of AMK and KAN penetration at the site of TB disease, we 

measured drug concentrations in serial blood samples and whole lung and lesion homogenates 

in groups of three TB infected rabbits dosed with 25 mg/kg of AMK or KAN and analyzed at 2 

and 6 h after the third daily dose. The total number of observations and the concentrations of 

AMK and KAN data in plasma, uninvolved lung, cellular and necrotic lesions are shown in 

Supplementary Figure 2.1B and Supplementary Table 2.3. 

KAN plasma PK in rabbits were best described by a one-compartment model with inter-

individual variability on bioavailability. Clearance (CL) was estimated to be 0.45 liters/hour and 
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volume of distribution (V) was estimated to be 0.5 liters, indicating rapid elimination (elimination 

half-life of 47 minutes). Bioavailability was fixed to one while the rate of absorption after 

intramuscular injection was estimated to be 2.94 (absorption half-life of 14 minutes). A slope-

intercept model best described the residual error with a proportional error of 9.23 percent and 

additive error of 0.034 mg/L. The model structure of rabbit plasma and site-of-action PK, and 

scatter visual predictive check of AMK and KAN distribution from plasma to infected lung tissues 

are shown in Figure 0.3. KAN exposure was greater in plasma than in any tissue compartment. 

Estimated plasma-to-lesion partition coefficients were 0.338, 0.454, 0.476, 0.497 for uninvolved 

lung, cellular lesions, caseous lesions, and caseum, respectively, indicating that all lesion 

compartments have AMK and KAN exposure less than half the exposure measured in plasma. 

Of tissue compartments, caseum had the highest exposure followed by caseous lesions, cellular 

lesions, and uninvolved lung. The residual error in tissue compartments was best described by 

a proportional error model. Final model parameters are listed in Table 0.1.  
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Figure 0.3. Model structure and visual predictive checks (VPC) for plasma-to-tissue distribution of 
AMK and KAN. 
(A) Model structure for the rabbit plasma and site-of-action PK. (B) Scatter VPC of rabbit plasma-to-tissue 
model for AMK and KAN. Points and dashed lines represent observed data points and median of 
observed data, respectively. Shaded area and solid lines represent the 90% prediction interval and the 
median of 1,000 simulations, respectively. ka, absorption rate constant; V, central volume of distribution; 
CL, clearance; PC, partition coefficient or the ratio of drug at site compared to plasma; kpl-site, distribution 
rate constant; Cplasma, concentration in plasma; Csite, concentration at site-of-action.  
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Table 0.1. Final parameter estimates for the rabbit plasma-to-lesion PK model. 

Compartment Parameter AMK 
Value, RSE (%) 

KAN 
Value, RSE (%) 

Plasma 

ka (1/h) 2.51 (14.7) 2.94 (10.2) 
CL (L/h) 0.461 (8.0) 0.447 (9.8) 

V (L) 0.572 (8.3) 0.502 (9.8) 
F1 1 FIX 1 FIX 

IIV F1 (CV %) 19.8 (23.3) 21.5 (10.1) 
IIV CL (CV %) 10.4 (18.5) - 

Proportional Error (CV %) 16.4 (17.2) 9.23 (11.6) 
Additive Error (mg/L) 0.0568 (23.1) 0.0335 (22.0) 

Uninvolved lung 
Rate (kpl-site,1) (1/h) 0.716 (5.8) 0.493 (10.3) 

Partition coefficient (PC1) 0.437 (5.0) 0.338 (3.1) 
Proportional Error (CV %) 37.8 (10.6) 44.5 (21.0) 

Cellular lesions 
Rate (kpl-site,2) (1/h) 0.385 (10.0) 0.419 (9.0) 

Partition coefficient (PC2) 0.462 (7.3) 0.454 (6.1) 
Proportional Error (CV %) 25.0 (13.4) 34.7 (7.1) 

Caseous lesions 
Rate (kpl-site,3) (1/h) 0.490 (7.9) 0.448 (15.1) 

Partition coefficient (PC3) 0.618 (6.7) 0.476 (9.9) 
Proportional Error (CV %) 29.6 (8.2) 32.7 (12.8) 

Caseum 
Rate (kpl-site,4) (1/h) 0.496 (8.1) 0.395 (22.6) 

Partition coefficient (PC4) 0.927 (8.0) 0.497 (21.3) 
Proportional Error (CV %) 31.5 (14.8) 87.9 (18.6) 

ka, absorption rate constant; 1/h, per hour; CL, clearance; V, central volume of distribution; F1, 
bioavailability; IIV, inter-individual variability; CV, coefficient of variance; RSE, relative standard error; kpl-

site, distribution rate constant (See Figure 2.2A for rate constant and partition coefficient description). 
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AMK plasma PK were similarly described by a one-compartment model with inter-

individual variability on bioavailability and CL. CL and V were estimated to be 0.461 L/h and 

0.572 L (elimination half-life of 52 minutes). Bioavailability was fixed to one while the absorption 

rate constant after intramuscular injection was estimated to be 2.51 h-1 (absorption half-life of 17 

minutes). A slope-intercept model best described the residual error with a proportional error of 

16.4 percent and additive error of 0.057 mg/L. AMK exposure was greater in plasma than in any 

tissue compartment. Plasma-to-lesion partitioning were 0.437, 0.462, 0.618, and 0.927 for 

uninvolved lung, cellular lesions, caseous lesions, and caseum, respectively, indicating highest 

exposure in caseum (Table 0.1). Overall, KAN and AMK presented similar plasma PK profiles 

and showed modest but comparable penetration at all sites of pulmonary disease, with higher 

partitioning in caseum than other lung areas. Interestingly, all partition coefficients were greater 

for AMK than KAN in lung and lesions, particularly in caseum. A similar trend was observed in a 

limited dataset of streptomycin (SM) distribution in rabbit lung and lesions, showing lung-to-

plasma and cellular lesion-to-plasma concentration ratios ranging from 0.3 to 0.5, and cavity 

caseum-to-plasma concentration ratios of 1.0 to 1.5 (Supplementary Figure 2.4). Thus, the three 

injectable aminoglycosides used in the treatment of TB have similar distribution patterns into 

lung lesions. 

To further understand the higher retention of AMK, KAN and SM in caseum than in 

vascularized cellular compartments, we measured the non-specific binding of AMK, KAN and 

SM in ex vivo caseum and found moderate to high binding and free fractions ranging from 4 to 

10% (caseum fU) for all three drugs, in stark contrast with their low protein binding and high 

unbound fraction in plasma (plasma fU), reported in the literature (Table 2.2). This pattern is 

unique to the aminoglycosides and is consistent with rapid distribution from plasma to caseum 

and slightly prolonged retention in caseum given the low plasma and high caseum binding. In 

contrast, most TB drugs exhibit only slightly higher non-specific binding in caseum than in 

plasma (38), and achieve higher concentrations in cellular than in necrotic and caseous lesion 
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areas. To determine what contributes to their rapid and moderate distribution in cellular lesion 

areas, we measured the uptake of AMK, KAN and SM in THP-1 derived macrophages in vitro. 

We found intracellular to extracellular concentration ratios between 2 and 3, similar to linezolid 

and falling in the ‘low uptake’ category compared to other TB drugs (Table 2 .2) (34; 58; 59). 

Thus, the high caseum binding and modest uptake in macrophages is consistent with the 

partitioning patterns of aminoglycosides in the cellular and necrotic regions of TB lesions. 

Table 0.2. In vitro lesion PK properties of the aminoglycosides. 

 AMK KAN SM BDQ MXF LZD references 

IC/EC ratio in 
THP-1 

macrophages 
3.6 ± 
0.2 3.8 ± 2.9 2.1 ± 0.7 176.5 ± 

164.4 8.8 ± 4.5 2.3 ± 0.9 This work 

caseum fu (%) 3.6 ± 
0.3 4.8 ± 1.4 10.5 ± 

1.9 < 0.01 16.8 ± 
1.8 

27.9 ± 
2.2 This work 

Plasma fu (%) > 90 ~ 100 65 < 0.1 50 - 60 70 (43; 60) 
IC/EC: intracellular to extracellular concentration ratio after 30 minutes of incubation; fu : fraction unbound; 
BDQ: bedaquiline, MXF: moxifloxacin; LZD: linezolid 

AMK and KAN are weakly active against M. tuberculosis populations found in lesions 

The MIC of AMK, KAN and SM against a panel of clinical Mtb isolates have been 

reported in the literature. MIC distributions against a large panel of susceptible isolates center 

around 0.5 mg/L for SM, 1 mg/L for AMK and 2 mg/L for KAN (14). To place the lesion 

concentrations of AMK and KAN into pharmacodynamic context at the site of disease, we 

measured (i) the concentrations required for growth inhibition and killing of intracellular Mtb in 

macrophages, and (ii) the concentrations required to kill non-replicating Mtb in ex vivo caseum 

(40). SM was included in all assays as a first line reference aminoglycoside tested as a single 

agent in early clinical trials (61). In infected THP-1 derived macrophages treated for 3 days, 

90% growth inhibition of intracellular Mtb was achieved between 13 and 40 mM or 7.6, 13.6 and 

23.3 mg/L for AMK KAN and SM, respectively. No bacterial kill was observed up to 100 mM, all 

three drugs exerted static effect only (Figure 0.4A). Against non-replicating persisters in 

caseum, both AMK and SM achieved a 1-log kill around 32 mM (19 mg/L). KAN was inactive up 
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to 512 mM (Figure 0.4B). Overall, potency was low against intracellular and non-replicating Mtb 

compared to standard MIC values, and KAN was less potent than AMK, consistent with reported 

MIC and MBC (Table 0.3).   

 

Figure 0.4. Potency of aminoglycosides against typical Mtb subpopulations found in lesions. 
(A) Aminoglycoside growth inhibitory activity against intracellular Mtb in THP-1 derived macrophages. 
Intracellular bacterial burden is shown for treated and drug-free control samples after 3 days of 
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incubation, at the concentrations indicated. D0: bacterial burden prior to drug treatment; D3 dmso: drug-
free control on Day 3. The experiment was carried out twice with technical triplicates; one representative 
experiment is shown. (B) Bactericidal activity of aminoglycosides against non-replicating Mtb persisters in 
ex vivo rabbit caseum (40). The red dotted line indicates the 1-log kill mark, or caseum MBC90.  
 

Table 0.3. Summary of in vitro potency of the aminoglycosides in relevant assays. 

 AMK KAN SM Reference 

MIC (mg/L) 1 2 0.5 (14; 62) 

MBC (mg/L) 1.0 – 8.0 3.0 – 32.0 0.5 – 8.0 (62; 63) 

MacIC90 (mg/L) 13 28 40 This work 

casMBC90 (mg/L) 19 > 248 19 This work 
MIC, minimum inhibitory concentration; MacIC90, concentration at which 90% of bacterial growth is 
inhibited in THP-1 derived macrophages; casMBC90, concentration at which 90% of bacteria are killed in 
ex-vivo caseum. 
 

Simulation of lesion pharmacokinetic-pharmacodynamic reveals poor lesion coverage 

Aminoglycosides exert concentration dependent activity in vivo, with both Cmax/MIC and 

AUC/MIC driving antibacterial effect (50-52). While these PK-PD drivers were established for 

bacterial infections other than TB, they are generally recognized as a property of the class. The 

long post-antibiotic effect of aminoglycosides provides a rational explanation for Cmax/MIC driven 

killing (26). Given the limited evidence that use of KAN and AMK is associated with an 

increased likelihood of treatment success (3; 4; 64), we hypothesized that lesion-centric PK-PD 

parameters are better predictors of efficacy than conventional plasma Cmax/MIC or AUC/MIC, as 

observed for other TB drugs (65; 66).  

First, lung and lesion penetration coefficients measured in rabbits were applied to clinical 

plasma concentrations of AMK and KAN to simulate exposure in infected lung compartments. 

Using published clinical plasma PK models, daily intramuscular injections of 1,000 mg of either 

AMK or KAN were simulated to steady state (Figure 0.5) (35; 42). Plasma fAUC/MIC (294.1 and 

108.5 for AMK and KAN, respectively) and plasma fCmax/MIC (44.6 and 13 for AMK and KAN, 
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respectively) appeared favorable based on PK-PD studies in patients with gram-negative and 

gram-positive infections (51; 67). In these patient populations, a Cmax/MIC ratio of 8–10 and 

AUC/MIC of 80 to 100 have been associated with effective treatment and prevention of 

resistance (26; 51; 68). Corresponding thresholds have not been established for TB and would 

be challenging to validate given the intrinsic multidrug nature of TB treatment. Regardless, the 

plasma PK-PD parameters of AMK and KAN obtained in our simulations comfortably meet 

these thresholds. This was true whether total or free drug concentrations in plasma were used 

since aminoglycoside free fraction is high. 

Next, we applied lesion penetration coefficients measured in rabbits to the clinical 

plasma PK models, then calculated PK-PD parameters in TB lesion compartments using MIC as 

the denominator (Supplementary Table 2.4). While these remained within the desirable range in 

lesions, their relevance is limited given (i) the disconnect between replicating Mtb drug 

susceptibility in broth compared to susceptibility of intracellular and extracellular Mtb at the site 

of disease, and (ii) the fact that free drug fraction is unknown in tissues. To overcome this 

caveat, we assessed PK-PD coverage in lesions using potency values against the two major 

bacterial populations as measured in the previous section, intracellular IC90 in macrophages and 

MBC90 in ex vivo caseum (Figure 0.5 and Supplementary Table 2.4). Unlike MIC, these two 

assays better reproduce the lesion environment and thus measure free drug potency.  In 

contrast to coverage based on plasma PK and MIC, these simulations revealed poor lesion 

coverage and poor target attainment at the sites of disease. Cmax/MBC90 in caseum or caseous 

lesions was 1.7 for AMK and around 0.04 for KAN. In uninvolved lung and cellular lesions where 

Mtb is mostly intracellular, neither drug achieved the intramacrophage IC90 (Figure 0.5). Thus, 

PK-PD parameters that integrate drug concentrations in cellular and caseous TB lesions versus 

potency against intracellular Mtb and non-replicating persisters in caseum show that potency 
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targets are not achieved by the second line aminoglycosides at the site of disease. This may 

explain their limited contribution to treatment success in MDR-TB patients (3). 

 

Figure 0.5. Clinical plasma and site-of-action PK simulations for a 24-hour steady-state profile in a 
typical TB patient. 
Dashed lines indicate in vitro target relevant for each compartment. Plasma and uninvolved lung are 
relative to MIC (1 mg/L, 2 mg/L for AMK and KAN, respectively). Cellular lesion is relative to Macrophage 
IC90 (7.6 mg/L, 13.6 mg/L for AMK and KAN, respectively). Caseous lesion and caseum are relative to 
caseum MBC90 (19 mg/L, 248.1 mg/L for AMK and KAN, respectively). Blue lines for AMK in plasma and 
uninvolved lung represent the free fraction (KAN plasma protein binding is negligible). 
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Discussion 

The efficacy of second line injectables AMK and KAN has not been evaluated in placebo 

controlled randomized trials that would measure their contribution to MDR-TB regimens. Our 

knowledge therefore largely relies on meta-analyses that retrospectively assess the benefits of 

AMK and KAN inclusion in second line regimens. In the context of newer MDR-TB regimens 

that include linezolid, bedaquiline and clofazimine, these analyses indicate that AMK provides 

modest benefits compared to regimens without injectables, while KAN was associated with 

worse outcomes (3; 4). Both drugs appeared to have modest benefits in past studies that 

compared weaker drugs and regimens (64). These meta-analyses also showed that 

aminoglycosides were associated with highest incidence of adverse events leading to 

permanent drug discontinuation (69). However, use of second line injectables is justified by their 

potential to prevent emergence of resistance to companion drugs (31; 32). 

To help quantify the contribution of AMK and KAN to relapse free cure and rationalize 

their use against MDR-TB, we measured and modeled drug concentrations at the site of 

infection in rabbits with active TB, applied lesion penetration coefficients to clinical plasma PK 

models, measured concentrations required to kill or inhibit growth of intramacrophage and 

caseum Mtb, and simulated lesion PK-PD coverage of both agents in key lesion compartments. 

The simulations show that potency targets are not achieved by KAN in cellular and necrotic 

lesions, and that AMK reaches caseum MBC90 for a few hours but with a low caseum 

Cmax/caseum MBC90 of 1.7. These results are consistent with the modest benefits of AMK and 

worse outcomes associated with KAN use (3), and support recent WHO recommendations that 

“kanamycin be replaced by amikacin, based on evidence from the comparative effectiveness.” 

(13). SM, which presents (i) similar plasma PK in patients (22) , (ii) similar penetration in rabbit 

lung lesions, and (iii) the same caseum MBC as AMK, was deemed very weakly bactericidal in 
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cavities in which the great majority of bacilli are present in smear-positive pulmonary TB, based 

on outcomes of an early bactericidal activity trial (70). 

Our findings also support WHO recommendations to replace second line injectables with 

newly approved agents bedaquiline and delamanid when available, given the irreversible toxicity 

induced by long term aminoglycoside use. Interestingly, bedaquiline containing regimens are 

more cost effective based on cost-per-treatment success compared with injectable containing 

regimens (71). However, recent studies advocate for the maintenance of second line injectables 

owing to their acquired resistance-preventing activity (31) and the rising rate of acquired 

resistance to bedaquiline (30). In plasma and major sites of disease, AMK but not KAN 

achieved recommended targets of Cmax and AUC relative to MIC. This may translate into 

controlling emergence of resistance in compartments that are permissive to Mtb replication 

where MIC may partially represent drug potency. However, Mtb also replicates intracellularly in 

the cellular rim of lesions, where PK-PD coverage is critically low for AMK and below the 

threshold across the dosing interval for KAN (Figure 0.5). This raises the concern of acquired 

resistance to these second line injectables while on therapy (72; 73). Whereas a thrice weekly 

dosing scheme has been proposed to limit AMK toxicity (8; 30), a study that compared the 

incidence of ototoxicity and nephrotoxicity in patients receiving either 25 mg/kg thrice weekly or 

15 mg/kg daily did not detect any difference in outcome (12). In addition, the 3-times weekly 

dosing scheme may also decrease the already modest lesion coverage despite the long post-

antibiotic effect of aminoglycosides, and further open the door for acquired resistance.  

This study has a few limitations. (1) A compromise between matching clinical Cmax and 

AUC in rabbits was adopted due to the high aminoglycoside clearance in rabbits. Because we 

selected a dose on the higher side of this compromise (~3-fold higher Cmax and ~10-20% lower 

AUC in rabbits than in TB patients), and since KAN and AMK do not or barely reach the target 

potency at this high Cmax, putting a stronger emphasis on matching clinical Cmax – even if the 

clearance were artificially decreased to ‘humanize’ the rabbit model – would likely reinforce the 
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conclusions of the study.  (2) TB patients who received KAN also received multiple 1st and 2nd 

line drugs. While aminoglycosides are largely excreted unchanged in the urine and thus not 

prone to metabolic drug-drug interactions, we cannot exclude drug-drug interactions at the level 

of transport and efflux in and out of tissues, lesions, and immune cells. (3) KAN but not AMK 

was included in the clinical lesion PK study. Because the two drugs display similar 

physicochemical properties, similar in vitro PK parameters known to influence lesion penetration 

(caseum binding, macrophage uptake, plasma protein binding), and similar plasma and lesion 

PK in rabbits, we leveraged the favorable rabbit-to-human translation of the KAN findings to 

extend the AMK distribution patterns from rabbits to humans. AMK, KAN and SM all exhibit 

attractive physicochemical properties that translate into favorable and rapid penetration into 

necrotic nodules and cavities, as well as good retention in non-vascularized cavity caseum. This 

highlights the potential of the class if one could discover analogs with improved toxicity profiles 

and potency against non-replicating persisters. Recent progress with apramycin, a veterinary 

drug currently in clinical trials, indicate that dissociation between antibacterial activity and 

ototoxicity is achievable (18; 74). A formulation that maximizes pulmonary delivery relative to 

systemic drug concentrations and/or promotes slow release to minimize the frequency of 

injections would further improve their clinical utility. In addition, aminoglycosides were shown to 

synergize with cell-wall-active agents such as E-lactams (75), a class of antibiotics that has 

generated renewed interest against MDR-TB (76; 77). 

In conclusion, the pharmacological profiling of AMK and KAN in pulmonary TB provides 

an explanation for their limited contribution to MDR-TB regimens, and a rationale for the WHO 

recommendation to replace KAN with AMK. Together with recent mechanistic studies dissecting 

antibacterial activity from aminoglycoside ototoxicity, the rapid penetration of SM, AMK and KAN 

to the sites of TB disease supports the development of analogs with improved efficacy and 

tolerability.  
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Supplementary Material 

Supplementary Table 0.1. Comparative pharmacokinetic parameters of AMK and KAN at 1,000 mg 
in human subjects and 25 mg/kg in New Zealand White rabbits. 

 
AMK KAN 

Cmax rabbits (25 mg/kg) (mg/L) 90 (75 – 110) 101 (75 – 133) 

Cmax clinical (1,000 mg or 15 mg/kg) (mg/L) 33 (20 – 60)* 35 (20 – 50)† 

AUC rabbits (25 mg/kg) (mg*h/L) 178 (140 – 250) 178 (147 – 213) 

AUC clinical (1,000 mg or 15 mg/kg) (mg*h/L) 225‡ 190§ 

 

 
* Values from: Kato H, Hagihara M, Hirai J, Sakanashi D, Suematsu H, Nishiyama N, Koizumi Y, 
Yamagishi Y, Matsuura K, Mikamo H. 2017. Evaluation of Amikacin Pharmacokinetics and 
Pharmacodynamics for Optimal Initial Dosing Regimen. Drugs R D 17:177-187; Sadeghi K, Hamishehkar 
H, Najmeddin F, Ahmadi A, Hazrati E, Honarmand H, Mojtahedzadeh M. 2018. High-dose amikacin for 
achieving serum target levels in critically ill elderly patients. Infect Drug Resist 11:223-228; Arechiga-
Alvarado NA, Medellin-Garibay SE, Milan-Segovia RDC, Ortiz-Alvarez A, Magana-Aquino M, Romano-
Moreno S. 2020. Population Pharmacokinetics of Amikacin Administered Once Daily in Patients with 
Different Renal Functions. Antimicrob Agents Chemother 64. 
† Values from: Park SI, Oh J, Jang K, Yoon J, Moon SJ, Park JS, Lee JH, Song J, Jang IJ, Yu KS, Chung 
JY. 2015. Pharmacokinetics of Second-Line Antituberculosis Drugs after Multiple Administrations in 
Healthy Volunteers. Antimicrob Agents Chemother 59:4429-35. 
‡ Value from: Tod M, Lortholary O, Seytre D, Semaoun R, Uzzan B, Guillevin L, Casassus P, Petitjean O. 
1998. Population pharmacokinetic study of amikacin administered once or twice daily to febrile, severely 
neutropenic adults. Antimicrob Agents Chemother 42:849-56. 
Yew WW, Cheung SW, Chau CH, Chan CY, Leung CK, Cheng AF, Wong CF. 1999. Serum 
pharmacokinetics of antimycobacterial drugs in patients with multidrug-resistant tuberculosis during 
therapy. Int J Clin Pharmacol Res 19:65-71. 
§ Values from: Holdiness MR. 1984. Clinical pharmacokinetics of the antituberculosis drugs. Clin 
Pharmacokinet 9:511-44. 
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Supplementary Table 0.2. Description of human subject characteristics (ClinicalTrials.gov 
identifier NCT00816426).    
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Supplementary Table 0.4. Number of observations of KAN or AMK concentration in rabbit plasma 
and tissue including uninvolved lung and tubercular lesions. Samples were analyzed via LCMS or 
LCM. n, number of samples; N, number of subjects, LCMS, liquid chromatography mass spectrometry; 
LCM, laser capture microdissection. 

 AMK KAN 

Observations, total (n, N) 169, 9 144, 5 

Plasma (LCMS, LCM) 45, 0 26, 0 

Uninvolved lung (LCMS, LCM) 23, 11 29, 12 

Cellular lesions (LCMS, LCM) 9, 11 26, 12 

Caseous lesions (LCMS, LCM) 59, 0 24, 0 

Caseum (LCMS, LCM) 0, 11 1, 14 
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Supplementary Table 0.5 Model-based clinical predictions of Cmax, AUC, and time relative to MIC 
per lesion for (A.) AMK and (B.) KAN. Cmax and unbound Cmax relative to MIC, MacIC90, and casMBC90. 
Values in mg/L (plasma) or mg/kg (lung and lesions). AUC and unbound AUC relative to MIC. Values in 
mg*h/L (plasma) or mg*h/kg (lung and lesions). Time above MIC, Macrophage IC90, or caseum MBC90 
within a 24-hour period of once daily dosing at steady-state. Values are hours above target with a 
maximum of 24. 
 
A. AMK   

 Plasma Uninvolved 
lung 

Cellular 
lesion 

Caseous 
lesion Caseum 

Cmax 45.7 14.4 12.0 17.7 26.7 
fCmax 41.1 12.9 10.8 16.0 24.1 

fCmax/MIC 41.1 12.9 10.8 16.0 24.1 
Cmax/MacIC90 6.0 1.9 1.6 2.3 3.5 

Cmax/casMBC90 2.4 0.8 0.6 0.9 1.4 
AUC 216.9 94.8 100.2 134.1 201.1 

fAUC/MIC 195.2 85.3 90.2 120.7 181.0 
Time above MIC 24 14 17 19 24 

Time above MacIC90 7 6 5 7 9 
Time above casMBC90 4 0 0 0 4 

B. KAN  

 Plasma Uninvolved 
lung 

Cellular 
lesion 

Caseous 
lesion Caseum 

Cmax 26.5 6.7 8.6 9.2 9.2 
fCmax 26.5 6.7 8.6 9.2 9.2 

fCmax/MIC 13.2 3.4 4.3 4.6 4.6 
Cmax/MacIC90 1.9 0.5 0.6 0.7 0.7 

Cmax/casMBC90 0.1 0.0 0.0 0.0 0.0 
AUC 216.9 73.3 98.5 103.3 107.8 

fAUC/MIC 108.5 36.7 49.2 51.6 53.9 
Time above MIC 19 14 16 17 17 

Time above MacIC90 6 0 0 0 0 
Time above casMBC90 0 0 0 0 0 
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Supplementary Figure 0.1. Rabbit pharmacokinetics of AMK and KAN. (A) Plasma concentration-
time profiles in uninfected rabbits and rabbits with active TB. In a dose finding study, three uninfected 
rabbits received a single 60 mg/kg dose (sd) of AMK administered via the intramuscular route; in tissue 
and lesion distribution studies, groups of 5 or 6 rabbits received 3 daily doses (steady state or ss) of AMK 
or KAN administered via the intramuscular route, as indicated. (B) Drug concentrations in lung and lesion 
homogenates of TB infected rabbits following three daily doses of 25 mg/kg AMK and KAN. P: plasma; C: 
cellular lesion; N: necrotic (caseous) lesion; L: uninvolved lung. A sample size of 3 animals per drug 
treatment and time point was selected based on historic ability to build PK models that deliver adequate 
fit. Animals that did not present adequate pathology or adequate number of evaluable lesions were 
replaced until we reached N=3. For LCMS quantitation in homogenized tissue/lesions, the following 
number of lesions per animal were collected: (i) 6 pieces of uninvolved lung with the exception of 2 
rabbits at the 2 h AMK time point, which had extensive pathology to the extent that it was difficult to locate 
uninvolved lung (3 pieces were collected in these rabbits), (ii) 5 to 10 cellular lesions with the exception of 
the same 2 rabbits where all but one lesion were necrotic, (iii) 3 to 26 necrotic lesions (more necrotic 
lesions were collected when cellular lesions could not be found).  
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Supplementary Figure 0.2. Comparison of steady state AUC (area under the concentration-time 
curve) and Cmax (peak plasma concentration) in rabbits after three 25 mg/kg intramuscular doses 
(black box and whisker plots) and in TB patients receiving 1,000 mg daily (red dots retrieved from 
published studies). Emphasis was placed on matching AUC since it is considered the driver of 
aminoglycoside efficacy.*   

 

* References: Holdiness MR. 1984. Clinical pharmacokinetics of the antituberculosis drugs. Clin 
Pharmacokinet 9:511-44; Illamola SM, Huynh HQ, Liu X, Bhakta ZN, Sherwin CM, Liou TG, Carveth H, 
Young DC. 2018. Population Pharmaco-kinetics of Amikacin in Adult Patients with Cystic Fibrosis. 
Antimicrob Agents Chemother 62; Kato H, Hagihara M, Hirai J, Sakanashi D, Suematsu H, Nishiyama N, 
Koizumi Y, Yamagishi Y, Matsuura K, Mikamo H. 2017. Evaluation of Amikacin Pharmacokinetics and 
Pharmacodynamics for Optimal Initial Dosing Regimen. Drugs R D 17:177-187; Park SI, Oh J, Jang K, 
Yoon J, Moon SJ, Park JS, Lee JH, Song J, Jang IJ, Yu KS, Chung JY. 2015. Pharmacokinetics of 
Second-Line Antituberculosis Drugs after Multiple Administrations in Healthy Volunteers. Antimicrob 
Agents Chemother 59:4429-35; Strydom N, Gupta SV, Fox WS, Via LE, Bang H, Lee M, Eum S, Shim T, 
Barry CE, 3rd, Zimmerman M, Dartois V, Savic RM. 2019. Tuberculosis drugs' distribution and 
emergence of resistance in patient's lung lesions: A mechanistic model and tool for regimen and dose 
optimization. PLoS Med 16:e1002773; Tod M, Lortholary O, Seytre D, Semaoun R, Uzzan B, Guillevin L, 
Casassus P, Petitjean O. 1998. Population pharmacokinetic study of amikacin administered once or twice 
daily to febrile, severely neutropenic adults. Antimicrob Agents Chemother 42:849-56 
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A. 

 

B. 

 

Supplementary Figure 0.3. Sample size and statistical analysis of data shown in Figure 2.1C. For 
drug quantitation by laser capture microdissection, large necrotic lesions and cavities were collected with 
the surrounding uninvolved lung, as follows: AMK 2 h: 6 lesions; AMK 6 h: 6 lesions; KAN 2 h: 4 lesions; 
KAN 6 h: 8 lesions. (A) Representative large cavities collected from the AMK rabbits analyzed 6 h post 
dose, from which the inner caseum is missing, either because it emptied prior to lesion removal at the 
time of euthanasia, or because it fell apart at the time of cryosectioning. Consequently, only “caseum” (C) 
is reported in Figure 1C for AMK at 6 h post dose. (B) Box-and-whisker plots and statistical analysis of 
absolute concentrations of AMK and KAN in plasma and infected lung regions determined by laser-
capture microdissection and LC/MS-MS. P: plasma; L: uninvolved lung; Ce: cellular rim; C: caseum; oC: 
outer caseum; iC: inner caseum. The horizontal bar is the median, the hinges are the interquartile range 
(IQR), the whiskers extend to 1.5*IQR, and dots are outliers. Drug concentrations in tissue compartments 
were compared to plasma concentrations using the Wilcoxon test.     
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Supplementary Figure 0.4. Partitioning of streptomycin in rabbit lung and lesion compartments 3h 
after a single 20 mg/kg dose. Concentrations were measured in tissue homogenates and normalized to 
plasma concentrations at the time of necropsy.   
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Supplementary Figure 0.5. HPLC-MS/MS chromatograms for three aminoglycosides. Typical 
plasma standard HPLC-MS/MS chromatograms for amikacin, kanamycin, and the internal standard 
streptomycin, at 5000 ng/mL. 
 
 
  

streptomycin 
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Model Code 

$PROBLEM    KAN PK from plasma to caseum in rabbits 
$INPUT           ID OLDID=DROP SAMPLEID TIME TAD LESIONNAME=DROP LESION 
  NGG DV METHOD LESIONWT EVID MDV AMT II ADDL WT DOSE iF1 CMT 
$DATA            dataset.csv      IGNORE=@ 
 
$SUBROUTINE  ADVAN13 TOL=6 
$MODEL      NCOMP = 5  
  COMP  = (ABS,DEFDOSE)  
  COMP  = (CENTRAL, DEFOBS)  
  COMP  = (AUC)  
  COMP  = (CASEUM)  
  COMP  = (CASEUMAUC) 
$PK 
        
CL = THETA(1) 
V = THETA(2)  
KA = THETA(3) 
 
KE = CL/V 
S2 = V 
 
F1 = iF1 ; use individual parameter estimates from final plasma model 
 
K4 = THETA(4) * EXP(ETA(1)) 
PC4 = THETA(5) * EXP(ETA(2)) 
 
$DES       
DADT(1) = - KA*A(1) 
DADT(2) =   KA*A(1) - KE*A(2) 
DADT(3) =   A(2)/V                                      ; AUC of plasma 
 
DADT(4) =   K4 * ( PC4 * A(2)/V - A(4) ) 
DADT(5) =   A(4)                                          ; AUC of caseum 
 
$ERROR          
 
CP = A(2)/V ; Concentration in plasma 
AUC = A(3)    ; AUC in plasma 
A4 = A(4)    ; Concentration in caseum 
A5 = A(5)    ; AUC in caseum 
 
IPRED = A(4) 
 
W  =   IPRED 
IRES  =   DV - IPRED 
IWRES =   IRES / W 
Y  =   IPRED + W * EPS(1) 
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$THETA 
 0.376       FIX ; 1 CL L/h 
 0.422       FIX ; 2 V L 
 2.940       FIX ; 3 KA 1/h 
 0.840       FIX ; 4 F1 
 (0, 0.3952)     ; 5 K4 
 (0, 0.4968) ; 6 PC4 
 
$OMEGA  
 0 FIX    ; 1 IIV K4 
 0 FIX    ; 2 IIV PC4 
 
$SIGMA  
 0.772          ; Proportional Error 
 
$ESTIMATION METHOD=1 INTERACTION PRINT=5 NSIG=3 SIGL=9 MAXEVAL=9999 NOABORT 
$COVARIANCE UNCONDITIONAL  
 
$TABLE ID TIME TAD IPRED PRED DV AMT LESION CMT WT CP AUC A4 A5 DOSE WRES 
IWRES CWRES EVID FILE=sdtabXXX NOPRINT ONEHEADER 
$TABLE ID CL V KA KE F1 K4 PC4 FILE=patabXXX NOPRINT ONEHEADER   
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Chapter 3: A Rabbit Model to Study Antibiotic Penetration at the Site of 
Infection for Nontuberculous Mycobacterial Lung Disease: Macrolide Case 
Study* 

Abstract 

Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal 

infectious disease requiring long treatment duration with multiple antibiotics and against which 

there is no reliable cure. Among the factors that have hampered the development of adequate 

drug regimens is the lack of an animal model that reproduces the NTM lung pathology required 

for studying antibiotic penetration and efficacy. Given the well-documented similarities between 

tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of 

active tuberculosis reproduces key features of human NTM-PD and provides an acceptable 

surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and 

pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its 

favorable potency and pharmacokinetics, and variable clinical outcome. To quantify 

pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a 

translational model describing clarithromycin distribution from plasma to lung lesions, including 

the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two 

patients on long-term macrolide therapy. Through clinical simulations, we visualized the 

coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous 

bacteriostatic and bactericidal target attainment depending on the compartment and the 

corresponding potency against nontuberculous mycobacteria in clinically relevant assays. 

Overall, clarithromycin’s favorable tissue penetration and lack of bactericidal activity indicated 

that its clinical activity is limited by pharmacodynamic rather than pharmacokinetic factors. Our 

results pave the way towards the simulation of lesion pharmacokinetic-pharmacodynamic 

 
* Modified from the publication: Kaya F, Ernest JP, et al. A Rabbit Model to Study Antibiotic Penetration at 
the Site of Infection for Nontuberculous Mycobacterial Lung Disease: Macrolide Case Study. Antimicrobial 
Agents and Chemotherapy. 2022. 66:3 
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coverage by multi-drug combinations, to enable the prioritization of promising regimens for 

clinical trials. 
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Introduction 

Non-tuberculous mycobacteria (NTM) are environmental mycobacteria related to 

Mycobacterium tuberculosis and can cause progressive, fatal pulmonary disease (NTM-PD) (1). 

NTM-PD occurs in patients with immunodeficiencies, structural lung damage, or both. The 

immunopathology that develops in NTM-PD patients is partially driven by these pre-existing 

conditions (2). In immunocompromised patients – where the cause of immunosuppression is 

either genetic or induced by drug treatment or HIV infection – disease manifestations include 

extrathoracic disease, poorly formed granulomatous structures, diffuse consolidation and miliary 

disease, all consistent with systemic immune dysfunction and reminiscent of tuberculosis (TB)-

HIV (2-4). In immunocompetent patients with bronchiectatic conditions – chronic obstructive 

pulmonary disease (COPD) and cystic fibrosis (CF) being the most common – nodular or 

cavitary pathology, necrosis and worsening bronchiectasis are frequently seen (5-7). These 

presentations bear key similarities with TB in immunocompetent subjects (8), where the most 

common microscopic finding is necrotizing granulomas and cavities, characterized by a central 

zone of necrosis surrounded by a variably thick rim of macrophages, neutrophils, lymphocytes 

and fibroblasts. As seen in TB, necrotic lesions have also been found in the lymph nodes of 

NTM-PD patients, particularly in those with HIV (9). Cavities in NTM-PD are similar to 

pulmonary TB cavities with subtle differences such as a thinner fibrotic wall as detected by 

computed tomography (10-12) and enhanced associated pleural thickening (13). Although 

cavitary disease is overall less frequent in NTM-PD than TB patients (14), the presence of large 

cavities is associated with disease progression leading to respiratory failure and high mortality 

rate (15). There is consensus in the clinical field that differentiating NTM-PD from pulmonary TB 

solely based on radiologic findings is not recommended due to considerable overlap in the 

clinical and radiographic features of pulmonary TB and NTM-PD (16, 17). Histologic feature 
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similarities between TB and NTM disease, and their relative frequencies, have been extensively 

reviewed by Jain et al. (18). 

Surgical resections, which have been practiced since the 1960s until today when disease is 

localized, show gross and histopathologic findings identical to the manifestation usually 

associated with typical M. tuberculosis infection (13, 19). Histology and acid-fast stains of 

resected cavities have revealed bacterial aggregates or heaps along the inner wall of cavities 

(8, 20, 21). More recently, scanning electron microscopy of the inner wall of a resected cavity 

demonstrated bacilli embedded within a matrix (20). High bacterial burden (> 107 colony 

forming units) were enumerated in a 0.5 g sample from the lung cavity, a significant fraction of 

which were in biofilm-like structures (6).  

Clarithromycin and azithromycin, broad-spectrum macrolides, are the pillar of NTM 

treatment and are used prophylactically in HIV patients with CD4 counts lower than 50, i.e. at 

high risk of opportunistic infections (3). Most NTM-PD patients are treated with a macrolide-

containing multidrug regimen until they remain sputum-negative for 12 consecutive months (22). 

Despite such intensive therapy and the adequate potency of clarithromycin against susceptible 

NTM strains, treatment failures and relapse rates are high, particularly for M. abscessus disease 

(23, 24). Understanding the underlying causes of such disconnects is important if we are to 

optimize existing drug regimens and develop more effective ones.   

Macrolide antibiotics accumulate in phagocytic cells (25) and preferentially distribute in 

tissues where populations of these cells reside (26). A beneficial consequence of high uptake in 

host cells is increased activity against intracellular pathogens (27). In addition, phagocytes may 

serve as a vehicle that transports macrolides to the site of infection (tissue-directed 

pharmacokinetics) (28, 29). Indeed, tissue and intracellular concentrations may be more useful 

for assessing the antibacterial activity of macrolides than plasma concentrations (30). 

Accordingly, tissue pharmacokinetic-pharmacodynamic (PK-PD) concepts have been proposed 

for macrolides (31), and therapeutic drug monitoring in plasma is not recommended (32). While 
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accumulation in phagocytes positively contributes to bacterial eradication, the heterogeneous 

sites of NTM-PD disease in patient populations with diverse manifestations (18) may provide the 

ground for subtherapeutic clarithromycin coverage of poorly vascularized compartments where 

the pathogen resides, as seen for some TB drugs (33). In vitro, clarithromycin is used as the 

representative macrolide in drug susceptibility assays, due to higher erm41–mediated induction 

of macrolide resistance in M. abscessus than azithromycin (34), though this remains a matter of 

debate (35, 36). Clarithromycin is mostly bacteriostatic against replicating NTM cultures and 

intracellular bacteria in macrophages (37), although longer incubation times have delivered 

bactericidal activity at 16 mg/L and above against replicating M. abscessus in cation-adjusted 

Muller-Hinton broth (38). It lacks bactericidal activity against NTM in biofilms (37), slow-

replicating or non-replicating persisters (39). Thus, there is a potential disconnect between 

clarithromycin growth inhibitory activity (MIC) measured in clinical practice and activity against 

mycobacterial subpopulations at the sites of disease. Collectively, pharmacokinetic and 

pharmacodynamic observations suggest heterogenous coverage of the sites of disease and 

bacterial populations in macrolide-susceptible NTM-PD.   

Despite significant efforts dedicated to the development of animal models of NTM disease 

(40-42), we still lack an immunocompetent model that presents organized cellular and necrotic 

lesions and reasonably reproduces the human lung pathology required for studying antibiotic 

penetration (43). Here we first determine that the rabbit model of active TB disease provides an 

acceptable surrogate for studying pharmacokinetics at the site of NTM-PD. Taking advantage of 

TB and NTM-PD pathology similarities, we quantify the distribution of clarithromycin in 

mycobacterial lesion compartments following multiple human-equivalent oral doses to rabbits 

with active TB. We compare these results to a limited dataset of clarithromycin and azithromycin 

in mycobacterial lung lesions from patients on long-term macrolide therapy. To assess the 

potential efficacy of clarithromycin at the sites of disease in immuno-competent and -

compromised patients, we relate these concentrations to those required to inhibit growth of or 
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kill nontuberculous mycobacteria in standard culture media, biofilms and macrophages. Future 

studies of similar design with other NTM drugs could help rationalize differential clinical 

responses of patients with a spectrum of disease presentation and immunopathology. 
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Methods 

Clinical research study design and human subjects  

One adult with pulmonary MDR-TB scheduled for elective lung resection surgery was 

asked to participate in the study “Pharmacokinetics of Standard First and Second Line anti-TB 

Drugs in the Lung and Lesions of Subjects Elected for Resection Surgery” 

(www.ClinicalTrials.gov identifier NCT00816426; also in Chapter 2: Supplementary Table 2.2). 

The subject had received 1,000 mg daily doses of clarithromycin for 5 weeks (subject 1 in (44)). 

The institutional review boards of the National Institute of Allergy and Infection Disease, 

National Institutes of Health, Bethesda, Maryland USA and the Asan Medical Center, Seoul, 

ROK, approved the study. All procedures were in accordance with the ethical standards of the 

Helsinki Declaration. During the surgery, the exact time of pulmonary artery ligation was 

recorded and used to calculate the time of drug administration relative to surgery, or 31h.  

One adult with chronic Mycobacterium abscessus infection scheduled for elective 

surgery at the NIH Clinical Center gave written consent to participate under NIAID study “Study 

of Mycobacterial Infections” (www.ClinicalTrials.gov identifier NCT00018044). This participant 

had pulmonary nontuberculous mycobacterial disease presenting with cavitary lesions, well-

organized necrotizing granulomas, and non-necrotizing granulomas similar to those described 

previously in lung disease caused by non-TB mycobacteria and M. tuberculosis. This 73-year-

old female participant received 250 mg azithromycin (AZI), 600 mg RIF, 100 mg CFZ and 900 

mg ethambutol as part of her standard drug regimen for two years prior to lung resection.  

Vessel ligation occurred 26 h after the last AZI dose. Upon lung resection, tissues were either 

fixed in 4% paraformaldehyde for histopathology staining, weighed and rapidly frozen at -80°C 

for homogenization and drug quantitation, or snap frozen in liquid nitrogen vapor for sectioning 

and laser capture microdissection (44). 
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Pharmacokinetic studies in naïve rabbits 

Pharmacokinetic studies in uninfected New Zealand White rabbits were performed in 

Biosafety Level 2 facilities and approved by the Institutional Animal Care and Use Committee of 

the New Jersey Medical School, Rutgers University, Newark, NJ. Groups of four rabbits 

received a single or three daily doses of clarithromycin formulated in 0.5% CMC and 0.5% 

Tween 80, by oral gavage. Blood was collected in K2-EDTA coated tubes from the central ear 

artery of each rabbit pre-dose, and at several time points between drug administration and 

necropsy (typically 0.5, 1, 2, 4, 6, 8 and 24 h following drug administration). Blood samples were 

centrifuged at 6,000 rpm for 5 min and plasma supernatants were transferred and stored at -

80°C until analyzed by high-pressure liquid chromatography coupled to tandem mass 

spectrometry (LC/MS-MS). 

Rabbit infection, drug administration and blood collection 

All rabbit infection studies were performed in Biosafety Level 3 facilities and approved by 

the Institutional Animal Care and Use Committee of the New Jersey Medical School, Rutgers 

University, Newark, NJ, and of the Center for Discovery and Innovation, Hackensack Meridian 

Health, Nutley, NJ. Female New Zealand White (NZW) rabbits (Charles River Laboratories), 

weighing 2.2 to 2.6 kg, were maintained under specific pathogen-free conditions and fed water 

and chow ad libitum. The rabbits were infected with M. tuberculosis HN878, using a nose-only 

aerosol exposure system as described (45). At defined time points from 12 to 16 weeks post-

infection (at which point rabbits harbor a spectrum of cellular and necrotic lesions representative 

of human pathology), rabbits received three daily doses of 200 mg/kg clarithromycin formulated 

in 0.5% CMC and 0.5% Tween 80, by oral gavage. Blood was collected from the central ear 

artery of each rabbit pre-dose, and at several time points between drug administration and 

necropsy (typically 0.5, 1, 2, 4, 6, and 24 h or until the time of necropsy). Groups of 3 rabbits 

were euthanized at 6 and 24 h post-dose. These time points were selected based on the 
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plasma PK profile to capture the end of the distribution phase (6 h) and the trough or Cmin (24 h). 

Plasma was prepared as described above and stored at -80°C until analyzed by LC/MS-MS.  

Lesion dissection and processing 

The right and left lungs were removed and weighed for analytical drug measurement and 

histopathology. From each lung lobe, individual granulomas and uninvolved (non-diseased) lung 

tissue sections were dissected, sized, weighed, and recorded. Lesions weighing less than 5 mg 

were pooled. Special care was taken to remove the uninvolved lung tissue surrounding each 

granuloma. The samples collected from each rabbit were classified as uninvolved lung, necrotic 

or cellular granulomas, cavity wall or cavity caseum. When feasible, cavity caseum was 

separated from the cavity wall, to be stored and analyzed separately. Lesions collected for 

laser-capture microdissection were left embedded in the surrounding tissue, and snap-frozen in 

liquid nitrogen vapor as described previously (46). All samples were stored in individual 2ml 

tubes at -80°C.  

Prior to drug quantitation by LC/MS-MS, all tissue samples were homogenized in 9 

volumes of phosphate buffered saline (PBS). Homogenization of all tissue samples was 

achieved using a FastPrep-24 instrument (MP Biomedicals) and 1.4mm zirconium oxide beads 

(Precellys).  

Analytical method for macrolide quantitation 

Azithromycin and clarithromycin were purchased from Sigma Aldrich. Azithromycin-d5 

and clarithromycin-d4 internal standards were purchased from Toronto Research Chemicals. 

Drug free K2EDTA plasma and lungs from NZW rabbits were obtained from BioIVT for use as 

blank matrices to build standard curves. Neat 1 mg/mL DMSO stocks for clarithromycin and 

azithromycin were serial diluted in 50/50 acetonitrile water to create standard curves and quality 

control spiking solutions.  Spiked matrix standards and QCs were created by adding 10 µL of 

spiking solutions to 90 µL of drug free plasma or control lung homogenate.  Extraction was 

performed for standards, QCs, and study samples by adding 200 µl of 1:1 acetonitrile 
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(ACN)/methanol (MeOH) containing 10 ng/mL stable labeled clarithromycin-d4 and 

azithromycin-d5 to 20 µl of plasma or homogenized tissue sample and 20 µl of 1:1 ACN:H2O.   

LC/MS-MS analysis was performed on a Sciex Qtrap 6500+ triple-quadrupole mass 

spectrometer coupled to a Shimadzu Nexera X2 UHPLC system to quantify each drug in 

plasma. Chromatography was performed on an Agilent Zorbax SB-C8 column (2.1x30 mm; 

particle size, 3.5 µm) using a reverse phase gradient elution with aqueous. Milli-Q deionized 

water with 0.1% formic acid (FA) was used for the aqueous mobile phase and 0.1% FA in ACN 

for the organic mobile phase. Multiple-reaction monitoring (MRM) of precursor/fragment 

transitions in electrospray positive-ionization mode was used to quantify the analytes. MRM 

transitions of 749.38/591.30, 754.37/596.30, 748.32/590.30 and 752.33/162.10 were used for 

azithromycin, azithromycin-d5, clarithromycin and clarithromycin-d4 respectively. Sample 

analysis was accepted if the concentrations of the quality control samples were within 20% of 

the nominal concentration. Data processing was performed using Analyst software (version 

1.6.3; Sciex). 

Laser-capture microdissection of rabbit and human lesion sections 

Twenty-five μm thick tissue sections were cut from J-irradiated rabbit lung biopsies using 

a Leica CM 1860UV (Buffalo Grove, IL) and thaw-mounted onto 1.4 μm thick Leica PET-

Membrane FrameSlides (Buffalo Grove, IL) for laser capture microdissection. Tissue sections 

were immediately stored in sealed containers at -80°C. Adjacent 10 μm thick tissue sections 

were thaw-mounted onto standard glass microscopy slides for H&E and Ziehl-Neelsen staining.  

Cellular, necrotic (caseum), and uninvolved lung lesion areas totaling 3 million μm2 were 

dissected from between 3 to 5 serial lung biopsy tissue sections using a Leica LMD7 system 

(Buffalo Grove, IL). The total tissue volume of each pooled sample was determined based on 

the surface area of the pooled sections and the 25 µm tissue thickness.  Areas of cellular and 

caseous lesion were identified optically from the brightfield image scan and by comparison to 
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the adjacent H&E reference tissue. Pooled dissected lesion tissues were collected into 0.25 mL 

standard PCR tubes and immediately transferred to -80°C.  

Neat 1 mg/mL DMSO stocks for all compounds were diluted serially in 50/50 ACN:H2O 

to create standard curves and quality control spiking solutions. An aliquot of (2 μL) of neat 

spiking solutions were added to 2 μL of lesion homogenate were combined prior to extraction. 

Equal volumes (2  μL) of ACN:H2O and PBS were added to the dissected study samples.  

Extraction was performed by adding 50 μL of extraction solution ACN/MeOH (1/1) with 5 ng/mL 

Clarithromycin-d4 and Azithromycin-d5.  Extracts were vortexed for 5 minutes and centrifuged 

at 10,000 rpm for 5 minutes. An aliquot (40 μL) of supernatant was transferred for LC/MS-MS 

analysis and diluted with an additional 40 μL of MilliQ water. See HPLC-mass spectrometry 

section for LC-MS parameters.   

Drug potency assays 

Minimum inhibitory and bactericidal concentrations were measured as previously 

described (47). For growth inhibition and bactericidal assays against intracellular bacteria, we 

used the protocol of Lefebvre et al.(48) with minor modifications. THP-1 cells were obtained 

from the American Type Culture Collection (ATCC) and cultured in RPMI 1640 medium 

supplemented with 10% fetal bovine serum (FBS, GIBCO) at 37°C in a humidified CO2 

incubator. THP-1 (105 cells per well) were seeded into 96-well plates and differentiated for 24 h 

by adding 500 ng/ml of phorbol-12-myristate-13-acetate (PMA). The resulting macrophages 

were washed three times with PBS and infected with M. abscessus ATCC 19977 or M. avium 

11 (49) at a multiplicity of infection (MOI) of 10 for 3h. The infected macrophages were washed 

three times with PBS to remove extracellular mycobacteria and treated with clarithromycin as 

indicated for three (M. abscessus) or four (M. avium) days. To enumerate intracellular surviving 

bacteria, cells were washed three times with PBS then lysed with PBS 0.1% Triton 100X. 

Tenfold serial dilutions were performed using 96-well plates containing 180 µL of PBS and each 

dilution was plated onto 7H10 agar. CFU were counted after four days of incubation. 
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Macrophage viability was assessed by trypan blue exclusion test. Each experiment included 

technical duplicates and the experiments were performed twice independently. 

Macrophage uptake and caseum binding assays 

Human monocytes were isolated from fresh packed leucocytes (New York Blood 

Center), purified, activated and differentiated into foamy macrophages as described previously 

(124). Uptake of clarithromycin, azithromycin and erythromycin in primary non-foamy and foamy 

macrophages was carried out as described (50), and the incubation concentration was 20 mM 

for all three drugs. Nonspecific drug binding in cavity caseum was measured as previously 

described (51; 52). 

Modeling of tissue distribution and PK-PD simulations 

Data from 100 and 300 mg/kg single doses of CLA in uninfected rabbits were used to 

develop a plasma PK model. Simulations were performed to match exposure in rabbits 

predicted to be equivalent to a 200 mg/kg dose in humans. To describe the movement of drug 

from plasma to the sites of action, a population approach using nonlinear mixed effects 

modeling in NONMEM was used. A population plasma PK model was built using data from both 

infected and uninfected rabbits (Figure 3.2). One- and two-compartment distribution 

compartments were tested. Saturated clearance was tested using the Michaelis-Menten kinetics 

equation (Equation 3.1). 

Rate of elimination =  − 𝑉𝑚𝑎𝑥 ∗ 𝐶𝑝𝑙𝑎𝑠𝑚𝑎

𝑘𝑚+𝐶𝑝𝑙𝑎𝑠𝑚𝑎
     Eq. 3.1 

First-order, zero-order, transit compartment, Weibull function (53), flip-flop, and first-

order with a lag period were tested to fit the absorption phase. Replacing first-order absorption 

with Weibull absorption function significantly improved model fit (delta Objective Function Value 

or dOFV = -52.743). Interindividual variability was added to F1 (dOFV= -82.377). The Weibull 

absorption is defined by Equation 3.2 and 3.3, where Kw is the absorption rate constant, Tw is 

time after dose, and lambda (λ) is the shape parameter. 
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𝑊𝐵 = (1 − 𝑒−K𝑤 ∙ 𝑇𝑤
λ

)    Eq. 3.2 

𝑑𝐴𝑎𝑏𝑠
𝑑𝑡

=  −𝑊𝐵 ×  𝐴𝑎𝑏𝑠     Eq. 3.3 

Infection status and weight were tested as covariates. Interindividual variability was 

tested on bioavailability, volume of distribution, and clearance. To estimate extent of partitioning 

to the sites of action, the parameters of the final plasma model were fixed, and effect 

compartments were added for each tissue type as previously described (33; 54; 55). For the 

plasma-to-lesion model, the plasma-to-uninvolved lung rate constant was fixed at 10/h given the 

rapid equilibration half-life of 4 min. Fixing the rate to higher values did not change the other 

parameter estimates (partition coefficient) significantly. Tissue density was assumed to be 1 

g/mL of homogenate. Data obtained with tissue samples processed as homogenates and 

samples collected by laser-capture microdissection were pooled and treated as equal. Data for 

the two cavity caseum samples were merged with outer caseum data points based on gross 

pathology and histology data, because no data was available at or near Cmax for this 

compartment. A rate constant (kpl-lesion), a coefficient of penetration (PCpl-lesion), and residual error 

were estimated for each lesion type. The structural model is shown in Equation 3.4.  

𝑑𝐶𝑙𝑒𝑠𝑖𝑜𝑛
𝑑𝑡

= 𝑘𝑝𝑙−𝑙𝑒𝑠𝑖𝑜𝑛 (𝑃𝐶𝑝𝑙−𝑙𝑒𝑠𝑖𝑜𝑛 ×  𝐶𝑝𝑙𝑎𝑠𝑚𝑎 −  𝐶𝑙𝑒𝑠𝑖𝑜𝑛)    Eq. 3.4 
 

Model building was guided by goodness-of-fit plots, objective function value, and visual 

predictive checks. One thousand simulations, using interindividual variability and residual error 

as variability, were performed to confirm model fit. NONMEM version 7.4.2, R software version 

4.0.5, and the R packages ggplot2 and xpose4 were used for model building, data visualization, 

and simulations.  

A rabbit-to-human translational model was developed by linking lesion parameters 

estimated in rabbits to a previously published clinical plasma PK model (56). Clinical simulations 

were integrated with in vitro PD targets to derive unbound Cmax, AUC and fraction of the dosing 
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interval relative to targets. Fraction unbound was assumed to be 0.3 (57). Model diagnostic 

plots are shown in Figure 0.3.  
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Results 

The rabbit model of active TB reproduces major histopathology features of clinical NTM-
PD  

Given the lack of NTM animal models with pathological features comparable to human 

clinical NTM disease, we assessed the histopathological similarities between the rabbit model of 

active TB, clinical NTM disease, and clinical TB disease in a human patient (Figure 0.1) to 

evaluate the suitability of the rabbit TB model for lesion penetration of NTM drugs. Key 

pulmonary sites of infection where drugs show differential partitioning are the cellular and 

necrotic regions of granulomas and cavities.  

Similar to the rabbit model of TB, human clinical NTM infection develops structured 

granulomas including central caseous necrosis with a pauci-cellular inner caseum and greater 

neutrophil composition at the outer caseum margin. The central necrosis is surrounded by a 

macrophage layer and an outer cellular layer composed of greater lymphocyte composition, 

fibrosis, and pulmonary epithelium (Figure 0.1A-B). These features are all similarly represented 

in both the rabbit model of TB (Figure 0.1C-D) and in human clinical TB (Figure 0.1E-F). 

Collectively, the pulmonary tissue from human clinical NTM infection demonstrated a 

heterogeneous profile of lesions over chronic disease and lengthy antimicrobial treatment 

(Supplementary Figure 3.1). Aside from an abundance of granuloma lesions similar to the rabbit 

TB model, these features also included fibrosis in peri-lesional lung, pleural, and alveolar 

interstitium, and the presence of secondary lymphoid follicles. Several heterogeneous and/or 

occasional features of clinical NTM-PD such as coalescing non-necrotic granulomas, cavitary 

necrotic lesions with abundant caseum, and bronchioles filled with necrotic caseum containing 

neutrophils – indicative of bronchogenic spread as seen in human TB (58; 59) – were also 

observed in rabbits with active TB (Supplementary Figure 3.2). Comparable immuno-

histopathology of NTM and TB lung disease has been reported by others (12; 18). Thus, the 
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rabbit model of active TB reproduces key pathological features of clinical NTM-PD and is a 

useful tool for evaluating drug penetration at key pulmonary sites of mycobacterial infection. 

 

Figure 0.1. Comparative histopathology of human clinical NTM infection, human clinical Mtb 
infection and Mtb infection in the rabbit model. 
(A) H&E-stained image of representative NTM granuloma lesion in the lung of human patient with clinical 
NTM infection caused by M. abscessus. (B) higher magnification of inset region in (A) demonstrating 
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microenvironmental locations, labeled 1-4. (C) H&E-stained image of representative granuloma lesion in 
the lung of an M. tuberculosis infected rabbit. (D) higher magnification of inset region in (C) demonstrating 
microenvironmental locations, labeled 1-4. (E) H&E-stained image of representative TB granuloma lesion 
in the lung of a human patient with clinical M. tuberculosis infection. (F) higher magnification of inset 
region in (A) demonstrating microenvironmental locations, labeled 1-4. 1, Inner Caseum; 2, Outer 
Caseum and Neutrophil rim; 3, Macrophage layer; and 4, Lymphocyte-rich cellular and collagen rim.  

In vitro prediction of macrolide partitioning in cellular and necrotic lesion areas 

Previous work by our group indicated that drug penetration in cellular granulomas and 

partitioning between the cellular rim and necrotic core of lung lesions is a function of (i) uptake 

into immune cells in vitro (50) and (ii) binding to caseum macromolecules (44; 52). The fate of 

drug molecules at the outer edge of caseum is a balance between uptake into the bordering 

macrophages, binding to macromolecules and effective diffusion into non-vascularized caseum. 

In necrotizing granulomas, intracellular Mtb is found in macrophages (12; 18; 60). In response to 

infection and low oxygen tension caused by decreased vascular efficiency (61; 62), 

macrophages accumulate lipid bodies and become foamy. These foamy infected macrophages 

necrotize and release their bacterial and cellular contents into the central caseum.  

To predict the distribution of clarithromycin and azithromycin in cellular and necrotic lesion 

compartments, we measured drug binding in ex vivo caseum and uptake into primary human 

macrophages – foamy and non-foamy – derived from blood monocytes. The average unbound 

fraction in caseum (fu-caseum) was 3 to 5%, thus moderate-to-low for both drugs (Table 0.1). 

Intracellular uptake was measured in primary human macrophages, including macrophages 

where the foamy phenotype was induced by infection with irradiated M. tuberculosis (50). We 

observed high intracellular accumulation in blood derived macrophages, and similar 

accumulation in foamy and non-foamy macrophages (Table 0.1), indicative of favorable 

penetration and higher concentrations in cellular lesions than in plasma. Together with the 

relatively low fu-caseum, high intracellular uptake predicted limited or slow passive diffusion 

through non-vascularized caseum. To confirm these predictions, we measured clarithromycin 
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concentrations at the site of mycobacterial disease in the rabbit model of active TB, which 

presents with cellular granulomas, necrotic lesions, and cavities.  

Table 0.1. In vitro lesion pharmacokinetic profiling of macrolides, clarithromycin and 
azithromycin. 

 Clarithromycin Azithromycin 
Free caseum fraction (1) 

 3.9 ± 0.1% 5.4 ± 0.4% 
Uptake in primary human macrophages (Intracellular to extracellular concentration ratio) (1) 

 Donor 1 Donor 2 Donor 3 Donor 1 Donor 2 Donor 3 
Standard differentiated 

macrophages 
95.0 ± 
13.3 

38.6 ± 
16.9 

106.2 ± 
7.2 

75.6 ± 
3.0 

46.8 ± 
14.9 

114.6 ± 
14.3 

Foamy macrophages 98.5 ± 
2.8 

32.2 ± 
7.0 

89.8 ± 
19.5 

86.5 ± 
10.0 

37.7 ± 
8.1 

95.8 ± 
12.6 

(1)  mean ± SD, n = 3 replicates 

Clarithromycin exhibits differential penetration into mycobacterial lung lesions 

Clarithromycin was selected as a representative macrolide used to treat NTM-PD. To study 

and model the penetration of clarithromycin in lung lesions, we first identified a rabbit dose that 

achieves exposure comparable to that of NTM patients receiving 500 mg daily (56; 63-67). The 

concentration time profile was established in naïve (uninfected) rabbits following single oral 

doses of 100 mg/kg and 300 mg/kg, and three daily doses of 300 mg/kg (Table 0.2 and 

Supplementary Figure 3.3A). The area under the concentration-time curve (AUC)/MIC ratio is 

considered the primary PK-PD parameter driving antibacterial effect of clarithromycin and 

azithromycin (68-70). To reproduce the AUC achieved in humans following repeated oral daily 

doses of 500 mg, we selected 200 mg/kg for subsequent tissue and lesion penetration studies 

in rabbits (Supplementary Figure 3.3B and Table 0.2).  
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Table 0.2. Clarithromycin plasma pharmacokinetic parameters in rabbits compared to human at 
the clinical dose. 

Dose (number of 
doses) 

Cmax 
(ng/mL) 

tmax  
(h) 

AUC[0-24] 
(ng*h/mL) 

Target human PK parameters 
(500 mg at steady state) 

100 mg/kg 
(single dose) 427 ± 286 3 ± 1 3,762 ± 

3,365 
 
 
Cmax (ug/mL)  =  2.5 – 3.0  
AUC[0-24] (ug*h/mL)  = 18 – 20 
Tmax (h)   = 2 – 3 
 

(135-137; 139) 
 

300 mg/kg 
(single dose) 

2,828 ± 
1,001 4 ± 1.5 28,409 ± 

12,317 

300 mg/kg 
(3 daily doses) 

4,158 ± 
916 

1.4 ± 
0.8 

28,543 ± 
8,790 

200 mg/kg 
(3 daily doses in 
infected rabbits) 

1,938 ± 
1,073 

1.50 ± 
0.55 

11,709 ± 
4,922 

Cmax: peak plasma concentration; tmax: time of peak plasma concentration; AUC[0-24]: area under the 
concentration-time curve from 0 to 24 h; AUCinf: area under the concentration-time curve from 0 to infinity.  
 

To build a translational model of clarithromycin penetration at the site of mycobacterial lung 

disease, we measured drug concentrations in serial blood samples, uninvolved lung tissue and 

lesion homogenates in groups of 3 infected rabbits following three daily 200 mg/kg doses. 

Tissue samples were collected 6 h (end of the distribution phase) and 24 h (trough) after the 

third dose. The total number of observations and the concentrations of clarithromycin in plasma, 

uninvolved lung, cellular and necrotic lesions are shown in Figure 0.2A. In line with the high 

intracellular uptake in macrophages, total clarithromycin concentrations were 30 to 40-fold 

higher in uninvolved lung (devoid of macroscopic lesions but infiltrated with various immune cell 

types) than in plasma, and over 100-fold higher in cellular lesions than in plasma (Figure 0.2A). 

In caseum isolated from a large cavity at 24 h, clarithromycin was present at higher 

concentration than in plasma, but lower than average concentrations in cellular lesions. To 

confirm this initial observation and better describe the partitioning of clarithromycin at the 

interface between cellular rims and caseous (necrotic) foci, we reserved large necrotic lesions 

from the same animals for laser-capture microdissection (LCM) in thin tissue sections (46). 
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Concentrations in uninvolved lung and cellular rims matched the corresponding concentrations 

measured in lung tissue and cellular lesion homogenates (Figure 0.2B). We found the highest 

clarithromycin concentrations in cellular rims, decreasing as one moves inward into the caseum 

periphery and deep caseum, in line with the limited fu-caseum measured in vitro. The trend of 

concentration gradients was similar at 6 and 24 h. However, clarithromycin appeared to 

gradually diffuse into deep caseum between 6 and 24 h, reducing the caseum/cellular 

concentration ratio (Figure 0.2B). To confirm this observation, we applied LCM to clinical lung 

samples resected from (i) a TB patient who had received clarithromycin 1,000 mg once daily 

(QD) for 5 weeks as salvage therapy, and (ii) an M. abscessus patient who had been on 

azithromycin 250 mg once daily (QD) for approximately 2 years. Resections took place 31 h and 

24 h after the last macrolide dose, respectively. We found that drug concentrations measured at 

trough in lung and cellular rims were similar in these two subjects and in rabbits after three daily 

200 mg/kg doses (Figure 0.2C). Interestingly, the decreasing drug concentration from the 

cellular rim into deep caseum was much shallower in these patients – who were in advanced 

steady state – than in rabbits after 3 doses. Specifically, clarithromycin partitioned evenly across 

all lesion compartments including deep caseum, while azithromycin was only 2- to 3-fold lower 

in caseum than in cellular regions (Figure 0.2C). This suggests that, as suspected, macrolides 

equilibrate slowly into non-vascularized caseum, and that steady state appears to be achieved 

in caseum after QD dosing for 5 weeks but not after three daily doses in rabbits.  
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Figure 0.2. Distribution of clarithromycin from plasma into major pulmonary lesion compartments. 
(A) Clarithromycin concentrations in rabbit plasma, lung and whole lesion homogenates after 3 daily 
doses. P: plasma; L: uninvolved lung (devoid of macroscopically visible lesions); Ce: fully cellular lesion; 
N: partially necrotic lesion; Ca: cavity caseum. Each data point represents one individual plasma or tissue 
sample: n = 3 rabbits per time point. (B) Spatial quantitation of clarithromycin in large necrotic rabbit 
lesions by laser-capture microdissection: P: plasma; L: uninvolved lung; Ce: cellular rim; oC: outer edge 
of caseum adjacent to the cellular rim; iC: inner core of caseum. Lesions were collected from a subset of 
the animals shown in (A). (C) Spatial quantitation of clarithromycin and azithromycin in large lesions 
collected from the resected lung of a TB patient (left) and an M. abscessus disease patient (right), 
respectively. L: uninvolved lung; F: fibrotic cuff; Ce: cellular rim; oC: outer edge of caseum; iC: inner core 
of caseum. (D) Typical example of histology staining and laser capture microdissection (LCM) of thin 
human lesions sections. Two large necrotic lesions were collected from the resected lung tissue of human 
subject G-101 receiving CLA 1,000 mg QD. The adjacent lesion section was used for hematoxylin and 
eosin (H&E) staining (left) to guide LCM sample collection (right): 1. Inner caseum; 2. Outer caseum; 3. 
Cellular rim; 4. Uninvolved lung. Laser-dissected pieces belonging to the same tissue compartment were 
pooled for quantitation by LC-MS/MS. 

 

To quantitatively describe the differential penetration of clarithromycin in mycobacterial lung 

lesions, we developed a multicompartment nonlinear mixed effects PK model. The final plasma 

model was a two-compartment model with Weibull absorption – a flexible model function that 

better describes slow onset absorption with gradual acceleration (53) – and Michaelis-Menten 
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elimination. Infection status and weight were not identified as covariates of drug exposure. 

Replacing first-order absorption with Weibull absorption significantly improved model fit, with a 

delta objective function value (dOFV) of -52.743. Clarithromycin accumulated in regions of high 

cellularity (uninvolved lung and cellular lesions) with total AUCtissue approximately 2 orders of 

magnitude higher than total AUCplasma. Cellular lesions had the largest partition coefficient of 

102. Necrotic areas including the outer caseum (the region adjacent to the cellular rim of the 

necrotic core) and inner caseum (the center of large necrotic lesions) of closed lesions and 

cavities also had high clarithromycin concentration relative to plasma with partition coefficients 

of 13.1 and 2.9, respectively (Table 0.3). Clarithromycin distribution to lesions – but not to 

uninvolved lung – was slow with concentrations peaking 2 to 4 hours after plasma Cmax. Visual 

predictive checks indicated that the final model fit the data well (Figure 0.3). 

 

Figure 0.3. Visual predictive check of clarithromycin rabbit plasma-to-tissue multicompartment 
model. 
Visual predictive check of clarithromycin rabbit plasma-to-tissue multicompartment model. The 
translational model was built by integrating a population PK model with lesion parameters estimated in 
rabbits. Top plots: observed clarithromycin concentrations (individual dots) in rabbits, with 500 simulations 
represented as median (solid line) and 5th and 95th percentiles (grey shaded area, dashed lines). To 
externally validate the model, we simulated clarithromycin penetration in 4 lesion compartments following 
a 1,000 mg daily dose to steady state (n=500) and compared with pulmonary drug levels of one patient 
who received 1,000 mg once-daily for 5 weeks prior to lung resection. Bottom plots: patient clarithromycin 
observations from two biopsies (individual dots) with 500 simulations represented as median (solid line) 
and 5th and 95th percentiles (blue shaded area, dashed lines). 
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Table 0.3. Plasma-to-tissue model parameters. 

Compartment Parameter Value (RSE, %) 

Plasma 

Vmax (L/h) 
Km (mg/L) 

V 
Kw 
λ 
Q 
V2 

IIV F1 
Additive Error (mg/L) 
Proportional Error (%) 

88.72 (18.5) 
0.3862 (36.6) 
207.2 (26.4) 

0.1776 (145.9) 
0.6028 (58.5) 
157.5 (34.9) 
393.4 (13.6) 
0.3311 (14.5) 
0.0071 (48.2) 
45.66 (8.0) 

Lung 
Partition coefficient 

Plasma to tissue rate constant (1/h) 
Proportional Error (%) 

67.9 (35.6) 
10 (FIX) 
108 (12) 

Cellular lesion 
Partition coefficient 

Plasma to tissue rate constant (1/h) 
Proportional Error (%) 

102 (16.2) 
0.283 (13.4) 
70.5 (16.2) 

Outer caseum 
Partition coefficient 

Plasma to tissue rate constant (1/h) 
Proportional Error (%) 

13.1 (20.0) 
0.265 (14.2) 
39.6 (21.8) 

Inner caseum 
Partition coefficient 

Plasma to tissue rate constant (1/h) 
Proportional Error (%) 

2.86 (9) 
0.174 (5.3) 
32.6 (24) 

RSE: relative standard error; Vmax: maximum rate of clearance; Km: Michaelis Menten constant; V: central 
volume of distribution; Kw: absorption rate constant; λ: shape parameter; Q: intercompartmental 
clearance; V2: peripheral volume of distribution; IIV: interindividual variability; F1: apparent bioavailability. 
FIX: parameter was fixed. 

Clarithromycin exhibits differential pharmacokinetic-pharmacodynamic coverage of 
major lesion compartments 

Clarithromycin inhibits growth of most replicating NTM strains below 1 mg/mL but has no 

bactericidal activity up to 20 to 256 mg/mL, depending on the strains and assay conditions (37; 

71). To confirm these observations and place lesion concentrations of clarithromycin into 

pharmacodynamic context at the site of disease, we measured side-by-side (i) the MIC and 

MBC against representative clinical isolates of M. abscessus and M. avium in standard growth 

media (Table 0.4, Supplementary Figure 3.4A-D), and (ii) the concentrations required for growth 

inhibition and killing of intracellular M. abscessus and M. avium in macrophages 

(Supplementary Figure 3.5). Since M. abscessus and M. avium have been found in aggregates 

described as heaps (21), large clumps (72) or biofilms (20) in the lungs of NTM-PD patients, we 
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retrieved from the literature the concentrations required to inhibit biofilm formation and kill M. 

abscessus and M. avium in established biofilms and against non-replicating NTM bacteria (37; 

39) (Table 0.4). We also confirmed that clarithromycin lacks bactericidal activity against 

planktonic M. abscessus and M. avium up to 25 mg/mL and exhibits limited bactericidal activity 

(approximately 5-fold kill) against intracellular M. avium only up to 25 mg/mL, without reaching 

the MBC90 (Supplementary Figure 3.4 and 3.5). These potency values were used to simulate 

lesion PK-PD coverage in human lung lesions. 

Table 0.4. In vitro potency of clarithromycin in representative growth inhibitory and bactericidal 
assays. 

 M. abscessus M. avium 

Susceptibility breakpoints 
or ECOFF (epidemiological 

cutoff value) (1) 

< 4 mg/mL susceptible 
4-8 mg/mL intermediate 

> 8 mg/mL resistant 
(145) 

< 2 mg/mL susceptible 
(146) 

 

MIC90 (2) 0.2 to 1.2 mg/mL 0.15 to 1.2 mg/mL 

MBC90 (this work) > 20 mg/mL 20 mg/mL 

Intracellular IC90 0.1 mg/mL (3) 0.2 mg/mL (3) 
0.05 mg/mL (4) (147) 

Intracellular MBC90 
(5) > 25 mg/mL > 20 mg/mL 

Biofilm MIC90 2.2 mg/mL (115) 2 mg/mL (148) 

Biofilm MBC90 
> 75 mg/mL (115); 256 

mg/mL (113) > 20 mg/mL (149; 150) 

Non-replicating nutrient 
starvation MBC90 

256 mg/mL (114) n.d. 
(1) against multiple subspecies and isolates 
(2) this work, 90% growth inhibition against a panel of susceptible reference strains 
(3) this work, 90% growth inhibition of M. abscessus subsp abscessus ATCC 19977 and M. avium 
hominisuis 11 in THP-1 macrophages 
(4) M. avium was grown in A549 lung epithelial cells 
(5) this work, bactericidal activity (90% kill) against M. abscessus ATCC 19977 and M. avium 11 in THP-1 
macrophages 
 

To predict concentrations within patient lungs and lesions, a published clinical model (56) 

was integrated with the rabbit plasma-to-lesion model, and a clinical dose of 500 mg 

administered twice daily was simulated. To assess the predictive ability of the translational 
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model, we simulated pulmonary tissue distribution following a 1,000 mg dose, reproducing a 

patient who underwent lung resection surgery after 5 weeks of clarithromycin treatment at 1,000 

mg QD. Simulations adequately predicted the concentration in tissue with highest accuracy in 

lung and outer caseum (Figure 0.3). The model predictions were somewhat greater than the 

concentration measured in cellular lesions and somewhat lower than concentrations of inner 

caseum. This reflects the observation that macrolides slowly diffuse into non-vascularized 

caseum, and that achieving steady state in caseum requires more than the three daily doses 

required to achieve steady state in rabbit plasma. To select lesion-relevant pharmacodynamic 

targets, in vitro data were used that best represented the expected replication status and 

microenvironment of the compartment. Specifically, clarithromycin concentrations in lung and 

cellular lesions, where bacteria are essentially intracellular, were compared to intramacrophage 

potency values: concentrations that inhibit 90% growth (macIC90) and minimum bactericidal 

concentration (macMBC90). In these cellular and well perfused compartments, we simulated the 

concentration time profiles of total (bound and unbound) drug (Figure 0.4, dark grey shaded 

profile), as well as the free plasma concentrations to reflect passive diffusion of free drug from 

plasma to interstitial lung tissue (Figure 0.4, light grey shaded profile) (73). Even under the 

assumption that free plasma equilibrates with interstitial lung and cellular lesion, these free 

clarithromycin levels were above the macIC90 during the entire dosing interval, including in the 

lower 5th percentile of simulations, indicating high coverage for all patients. Under the scenario 

of free drug equilibration across compartments, the macMBC90 was not achieved in lung and 

cellular lesions. Using total clarithromycin concentrations in lung and cellular lesion, PD target 

achievement could not be firmly established due to the limited (less than 10-fold kill, i.e. MBC90 

not reached) bactericidal activity at the highest concentration tested (Figure 0.4). Similar results 

have been reported by others (74). Clarithromycin concentrations measured by laser capture 

microdissection in outer and inner caseum, and in bulk cavity caseum, where bacteria are 
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extracellular, were compared to MIC90 and MBC90 against biofilms, revealing adequate static 

coverage throughout the dosing interval, but lack of bactericidal coverage. Because the highest 

concentration tested against M. avium biofilms (20 mg/mL), while inactive is within the range of 

concentrations achieved in the outer caseous rim, one cannot exclude that potentially 

bactericidal concentrations might be reached in caseous areas directly adjacent to the cellular 

rim, or in very small necrotic foci (Figure 0.4 and Table 0.4).  

 

 

Figure 0.4. Clinical simulations of clarithromycin PK-PD coverage in plasma and four lung 
compartments. 
Steady-state pharmacokinetic profiles are shown for one 24 h period following administration of 500 mg 
clarithromycin twice-daily. One thousand simulations were performed with the translational model and are 
represented as the median (solid black line) and 5th and 95th percentiles (thin black lines and gray shaded 
area). Plasma concentrations were corrected for protein binding (fU = 30%). In uninvolved lung and 
cellular lesions, the dark grey shaded profile was simulated using total clarithromycin tissue 
concentrations and the light grey shaded profile assumes passive diffusion of free drug from plasma to 
interstitial tissue. In vitro targets are represented as horizontal lines and colored by mycobacterial species 
(M. abscessus, blue; M. avium, green). Dotted lines accompanied by dotted line arrows indicate PD 
targets greater than the highest concentration tested in vitro. In PK-PD coverage plots shown under each 
concentration time profile, colored boxes indicate periods during which clarithromycin concentrations are 
above the corresponding in vitro PD target indicated on the left of each row (M. abscessus, blue; M. 
avium, green). The MIC90 was set at 0.6 mg/mL or the average of the MIC90 values measured against a 
panel of susceptible reference strains as part of this work. The ECOFF’s (epidemiological cutoff values) or 
clinical susceptibility breakpoints were retrieved from (145; 146).  
 
      As a reference, plasma concentrations were compared to the MIC range published as 

epidemiological cut-off values or ECOFF, MIC90 and MBC90 against replicating bacterial 

populations in standard media (Table 0.4). Interestingly, differential PK-PD coverage was 
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observed in subjects with average PK profiles compared to subjects at the lower end (5th 

percentile) of drug exposure. Median plasma concentrations were above the MIC90 against 

both species during most of the dosing interval, while plasma concentrations of subjects with 

suboptimal PK achieved the MIC90 only during a limited fraction of the dosing interval.   

      To visualize target attainment across compartments in patients with average exposure or at 

the lower end of the drug exposure spectrum, we compiled the ratios between AUC and various 

PD parameters against M. abscessus and M. avium (Figure 0.5 and Supplementary Figure 3.6). 

Thus, across tissue compartments, clarithromycin was above growth inhibitory concentrations 

and below bactericidal concentrations against both M. abscessus and M. avium, and suboptimal 

PK exposure did not significantly impact target attainment against either pathogen, in line with 

lesion coverage being primarily driven by PD rather than PK.   



 124 

 

Figure 0.5. Predicted target attainment expressed as AUC/potency across compartments against 
M. abscessus and M. avium disease. 
The analysis was performed for a range of bacteriostatic and bactericidal potency values and included 
simulated patients with either average clarithromycin exposure or at the lower end (5th percentile) of the 
drug exposure spectrum. Color coding spans from dark green (top 10th percentile of ratios or maximum 
coverage) to dark red (90th percentile or lower 10th percentile of ratios, indicating poor PK-PD coverage). 
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Discussion 

Among the factors contributing to the poor success rates of the very long NTM-PD 

treatment with multiple antibiotics is the repurposed nature of all drugs in clinical use, which 

have not been developed to reach optimal PK-PD targets against NTM pathogens (75). Apart 

from a Phase II trial of inhaled amikacin completed in 2016 (76), no randomized controlled trial 

comparing antibiotic treatment of NTM lung infection has been conducted (77). In the case of M. 

abscessus disease, there is no reliable cure (78). In developed countries, the public health 

situation is significantly more dreadful for NTM-PD than for TB, owing to (i) the intrinsic drug 

resistance of NTM pathogens (78), (ii) the lack of bactericidal activity of most NTM antibiotics 

active against NTMs (79), and the ability of NTM pathogens to acquire a drug tolerant state in 

extracellular cords and biofilms (20; 39; 80). In common with TB is the role of the pulmonary 

pathophysiology in limiting drug penetration to the sites of disease. 

Here we report the distribution and PK-PD of clarithromycin in lung lesions, using a 

rabbit model of NTM-PD-like pathology and a panel of relevant potency values. This is the first 

study focusing on the lesion PK-PD of an NTM drug, primarily due to the lack of an animal 

model of NTM disease presenting large, organized lesions adequate for drug quantitation in 

cellular and necrotic compartments. To validate the use of the active TB rabbit model for 

predicting antibiotic penetration in NTM-PD lesions, we showed that similar lesion types and 

lesion structure were found in resected lungs from a patient with M. abscessus disease, TB 

patients, and rabbits with chronic active TB. This finding was expected given the considerable 

overlap in immunopathology and radiographic features of pulmonary TB and NTM-PD (16-18). 

We found that growth inhibitory concentrations corrected for protein binding were exceeded 

throughout the dosing interval in cellular lesions and in moderately infiltrated lung tissue devoid 

of grossly visible lesions. In these pulmonary compartments, M. avium and M. abscessus are 

thought to reside within immune cells, mostly macrophages and neutrophils (18; 81), as well as 
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epithelial cells. Though clarithromycin showed favorable distribution across lesion 

compartments, it is expected to only inhibit growth of M. avium and M. abscessus given its lack 

of bactericidal activity against replicating and non-replicating bacterial populations, against 

intracellular bacteria in macrophages and against biofilm persisters found in lung lesions (39). 

Thus, clarithromycin’s clinical activity at the site of infection appears to be PD- rather than PK-

limited. Notably, free plasma concentrations were below the susceptibility breakpoints of 2 and 4 

µg/mL for M. avium and M. abscessus respectively, during the entire dosing interval.  

The high partitioning of clarithromycin in diseased lung and lesions matched the high 

uptake in PBMC-derived macrophages and foamy macrophages in vitro, with an enrichment 

factor of approximately 100-fold. Similarly high uptake has been reported for macrolides into 

monocytes and macrophages (82; 83), and even higher in polymorphonuclear leukocytes (25; 

26; 84), which have been proposed to act as antibiotic Trojan horses (29; 31). In lung resections 

performed for other indications such as malignancy, favorable but lower (~ 30-fold) partitioning 

of clarithromycin was measured in healthy lung tissue relative to plasma (85), consistent with 

high penetration driven by the much higher abundance of immune cells in NTM- and TB-

infected lung than in relatively healthier lung tissue. Collectively, results accumulated by our 

group with this and other drug classes (54; 86-88) indicate that intracellular-to-extracellular 

concentration ratios in the macrophage uptake assay are predictive of total cellular lesion-to-

plasma concentration ratios in vivo. If we assume passive diffusion of unbound drug from 

plasma into interstitial pulmonary tissue and assume that unbound drug concentrations drive the 

pharmacological response, unbound clarithromycin remains above the MacIC90 in lung and 

lesions for the entire dosing interval, even in subjects with suboptimal drug exposure.  

In cavity caseum and necrotic centers of large granulomas, we observed a decreasing 

concentration gradient after three daily doses in rabbits, but not in patients who were in 

advanced steady state. This slow diffusion of macrolides into non-vascularized caseum is likely 

driven by their high nonspecific binding to caseum macromolecules (Table 3.1). In addition, 
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foamy macrophages and other immune cells in which macrolides accumulate may act as a 

reservoir (26) from which the drugs are slowly released to gradually equilibrate at the 

caseum/cellular interface and into deep caseum. Based on the similar plasma PK (66), uptake 

in macrophages and foamy macrophages, and nonspecific binding to caseum macromolecules 

of azithromycin and clarithromycin, one would expect similar dynamics of partitioning between 

the cellular and necrotic lesion compartments for both drugs, as suggested by the sparse 

clinical data obtained here (Figure 3.2C). This needs to be confirmed with additional preclinical 

or clinical samples dosed with azithromycin. 

What are the implications of these findings for NTM-PD treatment practice? Our in vitro 

and in vivo results consistently show high total concentrations within immune cells, in cellular 

lesions and minimally involved lung tissue. Although one can expect high nonspecific binding 

inside immune cells, the pharmacologically active fraction in this microenvironment is a function 

of the binding dynamics of the macrolides between their bacterial target and host cell 

macromolecules. The sustained presence of very high total intracellular concentrations, in 

excess of 100 mg/L, upon multi-month therapy may favor bactericidal activity. Recent work 

measuring the activity of clarithromycin over 7 and 14 days against replicating M. abscessus 

surprisingly revealed bactericidal activity at concentrations of 16 mg/L and above (38). In 

addition, the host- and pathogen-targeted anti-inflammatory properties of macrolides are 

beneficial in controlling harmful inflammatory responses during acute and chronic bacterial 

infections (89-91). Thus, subjects with minimal necrosis, mostly cellular nodules, consolidations, 

and miliary disease may respond better to macrolides. This type of immunopathology is more 

frequently seen in immunocompromised patients, a growing population due to increasing use of 

organ transplantation, stem cell transplants, and the widespread use of immunosuppressive 

therapies for patients with cancer and immune-mediated inflammatory disease (3). In caseum 

where bacteria are extracellular or within biofilm-like structures, the window between achieved 

free concentrations and inhibitory concentrations is much narrower than in cellular 
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compartments (Figure 3.4), potentially indicative of more limited activity. However, macrolides 

have been shown to prevent the production of factors involved in the formation of biofilm in both 

Gram-positive and Gram-negative bacteria (92) including at sub-inhibitory concentrations. 

Though this macrolide property has not been reported in NTM bacteria, it could contribute – if 

demonstrated – to the observed biofilm growth inhibitory effect (39; 93) and possibly weaken the 

dynamic life cycle of established biofilms. Indeed, macrolides are known to alter the structure 

and architecture of Pseudomonas and Staphylococcal biofilms via inhibition of polysaccharide 

synthesis (94; 95). A structurally impaired biofilm may allow for enhanced phagocytosis and 

clearance of bacteria (96). Considering these results as well as recent findings on the long-term 

bactericidal activity of clarithromycin against M. abscessus cultures (38), further investigations 

are warranted to better define the role of macrolides in patients with cavitary disease and 

determine whether patients would benefit from tailored regimens that take extent of disease 

pathology and presence of cavity into consideration.  

The predicted human-equivalent dose of 200 mg/kg delivered slightly lower than 

expected exposure owing to the increased clearance in infected rabbits compared to uninfected. 

Modeling of the infected and uninfected plasma PK concentrations, we found that the 2-

compartment model with Michaelis-Menten elimination and Weibull function absorption best fit 

the data. While the structural model appropriately matched the published model (56), there was 

uncertainty in estimating the absorption parameter (RSE = 145.9%), possibly due to the 

inherent variability of clarithromycin absorption in rabbits. Despite the uncertainty, the Weibull 

function provided appropriate model fit. Michaelis-Menten elimination is consistent with 

clarithromycin inhibiting its own metabolism via CYP3A4. We also acknowledge that human 

subjects undergo lung resection due to drug recalcitrant disease associated to severe 

pathology. Thus, the two subjects who contributed resected tissue may not be representative of 

the typical immunohistology and lesion distribution of mycobacterial lung disease. The small 

clinical sample size constitutes an additional limitation of the study. A prospective lesion 
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pharmacokinetic study (44) is required to quantify the diffusion kinetics of macrolides into large 

necrotic foci and cavity caseum. 

In summary, we have leveraged the rabbit model of active chronic TB to quantify the 

penetration of NTM-PD antibiotics at the site of lung infection. The model encompasses the 

typical immunopathology seen in immune-compromised and immune-competent patients, 

namely cellular nodules, consolidations, necrotic lesions and cavities.  By combining standard 

analytical quantitation with laser-capture microdissection, the methodology delivers spatial 

quantitation of the drugs of interest in complex lesions. Our results provide the first step towards 

the simulation of lesion PK-PD coverage by multi-drug combinations, to enable the prioritization 

of most promising regimens for clinical trials, an emerging paradigm in TB drug development 

(97). 
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Supplementary Material  

 

Supplementary Figure 0.1. Histopathological features of chronic NTM infection in human lung. (A) 
Extensive pulmonary and pleural fibrosis (arrows) with adhesion and numerous secondary lymphoid 
follicles (*). (B) Chronic fibrosis (arrow) and pauci-inflammatory response surrounding caseous necrosis 
(*). (C) Caseous debris filling an intact bronchiolar airway, indicative of bronchogenic spread (*). (D) 
Caseous debris and neutrophils fill an airway (*) with effaced epithelium and fibrosis (arrow). (E) Chronic 
fibrosis among solid macrophage dominated granulomas (arrows). (F) Chronic interstitial fibrosis with 
lymphocytic inflammation in alveolar tissue (arrow). 
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      Clinical NTM-PD      Rabbit active TB 

 

Supplementary Figure 0.2. Common histopathological features seen in human NTM-PD and active 
rabbit TB, shown side-by side. (A-B) Coalescing non-necrotic granulomas. (C-D) Necrotic granuloma 
with mixed cellularity seen in caseous foci. (E-F) Cavitating lesion. (G-H) Bronchiole filled with necrotic 
caseum (G) and cavity caseum oozing into a connected airway (H), both indicative of bronchogenic 
spread. (I-J) Areas of fibrosis (arrows) surrounding caseous necrosis. Sections shown in panel H and J 
are from flash-frozen lesions and appear slightly different from all other tissue sections, which are from 
formalin fixed tissues.  
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Supplementary Figure 0.3. Plasma pharmacokinetic profile of clarithromycin in rabbits. (A) Plasma 
concentration time profiles of clarithromycin dosed via the oral route to disease-naïve rabbits as indicated. 
(B) Plasma concentration time profile of clarithromycin after 3 oral daily doses of 200 mg/kg to TB-
infected rabbits. Mean and SD (error bars) are shown (n = 6 rabbits except for the 24 h time point where n 
= 3). 
 
 

A B 
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Supplementary Figure 0.4. Dose-response activity of clarithromycin (CLA) against clinical isolates 
M. abscessus bamboo and M. avium 11. (A-B) Growth inhibition curves: mid-log phase cultures (OD600 
~ 0.05) were exposed to increasing concentrations of CLA for 3 days (M. abscessus bamboo) or 4 days 
(M. avium 11) in 96-well flat-bottom Corning Costar microplates in a final volume of 200 μL. Percentage of 
growth was calculated relative to cell density in the drug-free culture. The dotted line indicates 90% 
growth inhibition compared to the untreated control. (C-D) Bactericidal activity: cultures were grown as 
described in (A-B). At the end of the experiment, 10 μL were collected from the first clear well onward and 
plated at different dilutions on 7H10 agar for CFU enumeration. The MBC90 is the concentration of CLA 
that results in a 90% reduction in CFU/ml of the treated culture compared to untreated control at time zero 
(D0), indicated by the horizontal dotted line. D3 and D4 in (C) and (D) indicate the untreated control at the 
end of the drug incubation period. Each experiment was performed twice independently. The average and 
standard deviations of 3 technical replicates of one representative experiment are shown. 
 
 

A B C D M.  abscessus M. avium 
M.  abscessus M. avium 
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Supplementary Figure 0.5. Dose-response activity of clarithromycin (CLA) against intracellular M. 
abscessus bamboo (A-B) and M. avium 11 (C-D) in THP-1 derived macrophages. Differentiated THP-
1 cells were infected with each strain at a multiplicity of infection of 1:5 for 2 h and treated with 
clarithromycin as indicated for 3 days (M. abscessus) and 4 days (M. avium) prior to CFU enumeration on 
solid medium. Concentrations in excess of 25 mg/mL were not tested due to the immunomodulatory 
activity of clarithromycin and macrolides in general at higher concentrations. The reported IC90 is the 
concentration that reduced intracellular growth by 90% compared to untreated controls. Due to the poor 
intracellular growth of M. avium in panel C, the MacIC90 was derived only from the data shown in panel D. 
The reported MBC90 is the concentration that reduced intracellular Mtb viability by 90% compared to the 
starting inoculum on Day 0. Each experiment was performed twice independently. The average and 
standard deviations of 3 technical replicates (4 replicates in panel A) of one representative experiment 
are shown, except for panel C where both datasets were pooled. 
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Supplementary Table 0.1. Ratios between area under the concentration time curve (AUC) in tissue 
or plasma, and the bacteriostatic and bactericidal potency values. The analysis was performed for 
simulated M. abscessus and M. avium patients with either average pharmacokinetic exposure or at the 
lower end (5th percentile) of the drug exposure spectrum. Color coding spans from dark green (top 10th 
percentile of ratios) to dark red (90th percentile or lower 10th percentile of ratios). 
 

M. abscessus - lower 5th percentile 

 macIC90 MIC90 ECOFF Biofilm 
MIC90 MBC90 Mac 

MBC90 
Biofilm 
MBC90 

Cellular 33274.0 6654.8 831.9 1512.5 166.4 133.1 44.4 
Lung 22146.0 4429.2 553.7 1006.6 110.7 88.6 29.5 

Outer caseum 4272.3 854.5 106.8 194.2 21.4 17.1 5.7 
Inner caseum 932.7 186.6 23.3 42.4 4.7 3.7 1.2 

Plasma 326.1 65.2 8.2 14.8 1.6 1.3 0.4 
 

M. abscessus - median 

 macIC90 MIC90 ECOFF Biofilm 
MIC90 MBC90 Mac 

MBC90 
Biofilm 
MBC90 

Cellular 61359.9 12272.0 1534.0 2789.1 306.8 245.4 81.8 
Lung 40855.8 8171.2 1021.4 1857.1 204.3 163.4 54.5 

Outer caseum 7880.3 1576.1 197.0 358.2 39.4 31.5 10.5 
Inner caseum 1720.2 344.0 43.0 78.2 8.6 6.9 2.3 

Plasma 601.7 120.3 15.0 27.4 3.0 2.4 0.8 
 

M. avium - lower 5th percentile 

 macIC90 MIC90 ECOFF Biofilm 
MIC90 MBC90 Mac 

MBC90 
Biofilm 
MBC90 

Cellular 16637.0 6654.8 1663.7 1663.7 166.4 166.4 166.4 
Lung 11073.0 4429.2 1107.3 1107.3 110.7 110.7 110.7 

Outer caseum 2136.1 854.5 213.6 213.6 21.4 21.4 21.4 
Inner caseum 466.4 186.6 46.6 46.6 4.7 4.7 4.7 

Plasma 163.1 65.2 16.3 16.3 1.6 1.6 1.6 
 

M. avium -  median 

 macIC90 MIC90 ECOFF Biofilm 
MIC90 MBC90 Mac 

MBC90 
Biofilm 
MBC90 

Cellular 30679.9 12272.0 3068.0 3068.0 306.8 306.8 306.8 
Lung 20427.9 8171.2 2042.8 2042.8 204.3 204.3 204.3 

Outer caseum 3940.2 1576.1 394.0 394.0 39.4 39.4 39.4 
Inner caseum 860.1 344.0 86.0 86.0 8.6 8.6 8.6 

Plasma 300.9 120.3 30.1 30.1 3.0 3.0 3.0 
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Chapter 4: Spatially and temporally resolved diffusion kinetics of 
bedaquiline and TBAJ-587 in hard-to-treat sites of tuberculosis disease 

Abstract 

In treatment of tuberculosis, patients with cavitation are considered among the hardest 

to treat. Diarylquinolines – bedaquiline (BDQ) and TBAJ-587 – are leading candidates for Phase 

II trials in drug-susceptible and multidrug-resistant TB. While they are lipophilic and predicted to 

penetrate hard-to-treat cavities, their small free fraction in caseum contributes to slow passive 

diffusion to the center of avascular caseum. In this work, we characterized the rate of diffusion 

into granulomas of TB-infected rabbits as a function of distance from the cellular rim and time 

from treatment initiation using a novel quantification method – laser capture microdissection – 

and multicompartment site-of-action modeling. The approach allowed, for the first time, 

micrometer resolution of the concentration gradients exhibited at the site of TB disease. 

Simulations revealed that BDQ and TBAJ-587 achieve therapeutic concentrations in patients up 

to 1,000 micrometers toward the lesion center. TBAJ-587 has effective concentration without 

extended residence time after treatment which may reduce the risk of resistance development 

compared to BDQ.  The novel drug quantification method and novel spatiotemporal PK 

modeling offers a tool to assess drug penetration in hard-to-reach sites of disease, to select 

promising regimens, and to predict Phase 3 trial success. 
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Introduction 

Cavitation is a risk factor for relapse and unfavorable outcome in the treatment of 

tuberculosis (TB) (1). Cavities and caseous lesions harbor slow, non-replicating bacteria that 

are extremely drug tolerant (2). Because these regions are largely avascular, drugs that are 

lipophilic and capable of passive diffusion through caseum are needed to reach bacteria at 

concentrations high enough to be therapeutic. At the same time, sufficient drug clearance is 

needed to avoid long windows of monotherapy that lead to resistance.  

Bedaquiline (BDQ) is the first in a new class of drugs known as diarylquinolines. 

Conditionally approved in 2012, BDQ was recently approved in combination with pretomanid 

and linezolid for short-course six-month treatment of highly drug-resistant tuberculosis (3). BDQ 

is currently the backbone of most clinical trials in multidrug resistant- and drug susceptible-TB. 

TBAJ-587 is a next-generation diarylquinoline currently in Phase 1 of clinical development 

(ClinicalTrials.gov identifier NCT04890535). TBAJ-587 is more potent than BDQ in mice and 

may offer a wider therapeutic window than BDQ (4). Because bacterial loads are higher in 

caseum and found within all depths of large caseous lesions, whether and how quickly drugs 

penetrate these areas is needed to predict treatment duration and evaluate potential for 

resistance. Both BDQ and TBAJ-587 are active against bacteria in caseum, however their 

penetration kinetics into large caseous lesions is unknown.  

Here, laser capture microdissection (LCM) was used to dissect caseous lesions into 

concentric sections (Figure 4.1). We performed a fully quantitative investigation of the spatial 

drug gradients from the cellular rim to the center of caseum for BDQ, TBAJ-587, and their active 

metabolites (BDQ-M2 and TBAJ-587-M3). We developed a multicompartment site-of-action 

model and performed simulations to determine lesion temporal and spatial coverage and drug 

residence after the end of treatment. Both BDQ and TBAJ-587 achieve therapeutic 

concentrations. While BDQ penetrates further into caseous center than TBAJ-587, TBAJ-587 
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clears quicker than BDQ. Our results indicate that TBAJ-587 has effective concentration without 

extended residence time after treatment that can lead to development of resistance relative to 

BDQ. 

 

 

Figure 0.1. Representative images of caseous lesions from TB-infected rabbits. 
Hematoxylin and eosin (H&E) staining (left) used to guide dissection using laser capture microdissection 
(LCM, right). Colored borders represent outline of dissections. 
  



 150 

Methods 

Two studies were investigated in TB-infected rabbits: 1.) a loading-dose study to rapidly 

reach steady state concentrations: 400 mg and 300 mg for BDQ and TBAJ-587, respectively, 

dosed for three days, 2.) a long duration study to capture the rate of equilibration: 80 mg dosed 

for 1, 17, 26, 28 days for BDQ and 30 mg for 14 and 28 days for TBAJ-587. BDQ, BDQ-M2, 

TBAJ-587, and TBAJ-587-M3 were quantified. For caseum samples, the average distance from 

the caseum border in micrometers (µm) was calculated by creating a caseum ‘mask’ and 

processing it using the Exact Euclidean Distance Transform plugin of the ImageJ software. 

The modeling analysis was performed in NONMEM 7.4.2. A site-of-action model was 

developed where a rate (klesion) and extent of partitioning (PClesion) were estimated (Eq. 4.1 and 

Figure 4.2) (5).  

𝑑𝐶𝑙𝑒𝑠𝑖𝑜𝑛
𝑑𝑡

=  𝑘𝑙𝑒𝑠𝑖𝑜𝑛  ×  (𝑃𝐶𝑙𝑒𝑠𝑖𝑜𝑛  × 𝐶𝑝𝑙𝑎𝑠𝑚𝑎 − 𝐶𝑙𝑒𝑠𝑖𝑜𝑛 )   Eq. 4.1 
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Distance from the cellular rim was tested as a covariate on PClesion and klesion. Multiple 

covariate relationships were tested including linear, loglinear, power, sigmoidal Emax, and 

inverse relationship. To predict patient lesion coverage, the lesion parameters were linked to a 

clinical PK model for BDQ (6) and allometric scaled for TBAJ-587. Simulations were compared 

to potency metrics in an ex vivo caseum assay (casMBC90, minimum concentration to kill 90% 

bacteria) (2). Lesion coverage (PK > casMBC90) as a function of distance was quantified.  

 

 

Figure 0.2. Model structure of parent-metabolite plasma-lesion multicompartment model. 
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Results 

Overall, fifty five rabbits contributed 464 measurements from plasma and 140 from 

lesion for BDQ and BDQ-M2. Thirty five rabbits contributed 544 measurements from plasma 

and 155 from lesion for TBAJ-587 and TBAJ-587-M3 (Figure 4.3).  Plasma PK were described 

by an oral two-compartment distribution model. The final model included a distance covariate on 

the partition coefficient described in Equation 4.2. Final model parameter estimates can be 

found in Table 4.1. 

 

 

Figure 0.3. Spatial data available for BDQ, TBAJ-587, and their metabolites. 
 
 
 
 
 
 
  

𝑃𝐶 = exp(𝑀𝐴𝑋𝑃𝐶)
𝐷𝐼𝑆𝑇𝐻𝐼𝐿𝐿      Eq. 4.2 
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Table 0.1. Final model parameter estimates. 

Parameter BDQ 
Value (RSE%) 

TBAJ-587 
Value (RSE%) 

ka (h-1)* 0.4106  (17.5) 0.2701 (25.2) 
CL (L/h) 11.19 (9.8) 5.56 (17.9) 

V (L) 257.3 (20.6) 68.95 (39.7) 
Q (L/h) 26.03 (62.2) 28.77 (29.5) 
V2 (L) 301.5 (34.3) 365.2 (20.9) 

CLm (L/h) 27.22 (10.6) 12.39 (14.6) 
IIV F1 (%CV) 31.81 (25.2) 63.6 (27.1) 
IIV V (%CV) 57.18 (16.0) - 

Prop.Err,p (%CV) 27.59 (7.8) 25.7 (12.0) 
Prop.Err,m (%CV) 0.038 (15.8) 17.6 (19.0) 

Klesion,p (h-1) 0.000394 (167) 0.007601 (22.9) 
MAXPC,p 7.022 (26.0) 12.61 (5.5) 
HILLp 0.8002 (10.3) 1.852 (7.7) 

Prop.Err,p (%CV) 2.67 (39.2) 40.75 (39.0) 
Add.Err,p (mg/L) 1.761 (13.6) 0.2726 (54.9) 

Klesion,m (h-1) 0.002009 (110) 0.02106 (31.6) 
MAXPC,m 7.373 (14.9) 12.69 (6.6) 

HILLm 0.774 (9.8) 1.845 (8.4) 
Prop.Err,m (%CV) 22.69 (77.9) 23.3 (38.1) 
Add.Err,m (mg/L) 1.268 (17.4) 0.7374 (43.2) 
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Figure 0.4. Visual predictive check of BDQ and TBAJ-587 spatial model.  
Five hundred simulations of final models with observed data. Observed data represented as points with 
median (black, solid line). Simulated data represented as the 95% confidence interval of the median (blue 
shaded area). Lower limit of quantification represented as the red solid line. 

 

BDQ concentrations in caseum were greatest near the edge of the rim. As dosing 

continued, the gradient flattened across the distance. The inverse covariate on distance best 

described the relationship and was used for simulations. For BDQ standard regimen, caseum 

concentrations were above the casMBC90 after 2 weeks of dosing at the caseum edge (< 300 

µm). At the end of treatment, coverage was achieved at distances up to 1800 µm from the 

cellular rim. BDQ is predicted to remain in caseum for over two years after treatment end. BDQ-

M2 had a slightly faster rate of penetration but a lower extent. 

Steeper gradients were observed for TBAJ-587 than for BDQ yet was more potent in the 

caseum assay. Simulations of 400 mg QD produced TBAJ-587 concentrations above casMBC90 
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as far as 600 µm. TBAJ-587-M3 metabolite present at effective concentrations up to 300 µm. 

The concentration remained over the casMBC90 in caseum edges (< 300 µm) for about 3 weeks 

post-treatment and over the limit of quantification (1 ng/mL) for 7 weeks post-treatment. 

 

Figure 0.5. Clinical simulations at varying depths into lesions.  
BDQ was dosed at 400 mg daily for 2 weeks and 200 mg thrice weekly for a total of 6 months (black 
dashed line). TBAJ-587 was dosed daily at 400 mg for 6 months. Both drugs never achieve steady state 
in caseum, however both achieve therapeutic concentrations with peak accumulation at the end of 
treatment. Drugs are above lower limit of quantification (LLOQ) for years after treatment. Red dashed line 
is the caseum MBC90 derived from the ex vivo caseum assay. Solid grey line is the LLOQ.  
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Figure 0.6. Predicted clinical lesion coverage.  
Clinical lesion coverage (defined as PK greater than casMBC90 (dark blue)) was predicted to depths of 
1800 µm for BDQ and 900 µm for TBAJ-587. At a lower threshold of coverage (defined as PK greater 
than casMBC50 (light blue)), BDQ was predicted to cover the outer most ring (< 300 µm) for up to 30 
months after start of treatment and TBAJ-587 up to 19 months after start of treatment. 
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Discussion 

In this study, a spatially resolved PK model that captures the movement of drug from 

plasma to centers of necrotic cores in hard-to-treat TB lesions was developed. BDQ penetrates 

to a greater extent compared to TBAJ-587.  However, it is currently unknown the target depth of 

penetration that is linked to clinical outcome or what sites – the cellular rim or the center – are 

most important. Positron emission tomography and computerized tomography (PET-CT) 

imaging in patients such as those being performed in the ongoing PredictTB trial 

(ClinicalTrials.gov identifier NCT02821832) can better determine areas that are most vulnerable 

to relapse. 

 BDQ is predicted to exhibit sustained drug residence time in caseum beyond 2 years 

after end of treatment, which creates prolonged periods of monotherapy that may trigger 

resistance development. TBAJ-587 has effective concentration without extended residence time 

after treatment which may reduce the risk of resistance development compared to BDQ. 

However, whether its elimination is sufficiently fast enough to alleviate selective pressure 

causing resistance mutations is unknown. The novel drug quantification method and novel 

spatiotemporal PK modeling offers a tool to assess drug penetration in hard-to-reach sites of 

disease, to select promising regimens, and to predict Phase 3 trial success. 
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Chapter 5: Translational predictions of phase 2a first-in-patient efficacy 
studies for bedaquiline and rifapentine 

Abstract 

A clinical early bactericidal activity (EBA) study of tuberculosis (TB) drugs is the first 

study in patients to evaluate the efficacy of novel anti-TB drugs, using the decrease of colony-

forming units (CFU) counts of Mycobacterium tuberculosis in sputum samples for up to 14 days 

of treatment. We hypothesized that results from EBA trials can be reliably predicted from the 

preclinical in vivo mouse data using a model-based translational pharmacology approach. 

Rifapentine and bedaquiline were the focus of this analysis, however the compilation of the 

entire compiled database includes preclinical and clinical pharmacokinetics (PK) and 

longitudinal pharmacodynamics (PD) data for nine established anti-TB compounds (bedaquiline, 

delamanid, isoniazid, linezolid, moxifloxacin, pretomanid, pyrazinamide, rifampin and 

rifapentine). With these data, preclinical PK and PKPD models were developed, which included 

quantification of bacterial replication and kill, host immune effect, and quantification of in vivo 

PKPD relationships for each drug. Translational prediction of clinical EBA studies was 

performed using clinical PK models, estimated mouse PKPD relationships, and species-specific 

protein binding. Predicted daily decreases of CFU in the first 2 days of treatment and between 

day 2 and day 14 were consistent with clinical observations. This platform provides an 

innovative solution to inform and/or partially replace Phase 2a EBA trials, to bridge the gap 

between mouse efficacy studies and Phase 2b and Phase 3 trials, and to substantially 

accelerate drug development. 
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Introduction 

Mycobacterium tuberculosis remains one of the deadliest infectious agents globally. 

Tuberculosis (TB) drug discovery and development activity has increased emphasis on shorter, 

more universal regimens to treat all TB cases independent of resistance status (1; 2). However, 

with an increasing number of new drugs and limited resources for clinical trials, further 

innovation of drug development is imperative to identify effective drugs and regimens with 

higher confidence (3). The mouse model has been used for over 50 years and efficacy in mice 

is regarded as the nonclinical model with highest predictive value (3; 4) Traditional translation of 

findings from mice includes matching a dose in humans that matches efficacious drug exposure 

in mice. However, given the different bacterial dynamics and host immune responses to 

infection, these methods are insufficient. Mechanistic mouse-to-human pharmacokinetic-

pharmacodynamic (PKPD) models that describe the bacterial kill and PKPD relationships are 

better at predicting clinical results, including the results of late-stage trials (5-7). 

A Phase 2a early bactericidal activity (EBA) study is the first clinical evaluation of novel 

anti-TB drug efficacy in TB patients with the primary purpose of detecting the presence and 

magnitude of EBA and informing possible dose-response relationships (8). We hypothesized 

that using the wealth of PK and PD data available in mice and model-based methods, we could 

reliably predict results of EBA trials (Figure 5.1). Here, we compiled a comprehensive preclinical 

and clinical database of PK, PD, and baseline bacterial growth for nine compounds.  The drugs 

used to develop our proposed platform were rifampin (RIF), isoniazid (INH), PZA, rifapentine 

(RPT), bedaquiline (BDQ), delamanid (DLM), pretomanid (PMD), moxifloxacin (MXF) and 

linezolid (LZD). The work presented in this dissertation focuses on two of the nine drugs, BDQ 

and RPT. We establish a relevant and robust model-based translational platform that can 

reliably link nonclinical to clinical drug development and predict early efficacy trials for anti-TB 

drugs across different compound classes.  
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The translational platform in the present study intends to increase the accuracy of 

preclinical to clinical translation by enabling quantitative prediction of clinical studies from 

preclinical outputs and serves as a foundation for model-informed TB drug discovery and 

development. 
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Figure 0.1. The translational pharmacology approach to predicting early bactericidal efficacy in 
patients.  
Components necessary for translation include mouse PK-PD and clinical PK (actual or scaled). The 
estimated relationship between concentration and bactericidal kill is assumed to be portable after 
correction for protein binding and integrated with clinical PK. Using baseline bacterial burden from 
previous EBA trials as initial conditions, the early bactericidal efficacy is simulated with the translational 
model. 
 

  



 163 

Methods  

Drug dataset for model building and validation 

 Mouse experiments in the BALB/c mouse model using H37rv strain of TB were 

performed at Johns Hopkins University. Mouse PK, mouse PD, human population PK models 

and human clinical EBA data were collected. The data available are shown in Table 5.1 and 

Figure 5.2.  Clinical PK data were simulated using published human population PK models (9; 

10). CFU counts in sputum samples were collected or digitized from published clinical studies 

(11-13). 

Table 0.1. Mouse PKPD data available for bedaquiline and rifapentine. 

*Reference 9 
**Reference 15 

Mouse PK 
PK data BDQ RPT 

Observations 90 69 
Doses (mg/kg) 12.5, 25, single dose 5, 10, 20, daily for 16 days 

Protein binding (fu, Human/Mouse) 1.0* 0.422** 
Mouse PD 

PD data BDQ RPT 
Observations 75 55 
Doses (mg/kg) 12.5, 25, 50 5, 10 

Treatment duration (days) 70 56 
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Figure 0.2. Mouse pharmacokinetic and pharmacodynamic data available for rifapentine and 
bedaquiline.  
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Table 0.2. Published population PK models and EBA trial information. 
Drugs PK Structure Model Doses References 

BDQ 3-cmt model with transit absorption 
400 mg p.o. daily for 14 days and 
200 mg p.o. three times per week 

for 24 weeks 
(9) 

RPT 
1-cmt PK model (saturable 

bioavailability, transit absorption 
and auto-induction) 

300, 450, 600, 750, 900, 1050, 
1200, 1350, 1500, 1650, 1800 mg 
once weekly up to twice daily for 

up to four months 

(10) 

Drugs EBA trial doses Baseline (log10 CFU/mL) References 

BDQ 

100, 200, 300 and 400 mg 
(with 200, 400, 500, 700 mg loading 
dose on first day and 100, 300, 400, 

500 mg on second day, 
respectively) 

6.302 (100 mg), 6.001 (200 mg), 
6.071 (300 mg), 6.625 (400 mg) 

 
 
 

(12) 

BDQ 25, 100, 400 mg 6.66 (25 mg), 6.32 (100 mg), 6.82 
(400 mg) (13) 

RPT 300, 600, 900, 1200 mg N/A (11) 
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Mouse PKPD model development 

An integrated mouse PKPD model was developed for each drug. PK data was described 

using one or two compartment models with first order absorption with or without delay, and 

saturable elimination when necessary. Additive, proportional, and combination residual error 

models were tested to describe the error in the observed data. The bacterial growth dynamics 

without treatment was described using our previously published baseline model (Equation 5.1) 

(14). The baseline model captures the time- and bacteria-dependent immune control of bacterial 

growth rate over time. Drug effect was driven by plasma concentration and added as a separate 

term, EFF (Equation 5.2). PKPD relationships for drug effect were optimized by fitting the 

mouse PD data to linear, nonlinear, log linear, Emax and sigmoidal functions (Equation 5.3). A 

delay effect was tested to optimize the relationship between plasma exposures, time, and 

treatment response (Equation 5.4). In this case, drug effect was driven by Adelay. An additive 

error model was used to describe residual error for the mouse PKPD models.  

𝑑𝐵
𝑑𝑡

= 𝐾𝑔 × 𝐵 × (1 − 𝐾𝐵×𝐵𝛾𝐵

𝐵50
𝛾𝐵+𝐵𝛾𝐵

) × (1 − 𝐾𝑇×𝑡𝛾𝑇

𝑇50
𝛾𝑇+𝑡𝛾𝑇)    − 𝐾𝑑 × 𝐵         𝐸𝑞. 5.1       

𝑑𝐵
𝑑𝑡

= 𝐾𝑔 × 𝐵 × (1 − 𝐾𝐵×𝐵𝛾𝐵

𝐵50
𝛾𝐵+𝐵𝛾𝐵

) × (1 − 𝐾𝑇×𝑡𝛾𝑇

𝑇50
𝛾𝑇+𝑡𝛾𝑇)    − 𝐾𝑑 × 𝐵 − 𝐸𝐹𝐹 × 𝐵         𝐸𝑞. 5.2      

𝐵: bacterial number 

𝑡: incubation time since inoculation 

𝐾𝑔: bacterial growth rate 

𝐾𝑑: bacterial natural death rate 

𝐾𝐵: bacterial number-dependent maximal adaptive immune effect 

𝐵50: bacterial number that results in half of 𝐾𝐵 

𝛾𝐵: steepness of bacterial number-dependent immune effect relationship 

𝐾𝑇: incubation time-dependent maximal adaptive immune effect 

𝑇50: bacterial number that results half of 𝐾𝑇 
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𝛾𝑇: steepness of time-dependent immune effect relationship 

EFF: bacterial killing rate 

 

𝐸𝐹𝐹 =
𝐴𝑑𝑒𝑙𝑎𝑦

𝛾 × 𝐸𝑚𝑎𝑥

𝐸𝐶50
𝛾 + 𝐴𝑑𝑒𝑙𝑎𝑦

𝛾        𝐸𝑞. 5.3 

Emax: the maximal level of drug effect 

EC50: the delayed concentration that results in half of the maximal drug effect 

J: the steepness of the relationship between the delayed plasma concentration and drug effect 

 

𝑑𝐴delay

𝑑𝑡 = 𝐾𝑑𝑒𝑙𝑎𝑦 × (
𝐴2
𝑉1

− 𝐴delay)       𝐸𝑞. 5.4 

Adelay: the delayed concentration level associated with drug effect 

Kdelay: the rate constant of delay between plasma concentration and drug effect 

Prediction of the outcomes for clinical EBA studies 

The PKPD relationship quantified in mice was used to predict the clinical EBA. Drug 

concentration in humans were simulated based on clinical population pharmacokinetic models 

(Table 5.2) to drive the concentration-effect relationship in the clinical predictions. Protein 

binding ratios between humans and mice (𝑓𝑢ℎ𝑢𝑚𝑎𝑛𝑠
𝑚𝑖𝑐𝑒

) were used to convert unbound plasma drug 

concentrations from human to mouse to translate the mouse PKPD relationships (Table 5.1) (9; 

15). 

Clinical predictions were done by simulating CFU decline in 1000 virtual patients treated 

with the same dose as reported in the clinical EBA study. The baseline (Day 0) sputum values 

used were derived from the mean value for each arm reported in each study, and the variability 

in baseline bacterial burden between individuals used was the baseline variance among all 



 168 

clinical studies. The net growth and death of bacteria without treatment was assumed to be zero 

(Equation 5.6). 

𝑑𝐵
𝑑𝑡 = 𝐾𝑛𝑒𝑡 × 𝐵 − 𝐸𝐹𝐹 × 𝐵        𝐸𝑞. 5.6 

Knet: the net rate of change in bacterial number in the sputum of TB patients 

Predictions were reported as the mean and standard deviation of the predicted time 

course of CFU decline. The observed data were overlayed for visual inspection. EBA values 

were calculated as the daily change of CFU counts. EBA for Day 0-2 and Day 2-14 were 

compared to the observed at all dose levels along a line of unity to assess predictive accuracy. 

Seven additional drugs not analyzed in this work were added for diagnostics of the translational 

platform. 

Software and Statistical method 

Preclinical and clinical PKPD modelling was performed in NONMEM (7.4.3) using PsN 

(4.8.1.). Models were developed following numerical and graphical diagnostics, assessing drop 

in objective function value through the likelihood ratio test and parameter precision, as well as 

goodness-of-fit plots, visual predictive checks, and pharmacological relevance. The first-order 

conditional estimation with interaction method (FOCE+I) was used.  Data transformation and 

graphical output was performed in R (4.1.3) through the RStudio (2022.02.3) interface using the 

xpose4 and tidyverse packages.  
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Results 

Large preclinical and clinical PK and PD database of nine TB drugs   

We collated a rich longitudinal dataset of mouse PK (159 data points) and PD data (lung 

CFU counts, 126 data points), as well as human population PK models and human PD data 

(sputum CFU counts) (Table 5.3). PD experiments were done in mice infection models infected 

via aerosol with an inoculum size no less than 2 log10 CFU/ml and incubation period of 14 days 

and 42 days prior to the start of treatment for BDQ and RPT, respectively.  

Human PD data with a total of 260 human sputum CFU datapoints originating from 

Phase2a trials across 13 different studies ranging from 2 to 14 days were used to validate our 

Phase 2a EBA predictions.  

Preclinical PK and PKPD models adequately described mouse data 

The final PK and PKPD model parameter estimates are shown in Table 5.3. A 2-

compartment model best described the mouse plasma data for BDQ. RPT was best described 

by a 1-compartment model with saturated clearance described via the Michaelis-Menten 

equation. Visual predictive checks of the final model for both mouse PK and PKPD data showed 

good fits (Figure 5.3 and Figure 5.4).  
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Table 0.3. Mouse PK and PKPD parameter estimates. 
Drugs BDQ RPT 

PK model Oral 2-cmt model Oral 1-cmt model with  
non-linear elimination 

PK Model Parameters 

 
ka = 3.24 (15.1%) h-1 
CL = 0.0243 (5.9%) L/h 
V = 0.24 (11.4%) L 
Vp = 0.822 (29.3%) L 
Q = 0.0127 (11.5%) L/h 
 

 
ka = 0.894 (31%) h-1 
V = 0.0139 (6%) L  
km = 75.8 (31%) µg/mL 
Vmax = 0.0333 (24%) µg/h 
 
 

PKPD Model Delayed Emax Function Direct Sigmoidal Function 

PKPD Model Parameters 

 
Emax = 0.295 (1%) day-1 
EC50 = 0.173 (5%) mg/L 
Kd = 3.45 (10%) day-1 
 

 
Emax = 0.299 (1%) day-1 

EC50 = 6.02 (0%) mg/L 
γ = 2.36 (7%) 
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Figure 0.3. Visual predictive check of bedaquiline and rifapentine pharmacokinetics in mice. 
Observations represented as points and black dashed line (median). Solid colored line are median of 
1,000 simulations and shaded areas are the prediction interval, or the middle 95th of simulations. Facet 
titles are the dose in mg/kg. 
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Figure 0.4 Visual predictive check of bedaquiline and rifapentine PKPD models in mice.  
Observations represented as points and black dashed line (median). Solid colored lines are median of 
1,000 simulations and shaded areas are the prediction interval, or the middle 95th of simulations. Facet 
titles are the dose in mg/kg. 
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Clinical EBA well predicted by translational platform 

Clinical CFU decline predictions are shown in Figure 5.5. RPT was underpredicted 

showing limited activity after a single dose. BDQ was slightly overpredicted at later timepoints. 

Agreement between predicted and observed quantitative change in CFU is shown in Figure 5.6 

as a correlation plot for EBA at time intervals 0-2 days and 2-14 days. Predictions for seven 

other drugs using this platform are included (analysis not done in this work). Most of the 

predictions fell within ±0.25 log10 CFU/ml/day of the observed EBA as indicated by the line of 

unity and corresponding dotted lines. Predictions are overall consistent with the observed data 

in the clinical EBA studies for all nine drugs.  
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Figure 0.5. Clinical simulations using translational PKPD model and clinical observations.  
Mean and standard deviation from published EBA studies (black points and error bars) overlayed with 
mean (solid line) and standard deviation (shaded area) of 1,000 simulations using the translational PKPD 
model. 
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Figure 0.6. Model-based prediction of daily change in log10 CFU/mL correlates well with clinically 
observed daily change in log10 CFU/mL for nine TB drugs at multiple dose levels of monotherapy 
treatment between day 0 to 2 (left) and day 2 to 14 (right).  
Line of unity (dashed line) ± 0.25 (dotted lines). BDQ = bedaquiline, DLM = delamanid, INH = isoniazid, 
LZD = linezolid, MXF = moxifloxacin, PMD = pretomanid, PZA = pyrazinamide, RIF = rifampin, RPT = 
rifapentin. *regimen contained a loading dose. 
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Discussion 

We established a mouse-to-human translational platform by integrating a bacterial 

dynamics model, mouse PKPD relationships, clinical PK and species-specific drug plasma 

protein binding and validated the platform with clinical TB data (Figure 5.1). The change in 

sputum CFU counts over the first two days and Day 2-14 in TB patients receiving monotherapy 

with each of nine TB drugs over 13 clinical EBA studies were successfully predicted, except for 

RPT (Figure 5.3 and 5.4). Our human PK model indicated RPT was mostly cleared from the 

body two days after a single dose, but RPT’s Phase 2a study showed RPT was still exerting 

bacterial kill at five days. It is possible that RPT had a post antibiotic effect that was not 

sufficiently captured by the model (16).  

Murine TB models are routinely and often exclusively used as in vivo efficacy models in 

nonclinical TB drug development (4). As the inoculum size and incubation period for bacterial 

infection in the lung prior to treatment can affect drug response (14), we decided to standardize 

to the most common design with the incubation duration of 13-17 days and inoculum size to 

larger than 3.5 log10 CFU/ml. Incubation durations outside this range were considered when 

data was not available which was the case for RPT in which 42-day, chronic infection data was 

used. In general, Day 2-14 was better predicted than Day 0-2. Acute infection models with less 

than 7 days infection may have greater ability to predict EBA in the first two days. 

A key component to our model accuracy is the addition of the bacterial dynamics model. 

Mouse and human immune activation against TB infection differ significantly, therefore the 

underlying baseline of bacterial dynamics will differ. Subtracting the mouse immune effect on 

bacterial decline more accurately estimates the drug’s contribution to CFU decline. Without such 

consideration, the clinical CFU decline is overpredicted. Despite inherent differences between 

species, sampling (whole lung homogenate versus sputum), and strain of bacteria, the 

relationship between drug effect on bacteria and the concentration to achieve the effect appear, 
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based on this analysis, to be portable between mice and patients. In addition, although the 

BALB/c mouse strain used in these studies models intracellular bacteria but not extracellular 

bacteria in caseous lesions, it still reflects the antibacterial characteristics of these drugs in a 

specific microenvironment. Other approaches or more information may need to be included to 

account for hard-to-treat microenvironments (17; 18).  

Clinical EBA studies are the only acceptable way to evaluate a drug as monotherapy in 

TB patients despite its limitations on predicting long-term efficacy. In addition to detecting the 

presence of an EBA response, the trial can inform the dose-response curve. We have shown 

here that our translational platform can adequately predict these outcomes. With limited 

resources, this costly clinical study can be designed more efficiently or avoided altogether by 

using our approach to predict a reliable result regarding clinical dose-response effect, and to 

provide useful information about dose and/or or drug candidate selection for further clinical 

development. The translational modeling platform minimizes the time and effort in early clinical 

development, and therefore, accelerates progress to trials that are more informative of long-

term outcomes.  

Building on our translational framework, efficacy of combination regimens of TB drugs 

tested nonclinically can be predicted in the future. This shows the principles of how nonclinical 

findings through a model-based translational framework can inform the design of clinical late-

stage efficacy studies, such as Phase 2b studies. Future goals to improve the platform include 

characterizing PKPD relationships of combination regimens by accounting for PKPD drug-drug 

interactions, as well as characterizing lesion-specific PKPD relationships. Clinical TB disease 

(e.g., caseation necrosis and cavitation) will be represented in the translational platform to 

include infection and efficacy data in animal TB models with human-like necrotic lesions, such 

as C3HeB/FeJ mice and New Zealand white rabbits (18). Our translational platform may then be 

able to predict late-stage trials of combination regimens. As such, our platform cannot only 
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partially replace Phase 2a efficacy studies by predicting EBA, but also directly inform the design 

of Phase 2b and Phase 3 studies to assist clinical TB drug development. 

In summary, we established a foundation for translating the results from mouse efficacy 

models to clinical EBA studies through establishing quantitative relationships involving mouse 

PK and PD, as well as drug dose response in vivo. In the future, our platform will be expanded 

to include combination regimens and longer durations of treatment by accounting for PKPD 

drug-drug interactions, and necrotic lesion penetration. This platform is an innovation to 

accelerate TB drug development as a good example of model-informed drug discovery and 

development.  



 179 

References 

1. Ginsberg AM. 2010. Drugs in development for tuberculosis. Drugs 70:2201-14 

2. Ginsberg AM. 2010. Tuberculosis drug development: progress, challenges, and the road 

ahead. Tuberculosis (Edinb) 90:162-7 

3. Nuermberger EL. 2017. Preclinical Efficacy Testing of New Drug Candidates. Microbiol 

Spectr 5 

4. Dooley KE, Phillips PP, Nahid P, Hoelscher M. 2016. Challenges in the clinical assessment of 

novel tuberculosis drugs. Adv Drug Deliv Rev 102:116-22 

5. Chen C, Ortega F, Rullas J, Alameda L, Angulo-Barturen I, et al. 2017. The multistate 

tuberculosis pharmacometric model: a semi-mechanistic pharmacokinetic-

pharmacodynamic model for studying drug effects in an acute tuberculosis mouse 

model. J Pharmacokinet Pharmacodyn 44:133-41 

6. Danhof M, de Jongh J, De Lange EC, Della Pasqua O, Ploeger BA, Voskuyl RA. 2007. 

Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, 

receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 47:357-

400 

7. Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA. 2008. Mechanism-

based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug 

research. Trends Pharmacol Sci 29:186-91 

8. Jindani A, Aber VR, Edwards EA, Mitchison DA. 1980. The early bactericidal activity of drugs 

in patients with pulmonary tuberculosis. Am Rev Respir Dis 121:939-49 

9. Svensson EM, Dosne AG, Karlsson MO. 2016. Population Pharmacokinetics of Bedaquiline 

and Metabolite M2 in Patients With Drug-Resistant Tuberculosis: The Effect of Time-

Varying Weight and Albumin. CPT Pharmacometrics Syst Pharmacol 5:682-91 



 180 

10. Hibma JE, Radtke KK, Dorman SE, Jindani A, Dooley KE, et al. 2020. Rifapentine 

Population Pharmacokinetics and Dosing Recommendations for Latent Tuberculosis 

Infection. Am J Respir Crit Care Med 202:866-77 

11. Sirgel FA, Fourie PB, Donald PR, Padayatchi N, Rustomjee R, et al. 2005. The early 

bactericidal activities of rifampin and rifapentine in pulmonary tuberculosis. Am J Respir 

Crit Care Med 172:128-35 

12. Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, et al. 2012. 14-day 

bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin 

combinations: a randomised trial. Lancet 380:986-93 

13. Rustomjee R, Diacon AH, Allen J, Venter A, Reddy C, et al. 2008. Early bactericidal activity 

and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary 

tuberculosis. Antimicrob Agents Chemother 52:2831-5 

14. Zhang N, Strydom N, Tyagi S, Soni H, Tasneen R, et al. 2020. Mechanistic Modeling of 

Mycobacterium tuberculosis Infection in Murine Models for Drug and Vaccine Efficacy 

Studies. Antimicrob Agents Chemother  

15. Egelund EF, Weiner M, Singh RP, Prihoda TJ, Gelfond JA, et al. 2014. Protein binding of 

rifapentine and its 25-desacetyl metabolite in patients with pulmonary tuberculosis. 

Antimicrob Agents Chemother 58:4904-10 

16. Wicha SG, Clewe O, Svensson RJ, Gillespie SH, Hu Y, et al. 2018. Forecasting Clinical 

Dose-Response From Preclinical Studies in Tuberculosis Research: Translational 

Predictions With Rifampicin. Clin Pharmacol Ther 104:1208-18 

17. Kramnik I, Beamer G. 2016. Mouse models of human TB pathology: roles in the analysis of 

necrosis and the development of host-directed therapies. Semin Immunopathol 38:221-

37 

18. Dartois V. 2014. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial 

cells. Nat Rev Microbiol 12:159-67 



 181 

Chapter 6: Comparative efficacy of rifapentine alone and in combination 
with isoniazid for latent tuberculosis infection: a translational 
pharmacokinetic-pharmacodynamic modelling study* 

Abstract 

Rifapentine has facilitated treatment shortening of latent tuberculosis infection (LTBI) in 

combination with isoniazid once weekly for 3 months (3HP) or daily for 1 month (1HP) from 9 

months of isoniazid monotherapy. We determine the optimal rifapentine dose for a 6-week 

monotherapy regimen (6wP) and predict clinical efficacy.  Rifapentine and isoniazid 

pharmacokinetics were simulated in mice and humans. Mouse lung colony-forming unit data 

were used to characterize exposure-response relationships of 1HP, 3HP, and 6wP and 

translated to predict clinical efficacy. A 600 mg daily dose for 6wP delivered greater cumulative 

rifapentine exposure than 1HP or 3HP. The maximum regimen effect (Emax) was 0.24 day-1. The 

regimen potencies, measured as concentration at 50% of Emax (EC50), were estimated as 2.12 

mg/L for 3HP, 3.72 mg/L for 1HP, and 4.71 mg/L for 6wP, suggesting that isoniazid contributes 

little to 1HP efficacy. Clinical translation predicted that 6wP reduces bacterial load at a faster 

rate than 3HP and a greater extent than 3HP and 1HP. 6wP (600 mg daily) is predicted to result 

in equal or better efficacy than 1HP and 3HP for LTBI treatment without the potential added 

toxicity of isoniazid. Results from ongoing and future clinical studies will be required to support 

these findings.  

 
  

 
* Modified from the publication: Radtke KK, Ernest JP, et al. Comparative efficacy of rifapentine alone and 
in combination with isoniazid for latent tuberculosis infection: a translational pharmacokinetic-
pharmacodynamic modeling study. Antimicrobial Agents and Chemotherapy. 2021. 65:12 
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Introduction 

Treatment of latent tuberculosis infection (LTBI) has been facilitated by short-course 

regimens that range in duration from one to four months (1, 2). These short-course regimens 

have significantly shortened the length of treatment compared to the historical standard of 6-12 

months of isoniazid monotherapy, which in turn has led to improved treatment completion rates 

(3). All current short-course regimens include a rifamycin (e.g., rifampin or rifapentine) either as 

monotherapy or in combination with isoniazid. Rifapentine is a newer rifamycin that has a longer 

elimination half-life than rifampin (15 hours vs. 4 hours) (4), making it an ideal candidate for 

shortened duration and/or less frequent dosing. Rifampin given daily for four months, and 

rifapentine in combination with isoniazid once weekly for 3 months (3HP) or daily for 1 month 

(1HP) have demonstrated non-inferior effectiveness compared to 9 months of daily isoniazid 

(9H) in preventing active TB disease (2, 5, 6). 

Use of isoniazid is associated with significant dose-limiting toxicities, namely 

hepatotoxicity, which can be fatal (7, 8). Intermittent dosing of rifapentine and isoniazid, as in 

3HP, has shown significantly less hepatotoxicity than with 9H (9), but when rifapentine and 

isoniazid were given daily, adverse effects were similar (2). Isoniazid may also contribute to the 

hypersensitivity reactions reported with 3HP use (10, 11). Eliminating isoniazid from LTBI 

treatment altogether could prove beneficial from a safety perspective and would reduce pill 

burden. 

A novel regimen of daily rifapentine for 6 weeks is under investigation (ClinicalTrials.gov 

identifier NCT03474029). The optimal dose of rifapentine in the absence of isoniazid to prevent 

active TB disease is not well understood. In a murine model of LTBI, rifapentine monotherapy at 

10 mg/kg of body weight daily (equivalent to 600 mg per day in humans) was similar or better 

than rifapentine plus isoniazid in reducing lung CFU and relapse rates when given for the same 

duration (12, 13).  
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However, differences in rifapentine pharmacokinetics (PK) between mice and humans 

must be considered. In humans, rifapentine exhibits concentration-dependent autoinduction of 

clearance, resulting in lower concentrations over time with daily dosing (14). Rifapentine 

autoinduction may also occur in mice but the relationships to drug concentration and dosing 

frequency have not been well characterized (15, 16). Additionally, rifapentine bioavailability is 

affected by HIV infection, dose, and fasting/meal conditions, and interpatient variability is high in 

humans (17, 18). To determine the optimal dose for rifapentine monotherapy to treat LTBI, both 

the pharmacokinetic and pharmacodynamic (PD) relationships need to be characterized. 

The aim of this study was to characterize the PK and PD of rifapentine and to build a 

translational model that accounts for species-specific PK parameters, plasma protein binding, 

and host adaptive immunity in the context of LTBI to predict efficacy of a 6-week rifapentine 

monotherapy regimen in humans. To that end, we implemented a mechanistic model of murine 

immune response to Mycobacterium tuberculosis infection and used drug efficacy data and 

population PK models in mice and humans to compare drug exposure and clinical effectiveness 

of different rifapentine-containing regimens for the treatment of LTBI.   
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Methods 

Clinical PK simulations 

Rifapentine clinical PK were simulated using a population PK model published by Hibma 

et al. generated from an individual participant data meta-analysis of nine clinical PK studies 

(19). The model captures dose, HIV status, and meal effects on rifapentine bioavailability, and 

autoinduction of clearance as a function of rifapentine concentration. Simulations were 

performed to compare rifapentine PK of clinically tested rifapentine-based LTBI regimens with 

the PK of an experimental 6-week once-daily rifapentine monotherapy regimen (6wP) at various 

dose levels. For comparator regimens, we evaluated 1HP (300 mg isoniazid plus 600 mg 

rifapentine daily for one month) and 3HP (900 mg isoniazid plus 900 mg rifapentine once weekly 

for three months). For isoniazid-containing regimens (i.e., 1HP and 3HP), isoniazid clinical PK 

were also simulated with a population PK model (20). Simulations (n=500) were performed for 

an HIV-seronegative population receiving a low-fat meal (relative rifapentine bioavailability = 1) 

and with 50/50 slow/fast acetylator status for isoniazid. PK profiles were summarized as 

maximum concentration (Cmax), area under the plasma concentration-time curve (AUC), and 

time above minimum inhibitory concentration (MIC). The rifapentine MIC was set to 0.06 mg/L 

(4). 

Mouse PK simulations  

Mouse PK models were built in NONMEM 7.4 for rifapentine and isoniazid. Modelling 

details and results are provided in the Supplemental Material. Rifapentine PK were simulated 

500 times under different dosing conditions that matched clinical rifapentine regimens: 10 mg/kg 

once daily for 6 weeks (6wP regimen), 10 mg/kg once daily for 4 weeks (1HP regimen), and 15 

mg/kg once weekly for 12 weeks (3HP regimen). Similarly, isoniazid PK was simulated 500 

times with 10 mg/kg once daily for 4 weeks (1HP regimen) and 50 mg/kg once weekly for 12 



 185 

weeks (3HP regimen). For daily regimens, mouse PK was simulated as dosing 5 days/week in 

accordance with the original studies.  

PD Model 

Mouse CFU data were acquired from two studies: ‘high-dose’ rifapentine (13) and ‘low-

dose’ rifapentine (see Supplementary Material). All animal procedures were approved by the 

Institutional Animal Care and Use Committee of Johns Hopkins University unless otherwise 

specified from the original publication. Data were used to describe the in vivo exposure-

response relationship of different rifapentine-based regimens. The baseline immune effect was 

determined by estimating the net bacterial growth/death without treatment (KNET). A PK-PD 

model was developed using CFU data from treated mice by adding drug effect (EFF) to the 

baseline model (Eq. 1), where ‘B’ is the bacterial load. EFF was modeled as a function of 

rifapentine concentration (Cp). PK-PD relationships for the drug effect were optimized by fitting 

the mouse efficacy data to linear, nonlinear, loglinear, Emax and sigmoidal functions (Eq. 2–4). 

An additive error model was used to describe residual error for the mouse PK-PD models. 

 

𝑑𝐵
𝑑𝑡

=    𝐾𝑁𝐸𝑇 × 𝐵 − 𝐸𝐹𝐹 × 𝐵      Eq. 1 

𝐸𝐹𝐹 = slope × 𝐶𝑃 + intercept      Eq. 2 

𝐸𝐹𝐹 = slope × ln (𝐶𝑃) + intercept      Eq. 3 

𝐸𝐹𝐹 =
𝐶𝑝

𝛾×𝐸𝑚𝑎𝑥

𝐸𝐶50
𝛾 +𝐶𝑝

𝛾       Eq. 4 

Translational PK-PD 

The clinical population PK model of rifapentine was linked to the PK-PD relationships 

established for three rifapentine-based regimens in the latent infection study. The clinical PK-PD 

relationship was assumed to be the same as the estimated murine PK-PD relationship after 



 186 

correcting for the difference in unbound drug fraction. No murine protein binding information was 

available so the unbound fraction from Wistar rats was used instead; the estimated ratio of free 

fraction (human/mouse) was 0.422 (21, 22). The net bacterial growth (KNET) in humans was 

assumed to be zero, representing the balance between immune-mediated killing and any 

bacterial growth. Other assumptions (eg, KNET <0 and KNET >0) were also tested. The drug effect 

(EFF) was incorporated as an additional effect inhibiting the bacterial growth. Simulations of the 

change in bacterial load following treatment were performed 500 times with each regimen (6wP, 

3HP, and 1HP) with a baseline bacterial load of 2 to 4 log10 CFU and variance of 0.1 (Eq. 1). 

In silico clinical trial simulations 

An in silico clinical trial was simulated based on our final model with 1000 individuals per 

arm: placebo, 3HP, 1HP, and 6wP. The baseline bacterial load was set to 2.5 + 0.5 log10 CFU. 

Active TB was defined as CFU > 4 log10 as the lower limit of quantification of acid-fast smears is 

104 CFU/mL (21). The number of individuals to develop active TB were determined over a 2-

year period. 

Software 

All modeling and simulation analyses were conducted using NONMEM (version 7.4). 

Perl speaks NONMEM (PsN), R (version 3.5) statistical program, and the xpose4 and ggplot2 R 

packages were utilized for model diagnostics and data visualization. Survival analysis of in silico 

data was done with survival R package. The first-order conditional estimation with interaction 

method was used. Mouse PK and PK-PD models were developed and selected based on 

graphical (goodness of fit plots), statistical (significant change in objective function value), and 

simulation-based diagnostics (visual predictive checks). 
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Results 

Clinical PK of rifapentine-based regimens 

To determine the effective rifapentine dose for a 6-week daily monotherapy regimen 

(6wP), rifapentine exposures at various dose levels were compared to those of clinically tested 

regimens (i.e., 1HP and 3HP). After 300 mg daily for 6 weeks, the predicted total rifapentine 

cumulative AUC (cAUC) was similar to that following 900 mg once weekly for 3 months (i.e., 

3HP) and 600 mg daily for 1 month (i.e., 1HP) (Figure 6.1). With 600 mg rifapentine daily for 6 

weeks, rifapentine cAUC was predicted to be nearly double that of 3HP and approximately 1.5 

times that of 1HP. A 900 mg daily dose delivered even higher rifapentine exposures.  

 

Figure 0.1. Predicted rifapentine exposure in patients. 
Predicted rifapentine exposure in experimental 6-week rifapentine mono-therapy regimens at various 
dose levels compared to 3 months of weekly isoniazid plus rifapentine (3HP) and 1 month of daily 
isoniazid plus rifapentine (1HP). Based on 500 simulations. HIV-seronegative status was assumed for all 
regimens. cAUC = cumulative area under the curve for the complete regimen. H = isoniazid. P = 
rifapentine. 6wP = selected 6-week monotherapy regimen.  
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Given the favorable PK, the 600 mg dose for the daily 6-week regimen (i.e., 6wP) was 

chosen. Average daily total AUC/MIC and Cmax/MIC were comparable for 6wP and 1HP, which 

were higher than for 3HP (Table 6.1). The percentage of the treatment duration with 

concentrations above MIC was 100% for 1HP and 6wP (Table 6.1).  

Isoniazid exposure over the full treatment course was slightly higher with 3HP than 1HP 

(Figure 6.1; Table 6.1). The 6-week rifapentine monotherapy regimens tested did not include 

isoniazid. 

Table 0.1. PK/PD indices for rifapentine-containing LTBI regimens. 
 3HP 1HP 6wP 

Rifapentine    

Dose 
Human 900 mg weekly 600 mg daily 600 mg daily 

Mouse 15 mg/kg weekly 10 mg/kg daily 10 mg/kg daily 

cAUC (mg*h/L) 
Human 7143 (3610-14281) 9248 (4838-19697) 13462 (7113-27736) 

Mouse 10130 (8783-11955) 7100 (5640-8927) 10677 (8485-13470) 

AUC/MIC 
Human 1405 (713-2796) 4972 (2640-10686) 5010 (2685-10365) 

Mouse 2011 (1743-2374) 4292 (3384-5449) 4280 (3385-5434) 

Cmax/MIC 
Human 318 (156-646) 390 (206-730) 388 (208-718) 

Mouse 333 (327-341) 311 (268-365) 313 (269-364) 

Percentage of 
treatment duration 

above MIC 

Human 99 (57-100) 100 (100-100) 100 (100-100) 

Mouse 93 (86-98) 100 (100-100) 100 (100-100) 

Isoniazid    

Dose 
Human 900 mg weekly 300 mg daily NA 

Mouse 50 mg/kg weekly 10 mg/kg daily NA 

cAUC (mg*h/L) 
Human 745 (343-1608) 579 (267-1250) NA 

Mouse 667 (489 – 879) 156 (118 - 207) NA 

Values represent total drug (free + bound) and are based on 500 simulations. Data are expressed as 
median (2.5th-97.5th quantile range). cAUC = cumulative AUC. AUC/MIC = ratio of average daily AUC to 
MIC at steady state. Cmax/MIC = ratio of maximum concentration to MIC at steady state. NA = not 
applicable. MIC = minimum inhibitory concentration (0.06 mg/L). 3HP = 3 months weekly rifapentine and 
isoniazid. 1HP = 1-month daily rifapentine and isoniazid. 6wP = 6 weeks daily rifapentine. 
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Comparison of mouse and human PK 

Rifapentine PK simulations in mouse and human are shown in Figure 6.2. A rifapentine 

dose in mice of 10 mg/kg given 5/7 days delivers similar concentration profiles to 600 mg once 

daily in humans and 15 mg/kg rifapentine once weekly (1/7) in mice has similar PK to 900 mg 

once weekly in humans (Figure 2). Clinical and murine PK/PD indices were similar (Table 6.1). 

 

Figure 0.2. Steady state rifapentine pharmacokinetics in mice and humans. 
Median (solid line) and 95% prediction interval (shaded area) based on 500 simulations. 3HP = three 
months of once weekly rifapentine and isoniazid. 1HP = one month of daily rifapentine and isoniazid. 
6wP: 6 weeks of daily rifapentine (600 mg, human; 10 mg/kg, mouse) monotherapy. 

PK-PD model  

      The bacterial growth rate constant for the baseline model describing the primary immune 

response in the latent infection mouse model was estimated to be -0.048 and 0.0151 day-1 for 

the high dose and low dose studies, respectively. In the PK-PD model, the net maximal 

rifapentine drug effect (Emax) was estimated to be 0.24 day-1 for monotherapy (Table 6.2). The 

rifapentine concentration required to achieve half of the maximal effect (EC50) was estimated to 
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be 4.71 mg/L for monotherapy (Table 6.2). For combination LTBI regimens (1HP and 3HP), the 

Emax and EC50 of rifapentine were assumed to be the same. Isoniazid increased the potency of 

these regimens by decreasing the apparent EC50 by 21% in the 1HP regimen (an apparent EC50 

of 3.72 mg/L) and 55% in the 3HP regimen (an apparent EC50 of 2.12 mg/L) (Figure 6.3; Table 

6.2). 

      Visual predictive checks (VPCs) of 500 simulations indicated that the observed data were 

within the 95% prediction interval of the simulated CFU counts in the final PK-PD models 

(Supplementary Figure 6.2). 

Table 0.2. Pharmacological parameters of rifapentine-containing regimens in latent TB mouse 
study. 

Parameter Description Value (RSE, %) 

KNETHD (day-1) Net rate of bacterial growth without drug for 
high dose study -0.048 (0%) 

KNETLD (day-1) Net rate of bacterial growth without drug for 
low dose study 0.0151 (0%) 

Emax (day-1) Maximum efficacy of rifapentine monotherapy 
regimen 0.24 (20%) 

𝛾 Steepness of the sigmoidal concentration-
response relationship 1.62 (16%) 

EC50_6wP (mg/L) Rifapentine concentration at 50% of Emax in 
daily rifapentine monotherapy regimen 4.71 (36%) 

EC50_1HP (mg/L) Rifapentine concentration at 50% of Emax in 
daily rifapentine and isoniazid regimen 3.72 (59%) 

EC50_3HP (mg/L) Rifapentine concentration at 50% of Emax in 
weekly rifapentine and isoniazid regimen 2.12 (54%) 
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Figure 0.3. Concentration-response relationship of rifapentine-containing regimens. 
3HP = 900 mg rifapentine plus isoniazid given once weekly for 3 months. 1HP = 600 mg rifapentine plus 
isoniazid given daily for 1 month. 6wP = 600 mg rifapentine monotherapy given daily for 6 weeks. 

Clinical efficacy predictions  

Simulated CFU profiles in humans showed median CFU reductions up to 1.5-log10 with 

1HP, 2-log10 with 6wP and 3HP regimens at the end of treatment (Figure 6.4). 1HP had the 

fastest rate of decline in CFU but the highest remaining bacterial burden at the end of therapy. 

6wP achieved greater or equal reduction in bacterial load from baseline compared to 3HP but at 

a much faster rate and shorter treatment duration. The predicted absolute CFU after treatment 

depended on the baseline bacterial load and the assumption of the balance between immune 

killing and bacterial growth (Supplementary Figure 6.3) and the interspecies ratio of the fraction 

unbound (Supplementary Figure 6.4). A lower baseline CFU, an immune kill rate higher than the 

bacterial growth rate, and an equal interspecies ratio of the fraction unbound each resulted in a 

lower bacterial burden at the end of treatment. The comparative efficacy remained consistent 

between regimens regardless of the assumption. The in silico clinical trial predicted that 12.8% 

of patients would develop active TB (> 4 log10 CFU) with placebo compared to 1.2% or less with 
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a rifapentine-based treatment regimen after 2 years (Figure 6.5). Notably, the predicted clinical 

efficacy was similar between rifapentine-based regimens in the in silico clinical trial. 

 

 

Figure 0.4. Predicted bacterial load over time in humans following LTBI treatment with rifapentine-
containing regimens. 
Panels represent different baseline bacterial loads of 2, 3, and 4 log10 (left to right). Data show median 
(line) and 90% prediction interval (shaded area) based on 500 simulations for each regimen. CFU: colony 
forming unit. 
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Figure 0.5. Kaplan-Meier plot. 
Kaplan-Meier plot of in silico patients treated with rifapentine-based regimens or placebo for LTBI. Clinical 
trial simulations included 1000 patients per arm with baseline log CFU of 2.5 + 0.5. In silico patients were 
followed for 2 years. Active TB was defined as CFU > 4 log10. 
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Discussion 

In this study, we predicted that a 600 mg daily dose of rifapentine monotherapy for 6 

weeks delivered sufficient drug exposure for effective treatment of LTBI based on PK 

simulations of experimental and clinically approved regimens. The cumulative rifapentine drug 

exposure was greater with 600 mg 6wP than the clinically tested regimens of 1HP and 3HP. 

The translational PK-PD predictions showed that 6wP had similar efficacy to those of 1HP and 

3HP, suggesting that clinical efficacy will be similar to that of either combination regimen. 

Currently, there is no established PK-PD relationship or target for rifapentine in the 

treatment of LTBI. Rifamycins are believed to exhibit concentration-dependent killing, and the 

AUC/MIC ratio has been linked to efficacy against TB disease (24, 25). Our PK simulations 

demonstrated that 6wP had an AUC/MIC ratio equivalent to that of 1HP and a higher AUC/MIC 

ratio than that of 3HP. This trend was consistent across other PK/PD indices (e.g., Cmax/MIC 

and time above MIC). 

The role of isoniazid in the efficacy of rifamycin-containing LTBI treatment regimens is 

not well understood. Given the toxicity concerns with isoniazid, rifapentine monotherapy would 

be appealing if it were sufficiently effective. The PK-PD relationships in this study showed that 

adding isoniazid only slightly increased the potency of a daily rifapentine regimen (i.e., 21% 

lower EC50 with 1HP compared to 6wP) and comes with the cost of a cumulative isoniazid 

exposure of 156 mg·h /L over 4 weeks. Our predictions of bacterial burden showed similar 

bacterial burden at 4 weeks with 1HP and 6wP and similar bacterial burden at the end of 

treatment with 3HP and 6wP, which were lower than those with 1HP. Furthermore, the in silico 

clinical trial showed no difference in the probability of active TB between regimens. This 

suggests that the clinical efficacy of 6wP would likely be similar to those of 1HP and 3HP and 

promotes the elimination of isoniazid from ultrashort-course LTBI regimens.  
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The PK-PD relationship in the paucibacillary mouse model of LTBI was established with 

a few assumptions. The mouse PD data from which the PK-PD model was built is based on 

investigated regimens that mimicked rifapentine monotherapy and in combination with isoniazid, 

but dose-ranging was only available for rifapentine monotherapy. As such, a continuous 

concentration-response relationship could only be estimated for rifapentine monotherapy. The 

maximum effect (Emax) of combination regimens was assumed to be equal to that estimated for 

rifapentine monotherapy from the dose-ranging data and only the EC50 (potency) differed by 

regimen. This assumption is reasonable as rifamycins are thought to drive bacterial killing. 

Another assumption was that the net bacterial growth rate (Knet) (in the absence of drug killing) 

was the same in untreated and treated mice. Despite these assumptions, the visual predictive 

checks and model diagnostics demonstrated good predictability of our mouse PD model. 

The absolute bacterial burden at the end of treatment was dependent on the baseline 

bacterial load and the human immune effect assumption. Post-mortem examination of 

apparently healed tuberculous lesions and adjacent areas have found viable bacteria in smear-

negative lesions suggesting that the bacterial burden in latent tuberculous lesions is less than 4 

log10 CFU/mL (21, 22), the lower limit of sensitivity of acid-fast smears for detection of M. 

tuberculosis (Mtb). As such, the median baseline bacterial load for clinical efficacy predictions 

was assumed to be 2, 3, or 4 log10 CFU with active infection defined as > 4 log10 CFU. While 

complete eradication of bacteria was only achieved with a baseline bacterial load of 2 log10 

CFU, all regimens showed <1.2% active patients at the end of a 2-year trial period, consistent 

with LTBI clinical trials. The true range and distribution of baseline bacterial load in individuals 

with LTBI is unknown. It is also unknown what end-of-treatment bacterial load is sufficient for 

clinical success of LTBI treatment, typically defined as lack of confirmed active TB after a 2-5 

year follow up period. LTBI is diagnosed by immune response to Mtb antigen, and Mtb bacteria 

are undetectable in clinical samples else the individual is considered to have active disease (1). 

Further, we assumed that immune killing of bacteria was in equilibrium with bacterial growth. 
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While this is an accepted phenomenon, it is likely an oversimplification of reality. There is 

increasing recognition that tuberculosis is more heterogeneous than a two-state condition (i.e., 

active or latent) and likely exists on a spectrum from complete immune dominance (successful 

bacterium elimination but retained immune memory) to bacterial dominance (resulting in active 

disease) (27–30). Assuming modest immune dominance over bacterial growth (Knet = -0.01 day-

1) and baseline bacterial load of < 4 log10 CFU, all regimens were predicted to have 90% of 

individuals with less than 1 log10 CFU at 1-year post-treatment start. As such, given the 

unknowns with LTBI, our clinical efficacy simulations are not contradictory to the Phase 3 

clinical trial results for 1HP and 3HP. Importantly, our predictions showed that 6wP efficacy is 

within the efficacy range of 1HP and 3HP, implying that 6wP would perform equally well. 

       There were limitations of this study. First, there is a lack of good clinical PK or PK/PD 

targets for LTBI regimens linking rifapentine exposure to efficacy. We compared drug exposures 

and translational efficacy of the 600 mg 6wP experimental regimen with regimens that have 

demonstrated clinical efficacy (i.e., 1HP and 3HP). Second, assumptions were made with the 

translational PK-PD model. In addition to those already mentioned is that rifapentine protein 

binding in mice was equal to that of Wistar rats (another murine species). While this assumption 

would impact the extent of bacterial killing, the relative efficacy of the three regimens would 

remain consistent. The same is true for the other PK-PD assumptions and initial conditions. 

Both the nonclinical experiments and clinical simulation predictions support that 6wP will have 

non-inferior efficacy to both 1HP and 3HP. 

       With the above limitations noted, the following conclusions can be drawn. First, comparison 

of rifapentine clinical PK profiles indicate that 6wP would achieve comparable or superior 

exposure to previously studied regimens of 1HP and 3HP. Second, by quantifying a relationship 

between rifapentine concentration and bacterial kill in mice, we found that the relative efficacy of 

an experimental 6wP regimen at a 600 mg dose level is similar to those of 1HP and 3HP. 

Finally, we conclude that isoniazid’s contribution to efficacy is minimal in ultrashort-course 
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regimens where rifapentine is administered daily. The comparison of PK profiles, nonclinical 

analysis and subsequent clinical simulations performed in this study indicate that 6wP is a 

promising regimen for LTBI and could serve as a safer, simpler solution for TB prevention.   
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Supplementary Material 

Mouse PK model methods and results: rifapentine 

All animal procedures were approved by the Institutional Animal Care and Use of 

Committee of Johns Hopkins University unless otherwise specified from the original publication. 

Plasma concentration data was acquired from three different studies which included oral 

rifapentine dosing as follows: once daily dosing with 5, 10, and 20 mg/kg (1, 2); once daily 

dosing ranging with 0.1 to 3 mg/kg for 10 days (low-dose PK study, unpublished); and twice 

daily dosing with 0.075 to 1.25 mg/kg for 3 weeks (low-dose PK-PD study, unpublished). For 

unpublished studies, mouse sourcing and husbandry (including ethical approvals), drug 

preparation and dosing, PK sampling, and plasma drug measurements were conducted as 

previously described (1, 3).  

PK data were log-transformed and modelled in NONMEM 7.4. The data fit a one-

compartment model with non-linear elimination. Estimating relative bioavailability for the two 

highest doses (10 and 20 mg/kg) improved the model fit. Inter-mouse variability was tested on 

all parameters and was best applied to the Michaelis-Menten rate constant (Km). The final PK 

parameters are shown in Supplementary Table 6.1.  
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Supplementary Table 0.1. Rifapentine pharmacokinetic parameters in the mouse model. 
Parameter Description Value (RSE) 

V (L) Volume of distribution 15.0 (0.051) 

Vmax (L) Maximum velocity 10.0 (0.549) 

km (µg/mL) Michaelis-Menten constant 18.4 (0.628) 

KA (hr-1) Absorption rate constant 2.15 (0.196) 

F_10 Relative bioavailability of 10 mg/kg dose 0.603 (0.178) 

F_20 Relative bioavailability of 20 mg/kg dose 0.533 (0.304) 

IIV_KM (%CV) Inter-individual variability on Michaelis-Menten constant 13.6 (0.268) 

ADD (mcg/L) Additive residual error 0.373 (0.051) 
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Supplementary Figure 0.1. Prediction-corrected visual predictive check of mouse rifapentine 
pharmacokinetic model. The blue circles are the observed, prediction-corrected, log-transformed, 
rifapentine concentrations (log[mg/L]). The solid and dashed red lines represent the median, 5th and 95th 
percentiles of observed prediction-corrected data. The shaded areas represent the simulation-based 
prediction-corrected 95% confidence interval for the median (red) and 5th and 95th percentiles (blue). 
 

Mouse PK model methods & results: isoniazid 

Plasma concentration data was acquired from a study of mice orally treated with a single 

dose of isoniazid at 1.56, 6.25 and 25 mg/kg (4). Extensive sampling was conducted by drawing 

blood samples at 15 min, 30 min, 1, 2, 4, and 8 hours post-dose. PK data was modelled in 

NONMEM 7.4. Model building procedures and results were described previously (2).  
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Low-dose mouse PK-PD study methods 

Low-dose, oral rifapentine regimens, with twice daily dosing at 0.075 to 1.25 mg/kg, 

administered for 3 weeks, were evaluated in a validated mouse model of TB preventive therapy, 

as previously described [5, 6]. Mouse procedures, rifapentine dosing, and PK methods are 

described above in “Mouse PK model methods & results: rifapentine.” For PD data, lung CFU 

were determined after infection and at the start (baseline) and end of treatment, as previously 

described [5, 6]. 
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Supplementary Figure 0.2. Prediction-corrected visual predictive check of the latent tuberculosis 
pharmacodynamic model. The blue circles are the observed CFU and the solid and dashed red lines 
represent the median, 10th, and 90th percentiles of observed CFU, respectively. Observed data were 
prediction-corrected according to Bergstrand et al. (7) given large dose range. The shaded areas 
represent the simulation-based 95% confidence interval for the median (red) and the 10th and 90th 
prediction intervals (blue) following 500 simulations. 
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Supplementary Figure 0.3. Clinical efficacy predictions under different immune effect 
assumptions. The top row assumes equilibrium between bacterial growth and immune pressure. The 
middle row assumes immune dominance with a negative net growth adding to drug effect (Knet = - 0.01 
day-1). The bottom row assumes bacterial proliferation with a positive net growth counteracting drug effect 
(Knet = 0.01 day-1). Data show median (line) and 90% prediction interval (shaded area) based on 500 
simulations for each regimen. CFU = colony forming unit. 
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Supplementary Figure 0.4. Predicted bacterial load overtime under different assumptions of the 
interspecies ratio of fraction unbound. The top panel depicts results under the assumption that protein 
binding in mice is the same as Wistar rats, resulting in an unbound ratio of 0.422. The bottom panel 
depicts results under the assumption that protein binding in mice is equal to humans. Data show median 
(line) and 90% prediction interval (shaded area) based on 500 simulations for each regimen. CFU = 
colony forming unit. 
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Chapter 7: Conclusions 
The work presented in this dissertation establishes a basis for nonclinical-clinical 

translation in TB drug development through development of data-driven models evaluating the  

ability of drugs to penetrate lesions and to kill bacteria in active and latent infection. The model 

frameworks integrated a compendium of experimental data to predict clinical efficacy and to 

contribute toward development of model-based translation methods.  

The review of current animal models and translational approaches available illustrated 

that it is not lack of data, but lack of data integration that is needed for accurate translation into 

the clinic. Translational models, both empirical and mechanistic, provide solutions to integrate 

data from varying sources in a quantitative way and to increase predictive accuracy. Here, two 

frameworks are applied to transform nonclinical data to portable learnings of pharmacology and 

to aid in clinical decision-making. 

The hallmark of tuberculosis is immune infiltrate that form granulomas, and in mature 

states, necrotic centers. The rabbit model of tuberculosis recapitulates the hallmarks of 

pulmonary tuberculosis disease seen in humans. Using PK data collected from systemic 

circulation and heterogenous lung pathology in rabbits, models describing the kinetics of drug 

from absorption in the gut to distribution to sites of action were developed and integrated with 

available clinical population PK models to predict the concentration at the site of action in 

humans. In vitro and ex vivo potency values were used to assess whether therapeutic 

concentrations were achieved. Using this approach, we predicted drug lesion penetration and 

calculated PK/PD indices in diverse lesion microenvironments for two aminoglycosides, 

kanamycin and amikacin, and a macrolide, clarithromycin.  

Kanamycin and amikacin are second-line injectables used in multidrug-resistant TB. 

However, there has been limited evidence of their clinical utility in large retrospective studies 

and meta-analyses. In addition, their introduction and widespread use occurred without rigorous 

assessment in the currently available tools and before drug concentration data was regularly 
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collected. In this work, kanamycin and amikacin were quantified in rabbit uninvolved lung, 

cellular lesions, caseous lesions, and caseum after a dose equivalent to an intramuscular dose 

of 1,000 mg in humans. Overall, amikacin exposures were greater than kanamycin in all lesion 

compartments. When integrated with clinical population PK models, the predicted lesion 

concentrations were less than expected to have an effect. The finding confirms the clinical 

observation that adding aminoglycosides to multidrug regimens has little benefit and suggests a 

basis for the limited utility of these two long-standing, widely used aminoglycosides. Importantly, 

these frameworks are currently being used to assess high-priority drugs in Phase 1 and 2 and to 

construct untested multidrug regimens. 

Clarithromycin is the cornerstone of treatment in non-tuberculous mycobacteria 

pulmonary disease (NTM-PD) infections. Two species of NTM were included in the study – 

Mycobacteria avium, the most prevalent worldwide, and Mycobacteria abscessus, for which 

cure is not guaranteed in all patients. While minimum inhibitory concentration (MIC) is low, high 

concentrations are needed to induce a bactericidal effect. Leveraging the pathological 

similarities to TB, the rabbit model of active TB was used to assess site of action PK-PD. 

Concentrations expected to inhibit growth of bacteria were achieved in all compartments for 

both species of NTM even when corrected for the unbound drug concentration. However, 

concentrations expected to kill bacteria were not achieved despite the high accumulation in 

tissue compared to plasma. The findings indicate 1) clarithromycin’s limited ability to produce 

reliable cure may be due to pharmacodynamic rather than pharmacokinetic deficits, and 2) 

commonly used metrics such as indexing plasma concentration to MIC may not be the most 

accurate measure of efficacy. Importantly, this approach can be implemented to evaluate other 

drug candidates for NTM-PD. 

Chapter 4 extends the site-of-action model to describe with high resolution the diffusion 

of drug from the cellular rim of necrotic lesions into avascular caseum. Using a new method, 

laser capture microdissection, caseum was dissected into concentric sections and drug was 
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quantified in each sample using liquid chromatography coupled to tandem mass spectrometry. 

Our findings revealed that two diarylquinolines, BDQ and TBAJ-587, achieve therapeutic 

concentrations within avascular caseum at depths of over 1,000 micrometers. TBAJ-587 may 

have a more favorable profile due to the faster clearance out of the lesion compared to BDQ 

which is expected to persist for over two years after the end of treatment. The findings could 

explain, in part, the slow onset of BDQ efficacy and provide a rationale for the rapidly growing 

body of evidence of BDQ resistance. 

The nonclinical model with the largest database of in vivo efficacy data for TB drugs is 

the BALB/c mouse infected with wild-type strain H37Rv Mycobacteria tuberculosis. Drugs are 

given orally after infection and response is usually measured as lung CFU counts at one- and 

two-months post-treatment. We developed a translational modeling platform that leverages this 

database and uses baseline infection, immune-dependent bacterial growth kinetics, and drug-

dependent bactericidal effect to estimate portable efficacy parameters. We illustrate that our 

model can accurately predict the outcome of 14 clinical trials for nine different drugs. The 

platform serves to inform, or even replace Phase 2a EBA trials, to better link drug response 

between species, and to substantially accelerate drug development. 

Chapter 6 applies a similar methodology as the Phase 2a translational model to 

compare efficacy of three rifapentine-containing regimens for latent tuberculosis. We estimate 

that daily rifapentine alone taken for 6 weeks has similar efficacy to approved rifapentine-

isoniazid combination regimens (3HP and 1HP). Results of the ASTERoiD trial 

(ClinicalTrials.gov identifier NCT03474029) testing the novel therapy against 3HP are expected 

December 2023. 

In summary, we applied model-based approaches to improve the translation of 

nonclinical findings to support regimen prioritization for TB clinical trials. The presented work 

establishes the basis for future evaluation of drugs in development and in bringing effective 

short-course therapeutics to combat the TB global health crisis. 
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