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Learning Chemical Sensitivity to Understand Disease Mechanisms 

William T. Connell 

Abstract 

Patients differ in their response to clinical interventions. Both genetics and the 

environment contribute to the phenotype of a patient after a chemical intervention such as a 

drug[1,2]. Well-validated interventions have large population effect sizes, meaning they are 

valuable for an individual on average[3–5]. However, for complex conditions such as 

autoimmune disease and cancer, the precise outcomes of chemical interventions remain 

difficult to predict for an individual patient[6,7]. Here we present methods for predicting 

chemical response and apply these methods to understand biological mechanisms. We discover 

a new biomarker associated with psoriasis patient response to the drug ustekinumab and use 

this biomarker to stratify patient populations at various clinical endpoints. Moving beyond 

association analyses, we develop a machine learning model that integrates chemical structures 

and gene expression information to predict cellular responses to hundreds of chemicals, and 

apply methods to investigate how this model works. Finally, we improve model generalizability 

by pretraining a new model on massive amounts of gene expression data and then applying it 

to downstream prediction tasks. This work contributes models that predict biological responses 

to chemicals and methods to interpret how these models work. We anticipate this work will 

advance precision medicine by improving the ability to predict how patients respond to drugs. 

Simultaneously, this work provides an in silico platform for screening new biological models 

against a diverse set of chemical probes. Lastly, our pretrained model may find broad 
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applications in phenotype prediction tasks ranging from disease risk modeling to drug response 

prediction. 
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 Introduction 

A phenotype is an observable trait of an organism. We largely rely on phenotypic 

change as an indicator of physical health: disease occurs upon deviation from a healthy 

baseline. Medical professionals quantify how well a treatment reverses disease by measuring a 

patient’s phenotype before and after an intervention. The magnitude of this effect indicates 

whether an intervention is beneficial. Well-validated interventions have large population effect 

sizes, meaning they are valuable for an individual on average[3–5]. However, the precise 

outcomes of interventions remain difficult to predict on an individual patient basis[6,7]. This is 

especially evident for targeted chemical interventions, also known as drugs. Precision medicine 

is the promise of making treatment decisions for an individual in consideration of their genetics 

and environment[7,8]. To get there, we require computational methods that accurately predict 

the physical outcome of an intervention. In this work, I develop methods for predicting 

biological responses to chemicals and investigate the molecular patterns on which these 

methods rely. 

There are several possible ways to model the relationship between molecular biology, 

chemical intervention, and patient response. Association analyses facilitate a straightforward 

interpretation of the relationship between molecular features and a phenotype[3]. However, 

due to the univariate specification of these models, association studies of complex diseases do 

not extrapolate well to predict outcomes for new patients. On the other hand, multivariate 

models predict phenotypes for new patients reasonably well but these models are challenging 

to interpret[9]. In the first chapter of my dissertation, we analyze the association between 
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genetic variants and psoriasis patient response to the drug ustekinumab. There are several 

drugs available for the treatment of psoriasis, a complex autoimmune disease[10]. Our analysis 

discovers genetic biomarkers that may inform clinical drug selection decisions for psoriasis 

patients. In the second chapter, we build on this line of work and propose a method that uses 

diverse data modalities to predict cellular response to a large panel of chemical probes. We 

show in silico chemical screening can be used to guide treatment decisions for cancer patients 

and discover mechanisms of chemical response. In the third chapter, we propose a method for 

learning general biological patterns that may be applied to various downstream tasks. This 

model provides a foundation to potentially predict diverse phenotypes, which we examine for 

drug response. In summary, this work presents methods for learning chemical sensitivity and 

applies these methods to understand biological mechanisms. 

Patients respond differently to the same drug, which we observe as a response 

distribution. Knowing which genetic features are linked to drug response informs clinical 

treatment decisions[7]. The field of pharmacogenomics associates genetic features with drug 

response, supporting treatment decisions for complex conditions such as autoimmune disease 

and cancer[5,6]. Furthermore, genetic associations with drug response may not only reveal 

biomarkers but may also suggest disease mechanisms. We applied a genome-wide association 

study (GWAS) to examine the link between genetic variants and the response of psoriasis 

patients to the drug ustekinumab. Multiple monoclonal antibody treatments are available for 

psoriasis treatment, posing a need to support treatment decisions with molecular 

information[10]. We tested millions of genetic variants for association with response to 

ustekinumab[11]. Our analysis discovered biomarkers that may help guide treatment decisions 
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and map the molecular mechanisms underlying psoriasis. Association analyses apply a 

straightforward model which tests whether a single genetic variant predicts response, yielding 

an interpretable effect size. Such a univariate model is unlikely to either causally explain or 

predict a phenotype with high accuracy. These limitations beg methodology improvements that 

consider multiple features to extend predictive ability to many drugs. 

Models that accurately predict the result of an intervention are not only valuable for 

making patient treatment decisions but also for determining molecular functions. A clinical 

study exploits natural biological variance to make response associations. A laboratory 

experiment, on the other hand, engineers biological changes in order to test for differences in 

response. In chemical biology, compounds with known mechanisms are used as tools to assess 

the functions of molecular components. These chemicals are known as probes because they 

intervene in defined biological processes and can therefore reveal dependence on a known 

mechanism[12]. Such an experiment measures the response of a normal and engineered 

biological model to a chemical probe. The altered biological component is involved in the 

chemical mechanism if there is a difference in response. Researchers often apply this type of 

experiment in the lab; however, scaling this approach to many biological models and chemical 

probes is prohibitively resource intensive. To provide access to large scale chemical probing, we 

built a model that accurately predicts the response of new biological models to a set of 545 

diverse chemical probes and drugs[13]. This model, ChemProbe, combines transcriptome 

profiles and chemical structures to make accurate phenotype predictions. ChemProbe 

successfully predicted drug responses both retrospectively for patients in clinical trials and 

prospectively for new cell lines in vitro. To highlight the application of this model for discovery 
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research, we screened a genetically modified cell line against hundreds of chemical probes and 

validated a resistance function of the altered gene. Not only can our model support clinical 

treatment decisions, but ChemProbe can be applied to screen molecularly altered cell lines to 

discover mechanisms of chemical sensitivity and resistance.  

It is relatively difficult to interpret which of many features a complex model, such as a 

neural network, relies on to make predictions. With ChemProbe we overcame this shortcoming 

by rigorously evaluating a model interpretation method. Our analysis revealed ChemProbe 

relies on similar gene expression patterns to make sensitivity predictions for compounds with 

the same target. Moreover, similarity analysis of model interpretations reflected network 

biology and molecular ontologies. ChemProbe's in silico chemical screening paradigm allows 

users to test the response of new biological models and patient tumors to many chemical 

probes, as well as understand how predictions are made. ChemProbe is still limited to 

predicting response to a finite set of chemical interventions. To advance precision medicine we 

require models that generalize to diverse phenotype prediction tasks. 

Models that successfully predict many complex phenotypes will advance patient 

treatment. Current machine learning paradigms are relatively narrow in application: a model 

trained on a curated dataset will only apply to data from the same narrow distribution[14]. 

Supervised models inevitably fail when challenged with a distribution shift or a new task[15]. 

Some of this brittleness stems from the difficulty in obtaining enough labeled examples to train 

supervised models. Recent work in natural language processing (NLP) and computer vision (CV) 

leverages massive, unlabeled datasets to train models that learn general patterns and can be 
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“fine-tuned” on smaller, labeled datasets[16–18]. In fact, practitioners can reliably fine-tune 

these models on a diverse selection of tasks and increase predictive performance[19]. This 

approach, based on self-supervised learning, has found recent applications in biology, most 

notably in protein language modeling[20–23]. We hypothesized that training a language model 

on atlas-level single-cell RNA sequencing data would enable transfer learning on a range of 

phenotype prediction tasks. We built Exceiver, an attention-based neural network and 

formulated a novel self-supervised task for continuous values to train our model[24]. We found 

the latent representations of both individual cells and learned gene embeddings reflected 

biological annotations. Exceiver also learned expression patterns from a new dataset much 

more quickly than a model trained from scratch. We tested Exceiver in a transfer learning 

scenario and found robust generalization to several drug response prediction tasks. Exceiver 

helps to generalize our previous modeling efforts by capturing gene expression patterns useful 

for many different downstream tasks. As molecular measurement platforms continue to scale, 

computational methods that leverage unlabeled datasets will be essential for building general 

predictive systems for biology.  
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Chapter 1: Genome-wide association study of ustekinumab in 

psoriasis 
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1.1 Summary 

Heterogeneous genetic and environmental factors contribute to the psoriasis 

phenotype, resulting in a wide range of patient response to targeted therapies. Here, we 

investigate genetic factors associated with response to the IL-12/23 inhibitor ustekinumab in 

psoriasis. To date, only HLA-C*06:02 has been consistently reported to associate with 

ustekinumab response in psoriasis. Genome-wide association testing was performed on the 

continuous outcome of percent change in Psoriasis Area Severity Index (PASI) at 12 weeks of 

ustekinumab therapy relative to baseline. A total of 439 European ancestry individuals with 

psoriasis were included (mean age, 46.6 years; 277 men [63.1%]). 310 (70.6%) of the 

participants comprised the discovery cohort and the remaining 129 (29.4%) individuals 

comprised the validation cohort. Chromosome 4 variant rs35569429 was significantly 

associated with ustekinumab response at 12 weeks at a genome-wide significant level in the 

discovery cohort and replicated in the validation cohort. Of psoriasis subjects with at least one 

copy of the deletion allele of rs35569429, 44% achieved PASI75 (75% improvement in PASI from 

baseline) at week 12 of ustekinumab treatment, while for subjects without the deletion allele, 

75% achieved PASI75 at week 12. We found that differences in treatment response increased 

when rs35569429 was considered alongside HLA-C*06:02. Psoriasis patients with the deletion 

allele of rs35569429 who were HLA-C*06:02 negative had a PASI75 response rate of 35% at 

week 12, while those without the deletion allele who were HLA-C*06:02 positive had a PASI75 

response rate of 82% at week 12. Through GWAS, we identified a novel SNP that is potentially 

associated with response to ustekinumab in psoriasis. Additional studies are needed to confirm 

these findings. 
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1.2  Introduction 

Psoriasis is a common, chronic immune-mediated skin disease that affects at least 2% of 

the population worldwide[25]. Psoriasis is associated with psoriatic arthritis, cardiovascular 

disease, metabolic syndrome, and other comorbidities, which makes effective management of 

psoriasis critical. Moderate-to-severe psoriasis is treated with phototherapy and systemic 

agents, including targeted biologic inhibitors of TNF-𝛼, IL-12/23, IL-17, and IL-23. Patient 

responses to biologic therapy can vary widely, from poor overall response to gradual loss of 

therapeutic sensitivity[26]. Response differences are largely influenced by patient weight and 

adherence, drug dose and bioavailability, and pharmacokinetic covariates, such as drug 

immunogenicity[27]. The molecular heterogeneity of psoriasis may also contribute to 

differential therapeutic responses. However, there are no molecular biomarkers routinely used 

in clinical practice to facilitate selection of the therapies tailored to individual patients. 

Ustekinumab is a fully humanized immunoglobulin monoclonal antibody targeting the 

p40 subunit shared by IL-12 and IL-23. Phase 3 clinical trials showed that treatment with 

ustekinumab results in 75% improvement in the Psoriasis Area and Severity Index (PASI75) in 

~66% of patients after 12 weeks of therapy[28–30]. Candidate gene studies have identified the 

HLA-C*06:02 allele as being associated with better ustekinumab responses in both European 

and Chinese patients with psoriasis[31–34]. A meta-analysis of eight studies including 1048 

psoriasis patients showed that HLA-C*06:02 positive patients had a median PASI75 response 

rate of 92% after 6 months of ustekinumab therapy compared to a median PASI75 response 

rate of 67% in the HLA-C*06:02 negative patients[35].  
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Here, we performed an unbiased genome-wide association study (GWAS) to evaluate if 

additional genetic factors were associated with ustekinumab response. We evaluated our 

findings across multiple response timepoints and in conjunction with HLA-C*06:02. Our findings 

highlight a potentially novel variant associated with ustekinumab response in psoriasis, which 

may further facilitate the development of precision medicine approaches. 

1.3  Results 

I. Clinical characteristics do not correlate with ustekinumab response 

In this study, we analyzed genetic data from two cohorts of psoriasis patients receiving 

ustekinumab. Following preprocessing and filtering for individuals of European genetic 

ancestry, the discovery cohort (cohort 1) totaled 310 individuals (181 males, 171 females) and 

the validation cohort (cohort 2) totaled 129 individuals (82 males, 47 females) (Figure 1-1). The 

average PASI score at baseline was 18.6 for cohort 1 and 18.8 for cohort 2 (Supplementary 

Table 1-1). Power analysis revealed the discovery cohort had 1-β>0.75 for MAF>0.05 and ES>7. 

The replication cohort had 1-β>0.75 for MAF>0.05 and ES>5 (Supplementary Figure 1-2). We 

used linear regression to perform genome-wide association testing on the percent 

improvement in PASI response at week 12 of ustekinumab therapy compared to baseline 

(Figure 1-1). There was no correlation between age, BMI, and duration of the disease with the 

primary outcome of percent PASI improvement, and so these clinical variables were not 
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included as covariates in the linear regression model (Supplementary Figure 1-1). 

 

Figure 1-1. Association analysis design and primary outcome. 
(a) Association analysis design and primary outcome. Phase 3 clinical trial comprise 

discovery and validation cohorts 
(b) Histogram of cohort 1 percent PASI improvement at week 12; dashed line marks 75% 

improvement threshold 

 

II. rs35569429 is associated with discrete levels of ustekinumab response 

Genome-wide association testing of subjects in cohort 1 identified a single peak on 

chromosome 4 exceeding a genome-wide significance threshold of p<5×10-8 lead by 

rs35569429 (𝛽, -19.84; 95% CI, -26.58 to -13.1;  p=1.98×10-8) (Figure 1-2, Table 1-1). Directly 

genotyped SNP rs11722643 was in high linkage disequilibrium with imputed SNP rs35569429 
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and achieved a similar level of significance (R2, 0.9; 𝛽, -19.31; 95% CI, -26.33 to -12.29;  

p=1.44×10-7). To determine whether multiple SNPs contributed to the peak on chromosome 4, 

we performed conditional analysis on rs35569429. The conditional analysis completely 

attenuated the GWAS peak, indicating a single independent signal at this locus (Figure 1-2). The 

major allele of rs35569429 is “G” while the minor allele is a single nucleotide deletion of G, 

denoted as “Del”. Subjects with at least one minor allele were labeled as the deletion positive 

group (Del+, N=55), and subjects with zero minor alleles were labeled the deletion negative 

group (Del-, N=255). Only one subject was homozygous for the minor allele. To understand the 

impact of this SNP at various discrete levels of PASI response, we examined the proportions of 

Del- and Del+ individuals who achieved PASI50, PASI75, PASI90, and PASI100 at Week 12.  We 

found that in the Del- group, 235/255 (92.2%) achieved PASI50, 191/255 (74.9%) achieved 

PASI75, 121/255 (47.5%) achieved PASI90, and 48/255 (18.8%) achieved PASI100 at Week 12. In 

the Del+ group, 39/55 (80.9%) achieved PASI50, 24/55 (43.6%) achieved PASI75, 12/55 (21.8%) 

achieved PASI90, 5/55 (9.1%) achieved PASI100 at Week 12.  

Table 1-1. Cohort 1, 2 and combined association analysis results. 
Abbreviations: MAF, mean allele frequency. 

 SNP MAF 𝛽 P value 

Cohort 1 rs35569429 0.090 -19.84 1.98E-08  

Cohort 2 rs35569429 0.097 -6.71 0.042  

Cohort 1+2 
Analysis 

rs35569429 0.092 -15.83 2.42E-09 
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Figure 1-2. Cohort 1 association analysis results. 
(a) Genome-wide association Manhattan plot. Blue indicates variants in high linkage 

disequilibrium (R2>0.95) with rs35569429. 
(b) Regional Manhattan plot. 
(c) Conditional association analysis Manhattan plot. 

 

III. rs35569429 is associated with ustekinumab response at multiple timepoints 

To further investigate the validity of rs35569429, we analyzed its association with PASI 

outcomes in cohort 1 at timepoints that were not part of the original GWAS analysis (i.e. 
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timepoints other than week 12). We found that a greater proportion of individuals in the Del- 

group achieved PASI75 compared to the Del+ group at Week 2 (1.57% vs 0%), Week 4 (17.6% vs 

10.9%), Week 24 (76.5% vs 61.8%), and Week 28 (73.3% vs 52.7%) (Figure 1-3). Similarly, the 

Del- group had a higher proportion of individuals achieving PASI50, PASI90, and PASI100 than 

the Del+ group at weeks 2, 4, 24, and 28. The difference in PASI responses between Del- and 

Del+ groups were generally comparable if not greater than the difference in PASI responses 

between HLA-C*06:02 positive and HLA-C*06:02 negative individuals (Figure 1-3), where HLA-

C*06:02 represents a previously well-validated locus associated with ustekinumab 

response[35].  

 

Figure 1-3. Percent of psoriasis patients achieving PASI thresholds according to genotype. 
(a) PASI 50, 75, 90 and 100 achievement across weeks 2, 4, 12, 24 and 28 for rs35569429 

genotype. 
(b) PASI achievement across weeks for HLA-C*06:03 genotypes. 

 

IV. rs35569429 association is replicated in an independent cohort 

We next investigated the association of rs35569429 with response to ustekinumab in an 

independent cohort 2. We found the same direction of effect at week 12 for rs35569429 (𝛽, -
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6.71; 95% CI, -13.13 to -0.30; P=0.042) (Table 1-1). In the Del- group, 102/106 (94.5%) subjects 

achieved PASI50, 81/106 (76.4%) subjects achieved PASI75, 45/106 (42.5%) achieved PASI90, 

and 26/106 (24.5%) achieved PASI100 at Week 12. In the Del+ group, 20/23 (87.0%) subjects 

achieved PASI50, 13/23 (56.5%) achieved PASI75, 9/23 (39.1%) achieved PASI90, and 2/23 

(8.7%) achieved PASI100 at Week 12. Association testing for rs35569429 in cohort 1 and cohort 

2 combined at week 12 yielded a genome-wide significant result (𝛽, -15.83; 95% CI, -20.72 to -

10.74; p=2.42×10-9). We ran a sensitivity analysis on the full sample of cohorts 1 and 2 

combined at week 12. We observed the expected genome-wide significant peak at rs35569429, 

with the most significant SNP being rs11722643, which is in high linkage disequilibrium with 

rs35569429 (R2, 0.88; 𝛽, -16.64; 95% CI, -22.04 to -11.25; p=3.25×10-9). We also observed a 

single additional genome-wide significant loci on chromosome 14, which could not be further 

confirmed (rs994384156; 𝛽, -14.94; 95% CI, -20.02 to -9.86; p=1.58×10-8).  

V. rs35569429 and HLA-C*06:02 combination stratifies responders and non-responders 

Finally, we explored how the combination of rs35569429 and HLA-C*06:02 affects 

PASI75 response in cohort 1 and 2 at week 12, since HLA-C*06:02 is an allele previously 

established to be associated with a more favorable responses to ustekinumab in psoriasis (11). 

In cohort 1 at week 12, 82.4% Del-/HLA-C*06:02+ individuals achieved PASI75 compared to 

68.8% in Del-/HLA-C*06:02-, 61.1% in Del+/HLA-C*06:02+, and 35.1% in Del+/HLA-C*06:02- 

(Figure 1-4). In cohort 2 at week 12, 88.6% Del-/HLA-C*06:02+ individuals achieved PASI75 

compared to 79.2% in Del-/HLA-C*06:02-, 72.7% in Del+/HLA-C*06:02+, and 50.0% in Del+/HLA-

C*06:02-. In cohort 1 and cohort 2 combined at week 12, 84.4% Del-/HLA-C*06:02+ individuals 
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achieved PASI75 compared to 71.6% in Del-/HLA-C*06:02-, 65.5% in Del+/HLA-C*06:02+, and 

38.8% in Del+/HLA-C*06:02. 

 

Figure 1-4. Percent of psoriasis patients achieving PASI75 at week 12. 
*p<=5×10-2; **p<=1×10-2; ***p<=1×10-3; ****p<=1×10-4. 

 

1.4  Discussion 

This genetic association study found a genome-wide significant association between 

intergenic variant rs35569429 and response to ustekinumab for the treatment of moderate to 

severe psoriasis. In our primary association analysis, absence of the minor allele (Del-) was 

significantly associated with a larger PASI improvement at 12 weeks from baseline. More 

favorable PASI responses in Del- individuals compared to Del+ individuals were also observed at 

weeks 2, 4, 24, and 28. The association of rs35569429 with ustekinumab response was 

validated in an independent cohort of psoriasis patients. Conditional analysis revealed a single 

independent signal at the locus of interest.  

rs35569429 is characterized by a G deletion minor allele. This variant is located in an 

intergenic region 9 kB upstream of WDR1. Functional analysis by GeneHancer Regulatory 
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Elements strongly associates a 10.6 kB region (GH04J010114) 1.2 kB downstream of this variant 

with promoter/enhancer activity influencing proximal protein coding genes WDR1 and 

SLC2A9[36]. The WDR1 protein is involved in actin filament disassembly, a critical process of 

cytoskeleton dynamics, especially in highly motile and interacting immune cells[37]. Impaired 

actin dynamics as a result of WDR1 deficiency have been causally linked to primary 

immunodeficiencies and autoinflammatory phenotypes[38,39]. SLC2A9 is a transporter mainly 

expressed in the kidneys and primarily involved in urate reabsorption. Mutations of SLC2A9 

lead to poor reabsorption and Renal Hypouricemia type-2, as caused by increased urate 

excretion[40]. Future studies are needed to fine-map the causal and functional SNPs in linkage 

disequilibrium with rs35569429. 

Stratification of ustekinumab responses was greatest when rs35569429 was considered 

in combination with HLA-C*06:02. Individuals who were Del-/HLA-C*06:02+ achieved PASI75 

84.4% of the time, while those were Del+/HLA-C*06:02- achieved PASI75 38.8% of the time, a 

more than two-fold difference. 

Pharmacogenomics continues to play an increasingly important role in precision 

medicine for dermatology. In 2018, five dermatologic drugs had clinically actionable 

pharmacogenomic tags that either require or advise testing of genomic biomarkers before 

treatment[41]. Single FDA-approved biomarkers currently dominate this list; however, multi-

gene marker panels will continue to gain importance for informing clinical decisions. 

Understanding the role of multiple SNPs in disease pathogenesis is important in advancing 

precision medicine.  
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Conclusions from this study are limited due to the moderate sample size of the 

discovery and replication cohorts; our study was not powered for detection of small to 

moderate effects. Given the polygenicity of complex autoimmune diseases such as psoriasis, in 

the future, prospective design of large study cohorts are essential for thorough investigation of 

the biology contributing to therapeutic response. In general, validation in additional, 

independent cohorts will provide evidence with respect to the genomic signals discovered 

herein. Furthermore, the index SNP rs35569429 requires further investigation to identify the 

causal variant(s) associated with this locus and further characterization of functional effects on 

psoriatic response to ustekinumab. 

  



 

 18 

1.5  Materials and methods 

I. Study population 

This study involved analysis of individuals with moderate to severe psoriasis who 

participated in at least one of three placebo-controlled randomized clinical trials: PHOENIX I, 

PHOENIX II, and ACCEPT[28,29,42]. Participants were originally approached for retrospective 

collection of DNA samples by investigators analyzing the association between the HLA-C*06:02 

allele and response to IL-12/23 inhibition[31]. In total, 439 patients of European descent were 

used to assess genetic associations between ustekinumab treatment and response. 

The GWAS discovery cohort consisted of 310 individuals who were treated with 45mg 

(n=146) or 90mg (n=164) of ustekinumab for 40 weeks, with the lower or higher dose given 

according to body weight less than or greater than 100 kg, respectively. The validation cohort 

consisted of 129 trial participants who crossed-over from placebo to ustekinumab treatment at 

week 12 and continued ustekinumab for 16 weeks, again dose-stratified by body weight (45 

mg: n=64; 90 mg: n=65). In both cohorts, ustekinumab was given with two loading doses 4 

weeks apart and every 12 weeks thereafter (Figure 1-1). 

II. Response variables 

In the ustekinumab phase 3 clinical trials, the primary endpoint was achievement of 

PASI75 at week 12. PASI75 is a binary outcome converted from percent PASI improvement from 

baseline. To maximize power for the GWAS, we focused on the continuous outcome measure of 

percent PASI improvement from baseline to 12 weeks after ustekinumab therapy. Phenotypic 
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response to ustekinumab was recorded at weeks 2, 4, 12, 28, and 40 for the majority of 

patients in the discovery cohort (cohort 1). In order to validate findings, the placebo to 

ustekinumab cross-over patients acted as a validation cohort (cohort 2). PASI responses for 

cohort 2 were measured after 12 weeks of ustekinumab therapy compared to trial start. 

III. Genome-wide association study 

Genotyping was performed using Illumina HumanOmni2.5-8 v1.2 BeadChips. Imputation 

was performed using the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/index.html)[43] The 1000 Genomes Phase 3 data was 

used as a reference panel for imputation[44]. Files were converted to PLINK (v1.9) format, 

which along with R (v3.5.1) and python (v3.7.4), was used for data manipulation, visualization, 

and association analysis. Quality control and population stratification was performed following 

methods outlined by Marees et al.[45]. Single nucleotide polymorphisms (SNPs) and individuals 

with missingness greater than 2% were removed. Duplicate, non-biallelic, and poor imputation 

quality (R2<0.7) SNPs were filtered. Non-autosomal SNPs with a low minor allele frequency 

(MAF<0.05) and significant deviation from Hardy-Weinberg equilibrium (p<1×10-6) were 

removed. In total 6,799,417 SNPs passed quality control, of which 1,696,820 were directly 

genotyped. Individuals with a heterozygosity rate +/-3 standard deviation from the mean were 

filtered, as well as the individual with the lowest call rate within a pair of cryptically related 

individuals (𝜋̂>0.2). In total, 310 individuals (181 males, 129 females) passed quality control. 

The previously described quality control steps were applied to the 1000 Genomes Phase 3 data 

prior to merging with cohort data for population stratification. Multidimensional scaling (MDS) 

https://imputationserver.sph.umich.edu/index.html
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was applied to the merged genotype information. The presence of ethnic outliers was 

evaluated by qualitative alignment with the European superpopulation cluster along the top 2 

MDS components. We included the top 10 MDS components as covariates in linear regression 

models for association testing. 

IV. Statistical analysis 

A threshold of p<5×10-8 was established in the discovery cohort to determine the 

associated markers for further replication. We took linkage-disequilibrium into account when 

interpreting multiple significant association results from the same region. Clumping was 

employed to greedily assign groups around index variants with p<5×10-6. Variants with an 

R2>0.5 and less than 1MB away were assigned representation by the index variant. We 

modeled the additive effect of allele dosage with the quantitative phenotype of interest using 

linear regression. When considering cohort 1 index variants in replication analyses, a 2-sided t-

test with p<0.05 was considered statistically significant. A two-sided normal test for proportions 

(p <0.05) was applied to assess PASI threshold achievement differences based on 

genotype. The combined cohort association study followed the same procedures outlined for 

analysis of discovery cohort results. 

V. Power analysis 

We performed power calculations for the discovery and replication cohorts assuming an 

additive linear model for our quantitative trait of interest. Each power calculation was 

performed under consideration of the established type 1 error rates for the respective cohort 
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(cohort 1 α, 5×10-8; cohort 2 α, 5×10-2). We examined power across a range of MAF (0.05-0.25) 

and effect sizes (ES) (1-9). The genpwr (v1.0.4) R package was used for all calculations.  
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1.7 Supplementary material 

Supplementary Table 1-1. Baseline PASI scores. 
Average and standard deviation of baseline PASI for cohort 1, 2 and combined. 

 Baseline avg week 0 STD 

Cohort 1 18.6 6.32 

Cohort 2 18.8 6.62 

Cohort 1+2 18.6 6.40 

 

 

Supplementary Figure 1-1. Correlation between cohort 1 clinical covariates and PASI 
improvement at week 12. 

(a) Age and PASI correlation at week 12. Formula and dashed annotation indicate line of 
best fit. 

(b) BMI and PASI correlation at week 12. 
(c) Disease duration and PASI correlation at week 12. 
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Supplementary Figure 1-2. Power analysis. 
(a) Cohort 1 power analysis across a range of effect sizes (1-9) and minimum allele 

frequencies (0.05-0.25). 
(b) Cohort 2 power analysis.  
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Chapter 2: Learning chemical sensitivity reveals mechanisms of 

cellular response 
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2.1 Summary 

Drugs elicit different responses in individuals with the same disease phenotype. While 

complicating drug selection for a tumor, this variability in response can be used to shed light on 

disease mechanisms. One way to measure response variance is through a diverse chemical 

screen against a variety of biological models, however, this method is unreasonably resource-

intensive. To address this problem, we built a deep learning model that integrates cellular 

features and chemical structures to predict chemical sensitivity to a library of diverse molecular 

probes. Using transcriptomic profiles of 842 cell lines and their viability with 545 small-

molecules, neural networks trained under a conditional formulation generalize to drug 

response in clinical tumor samples and laboratory disease models (R2=0.7113 ± 0.0081). Using 

deep learning interpretation methods, we found highly attributed transcriptome features 

reflect known compound mechanisms of action and biological network modules. Finally, we 

integrate these findings into a new method and nominate genes driving the chemical induction 

of ferroptosis. This in silico cellular screening tool can inform molecular mechanisms of 

response variance and aid precision oncology treatment decisions. 

2.2 Introduction 

Chemical probes are small molecules with high potency and selectivity against a known 

mechanism of action[12]. These tools help define the functions of targeted proteins in 

biological processes and diseases. Target-specific chemical probes have helped us understand 

the cell cytoskeleton, immunosuppresion, mTOR signaling, molecular chaperones, and the 

function of many protein kinases[46,47]. These small molecules have also served as structural 
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seeds for drug development[12]. Drugs are similarly useful as chemical probes despite the fact 

that drugs are ultimately optimized for safety, efficacy, and desirable PK/PD properties. 

Pharmacogenomics leverages clinical observations of drug sensitivity to stratify patient 

populations with biomarkers and uncover disease mechanisms[3,48]. 

 Complex diseases exhibit a similar phenotype due to a variety of mechanisms. In cancer, 

genetic alterations that confer a fitness advantage can accumulate into uncontrolled cellular 

growth over time. Under selection pressure, cancers explore a continuum of molecular 

heterogeneity throughout an individual’s disease progression. Addressing this heterogeneity 

necessitates precision clinical treatment strategies and research into mechanisms that control 

disease resistance and sensitivity[49]. As we improve our understanding of gene expression 

patterns contributing to variance in drug response, we can develop better solutions for cancer 

patients that exploit specific tumor vulnerabilities. 

 To better understand complex disease mechanisms and treat patients precisely, it would 

be ideal to test both new disease models and patient samples against a wide range of chemical 

probes. In such an experiment, a change in cellular sensitivity in a sample relative to a baseline 

indicates reliance on the target of a chemical probe. However, screening biological samples 

against a large library of chemical probes is prohibitively resource intensive. To address this 

problem, we built a model that predicts the sensitivity of new cellular samples to a panel of 

chemical probes and drugs.  

ChemProbe models chemical sensitivity as a function of basal cellular state, thereby 

learning gene abundance patterns that result in specific outcomes (Figure 2-1A). ChemProbe 
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generalizes to new biological samples, and the model permits the interpretation of learned 

gene features relevant to known compound mechanisms. ChemProbe accurately models 

chemical response without biological priors, enabling in silico chemical screening of biological 

models and mechanistic interpretation of learned gene dependencies. 

2.3 Results 

I. Conditional modeling enhances cellular drug sensitivity prediction 

We hypothesized that a model could learn to combine gene expression with chemical 

structure features to predict cellular drug sensitivity (Figure 2-1). We leveraged publicly 

available datasets to match cancer model basal cellular transcriptomes to large-scale drug 

screens. The Cancer Therapeutics Response Portal (CTRP) reports the viability of 842 cancer cell 

lines in response to 545 compounds and compound pairs across a range of concentrations[50]. 

These compounds were originally selected based on their diversity of cell circuitry targets. The 

Cancer Cell Line Encyclopedia (CCLE) provides basal transcriptomic characterizations of all 842 

CTRP cell lines[51]. We combined compound structures and concentrations from the CTRP with 

protein-coding gene transcriptomes from the CCLE to create a dataset of compound-cell line 

pairs consisting of approximately 5.8 million labeled examples (Methods). 

We formulated the cellular drug sensitivity prediction task as a conditional model 𝑦 =

 𝑓(𝑥|𝑛), where 𝑦 is cellular viability, 𝑥 is a matrix of standardized RNA abundance values, and 𝑛 

is a matrix of chemical features (Methods). Thus the model’s prediction of cellular viability 

depends on a cell’s transcriptomic profile in the context of a chemical structure and 

concentration. In practice, the models achieve this by learning to use chemical features to 
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modulate gene expression through linear transformations of internal gene expression 

representations (Figure 2-1). 

 

Figure 2-1. ChemProbe design and model interpretation. 
(a) Workflow of model training, validation, prediction, dose-response modeling, and 

feature attribution. We trained a model to predict drug sensitivity at different 
compound concentrations and fit log-logistic models to predictions. We derived 
compound pharmacodynamics from dose response curves and applied integrated 
gradients to predicted IC50 to derive input feature attributions. IC50, inhibitory 
concentration of compound at 50% cellular viability. 

(b) Architecture of the conditional neural network (ChemProbe) that was trained to predict 
cell line viability from molecular features and compound structure. ChemProbe learns 
an embedding of protein-coding gene expression features conditioned by parameters 
learned from an embedding of compound structure and concentration, across multiple 
neural network layers. 
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(c)  t-SNE decomposition of learned conditioning parameters. Points represent compound-
concentration samples; color indicates compound; size indicates concentration; and 
shape indicates parameter. 

 

We tested several ways to combine cellular features and chemical information within a 

single model, as assessed by their average maximum coefficient of determination (R2). 

Accounting for comparable model sizes, we trained, validated, and hyperparameter-optimized 

different model architectures on the same data folds (Methods). We compared three methods 

of learned feature conditioning against a baseline feature concatenation approach[52]. All 

conditioning approaches outperformed feature concatenation by a notable margin (Table 2-1). 

Among the conditioning models, scaling, shifting, and linearly modulating gene expression by 

chemical features performed similarly. A t-distributed stochastic neighbor embedding (t-SNE) 

decomposition of learned FiLM parameters demonstrated that scaling and shifting operations 

encoded distinct chemical features (Figure 2-1). Hierarchical clustering of scaling (𝛾) parameters 

grouped compounds by identity (Supplementary Figure 2-1), whereas compound concentration 

correlated with the first principal component of shifting (𝛽) parameters (p=1.72e-55, 

Supplementary Figure 2-1). Thus the learned conditioning parameters interpretably reflected 

compound structure and concentration in the drug-response modeling task as an emergent 

property of the training. 
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Table 2-1. Predictive performance of feature modulation models. 
Concatenation of compound features and gene expression features provided a baseline 
performance. Learned conditional transformations performed similarly. Compound structural 
ablation largely reduced predictive capacity. 

Model R2 
concatenation 0.6066 ± 0.0165 
shift 0.7060 ± 0.0304 
scale 0.7113 ± 0.0081 
FiLM 0.7089 ± 0.0040 
Structural ablation 0.3016 ± 0.0304 

 

Cellular response commonly follows a sigmoidal relationship to drug concentration. 

Thus to quantify whether compound dosage alone was driving drug sensitivity predictions, we 

performed a feature ablation control experiment, wherein we purposefully removed crucial 

data from the model’s training and compared it to the actual model. For the “straw model,” we 

replaced chemical fingerprints with unique but structurally uninformative and randomized 

numerical values. The “straw model” trained this way failed catastrophically, consistent with 

the importance of compound structural features in the modeling task (Table 2-1)[53]. Explicitly 

modeling chemical information using conditioning is a valuable inductive bias for chemical 

sensitivity prediction and gives insights into the predictive mechanisms of the model. We 

averaged predictions from an ensemble of 5 ChemProbe FiLM models trained on independent 

data folds in subsequent experiments. 

II. ChemProbe predicts breast cancer patient response 

We next asked whether learned transcriptional patterns would generalize to an in vivo 

cellular context. We measured how well ChemProbe, trained solely on the CTRP, could predict 

drug response in clinical samples. We used gene expression and patient drug response data 
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from the I-SPY2 adaptive, randomized, phase II clinical trial of neoadjuvant therapies for early-

stage breast cancer. I-SPY2 assigned patients to treatment arms based on defined biomarkers 

including hormone receptor status, human epidermal growth factor receptor-2 expression, and 

MammaPrint status. Absence of invasive cancer in the breast and regional lymph nodes at the 

time of surgery defined the endpoint of pathological complete response (pCR) (nonresponse, 

pCR=0; response, pCR=1)[54–58].  

The I-SPY2 dataset also introduced a major change in the input data’s modality. CCLE 

quantifies gene expression by high-throughput RNA sequencing, but I-SPY2 collected pre-

treatment patient gene expression by microarray. Microarrays measure gene expression with 

lower overall specificity and sensitivity and capture a smaller dynamic range of gene 

abundance[59]. In this case, the microarray library mapped to only 90% of the protein-coding 

genes in ChemProbe’s training. To test how far out of the model’s training distribution the I-

SPY2 data might be, we mean-imputed the missing features and compared I-SPY2 expression 

profiles to the first two principal components of CCLE’s expression profiles. A portion of I-SPY2 

data fell outside the training data distribution, consistent with the different technology 

platforms used to measure expression profiles. This mismatch underscores the challenge of 

generalizing across different means to collect gene expression data (Methods, Supplementary 

Fig 2-2).  

We assessed whether ChemProbe could retrospectively predict responders versus non-

responders within I-SPY2 trial arms. Five drugs from I-SPY2 matched those in the training 

dataset. We found a significantly lower predicted scaled area under the curve (AUC) in the 
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responder group for 4 of the 5 drugs (Figure 2-2). Additionally, we computed receiver operating 

characteristic (ROC) curves for each drug response prediction relative to trial arm outcomes. 

The area under the ROC (auROC) curve for each drug spanned 0.60 (paclitaxel and neratinib) to 

0.73 (veliparib), with a macro-average auROC of 0.65 across all considered drugs (Figure 2-2). 

 

Figure 2-2. I-SPY2 clinical trial retrospective analysis. 
(a) Predicted AUC of dose-response curve for I-SPY2 patients treated with each drug. AUC 

scaled between by the minimum and maximum predicted AUC of patients treated with 
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each drug. Blue = non-responder, orange = responder; Wilcoxon rank-sum; ns: p<=1e1, 
*p<=5e-2, **p<=1e-2. 

(b) Receiver operating characteristic curve of patients treated with each drug and 
corresponding auROC.  

(c) Accuracy of I-SPY2 predictions and ChemProbe predictions for non-
responders/responders. Wilcoxon rank-sum; *p<=5e-2. 

 

Finally, we evaluated ChemProbe predictions for clinical decision-making. We used 

ChemProbe to classify patients as responders (+) and non-responders (-) (ChemProbe+/-). As 

the model predicts cellular viability as a function of drug concentration, we defined a decision 

threshold for responders. We binarized drug response at each I-SPY2 treatment arm's median 

predicted AUC across participants. ChemProbe+/- classification accuracy significantly exceeded 

I-SPY2’s (p<5e-2, Figure 2-2). While I-SPY2 predictions achieved a higher true positive rate for 

the considered drugs (0.30, I-SPY2; 0.21, ChemProbe), ChemProbe+/- classifications greatly 

reduced the false positive rate (0.70, I-SPY2; 0.37, ChemProbe) while adding relatively few false 

negative predictions (0.00, I-SPY2; 0.095, ChemProbe) (Supplementary Figure 2-2). 

ChemProbe+/- greatly increased the true negative rate of drug-response classification relative 

to I-SPY2, correctly predicting a portion of patients with a low likelihood of response to the 

proposed drug—essential information for clinical decision-making. Despite training solely on 

isogenic cell lines, the ChemProbe model generalized to heterogeneous tumors from clinical 

patient samples.  
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III. ChemProbe predicts differential cellular sensitivity 

We prospectively evaluated ChemProbe’s ability to differentiate drug sensitivity in vitro 

between a pair of primary breast cancer cell lines (HCC1806 and MDAMB231) against 545 CTRP 

compounds. To check for batch effects, we assessed where the cell lines fell within the training 

data by the top two gene-expression principal components. Although CTRP included both cell 

lines, the gene expression profiles we collected experimentally varied substantially from their 

CTRP counterparts (Supplementary Figure 2-3). The variability of cell culture protocols, 

reagents, and genetic drift may account for transcriptional differences across isogenic cell lines. 
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Figure 2-3. Differential potency predictions. 
(a) Detailed approach to model training and dose-response modeling. Individual models were 

trained on held-out cell line dataset splits by 5-fold cross validation. Log-logistic models were fit 
to cross validated model predictions and pharmacodynamic features were derived. 

(b) Expected cumulative distribution plot of predicted compound IC50 differences between 
HCC1806 and MDAMB231 cell lines. Compounds selected for in vitro dose-response testing 
highlighted. 

(c) Predicted dose-response relationships of HCC1806 and MDAMB231 response to neratinib.  

(d) Predicted dose-response relationships of HCC1806 and MDAMB231 response to 1S,3R-RSL-3. 

 

We predicted sensitivity across 32 drug concentrations (1e-3–300 uM), fit log-logistic 

models, and determined 50% inhibitory concentration (IC50) values of each in silico dose-
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response curve. We focused on compounds with the largest differences in IC50 between the 

cell lines (Figure 2-3). ChemProbe predicted that HCC1806 would be more sensitive than 

MDAMB231 for 88.16% (201/228) of the compounds with calculated dose-response curves 

(Figure 2-3). We selected four compounds whose predicted IC50s were strongest against 

HCC1806 (neratinib, ceranib-2, CAY10618, and AZD7762) and two compounds with IC50s 

favoring MDAMB231 (ML162 and 1S,3R-RSL-3) (Figure 2-3). In vitro testing confirmed 

ChemProbe’s predictions for all six compounds (Figure 2-4). Predicted differences in IC50s 

between the two cell lines significantly correlated with true differences (p=0.043, Figure 2-4). 

Likewise, predicted IC50s correlated highly with true IC50s for individual cell lines after 

correcting for an outlier (HCC1806 treated with neratinib) (p=0.055, Figure 2-4, Supplementary 

Figure 2-4). These results were consistent with the initial concentration range-finding 

experiments, where 5/6 compounds had shown predicted differences in IC50s and relevant 

IC50s specific to individual lines (Supplementary Figure 2-4). In prospective testing, ChemProbe 

predicted the drug sensitivities of independently collected and characterized cell line samples, 

despite their meaningfully different transcriptomic profiles from the cell, tissue, and cancer 

subtypes in the model’s training dataset. 
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Figure 2-4. Validation of differential sensitivity predictions. 
(a) In vitro dose-response relationships of HCC1806 differentially potent compound 

AZD7762. 

(b)  In vitro dose-response relationships of HCC1806 differentially potent compound 
CAY10618. 

(c) In vitro dose-response relationships of HCC1806 differentially potent compound 
ceranib-2. 

(d) In vitro dose-response relationships of HCC1806 differentially potent compound 
neratinib. 

(e) In vitro dose-response relationships of MDAMB231 differentially potent compound 
1S,3R-RSL-3. 

(f) In vitro dose-response relationships of MDAMB231 differentially potent compound 
ML162. 

(g) Relationship between predicted difference in IC50 and true difference in IC50 between 
HCC1806 and MDAMB213 across tested compounds. 
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IV. Gene expression attribution vectors pass model interpretation sanity checks 

We next asked whether ChemProbe had learned biologically relevant patterns by deep 

learning feature attribution. Controlling for cell line-specific effects, we tested whether the 

model’s learned gene expression saliency reflected known compound pharmacology and 

network biology relationships. We prospectively screened seven new cell lines, including three 

from primary tissue (SW480, colon; MDAMB231, breast; and HCC1806, breast) and four 

metastatic derivatives (SW480-LvM2, liver; MDAMB231-LM2, lung; HCC1806-LM2b and 

HCC1806-LM2c, lung). We used integrated gradients on predicted IC50s to calculate 

transcriptome attribution vectors for each cell line-compound pair. Given the low inter-model 

prediction variance of ChemProbe, we tested if attribution vectors were dually consistent 

across models. Transcriptomic attribution vectors correlated across all independently trained 

models, indicating their consistency. Integrated gradient attribution vectors can correlate 

closely with input feature magnitudes, confounding their use in quantifying feature importance. 

Accordingly, the first two principal components of attribution vectors were distinguished by cell 

line, and attribution vectors strongly correlated with transcriptome vectors (Supplementary 

Figure 2-5). Gene expression magnitudes vary by cell line; therefore we normalized attribution 

vectors by line to keep them from dominating the feature-importance calculations. This 

normalization decoupled the correlation between attribution and transcriptome vectors and 

decreased cell-line-specific effects in the principal component analysis (Supplementary Figure 

2-5).  
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We applied sanity checks to test whether the calculated feature attributions depended 

on (1) learned model parameters or (2) the relationship between data features and labels[60]. 

For the first test, we randomly initialized parameters of architecturally identical models, applied 

integrated gradients, and compared true-model and random-model attribution vectors. For the 

second test, we trained a model on permuted labels and compared true-model and permuted-

model attribution vectors. We tested uncorrected (raw) attribution vectors as well as cell line-

effect corrected (adjusted) attribution vectors. Raw attribution vectors correlated closely with 

transcriptome profiles, random-model, and permuted-model attribution vectors, failing the 

sanity check. By contrast, the adjusted attribution vectors did not correlate with transcriptome 

profiles, random-model attributions, or permuted-model attributions, indicating adjusted 

attribution vectors do not simply reflect artifacts of the model architecture or the raw data. 

V. Model interpretation of transcriptomic features reflects compound pharmacology and 

network biology 

We suspected that integrated gradients could help interpret drug sensitivity IC50 

predictions. Neural networks are notoriously difficult to interpret, and highly attributed 

transcriptome features may reflect causative mechanisms or correlative biomarkers. We 

hypothesized that ChemProbe should rely on similar gene features to make predictions for 

compounds with the same known targets. We defined a control compound set (CCS) based on 

nominal target classes containing at least two compounds. To test whether transcriptomic 

attribution vector similarity corresponded to known compound mechanisms of action (MOA), 

we applied K-means clustering to the CCS attribution vectors and computed the adjusted 
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mutual information (AMI) between cluster labels and nominal target classes. As structural 

similarity alone begets target profile similarity, we also examined the AMI between structural 

clusters produced from compound fingerprints and nominal target classes. The AMI of 

attribution vector clusters was significantly greater than that of structural clusters, a randomly 

initialized model, and a model trained on permuted labels (Figure 2-5). We also evaluated 

whether our model made predictions based on nominal targets and found that compounds 

belonging to the same target class frequently had high nominal target attributions relative to 

other compounds (Figure 2-5, Supplementary Figure 2-5).  
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Figure 2-5. Feature attribution analysis of compound nominal targets. 
(a) UMAP decomposition of adjusted attribution vectors derived at compound IC50s for 

predicted and fitted dose-response relationships in MDAMB231, MDAMB231-LM2, 
HCC1806, HCC1806-LM2b/c, SW480, and SW480-LvM2 cell lines. Control compound set 
(CCS) attribution vectors colored by nominal target class. 
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(b) Comparison of adjusted mutual information (AMI) derived from CCS nominal target 
labels and K-means clustering of trained model adjusted attribution vectors, compound 
fingerprints, random model adjusted attribution vectors and permuted model adjusted 
attribution vectors. Wilcoxon rank-sum; *p<=5e-2, **p<=1e-2. 

(c) Average attribution difference between highest significance target of nominal target 
class and all other target classes. Wilcoxon rank-sum; *p<=5e-2, **p<=1e-2, ***p<=1e-3, 
****p<=1e-4. 

(d) Leiden clustering of all attribution vectors. 

(e) Comparison of PPI subgraph connectivity derived from clustered target profiles, random 
target profiles and random protein coding genes. Wilcoxon rank-sum; ***p<=1e-3, 
****p<=1e-4. 

(f) Network representation of select clustered target profile subgraphs. 

 

We reasoned that because feature encoding in neural networks is hierarchical, 

attribution vectors may reflect the structure of higher-order biological systems. We expanded 

our analysis to all attribution vectors to test if the nominal targets of similar attribution vectors 

enriched for protein modules (Figure 2-5). We looked into the network topology of nominal 

target classes using the STRING database of high-confidence protein-protein interactions[61]. 

We clustered attribution vectors, sampled nominal target annotations, and extracted the 

subgraph of protein targets (Methods). We found that the connectivity of nominal target 

subgraphs was significantly greater than the connectivity of subgraphs generated from random 

target protein sets or random protein sets of equal size (Figure 2-5). Finally, we tested if 

attribution-defined nominal target modules of action (ModOA) were not only highly connected 

but reflected protein interaction enrichment (Methods). 50% of ModOA reflected significant 
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network interaction enrichment as well as a variety of functional enrichments from gene 

ontologies, KEGG pathways, and Reactome pathways (Figure 2-5). 

Given that STRING likely does not reflect all protein-protein associations, we reasoned 

that unenriched ModOA might still reflect true, albeit untested, biological relationships. We 

produced target modules from our clustering analyses in order to infer potential ModOA for 

compounds with high promiscuity or uknown targets. These model investigations support the 

hypothesis that ChemProbe learns patterns of compound pharmacology and systems biology. 

VI. Differential attribution analysis reflects ferroptosis biology and nominates novel 

therapeutic targets 

We then wanted to know if the most highly attributed gene features were related to 

compound MOA. We used linear regression to test for differences in gene attribution between 

groups, which we call differential attribution analysis (DAA) (Methods). DAA generates ranked 

gene lists, which we used as marker genes to arrange attribution clusters hierarchically (Figure 

2-6). 

We noticed clusters 26 and 28 reflected divergent phenotypes to ferroptosis-inducing 

compounds (Figure 2-6). Ferroptosis is a recently recognized type of cell death that has been 

implicated in a variety of biological contexts and has the potential to be a targeted pathway in 

cancer, immunity, development, and aging[62,63]. These attribution clusters included 

compounds ML162 and 1S,3R-RSL-3, reflecting the differential cellular sensitivity we confirmed 

in our in vitro experiments. Additional compounds with ferroptosis-inducing mechanisms of 

action in this cluster included ML210, erastin, CIL56, and CIL70. 
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Next, we investigated the attribution vectors of cell lines sensitive (cluster 26) and 

resistant (cluster 28) to ferroptosis-inducing compounds to understand if model interpretations 

reflected known ferroptosis biology. First, we collapsed the leaf nodes clusters 26 and 28 into a 

single ferroptosis-inducing compound cluster and applied DAA. Since a variety of mechanisms 

induce ferroptosis, we queried differential attributions of several ferroptosis-associated genes 

including GPX4, SCD, SLC7A11, FSP1, and LRP8. All ferroptosis-associated genes were in the 

most highly attributed genes of the ferroptosis-inducing compound cluster (Figure 2-6). To 

verify that these signals did not merely arise due to transcriptome inputs or relative expression 

differences, we performed differential expression analysis (DEA) between MDAMB231 and 

HCC1806 and queried the ferroptosis gene set. Besides GPX4, a key ferroptosis regulator, no 

ferroptosis-associated genes rose to significance (Supplementary Figure 2-6). 
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Figure 2-6. Differential attribution analysis of ferroptosis-inducing compounds. 
(a) Heatmap of top-10 differentially attributed genes within Leiden clusters from Figure 2-

5d. Clusters ordered by hierarchical clustering of DAA profiles. 

(b) Comparison of predicted IC50s between cluster 26 (ferroptosis-sensitive) and cluster 28 
(ferroptosis-resistant). Wilcoxon rank-sum; *p<=5e-2. 

(c) Volcano plot of DAA results derived by comparing ferroptosis-inducing compound 
attributions to all other compound attributions. Known ferroptosis-mediating genes 
highlighted in orange. 
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(d) Expected cumulative distribution plot of predicted compound IC50 differences between 
HCC1143 WT and LRP8 KO cell lines. Ferroptosis-inducing compounds predicted 
differentially potent in LRP8 KO highlighted. 

(e) Enrichment analysis of top-10 differentially attributed genes of ferroptosis-inducing 
compound samples. 

 

Changes in compound sensitivity following gene knockout (KO) or overexpression inform 

gene-dependent protection or resistance. We assessed ChemProbe's utility for screening gene-

dependent ferroptosis resistance. Lipoprotein receptor LRP8 has recently been shown to act as 

a ferroptosis resistance factor by maintaining cellular selenium levels and appropriate 

translation of GPX4. In LRP8 KO models, selenium uptake is reduced, leading to ribosome 

stalling and early translation termination of GPX4—ultimately sensitizing cells to 

ferroptosis[21]. We tested if ChemProbe correctly predicted reduced sensitivity to ferroptosis-

inducing compounds in an LRP8KO cell line relative to wild-type. Concordant with previous 

research, ChemProbe predicted LRP8KO cells were sensitive to known ferroptosis-inducing 

compounds ML210, 1S,3R-RSL-3, ML162, and CIL56 (Figure 2-6)[64]. 

We noticed several highly attributed genes of ferroptosis-inducing compounds reflected 

expression-response correlations in the CTRP (Supplementary Figure 2-6). Under this 

consideration, we sought to understand if highly attributed genes not only reflected simple 

correlations, but played functional roles related to ferroptosis. We extracted the 10 highest 

differentially attributed genes and applied a functional enrichment analysis (Supplementary 

Figure 2-6). We observed enrichment of terms related to lipid transport and fatty acid 

metabolic processes, pathways adjacent to lipid peroxidation and ferroptosis (Figure 2-6).  

https://paperpile.com/c/nlPYu7/qtpg
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With evidence that highly attributed genes not only reflect expression-response 

relationships but are functionally involved in related cellular mechanisms, we applied DAA to 

nominate genes potentially associated with ferroptosis sensitivity and resistance. 

(Supplementary Figure 2-6). Overall, our findings show that transcriptomic attributions in 

different phenotype clusters reflect ferroptosis biology, allowing us to screen genetic 

dependencies for new biological mechanisms. 

2.4 Discussion 

Here we investigated the gene dependencies of a model that learned the effect of 

compound features on basal cellular transcriptomic state to predict cellular sensitivity. This 

study takes an unbiased approach to modeling cellular sensitivity to various chemical probes 

and drugs. We demonstrate that an accurate model of cellular sensitivity learns higher-order 

aspects of compound pharmacology, reflects systems biology, and nominates genes 

functionally related to compound MOA. 

 ChemProbe takes a principled approach to modeling how compound features influence 

cellular transcriptomic state. We find that learning an affine transformation of transcriptome 

representations from compound representations is a valuable bias in the drug sensitivity 

prediction task (Table 2-1). Analysis of learned parameters reflects the influence of compound 

structure and concentration on gene expression representations. This observation led us to 

apply model interpretability methods to explore the relationship between learned gene 

dependencies and compound mechanisms.  
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Prior to model investigation, we verified the utility of our approach in two challenging 

scenarios. First, we retrospectively evaluated ChemProbe on patient drug-response results from 

I-SPY2, an adaptive clinical trial designed to evaluate neoadjuvant therapies for breast cancer 

treatment. In contrast to the isogenic cell line transcriptomes used to train ChemProbe, I-SPY2 

clinical tumor samples are biologically heterogenous, quantified by microarray, and missing 

approximately 10% of gene expression features. ChemProbe correctly predicted a significant 

difference in patient response for 4/5 drugs and was significantly more accurate in classifying 

non-responders/responders compared to original trial arm designations (Figure 2-2). Second, 

we performed a prospective analysis that evaluated the ability of ChemProbe to predict 

differential drug sensitivity. We observed a significant correlation between predicted and true 

differential IC50s, as well as a high correlation between predicted and true IC50s (Figure 2-4). 

Together these results support the generalization ability of our model in both clinical and 

research settings. 

As molecular information becomes increasingly important in the clinical setting, 

ChemProbe contributes a robust computational tool that may guide future clinical treatment 

selection in precision oncology. Clinical adoption of new computational tools, however, relies 

on method interpretability. Although ChemProbe is structured as a traditional “black-box” 

neural network, our analyses support the conclusion that ChemProbe has learned patterns of 

biology causally related to phenotype response. Our proposed DAA method is a tool to explore 

gene patterns driving individual disease and discover new disease-gene relationships. Research 

investments into model interpretability will advance precision medicine by providing insight 

into systems pharmacodynamics driving patient responses. 
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In the research setting, ChemProbe is an in silico chemical perturbation tool. New 

models of biology may be screened against this set of diverse chemical probes to evaluate 

sensitivity to specific MOA classes. In one example, we screened an LRP8KO cellular model and, 

within minutes, correctly predicted differential sensitivity to ferroptosis-inducing compounds 

(Figure 2-6). These results support the role of LRP8 as a ferroptosis resistance factor and 

potential therapeutic target in cancer. Computational access to the CTRP screening library via 

ChemProbe should reduce resources spent searching for specific disease vulnerabilities and the 

outcomes of perturbing specific biological mechanisms. 

Extending this paradigm, we leveraged in silico perturbation results to validate 

interpretation of ChemProbe and propose new ModOA for common target proteins. Initially, 

we found that adjusted attribution vectors of transcriptome profiles reflected compound MOA 

similarity better than compound structures (Figure 2-5). We followed this up by analyzing the 

connectivity of nominal target PPI subgraphs. Clustered nominal target attributions reflected 

high PPI connectivity, indicating model feature dependence aligned with broader systems 

biology structure (Figure 2-5). We used this insight to propose target protein sets that were 

likely functionally related (but not necessarily annotated) for interaction. An avenue of future 

work will be to test if novel compound pairs associated by ModOA promote synergistic, 

antagonistic, or additive effects through perturbation of the shared protein module. On the 

other hand, diseases of diverse mechanisms, such as cancer, may be more vulnerable to 

network redundancy disruption by targeting orthogonal ModOA. 
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An outstanding question remained with respect to the value of interpreting individual 

gene attributions. We applied a nonparametric test to compare the distributions of individual 

gene attributions between groups, termed Differential Attribution Analysis. We used DAA to 

identify which genes ChemProbe relies on to make drug sensitivity predictions conditional on 

treatment with ferroptosis-inducing compounds. Ferroptosis is driven by iron-dependent 

peroxidation of membrane lipids[63]. Four independent mechanisms that induce this form of 

cell death have been recognized; however, many outstanding research directions remain, 

including identification of key gene participants in ferroptosis[62,65]. We showed that DAA of 

ferroptosis-inducing compounds enriches several genes critically implicated in ferroptosis 

(Figure 2-6). Furthermore, ChemProbe predicted increased sensitivity of an LRP8KO model to 

ferroptosis-inducing compounds, providing additional evidence that implicates LRP8 as a 

ferroptosis resistance factor (Figure 2-6).  

When we performed enrichment analyses on the top gene set from DAA, we found 

biological processes related to lipid synthesis, endoplasmic reticulum (ER) membrane 

components, and functional enrichment of terms related to acyl-coenzyme A (CoA) ligation 

(Figure 2-6). The highest enriched pathways were related to peroxisome proliferator-activated 

receptor (PPAR) signaling. SCD and SLC27A5 contributed to enrichment of PPAR signaling: SCD 

is known to drive resistance to ferroptosis; however, SLC27A5 has not been mechanistically 

implicated in ferroptosis[66]. SLC27A5 is a homolog of very long-chain acyl-CoA synthetase 

(VLCS) associated with the ER and plays a primary role in lipid synthesis. Like SCD, SLC27A5 

expression is highly correlated with ferroptosis resistance in the CTRP (Supplementary Figure  

2-6). Additional research is necessary to test the role of SLC27A5 and other DAA nominated 
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genes in ferroptosis. Ultimately, measuring the responses of many diverse biological contexts to 

mechanistic probes will support learning and interpreting gene dependencies across tissues, 

cell types, and models of disease. 

2.5 Materials and methods 

I. Pharmacogenomic dataset 

Drug sensitivity data was obtained from the Cancer Therapeutic Response Portal v1 and 

v2 (CTRP v1/2). These datasets comprise 864 cell line responses to 481 individual compounds 

and 64 compound pairs across a range of concentrations. Response phenotypes were 

quantified by cellular viability, a normalized measure characterizing complete cell killing to cell 

stasis (0-1) and cell growth (>1). We utilized predicted cellular viability derived from fitted dose-

response curves of each experimental set, in which replicate cell line-compound experiments 

were fit with a log-logistic function and predicted cellular viability was derived at the original 

experimental concentrations. Compound structure was represented as 512-bit Morgan 

fingerprints (radius=2) converted by RDKit from SMILES provided by the CTRP. Experimental 

micromolar compound concentrations were concatenated with Morgan fingerprints, resulting 

in 513-length compound feature vectors. We matched CTRP cell lines with the Cancer Cell Line 

Encyclopedia (CCLE) molecular characterizations and extracted protein-coding gene expression 

measurements, resulting in 19144-length cell line feature vectors. In total, 545 total compounds 

or compound pairs and 860 cell lines compromised 366,710 unique pairs and 5,849,340 

individual examples of cellular response at various concentrations. 
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II. ChemProbe architecture, training, and evaluation 

In the context of pharmacological intervention, phenotypic response results from a 

change in basal cellular state dependent on a chemical presence. As such, we hypothesized that 

better integration of cell state features with compound features would result in more accurate 

predictions of drug sensitivity. Simple concatenation of features is a common means of 

conditional biasing. Alternatively, hierarchical representations of gene expression features can 

be combined with learned small molecule feature representations in multiple downstream 

layers such that a network learns various conditional transformation parameters. Under Perez 

et al.’s general formulation of this approach, termed feature-wise linear modulation (FiLM), a 

neural network learns an affine transformation of input features by conditional information. 

Model parameters are learned by functions, 𝑔 and ℎ, dependent on compound 

representations, 𝑛: 𝛾 = 𝑔(𝑛), 𝛽 = ℎ(𝑛) (Figure 2-1). Learned parameters modulate 

intermediate gene expression representations by element-wise transformation: 𝑓(𝑥|𝑛) =  𝐹 ∗

𝛾 +  𝛽, where 𝐹 denotes the activations at a given layer. 

The ChemProbe model defines a conditional encoder to embed compound features into 

a vector of length 𝑐 and an inputs encoder that embeds gene expression features into a vector 

of length 𝑔. A FiLM generator ingests compound embeddings and predicts gamma and beta 

parameters of length 𝑔. The FiLM layer applies an affine transformation of gene expression 

embeddings by parameters 𝛾, 𝛽. The modulated gene expression embeddings are then passed 

through a linear block consisting of a linear layer, ReLU activation, batch normalization and 

dropout. This sequence is repeated across 2 FiLM layers. The final linear block compresses 
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feature maps to a vector of length 1 and the mean-squared error is calculated between 

predicted cellular viability and true cellular viability (Figure 2-1). Neural network parameters 

are optimized by standard back propagation and gradient descent.  

Models were trained and performance was evaluated using cross validation. Cell line-

compound pairs were split into 5 groups of approximately equal size by cell line to ensure no 

cell line was present in the same training/validation split. As our goal was to assess 

generalization to unseen gene expression programs, this cell line-based dataset split avoided 

data leakage and performance inflation. Five individual models were trained in a leave-one-out 

cross validation scenario in which four data folds were combined into a training dataset and the 

model was evaluated on the left-out fold. We applied 20 rounds of hyperparameter 

optimization to all five individually trained models. Average R2 of the best performing models 

was 0.7173±0.0052. ChemProbe is implemented in PyTorch and hyperparameter optimization 

was applied with Optuna on a GPU. 

III. Predictive modeling baselines 

In our experiments, we compared models that conditionally modulate gene expression 

features by compound structure and concentration through several different transformations. 

For our “concatenation” architecture baseline, we simply concatenated gene expression 

features and compound features and fed the single vector into a multi-layer perceptron (MLP). 

The “scale” and “shift” variants of the ChemProbe model evaluated the isolated effects of 

learning transformation types independently. Shift parameters were held constant (𝛽 = 0) for 

the “scale” model and scale parameters were held constant (𝛾 = 1) for the “shift” model: 
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𝑓𝑠𝑐𝑎𝑙𝑒(𝑥|𝑛)  =  𝐹 ∗ 𝛾 +  0; 𝑓𝑠ℎ𝑖𝑓𝑡(𝑥|𝑛)  =  𝐹 ∗ 1 +  𝛽. We assessed ChemProbe conditional 

dependence on compound concentration with our “permuted” model. We defined random 

binary fingerprints for each compound and trained a new ChemProbe model on this dataset 

lacking structural information. All models were trained and evaluated over 3 rounds of 

hyperparameter optimization via 5-fold cross validation on the originally defined dataset splits. 

IV. Dose-response modeling 

We generated predicted dose-response curves by fitting log-logistic functions to each 

set of cell line-compound predictions from the five individually trained ChemProbe models. We 

defined a sequence of conditions for quality control of each dose-response relationship. First, 

cellular viability at any of the four largest compound concentrations was checked for increases 

of 20% or more from the fifth largest compound concentration. If so, the viability prediction at 

the largest concentration was dropped. This condition was replied recursively and had to be 

met by a minimum of 16 data points else no dose-response curve was fit. If the minimum 

predicted cellular viability was greater than 0.4, no dose-response curve was fit. For cell line-

compound pairs that passed quality control, a 4-parameter log-logistic function was fit: 𝑦 =

 𝑐 +  (𝑑 –  𝑐) / (1 + 𝑒(𝑏 ∗log(𝑥)−log(𝑒))). If this optimization failed, a 3-parameter log-logistic 

function was fit with d = 1. If this optimization failed, a 2-parameter log-logistic function was fit 

with c = 0 and d = 1. In our analyses of predicted dose-response curves, we performed 

additional quality control by filtering out log-logistic functions with undetermined parameters 

and with predicted EC50 < 1e-3 or EC50 > 300. Scipy was used to fit parameters of log-logistic 

functions to dose-response relationships. 
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V. Retrospective I-SPY2 analysis 

We downloaded I-SPY2 clinical trial metadata and microarray characterizations of 988 

patient transcriptomes from GEO 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040). We matched 90% of 

recorded genes to our training dataset, mean-imputed the remaining 10% of genes, 

standardized the data with a Z-score transformation, and evaluated I-SPY2 patient data 

alignment with CCLE cell line training data across the first two principal components. We 

predicted drug sensitivity across a range of 32 concentrations (1e-3–300 uM) for each patient in 

response to all 545 compounds and compound pairs in the CTRP. We averaged patient-drug 

response predictions across independent models and computed the AUC of each predicted 

dose-response assay. The AUC of each patient-drug prediction was scaled between 0-1 based 

on the minimum and maximum predicted AUC of the drug across all I-SPY2 patients. 

I-SPY2 participants were placed in treatment arms based on analyses of clinical and 

molecular information including clinical characteristics, gene expression patterns measured via 

microarray, and protein abundance as measured by RPPA. The I-SPY2 trial assessed the success 

of various combination therapies relative to paclitaxel treatment, a clinical standard of care. 

Drugs matched between I-SPY2 treatment arms and the CTRP included: paclitaxel, neratinib, 

MK2206, veliparib and carboplatin. In the I-SPY2 experimental arms, patients were treated with 

the combination of paclitaxel and an additional drug(s) to assess response relative paclitaxel 

treatment only. Given that the predictive ability of ChemProbe was only evaluated with respect 

to the available compounds and compound pairs in the CTRP, ChemProbe predictions for I-SPY2 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040
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patients reflected predicted patient response to a single compound, rather than a combination 

therapy. 

VI. Prospective differential sensitivity predictions 

Differential sensitivity predictions were made by taking the difference between 

HCC1806 and MDAMB231 predicted IC50s between compounds that passed dose-response 

modeling. We visually inspected fitted dose-response curves of the predicted largest 50 

differentially sensitive compounds to select compounds for in vitro tests. Selection criteria was 

based upon dose-response curve completeness in each cell line, including sufficient Emax and 

Emin boundaries within the predicted concentration range. 

 To determine appropriate concentration points for the prospective dose-response 

experiment, we performed a range-finding dose-response experiment across a wider range of 

concentrations than our predictions (Supplementary Figure 2-4). In the following experiment, 

we reduced the concentration range to capture response granularity (Figure 2-4). 

VII. Integrated gradients 

Integrated gradients is a path-based model attribution method that quantifies how 

much feature gradients change relative to a baseline feature vector. First, 𝑛 feature vectors are 

linearly interpolated between a specified baseline and the query feature vector. We used a 

zero-vector baseline for both compounds features and gene expression features and a step size 

of 𝑛 = 50. At each interpolated feature vector step, gradients of the interpolated feature 

inputs are computed with respect to the corresponding prediction. Finally, the integral of each 
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feature is computed along the path of feature gradients between the baseline vector and the 

query vector.  

We controlled attribution vector differences resulting from different cellular responses 

by computing integrated gradients relative to the predicted compound IC50 for each cell line-

compound pair. This resulted in an attribution vector for each cell line-compound pair at the 

predicted IC50. We extracted the cell line feature attribution vector of each pair to analyze how 

conditional compound information influenced gradient changes of the input gene expression 

features. To account for cell line-specific effects we standardized transcriptome attribution 

vectors of each cell line independently with a Z-score transformation, resulting in adjusted 

attribution vectors (Supplementary Figure 2-5). 

VIII. Attribution method sanity check 

The sanity check reveals attribution method insensitivity to (1) the learned parameters 

and (2) the learned dependence between data features and labels if attribution vectors 

between trained models and alternative models are highly correlated. To test for (1) model-

dependent attribution method invariance, we randomly initialized parameters of architecturally 

identical models, applied integrated gradients, and compared true-model and random-model 

attribution vectors. To test for (2) data-dependent attribution method invariance, we permuted 

data labels, trained architecturally identical models, applied integrated gradients, and 

compared true-model and permuted-model attribution vectors (Supplementary Figure 2-5). 
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IX. Attribution similarity analysis 

We analyzed the relationship between learned gene expression feature dependence 

conditional on compounds by comparing attribution vector similarity to compound MOAs. 

Compound MOA classes were extracted from CTRP annotations. We filtered attribution vectors 

by considering compound MOA classes with at least two compounds successfully attributed in 

all 7 cell lines to garner MOA classes with enough samples for our analysis (control compound 

set). We used nominal target classes as a true label baseline to assess concordance with 

unsupervised labels generated by K-means clustering of attribution vectors (Figure 2-5). 

 Compound MOA classes consisted of several nominal targets. To assess model 

dependence on individual nominal targets, we analyzed gene target attributions within each 

MOA class relative to all other classes. We applied a Wilcoxon-rank sum test between groups 

for each nominal target in the MOA class of interest and adjusted for false discovery rate (FDR). 

We visualized the nominal target with the largest average attribution difference between 

groups for each MOA class (Figure 2-5). 

X. Attribution network analysis 

We expanded our analysis to include all attribution vectors generated from the 7-cell 

line test set. We randomly selected a single nominal target from each compound MOA class to 

avoid bias towards closely associated targets. We reasoned that the nominal targets of a single 

compound likely fall in close network proximity and downstream network analysis of target sets 

would reflect artificial over-connectivity. For example, the MOA class of neratinib includes 

nominal targets EGFR and HER2, which are involved in the same pathway. Given that these 
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targets are closely associated by virtue of a shared MOA, we randomly choose one target from 

this set. 

First, we applied Leiden clustering for unsupervised discovery of attribution clusters. We 

defined attribution cluster MOA classes by random target selection from each compound MOA 

class as described above and filtered the STRING database to all high confidence protein-

protein associations (combined score > 0.7). We queried STRING for attribution cluster nominal 

targets and computed the connectivity of the resulting subgraph. To account for random 

subgraph connectivity due to target biases in STRING, we randomly sampled from available 

targets, queried the filtered STRING database, and computed connectivity. We repeated this 

procedure with randomly sampled protein coding genes to account for random protein 

associations (Figure 2-5). Networkx was used for network analysis. 

To test for protein interaction enrichment, we again defined attribution cluster nominal 

targets by random target selection from each compound MOA class as described above. Next, 

we queried the STRING API for protein-protein interaction enrichment in the network of high-

confidence protein-protein associations. Statistical enrichment was computed by the 

hypergeometric test. This tests if a query set of proteins has more interactions than would be 

expected relative to the background proteome-wide interaction distribution. The 

hypergeometric test was also applied to test for functional enrichment of GO terms, KEGG 

pathways, and Reactome pathways. We utilized the stringdb python package to access the 

STRING API. To infer potential modules of action (ModOA) for compounds, we returned the 

unique set of all nominal targets present in attribution cluster MOA classes. 
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XI. Differential attribution analysis 

We extended our nominal target attribution analysis to perform an unbiased 

assessment of model dependence on individual genes within attribution clusters. We applied a 

Wilcoxon-rank sum test to each gene to analyze gene attributions within cluster samples 

relative all other samples and adjusted FDR. Scanpy was used to apply Wilcoxon-rank sum tests 

across genes in each cluster relative to the background. 
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2.6 Supplementary Figures 

 

Supplementary Figure 2-1. Conditioning parameter analysis. 
(a) Hierarchical clustering of learned gamma parameters. Color bars indicated compound 

identity and squared compound concentration. 
(b) Relationship between principal component 1 (PC1) of learned beta parameters and 

input concentration. 
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Supplementary Figure 2-2. I-SPY2 analysis. 
(a) Batch analysis of I-SPY2 microarray data and HT-RNAseq training data. PCA 

decomposition of gene expression values of training dataset cell lines and I-SPY2 patient 
samples. Training distribution in grey, patients are points and colors are clinical trial 
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arms. VC = vincristine/carboplatin, N = neratinib, Ctr = paclitaxel, TDM1/P = TDM-
1/pertuzimab, Pembro = pembrolizumab. 

(b) Confusion matrix of predicted non-responders/responders (0/1) and true non-
responders/responders (0/1) from I-SPY2 for the following trial arms: Ctr, N, VC, 
MK2206. 

(c) ChemProbe confusion matrix. 

 

 

Supplementary Figure 2-3. Cell line transcriptome similarity analysis. 
PCA decomposition of gene expression values of training dataset cell line distribution (grey) and 
test dataset cell lines. Shape of cell line points represents samples from training dataset (CTRP) 
and test dataset. 
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Supplementary Figure 2-4. Concentration range-finding for dose-response experiment. 
(a) Relationship between predicted IC50 and true IC50 for test compounds in HCC1806 and 

MDAMB231 cell lines. 
(b) In vitro dose-response relationships of HCC1806 and MDAMB231 to 1S,3R-RSL-3. 
(c) In vitro dose-response relationships of HCC1806 and MDAMB231 to AZD7762. 
(d) In vitro dose-response relationships of HCC1806 and MDAMB231 to CAY10618. 
(e) In vitro dose-response relationships of HCC1806 and MDAMB231 to ML162. 
(f) In vitro dose-response relationships of HCC1806 and MDAMB231 to ceranib-2. 
(g) In vitro dose-response relationships of HCC1806 and MDAMB231 to neratinib. 
(h)  Relationship between predicted differential IC50 and true differential IC50. 
(i) Relationship between predicted IC50 and true IC50. 
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Supplementary Figure 2-5. Attribution vector analysis. 
(a) PCA decomposition of raw attribution vectors colored by cell line. 
(b) PCA decomposition of adjusted attribution vectors colored by cell line. 
(c) Heatmap of correlations between raw attributions (top row) and adjusted attributions 

(bottom row) and input transcriptomes (column 1), random model attributions 
(columns 2), and permuted model attributions (column 3). 

(d) UMAP decomposition of adjusted attributions colored by nominal target dependent 
attribution for NAMPT. 

(e) UMAP decomposition of adjusted attributions colored by nominal target dependent 
attribution for HMGCR. 

(f) UMAP decomposition of adjusted attributions colored by nominal target dependent 
attribution for ERBB2. 

(g) UMAP decomposition of adjusted attributions colored by nominal target dependent 
attribution for BCL2. 

(h) UMAP decomposition of adjusted attributions colored by nominal target independent 
attribution for ABL1. 
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(i) UMAP decomposition of adjusted attributions colored by nominal target independent 
attribution for HDAC6. 

(j) UMAP decomposition of adjusted attributions colored by nominal target independent 
attribution for JAK2. 

(k) UMAP decomposition of adjusted attributions colored by nominal target independent 
attribution for HDAC6. 

 

 

Supplementary Figure 2-6.  
(a) Volcano plot of DEA results between MDAMB231 and HCC1806 cell lines. Known 

ferroptosis-mediating genes highlighted in orange. 
(b) Boxplot of Z-score Pearson correlation between ferroptosis-inducing compounds and 

LONRF3 expression. 
(c) Boxplot of Z-score Pearson correlation between ferroptosis-inducing compounds and 

SLC27A5 expression. 
(d) Top-10 DAA derived ferroptosis-inducing genes, ranked by Wilcoxon rank-sum Z-score. 
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(e) Volcano plot of DAA results between ferroptosis-resistant cluster and ferroptosis-
sensitive cluster attribution vectors. Known ferroptosis-mediating genes highlighted in 
orange. 
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Chapter 3: A single-cell gene expression language model 

  



 

 69 

3.1 Summary 

Gene regulation is a dynamic process that connects genotype and phenotype. Given the 

difficulty of physically mapping mammalian gene circuitry, we require new computational 

methods to learn regulatory rules. Natural language is a valuable analogy to the communication 

of regulatory control. Machine learning systems model natural language by explicitly learning 

context dependencies between words. We propose a similar system applied to single-cell RNA 

expression profiles to learn context dependencies between genes. Our model, Exceiver, is 

trained across a diversity of cell types using a self-supervised task formulated for discrete count 

data, accounting for feature sparsity. We found agreement between the similarity profiles of 

latent sample representations and learned gene embeddings with respect to biological 

annotations. We evaluated Exceiver on a new dataset and a downstream prediction task and 

found that pretraining supports transfer learning. Our work provides a framework to model 

gene regulation on a single-cell level and transfer knowledge to downstream tasks. 

3.2 Introduction 

Many biological processes regulate the relationship between genotype and phenotype. 

On one hand, classical genetics defines simple hereditary rules. On the other hand, complex 

regulatory networks mediate response to the environment. Eventually, we may hope to model 

molecular circuitry comprehensively to accurately predict phenotypes. In this direction, learned 

generalizations of biological processes may support medical interventions such as individual 

disease risk prediction and patient therapy selection. 
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Large-scale cellular assays capture snapshots of complex and dynamic biological 

processes such as gene regulation, with RNA abundances being one measurable outcome. 

Single-cell RNA sequencing (scRNA-seq) observations can relate cellular states and mRNA 

expression relationships, revealing gene programs corresponding to disease processes, genetic 

perturbations, and therapeutic interventions[67]. Given the difficulty of physically mapping 

regulatory circuitry explicitly, we hypothesized a model trained on a large volume of 

transcriptomic profiles would instead implicitly learn RNA expression dependencies that reflect 

regulatory logic.  

Pretrained models in natural language processing, computer vision, and protein 

modeling motivate a similar approach in systems biology[17,68,69]. Pretrained models that 

transfer to downstream tasks share three components leveraging domain-specific inductive 

biases. First, sufficient unlabeled data volumes provide enough information for highly 

parameterized models to learn complex relationships between features. Second, models learn 

from unlabeled data in a self-supervised manner, often by feature masking, in which unmasked 

features are used to predict a fraction of values that are masked. Third, an attention 

mechanism learns the dependencies between features. Traditionally, a transformer applies self-

attention to learn context-dependent feature representations. Given the success of this recipe 

across various domains, we propose to model gene regulation similarly. 

 Building on sequence modeling, Exceiver (Expression-Perceiver) is a single-cell gene 

expression language model pretrained on an atlas of transcriptomic data. We leveraged the 

Perceiver IO framework to train a long-context sequence model on all protein-coding genes in a 
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self-supervised manner[70,71]. We evaluated latent sample representations with respect to 

metadata labels including cell compartment, tissue, and cell ontology. We analyzed the 

similarity of learned gene embeddings relative to known molecular interactions. Finally, we 

assessed pretrained Exceiver models on new datasets and a downstream task. Exceiver 

provides a framework to learn gene regulatory logic from unlabeled single-cell transcriptomes 

and transfer knowledge to new domains. 

3.3 Results 

I. Exceiver accounts for discrete features and technical dropout in scRNA-seq self-supervised 

pretraining 

Exceiver builds on Perceiver IO to encode single-cell transcriptomic profiles. Perceiver IO 

scales linearly with the size of inputs and outputs, allowing tractable Transformer-based 

encoding and decoding of long-context sequences. Exceiver retains the core Perceiver IO 

architectural components: a cross-attention encoder, a self-attention latent process module, 

and a cross-attention decoder (Figure 3-1; Methods).  

Exceiver extends this general architecture to accommodate various biological and 

experimental priors. To account for discrete RNA abundances, Exceiver represents individual 

genes as learnable embeddings. Global gene embedding vectors are scaled by expression values 

to incorporate observed RNA counts. Exceiver can also augment the learning processes with 

prior knowledge through the integration of experimental metadata. An auxiliary classification 

option encodes sample class labels, such as tissue type, as an additional embedding. In addition 

to biological priors, the Exceiver framework acknowledges that technical dropout influences 
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scRNA-seq experimental measurements. Exceiver masks attention computation at these values 

to mitigate feature sparsity biases in the learning process (Figure 3-1; Methods).  

To leverage unlabeled single-cell atlases for pretraining, we propose discrete noise 

masking (DNM), a novel self-supervised task for count-based RNA abundances. DNM randomly 

chooses a fraction of genes to mask each time a cell is sampled for training. A mask embedding 

replaces sampled gene embeddings and a noised expression value replaces the true expression 

value. In our experiments DNM simply samples the mean of the feature distribution for 

expression noising; however, DNM may extend to other distributions. (Figure 3-1; Methods). 

 

Figure 3-1. Exceiver learns cell embeddings reflecting tissue and compartment. 
(a) Architectural overview and pretraining strategy. 
(b) UMAP of original data PCA embeddings colored by tissue type and compartment. 
(c) UMAP of Exceiver sample embeddings colored by tissue type and compartment. 
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II. Exceiver learns representations that reflect known biology 

We trained Exceiver on the Tabula Sapiens, a healthy human atlas of approximately 

500,000 single cells from 24 organs of 15 individuals[72]. We randomly split the data into 70% 

training and 30% validation sets and pretrained Exceiver with DNM and tissue identity as an 

auxiliary task. The model converged to an explained variance (EV) of approximately 0.73 and an 

accuracy of 0.61 on the validation dataset.  

To assess whether Exceiver learned sample representations that reflect biological 

relationships, we evaluated latent representation similarity relative to that of metadata 

annotations. Qualitatively, both the original data and Exceiver latent representations reflected 

tissue of origin and cell compartment (evolutionary lineage) (Figure 3-1). We applied k-means 

clustering to samples and computed the adjusted mutual information (AMI) between derived 

cluster labels and true labels. Exceiver latent representations achieved a considerably higher 

AMI than original samples by tissue, donor, and compartment labels (Table 3-1). Given its role 

as the auxiliary classification task, we expected latent representations to cluster by tissue. 

However, structure also increased for donor and compartment labels. Cell ontology, a fine-

grained label, saw decreased clustering relative to original samples. Exceiver’s learned sample 

representations reflected known relationships and led us to interrogate similar structure in 

learned gene embeddings. 
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Table 3-1. Latent sample representations reflect biological annotations. 
AMI was computed between k-means clustering derived labels and true labels of original 
sample embeddings and Exceiver latent sample representations. (AMI, adjusted mutual 
information). 

sample label original samples (AMI) latent representations (AMI) 

tissue 0.25 0.42 

method 0.00 0.00 

donor 0.08 0.16 

cell ontology 0.56 0.43 

compartment 0.07 0.44 

gender 0.01 0.00 

 

We hypothesized that similarity profiles of learned gene embeddings may reflect known 

gene associations. To analyze learned gene relationships, we extracted the vocabulary of global 

gene embeddings and applied unsupervised Leiden clustering (Figure 3-2). Then, we queried 

the STRING database with the gene list from each cluster and calculated network 

enrichment[61]. 66% (39/59) of Exceiver gene clusters had more interactions than expected by 

chance (Figure 3-2). Additionally, we investigated functional gene associations through Gene 

Ontology (GO). For example, cluster 17 reflected significant enrichment of GO process terms 

associated with muscle function (Figure 3-2, Supplementary Figure 3-1). In another case, an 

extremely enriched cluster contained a large portion of ribosomal genes (Supplementary Figure 

3-1). Overall, Exceiver gene embeddings reflected network biology associations and captured 

functional gene relationships. 
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Figure 3-2. Learned gene embedding similarity profiles reflect network biology. 
(a)  UMAP of global gene embeddings colored by Leiden cluster. 
(b) STRING network enrichment plot of gene clusters. 
(c) GSEA functional enrichment analysis of cluster 17. 

 

III. Pretrained Exceiver transfers to new datasets and predicts drug response 

Next, we evaluated the transferability of a pretrained Exceiver model to a new dataset. 

We expected that, compared to an untrained Exceiver model, a pretrained model would more 

rapidly converge to higher performance on a new dataset. We tested this on a scRNA-seq 

dataset generated at a different time, in a different lab, of a novel disease physiology. Bi et al. 

investigated tumor and immune cell reprogramming of patients treated with immune 

checkpoint blockade for metastatic renal cell carcinoma[67]. Biopsies from 8 patients were 

characterized by scRNA-seq for 35,000 cells. We trained five randomly-initialized Exceiver 

models on this dataset with DNM and no auxiliary task. We likewise fine-tuned five pretrained 

Exceiver models. Prior to fine-tuning, the pretrained Exceiver models predicted masked 

expression values with an average EV of 0.52. The models then converged to an average EV of 

0.94 in under 10 epochs. This is in contrast to the baseline models, which converged to an 
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average EV of 0.73 over a 30x longer training interval (~350 epochs) (Figure 3-3). An Exceiver 

model pretrained on the self-supervised DNM task learns information that is sufficiently general 

to apply across new datasets and biological contexts. 

 

Figure 3-3. Pretrained Exceiver encodes a new dataset. 
Validation loss and explained variance curves of baseline and pretrained Exceiver models. 
Models were trained and evaluated with DNM on Bi et al. (DNM, discrete noise masking). 

 

Additionally, we hypothesized that a pretrained Exceiver model would support transfer 

learning to a new downstream task. We turned to a MIX-seq dataset of pooled cell lines that 
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were transcriptionally characterized after drug treatments. As in the original study, we matched 

drug response (quantified by area under the dose-response curve) from the Genomics of Drug 

Sensitivity in Cancer Project (GDSC) screen to MIX-seq transcriptional profiles[73,74]. We 

trained five baseline and pretrained Exceiver models on each drug-treated cell line pool 

(Methods). Consistent with the original study, neither approach learned a relationship between 

post-perturbation transcriptional profiles and drug responses for navitoclax, taselisib, 

bortezomib, or gemcitabine, likely due to matching drug responses from an entirely different 

dataset. By contrast, trametinib and dabrafenib treated cell line pools matched the most 

samples and here the pretrained Exceiver succeeded whereas the baseline Exceiver did not 

(p<5e-2, Mann-Whitney U; Table 3-2). Noting the high training variances of the baseline 

models, further optimization may be warranted, but it is clear that the pretrained Exceiver 

model was the more robust learner in this challenging scenario. 
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Table 3-2. Pretrained Exceiver predicts drug response. 
Explained variance (EV) and standard error of baseline and pretrained drug response prediction 
Exceiver models. MIX-Seq post-perturbation transcriptomic profiles of pooled single-cell drug 
screens were trained to predict AUC from GDSC screens. (AUC, area under the curve; GDSC, 
Genomics of Drug Sensitivity in Cancer Project). 

Drug n 
samples 

baseline (EV) pretrained (EV) p-value  

dabrafenib 6744 -0.4566 ± 0.08904 0.4869 ± 0.1780 0.007937 

trametinib 6696 -0.2071 ± 0.1461 0.1394 ± 
0.008390 

0.007937 

navitoclax 5910 -1.028 ± 0.3961 -0.5686 ± 0.1491 0.3100 

taselisib 1327 0.004383 ± 
0.004002 

0.02918 ± 
0.05300 

0.8413 

bortezomib 913 0.01568 ± 0.01057 0.05706 ± 
0.06736 

0.2222 

gemcitabine 736 0.01773 ± 0.01340 0.01530 ± 
0.04873 

0.4206 

 

 

3.4 Discussion 

We present Exceiver, a single-cell gene expression language model, whose attention-

based transformer backbone encodes long-context transcriptomic profiles. We introduce 

discrete noise masking, a procedure that masks expression values and enables self-supervised 

learning on unlabeled, continuously-valued datasets. We show that an Exceiver model trained 

on the Tabula Sapiens with a self-supervised task learns low dimensional representations that 

reflect sample annotations. Moreover, learned gene embedding similarity reflects molecular 

network interactions and functional associations. Finally, we find that a pretrained Exceiver 
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model transfers to new datasets and a drug response prediction task. Exceiver provides a 

framework to leverage publicly available scRNA-seq datasets and learn robust gene regulatory 

logic across diverse biological contexts. Exceiver may provide utility in transferring systems 

knowledge to downstream tasks, from the interrogation of molecular functions to the 

prediction of comprehensive phenotypes. 

3.5 Materials and methods 

I. Model architecture 

Perceiver IO is a general purpose model architecture that adapts to any task with 

structured input and output. Since self-attention complexity scales quadratically with input size, 

it cannot be directly applied to high-dimensional data, such as scRNA-seq readouts. Perceiver IO 

addresses this issue by introducing cross-attentional encoder and decoder mechanisms that 

project to and from a lower-dimensional latent space where full self-attention can be applied. 

Each of the blocks in the Perceiver IO architecture are transformer-style modules characterized 

by query-key-value attention followed by a multilayer perceptron (MLP) and residual 

connections. For more details please reference the original Perceiver IO manuscript.  

Exceiver implicitly models gene expression as a discrete variable sampled from a count-

based distribution. Global embeddings are used to represent gene identities, which are scaled 

by expression values upon model input. Exceiver also accounts for dropout, a sequencing bias 

characterized by experimental failure to capture the comprehensive set of genes expressed in 

an individual cell. This limitation implies that unobserved genes may be either truly 

unexpressed or merely unmeasured. Exceiver masks the attention computation at zero-valued 
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expression positions to prevent learning based on this artifact. Upon decoding, Exceiver reuses 

unscaled gene embeddings in the output query matrix as a means to residually connect discrete 

gene identities within the learning process. Exceiver also provides an option to bias learning 

with an auxiliary classification task. An additional classification embedding token is 

concatenated to each input sequence and used to query the decoder. An auxiliary MLP 

classifies the output of the decoder from the classification token, and an additional cross-

entropy loss is added to the mean squared error from the DNM task. Code is available at 

https://github.com/keiserlab/exceiver. 

II. Pretraining tasks 

Exceiver employs a self-supervised pretraining task as well as an optional auxiliary 

supervised classification task. The self-supervised task draws inspiration from masking tasks 

applied for NLP pretraining. However, there are several crucial differences between gene 

expression profiles and natural language. First, scRNA-seq features are a set rather than a 

sequence. Exceiver does not positionally encode gene embeddings, though features that 

describe spatial gene dependencies (such as the linear position of a gene or its relative position 

in the three-dimensional chromosome) may prove valuable in future work. Second, as 

previously referenced, expression features are counts of discrete features (genes), rather than 

identities of discrete features (words). As such, pretraining is a regression task rather than a 

classification task. Exceiver employs a new self-supervised task to account for the discrete 

distributions of features in the gene set. 

https://github.com/keiserlab/exceiver
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The primary pretraining task we apply is discrete noise masking (DNM). First, we 

heuristically determine the number of genes to mask for each sample. We mask 15% of the 

median number of recorded genes across the training dataset. We avoid masking a majority 

fraction of genes captured in poorly sampled cells by removing cells below a minimum number 

of recorded genes. In our experiments, we set this threshold at twice the number of masked 

genes. The training data therefore reflects a distribution of masked genes not exceeding 50% of 

the observed genes in a given cell (Supplementary Figure 3-2). A “mask” embedding replaces 

the randomly selected gene embeddings, and corresponding expression values are noised. 

Masked gene embeddings scaled by noised expression values pass through encoder and 

process modules. Finally, the embeddings of masked genes query the decoder. The resulting 

“contextual gene embeddings” pass through the final MLP, outputting expression predictions 

for masked genes (Figure 3-1).  

Additionally, we propose an auxiliary classification task based on metadata labels. The 

Perceiver IO architecture is flexible enough to accommodate multimodal tasks. Exceiver 

implements an auxiliary classification task as described in the original paper. A classification 

token is initialized as a global embedding and passed through Exceiver with each gene set. This 

procedure allows for attention computation between all genes and the classification token. The 

original classification embedding queries the decoder along with masked genes, and the 

resulting “contextual classification embedding” is passed through an auxiliary MLP head, 

outputting a vector of class logits. 
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III. Data and processing 

The Tabula Sapiens (TS) data was retrieved from figshare 

(https://figshare.com/ndownloader/files/34702114). Python packages anndata and scanpy 

were used for data storage and statistics calculations. Features were subsetted to all protein-

coding genes as defined in the Cancer Cell Line Encyclopedia (CCLE) (s=19067). DecontX-

corrected count matrices were used for training to account for ambient RNA. TS was shuffled 

and split into 70% training and 30% validation datasets. Counts were normalized to a maximum 

of 1e4 per cell. Normalized counts were log-transformed and scikit-learn was used to apply a Z-

score transformation to each dataset individually. Expression values were shifted to a mean-

center of 1, implying the learned identity of global gene embeddings corresponds to average 

expression. 

The Bi et al. data was retrieved from the Human Cell Atlas collection 

(https://singlecell.broadinstitute.org/single_cell/study/SCP1288). Raw count matrices were 

split into 70% training and 30% validation, and the same normalization and transformation 

procedure was applied. Missing genes were imputed with a value of zero. 

The MIX-seq data from McFarland et al. was retrieved from figshare 

(https://figshare.com/s/139f64b495dea9d88c70). Sanger GDSC2 AUC data was downloaded 

from the Dependency Map (https://depmap.org/portal/download/custom/). Drugs from 24-hr 

treatment experiments with sufficient matching GDSC2 experiments were selected for analysis. 

Post-perturbation transcriptome datasets were preprocessed individually in the manner as 

https://figshare.com/ndownloader/files/34702114
https://singlecell.broadinstitute.org/single_cell/study/SCP1288
https://figshare.com/s/139f64b495dea9d88c70
https://depmap.org/portal/download/custom/).
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described previously with zero-value missing gene imputation. Cell line-drug transcriptome 

pairs were matched to dose-response curve AUC values of GDSC2 drug screening results. 
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3.6 Supplementary materials 

 

Supplementary Figure 3-1.  Example clusters visualized using STRING. 
(a) Cluster 17 connected nodes from the STRING network of high confidence interactions 

(interaction score > 0.7). 
(b) Cluster 45 connected nodes from the STRING network of high confidence interactions 

(interaction score > 0.7) 



 

 85 

 

Supplementary Figure 3-2. Distribution of masked genes. 
Histogram of the percentage of genes masked across the Tabula Sapiens training dataset. 
Feature sparsity results in a distribution of masked genes per sample. 
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 Discussion 

Our analysis of psoriasis patients treated with ustekinumab discovered a genetic variant 

on chromosome 4 associated with drug response. This signal was validated in an independent 

cohort at multiple clinical endpoints, however, the causality of this variant remains unclear. 

rs35569429 appears to be a complementary signal to the major psoriasis risk allele HLA-

C*06:06 – ustekinumab responders and nonresponders were stratified most when both 

variants were considered. Association studies such as this will remain a critical tool for 

discovery research in pharmacogenomics. Most notably, they afford computational efficiency 

and are easily interpretable. Discovery of strong associations between genetics and phenotype 

requires large sample sizes. Even then, large studies have found that genetic associations still 

only explain a portion of phenotypic variance for complex diseases[75–77]. Even when 

interpretable univariate signals are combined into Polygenic Risk Scores, genetics alone fails to 

predict complex phenotypes. These limitations motivate the need for efficient multivariate 

models that learn to combine complementary data types.  

ChemProbe advances this direction by explicitly learning to incorporate chemical 

structure and concentration with gene expression information. ChemProbe successfully 

predicted the sensitivity of both clinical samples and engineered cell lines to a large set of 

chemical probes. In one example, ChemProbe predicted that an LRP8 gene knockout cell line 

would be more susceptible to chemical induction of ferroptosis than a wild-type cell line. This 

experiment demonstrates the use of ChemProbe to unravel the function of particular genes or 

proteins in chemically induced mechanisms. CRISPR technology affords the opportunity to 
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perform whole-genome knockouts of disease models followed by RNA sequencing. ChemProbe 

can screen each knockout transcriptome for changes in sensitivity to the set of chemical 

probes. Such an in silico chemical screen may reveal disease-specific mechanisms of gene 

sensitivity or resistance to protein targets. This approach may be extended to reduce the 

experimental burden of any perturbation paired with the set of chemical probes. For example, 

ChemProbe can screen the transcriptome of a drug-treated cell line to test for chemical 

combinations that result in sensitivity changes. These use cases are not without limitations: 

given that ChemProbe was trained on bulk RNA-seq of cancer cell lines, biological models with 

sufficiently different gene expression patterns (due to unique biology or experimental effects) 

may cause model failure. Although we found evidence that ChemProbe generalizes to 

microarray technology, an immediate question is whether ChemProbe will apply to single-cell 

RNA sequencing data and be able to take advantage of highly scalable assays such as Perturb-

seq. 

The failure of machine learning models to generalize beyond a distribution or to a new 

task is a major challenge in precision medicine. Most labeled datasets are relatively small and 

highly specific to a task, question, or disease. Models only trained within a supervised learning 

paradigm will remain brittle and clinically unusable[78]. The path to generalizable models that 

gain FDA approval and adoption in the clinic will likely leverage large, unlabeled datasets for 

learning. We applied a self-supervised learning approach to single-cell RNA sequencing data 

and found evidence that our model, Exceiver, learned patterns that reflect known biology and 

that this knowledge transferred to new datasets and modeling tasks. The generalizability of 

Exceiver requires further investigation to understand if pretraining meaningfully increased 
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performance on challenging downstream tasks such as disease risk modeling. It remains unclear 

how much information a model requires to sufficiently generalize to new tasks through either 

transfer learning or zero-shot prediction. If domain-specific challenges are addressed, such 

“foundation” models may prove as valuable for precision medicine as they have for natural 

language processing[79]. For one, we must rigorously evaluate how the variance of 

experimental measurements may bias large models. High experimental variance is a problem 

unique to molecular biology assays. Since building large datasets requires integrating 

experimental data from diverse assays, protocols, and model systems, the community must 

determine if large models learn to regularize batch effects or if we require more principled 

methods to do so. Finally, the computational resources and technical expertise required to 

collect, integrate, store data, and train large models will be a challenge for individual operators. 

The community will depend on large collaborations, such as the OpenFold Consortium, to 

ensure the most powerful predictive models of biology are publicly accessible and usable for 

research. 

A well-specified model that reflects true biology is more robust than a model that relies 

on correlative signals. To build trust in predictive models and garner biological insights, we 

must understand if well-performing models rely on causal relationships to make 

predictions[9,80]. In our association study, we hypothesized that rs35569429 may be a cis-

acting regulator of WDR1 or SLC2A9. Although the literature reflects some support for these 

hypotheses, each requires experimental testing. This story is true for any model we wish to 

interpret and use to understand biology. Neural networks, such as ChemProbe, pose a more 

daunting challenge to interpret than linear models. We applied a model interpretation method 
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and evaluated if feature attributions depended on the learned model weights or the 

relationship between features and labels. We found this to be the case and applied similarity 

analyses to attribution vectors, finding that they reflected compound mechanisms of action. 

Such experiments that evaluate model interpretation results with respect to the model, data, 

and known biology, are critical for determining if models reflect true biological processes. If so, 

we may consider interpreting such models and posing new hypotheses. The machine learning 

community requires novel model interpretation methods, and experimental approaches that 

eliminate alternative hypotheses, to successfully do so. Research into causal models that reflect 

data generation processes and biological priors remains a promising direction for model 

interpretation.  

The promise of precision medicine remains, and our ability to accurately predict 

phenotypes will change medical practice and ultimately health outcomes. In parallel, 

understanding how such models predict complex phenotypes poses opportunities to discover 

new therapeutic interventions and engineer biology. 
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