
UC Irvine
UC Irvine Previously Published Works

Title
Modeling time‐varying effects of multilevel risk factors of hospitalizations in patients on 
dialysis

Permalink
https://escholarship.org/uc/item/0332k882

Journal
Statistics in Medicine, 37(30)

ISSN
0277-6715

Authors
Li, Yihao
Nguyen, Danh V
Chen, Yanjun
et al.

Publication Date
2018-12-30

DOI
10.1002/sim.7950
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0332k882
https://escholarship.org/uc/item/0332k882#author
https://escholarship.org
http://www.cdlib.org/


Modeling Time-Varying Effects of Multilevel Risk Factors of 
Hospitalizations in Patients on Dialysis

Yihao Lia, Danh V. Nguyenb, Yanjun Chenc, Connie M. Rheeb, Kamyar Kalantar-Zadehb, and 
Damla Şentürka,*

aDepartment of Biostatistics, University of California, Los Angeles, California 90095, U.S.A.

bDepartment of Medicine, UC Irvine School of Medicine, Orange, CA 92868-3298, U.S.A.

cInstitute for Clinical and Translational Science, University of California, Irvine, California 
92687-1385, U.S.A.

Summary

For chronic dialysis patients, a unique population requiring continuous medical care, 

methodologies to monitor patient outcomes, such as hospitalizations, over time, after initiation of 

dialysis, are of particular interest. Contributing to patient hospitalizations are a number of 

multilevel covariates such as demographics and comorbidities at the patient-level, and staffing 

composition at the dialysis facility-level. We propose a varying coefficient model for multilevel 

risk factors (VCM-MR) to study the time-varying effects of covariates on patient hospitalization 

risk as a function of time on dialysis. The proposed VCM-MR also includes subject-specific 

random effects to account for within-subject correlation and dialysis facility-specific fixed effect 

varying coefficient functions to allow for modeling of flexible time-varying facility-specific risk 

trajectories. An approximate EM algorithm and an iterative Newton-Raphson approach are 

proposed to address the challenge of estimation of high-dimensional parameters (varying 

coefficient functions) for thousands of dialysis facilities in the United States. The proposed 

modeling allows for comparisons between time-varying effects of multilevel risk factors as well as 

testing of facility-specific fixed effects. The method is applied to model hospitalization risk using 

the rich hierarchical data available on dialysis patients initiating dialysis between January 1, 2006 

and December 31, 2008 from United States Renal Data System, a large national database, where 

331, 443 hospitalizations over time are nested within patients, and 89,889 patients are nested 

within 2,201 dialysis facilities. Patients are followed-up until December 31, 2013, where follow-up 

time is truncated five years after initiation of dialysis. Finite sample properties are studied through 

extensive simulations.
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1 Introduction

The latest United States Renal Data System (USRDS) annual report1 shows that there were 

over 678,000 individuals with end-stage-renal disease (ESRD) in the United States (US) as 

of December 31, 2014. About 70% of patients with ESRD were on dialysis, a life-sustaining 

treatment. Patients on dialysis are typically hospitalized twice a year, and hospitalization in 

this population remains a major mortality and morbidity burden. Modeling time-varying 

effects on patient outcomes, such as hospitalizations, is especially important in this unique 

cohort of patients because ESRD patients remain on dialysis for long periods of time (for the 

remainder of their lifetime or until receiving a kidney transplant). Hence studying leading 

risk factors of hospitalizations and characterizing their effects as a function of time on 

dialysis is essential in assessing health care improvement strategies, as the needs of dialysis 

patients may change the longer they remain on dialysis.

In addition to the need for time-dynamic modeling, another challenging aspect of studying 

hospitalization risk factors is the hierarchical structure of the data and the multilevel nature 

of the risk factors themselves. The rich hospitalization data available through USRDS is 

hierarchical where hospitalizations over time are nested within patients, and patients are 

nested within dialysis facilities across the US. There are a number of risk factors for 

hospitalizations at both the patient-level and facility-level in the hierarchy. The patients’ 

baseline demographics and comorbidities at initiation of dialysis as well as facility staff level 

and composition are among the covariates that potentially affect hospitalization risk. Hence 

the desired modeling has to account for dependencies in the data within subjects and within 

facilities to facilitate efficient inference for the time-varying effects of multilevel risk factors.

Varying coefficient models are an effective tool in modeling time-varying regression 

effects2–3 and there is a rich literature on their applications to longitudinal data.4–8 However 

most of the literature is on a two-level hierarchy where observations over time are nested in 

subjects and is not applicable to data with higher levels of hierarchy such as observations 

over time nested in patients, and patients nested in dialysis facilities.9–14 The few works that 

consider higher levels of hierarchy do not consider multilevel predictors or multilevel 

regression effects modeled through multilevel varying coefficient functions. You et al.15 

consider varying coefficient models with a three-level hierarchy, but only model time-

varying effects of subject-level predictors and do not assume a particular structure for the 

dependencies within the hierarchy, utilizing an unstructured error covariance, which may not 

scale up well in large data applications.

As a novel departure from existing literature, we propose a varying coefficient model for 

multilevel risk factors (VCM-MR) with multilevel varying coefficient functions that are 

associated with them. We model the within-subject correlation via a subject-specific random 

effect. However, rather than a facility-level random effect, we model facility-specific 

deviations in hospitalization risk via facility-specific fixed varying coefficient functions. 

This is partly motivated by the fact that the correlation between predictors and a random 

effect higher in the hierarchy may lead to bias in estimation of regression effects in 

multilevel regression models.16 While the inclusion of the facility-specific fixed varying 
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coefficient functions add flexibility in modeling time-varying facility-specific risk 

trajectories, they also pose a major computational challenge in estimation yielding a large 

number of varying coefficient functions, hence high dimensionality in the parameter space. 
Hence we propose a novel iterative estimation algorithm tailored to the specific 

computational challenges posed by our data application namely the high-dimensional 

parameter space and the large size of the data from USRDS, based on an approximate EM 

algorithm and Newton-Raphson maximization. We rely on bootstrap confidence intervals, 

constructed by resampling from facilities, for assessing variation in the estimated subject-

and facility-level time-varying effects and develop a hypothesis testing procedure to assess 

whether facility-specific fixed effects are significant or time-varying. Finally, taking 

advantage of the multilevel structure of VCM-MR, we propose predicted multilevel (patient- 

and facility-level) hospitalization risk trajectories throughout dialysis treatment. Patient-level 

predictions can help guide patients in choosing a suitable dialysis facility at the initiation of 

dialysis and can further provide subject-specific predicted risk trajectories utilizing the 

patients’ case-mix at baseline and facility-level covariates from facilities of interest. The 

goal of facility-level predictions is to provide feedback to a facility for improvement of 

patient care.

The proposed VCM-MR as well as the iterative estimation procedure based on the 

approximate EM algorithm and inference for the model components are developed in 

Section 2, with technical details included in the Supporting Information. The proposed 

estimation framework is an extension of the iterative estimation algorithm of Estes et al.,17 

recently proposed for a multilevel varying coefficient model used for time-dynamic facility 

profiling; see also He et al.18 for time-static profiling. The goal of the previous work17 was 

to develop a time-dynamic risk-standardized index to compare a facility’s performance to a 

national norm. Hence the multilevel varying coefficient model of Estes et al.17 does not 

model time-varying effects of subject- or facility-level covariates and only adjusts for non-

time-varying effects of subject case-mix, suitable for the goal of facility profiling. Our 

modeling and overarching goals are quite different in this paper where the main focus is on 

studying the effects of multilevel (subject- and facility-level) covariates on dialysis patient 

outcomes as a function of the time indexing the change in patient needs (i.e. time on 

dialysis), rather than modeling facility quality of care. Applications to USRDS data to model 

hospitalization risk of patients over time on dialysis and simulation studies are presented in 

Sections 3 and 4, respectively.

2 Varying Coefficient Model for Multilevel Risk Factors

2.1 Model Specification

Let i = 1, …, I index dialysis facilities and j = 1, …, Ni index subjects belonging to the ith 

facility with Ni number of total subjects. Further let Zi(j) = {Z1i(j), …, Zpi(j)}⊤ denote the 

vector of p facility-level predictors of facility i and Xij = (X1ij, …, Xrij)⊤ denote the vector 

of r subject-level predictors. Note that the facility-level predictors, such as total number of 

subjects or staff decomposition, are reported only once a year. Hence they are also indexed 

by the subject counter j, since their values are assigned using reported facility characteristics 

in the previous calendar year from the time the jth subject within facility i initiates dialysis. 
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To study the effect of multilevel risk factors, Zi(j) and Xij, on a patient’s hospitalization risk, 

we model the binary outcome of having a hospitalization within a three month interval in the 

follow-up time after initiation of dialysis. The outcome Yijk ≡ Yij(tijk) equals one if the jth 

patient within facility i experienced a hospitalization during the kth three month follow-up 

interval and equals zero otherwise, where k = 1, …, Nij, with Nij denoting the total number 

of three month intervals in the follow-up of subject j and tijk denoting the midpoint of the kth 

three month interval. A similar approach of modeling grouped response in intervals over 

follow-up time was considered by Liu et al.19 in studying hospitalization days among 

dialysis patients using an event rate model. The goal is to model the expected outcome:

pi j(t) = E Yi j(t) | Zi( j), Xi j, bi j, Si j > t ,

where bi j N 0, σb
2  denotes the subject-specific random effects to account for within-subject 

correlation and Sij denotes the death time of subject j. The expected outcome pij(t) defines a 

‘partly conditional’ target conditional on the patients being alive Sij > t. Note that since our 

target is only conditional on the patient being alive, we assume that the probability pij(t) 
conditioning on Sij > t is the same as conditioning on Sij > t* for any t* > t, i.e., conditioning 

on different time points is exchangeable as long as the patient is alive at both time points 

(similar to most frailty models). For the outcome defined in three month intervals, the 

expected outcome is defined for follow-up intervals such that Sij > tijk, i.e. for intervals 

where the subject survived at least half of the three month interval. The 45 day cutoff is used 

as a compromise between having too few days in the interval for hospitalization 

opportunities if the cutoff is lower and eliminating more last intervals in the follow-up of 

patients where the death occurred (leading to data loss) if the cutoff is higher. A sensitivity 

analysis with cut-offs of 30 and 60 days in our applications to USRDS data lead to similar 

inference as the chosen cutoff of 45 days. Partly conditional models study the dynamic 

cohort of survivors and have been considered in the context of generalized linear models for 

longitudinal data where missingness is primarily due to truncation by death.20 Estes et al.8,21 

considered partly conditional target of inference for varying coefficient models.

In the proposed VCM-MR, the facility-level effects have two parts. The first part explains 

the time-varying effects of the facility-level covariates, denoted by θ(t) and the second part 

represents the facility-specific fixed effects, denoted by γi(t). The logit link function, 

denoted by g{pij(t)} = log[pij(t)/{1 − pij(t)}], is used to connect the conditional expected 

outcome to the time-varying effects of the predictors via

g[E{Y i j(t, c) | Xi j, Zi( j), bi j, Si j > t}] = g{pi j(t, c)} = η(c) + γi(t) + Zi( j)
⊤ θ(t) + Xi j

⊤β(t) + bi j,

(1)

where β(t) = {β1(t), …, βr(t)}⊤ and θ(t) = {θ1(t), …,θp(t)}⊤ denote the time-varying effects 

of the subject- and facility-level covariates, respectively. Note that hospitalization risk is 
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assumed not to depend on the subject’s actual survival time, but rather only on the length of 

time in the follow-up after initiation of dialysis. Even though this assumption may be a 

strong one depending on the the target of inference that is of interest, it is standard in ‘partly 

conditional’ models.20 In addition, η(c) denotes calendar time effects with c denoting 

calendar time at initiation of dialysis, for cases where the cohort includes patients initiating 

dialysis over multiple calendar years. Hence, while η(c) adjusts for potential differences in 

the overall hospitalization risk of cohorts of patients initiating dialysis over different 

calendar years, γi(t) captures facility effects over time on dialysis, a time period over which 

the needs of dialysis patients may change. Note that γi(t) may still include some changes in 

facility performance over follow-up calendar time as well but such an effect is at best an 

average effect over the dialysis initiation years since it is estimated using cohorts initiating 

dialysis over multiple calendar years. Also, since both η(c) and γi(t) are playing the role of a 

y-intercept, they are not identifiable without restrictions. Therefore, we normalize η(c) such 

that ∫ 0
Cη(c)dc = 0 and allow γi(t) to carry the magnitude of the y-intercept.

Finally, note that the proposed model in (1) is a partially pooled model for facility effects. In 

other words, it strikes a balance between complete pooling and no pooling, where complete 

pooling would pool data without keeping track of which facility they belong to and would 

not consider facility-specific effects γi(t) + Zi( j)
⊤ θ(t) and in no pooling, estimation of the 

facility effects would only use facility-specific data, i.e., facility-level effects would be 

modeled only by γi(t), which may cause over-fitting problems, especially in small facilities. 

Partial pooling stabilizes the estimation of facility-level effects through inclusion of facility-

level covariates while still producing facility-specific predictions.

2.2 Estimation Procedure

We outline the proposed estimation procedure, based on an approximate EM algorithm, for 

the proposed VCM-MR. Let LYij{γi(t),θ(t), β(t), η(c)} denote the joint distribution of the 

outcome of the jth subject Y i j1, …, Y i jNi j
 observed at the time points ti j = ti j1, …, ti jNi j

, 

conditional on bij, Xij, Zi(j) and Sij > tij. For mathematical convenience, we assume that the 

within-subject correlation among Y i j1, …, Y i jNi j
 is explained by two independent sources: 

the subject-specific random effects bij and the dependency of Yijk, k = 1, …, Nij, on the 

patient’s death time Sij. A similar assumption is made in Liu et al.19 who also consider a 

partly conditional model (referred to as a partial marginal model), where the death time is 

assumed to be independent of the frailty (represented by a within-subject random effect) 

capturing the within-subject correlation. Using the independence between bij and Sij, the 

joint distribution of Y i j1, …, Y i jNi j
, bi j  conditional on Xij, Zi(j) and Sij > tij, denoted by 

Lij{bij, σb, γi(t), θ(t), β(t), η(c)}, can be given as

Li j{bi j, σb, γi(t), θ(t), β(t), η(c)} = LYi j
{γi(t), θ(t), β(t), η(c)} ×

exp{ − bi j
2 /(2σb

2)}

2πσb
2 ,
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for a normally distributed subject-specific random effect bij. Hence, the complete likelihood 

corresponding to the VCM-MR in (1) is

L{b, σb, γ1(t), …, γI(t), θ(t), β(t), η(c)} = ∏
i = 1

I
∏
j = 1

Ni
Li j{bi j, σb, γi(t), θ(t), β(t), η(c)} .

In addition, viewing the subject-specific random effects as unobserved covariates, the 

incomplete likelihood available for estimation of {σb, γ1(t), …, γI(t), θ(t), β(t),η(c)} is

L{σb, γ1(t), …, γI(t), θ(t), β(t), η(c)} = ∏
i = 1

I
∏
j = 1

Ni ∫−∞
∞

Li j{bi j, σb, γi(t), θ(t), β(t), η(c)}dbi j .

We propose an approximate EM algorithm, where the expectation step targets the 

approximate conditional expectation of the complete likelihood by utilizing a Taylor’s 

expansion and the first two moments of the subject-specific random effects. Then the 

maximization step optimizes the approximate expected likelihood with respect to model 

parameters. For the expectation step, the posterior distribution of bij can be given as

Di j{bi j |Yi j, σb, γi(t), θ(t), β(t), η(c), Si j > ti j} =
Li j bi j, σb, γi(t), θ(t), β(t), η(c)

∫ −∞
∞ Li j bi j, σb, γi(t), θ(t), β(t), η(c) dbi j

.

Using this posterior distribution, we define the posterior mean and variance of bij, denoted 

by bij0 and vij0, respectively, as

bi j0 = ∫
−∞

∞
bi jDi j{bi j |Y i j, σb, γi(t), θ(t), β(t), η(c), Si j > ti j}dbi j and (2)

vi j0 = ∫
−∞

∞
(bi j − bi j0)2Di j{bi j |Y i j, σb, γi(t), θ(t), β(t), η(c), Si j > ti j}dbi j . (3)

The integrals in (2) and (3) are approximated numerically via a Gauss-Hermite quadrature 

calculation with 20 sample points. Assuming that the within-subject correlation introduced 

by the dependence on death time Sij is weak compared to that introduced by the random 

effect bij, we can approximate the joint likelihood LYi j
{γi(t), θ(t), β(t), η(c)} conditional on bij 

(needed in (2) and (3)) utilizing the working independence assumption:

LYi j
{γi(t), θ(t), β(t), η(c)} ≈ ∏

k = 1

Ni j exp[{γi(ti jk) + bi j + Zi( j)
⊤ θ(ti jk) + Xi j

⊤β(ti jk) + η(ci j)}Yi jk]

1 + exp{γi(ti jk) + bi j + Zi( j)
⊤ θ(ti jk) + Xi j

⊤β(ti jk) + η(ci j)}
.
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The working independence assumption will also be used in the M-step of the proposed EM 

algorithm to estimate the partly conditional target. Kurland and Heagerty20 point out that a 

standard likelihood-based method or an estimating equation approach without a working 

independence structure will not lead to valid inference for a partly conditional target.

For approximating the conditional expectation of the complete likelihood in the E-step, let 

σb*, γ1*(t), …, γI*(t), θ*(t), β*(t), η*(c)  be the current parameter estimates, bi j0* , vi j0*  denote the 

estimated posterior mean and variance of bij based on the current parameter estimates and 

ℓij{bij, σb, γi(t), θ(t),β(t),η(c)} denote the log of Lij{bij, σb, γi(t), θ(t),β(t),η(c)}. Because the 

closed form for 

∑i = 1
I ∑ j = 1

Ni E [𝓁i j bi j, σb, γi(t), θ(t), β(t), η(c) |Y i j, σb*, γi*(t), θ*(t), β*(t), η*(c), Si j > ti j] is not 

available, we use the second order Taylor series expansion to approximate the expected log-

likelihood around bi j0*  by

∑
i = 1

I
∑
j = 1

Ni
∑

k = 1

Ni j
Y i jk{g(p0, i jk* )} + log(q0, i jk* ) −

vi j0*
2 p0, i jk* q0, i jk* −

(bi j0* )2 + vi j0*
2(σb*)2

− 1
2log{2π(σb*)2} ≡ ∑

i = 1

I
Li{σb*, γi*(t), θ*(t), β*(t), η*(c)},

(4)

where p0, i jk* = g−1 γi* ti jk + bi j0* + Zi( j)
⊤ θ* ti jk + Xi j

⊤β* ti jk + η* ci j , q0, i jk* = 1 − p0, i jk*

and Li{σb*, γi*(t), θ*(t), β*(t), η*(c)} is defined implicitly. (For details, see Appendix A of the 

Supporting Information.)

The main challenge in maximizing the approximate expected log-likelihood in (4) (M-step) 

is the high dimensionality of the parameter space when the number of facilities is large. 

Nonetheless, the approximate expected log-likelihood is separable into I components, 

denoted by Li{σb*, γi*(t), θ*(t), β*(t), η*(c)}. Hence, maximizing the approximate expected log-

likelihood with respect to γi(t) is equivalent to maximizing Li{σb*, γi*(t), θ*(t), β*(t), η*(c)}, 

with respect to γi(t) and therefore γi(t) can be estimated utilizing data from the ith facility. 

Hence for a fixed set of {σb, θ(t), β(t), η(c)}, γi(t) is updated based on data from the ith 

facility. To estimate {σb, θ(t), β(t), η(c)}, for fixed γi(t), i = 1, …, I, we maximize the entire 

approximate expected log-likelihood. Therefore, we propose an iterative Newton-Raphson 

algorithm which iterates between estimation of γi(t) and {σb, θ(t), β(t), η(c)}. This iterative 

nature, separating the maximization of γi(t) and the rest of the model parameters is the key 

to the computational feasibility of the proposed algorithm, since updating of γi(t) estimates 

only uses data within facilities. The computational time for fitting VCM-MR is 2.0 and 9.7 

minutes in our simulation set-up introduced in Section 4 for I = 100 and I = 500 facilities, 

respectively, and 1.3 hours for the application to USRDS data in Section 3 on a modest 

DELL XPS 8910 desktop with 6th generation Intel® Core™ i7–6700 processor.
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For estimation of the varying coefficient functions γi(t), β(t), θ(t) and η(c), we utilize their 

local linear expansions in time (follow-up time or calendar year at initiation of dialysis) and 

target the parameters in these expansions by maximizing the approximate local log-

likelihood defined in a local neighborhood in time, by a one-step Newton-Raphson iteration. 

We begin by estimation of σb via maximizing the approximate expected log-likelihood, 

followed by the estimation of γi(t) with fixed {σb, θ(t), β(t), η(c)}. Then γi(t), η(c), σb are 

fixed and β(t) and θ(t) are updated. Finally, we update η(c) with fixed {σb, γi(t) θ(t), β(t)}. 

The estimation steps of the proposed algorithm are provided in Appendix A of the 

Supporting Information.

2.3 Inference for Model Parameters

For inference on the effects of the multilevel risk factors (θ(t), β(t)) and the calendar year at 

initiation of dialysis (η(c)), we utilize a bootstrap procedure which samples from facilities, 

the highest level of the hierarchy in the data. For each bootstrap dataset, we sample the same 

number of total facilities as the original data and repeat the proposed estimation procedure to 

obtain the bootstrap estimates of the varying coefficient functions of interest. Bootstrap 

confidence intervals are constructed using the pointwise percentiles of the set of bootstrap 

estimates.

While our main inferential focus is on the effects of multilevel risk factors for 

hospitalizations, we also propose a computationally efficient hypothesis testing algorithm for 

the significance of the facility-specific effects captured by γi(t). Testing for H0 : γi(t) = 0 

can be interpreted as testing whether the facility performance deviates from what would be 

explained or expected based on its facility- and subject-level covariates. Since the proposed 

bootstrap procedure for inference on the multilevel risk factors samples from facilities to 

preserve the correlation structure in the data, it cannot be used for inference on the facility-

specific effects. The proposed hypothesis testing procedure utilizes the fact that estimation 

of β(t), θ(t), η(c) and σb
2 is quite precise, based on the entire data which is large, made up of 

hospitalizations of patients from all dialysis facilities across the US, and fixes these 

estimates once they are estimated throughout the algorithm. Hence the proposed hypothesis 

testing procedure only resamples data for subjects within the ith facility and is therefore 

computationally efficient. The proposed testing procedure measures departures of γi(t) from 

0, under the null H0 : γi(t) = 0 via the test statistic ri = ∫ γi(t) − 0 2dt. The specific steps 

are as follows.

a. Estimate all model parameters from the initial data fit and compute the test 

statistic ri based on the observed data. Denote this observed test statistic by ri
O. 

Fix θ(t), β(t), η(c) and σb at their estimated values θ (t), β(t), η(c) and σb.

b. Resample subject-specific random effects from the posterior distribution 

Di j{bi j | Y , σb, θ (t), β(t), η(c), γi(t) = 0, Si j > ti j  defined under the null. Compute 

the posterior mean and variance, bij0 and vij0 using the fixed θ (t),β(t), η(c) and σb

values from step (a). Approximate the posterior distribution by a normal density 
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with mean bij0 and variance vij0 and draw an independent sample of size F for 

each subject j = 1, …, Ni within facility i: bi j
( f ) N bi j0, vi j0 , f = 1, …, F.

c. Draw F samples of the outcome {Y i jk
( f ) : j = 1, …, Ni, k = 1, …, Ni j, f = 1, …, F}

where each observation, conditional on the resampled subject-specific random 

effects, is generated from a Bernoulli distribution under the null (H0 : γi(t) = 0):

Yi jk
( f ) |bi j

( f ) Ber
exp{η(ci j) + bi j

( f ) + Zi( j)
⊤ θ (ti jk) + Xi j

⊤β(ti jk)}

1 + exp{η(ci j) + bi j
( f ) + Zi( j)

⊤ θ (ti jk) + Xi j
⊤β(ti jk)}

.

a. stimate bij0, vij0 and γi(t) and the test statistic, ri
( f ), based on each resampled 

dataset f = 1, …, F. Note that since θ(t), β(t), η(c) and σb are fixed in step (a), we 

only need to iterate between estimation steps 2, 4 and 7 to obtain the parameter 

estimates.

b. Calculate the nominal p-value Pr ri > ri
O | H0  by (1/F)∑ f = 1

F 𝕀 ri
( f ) > ri

O , where 

𝕀 ⋅  denotes the indicator function.

Note that the hypothesis testing procedure can be extended for also testing whether the 

facility-specific fixed effect is time-varying, i.e., H0 : γi(t) = c, by substituting c for 0 above, 

using the test statistic ri = ∫ γi(t) − c 2dt.

3 Multilevel Risk Factors of Hospitalization Among Patients on Dialysis

3.1 Description of the USRDS Study Cohort

We utilize hospitalization data from the United States Renal Data System (USRDS), which 

collects information on nearly all patients with end-stage renal disease (ESRD), including 

patient demographics and comorbidities prior to the initiation of dialysis. The study cohort 

includes dialysis patients 18 years of age or older who initiated dialysis between January 1, 

2006 and December 31, 2008. The follow-up is until December 31, 2013, where the follow-

up time is truncated five years after initiation of dialysis. The detailed descriptions of the 

study cohort and the exclusion rules are provided in Supporting Information Appendix B. 

Our final study cohort includes 89, 889 patients receiving dialysis at a total of 2, 201 

facilities. The number of patients per facility varies between 20 and 162 where we refer to 

facilities with 20–31, 31–44 and > 44 patients as small, medium and large facilities, 

respectively (the cutoff values are taken to be the tertiles of the distribution).

3.2 Time-Varying Effects of Multilevel Risk Factors

To study the effects of multilevel risk factors, 27 patient-level and three facility-level 

covariates are considered for the proposed VCM-MR. The patient-level covariates include 

age, gender, body mass index (BMI), whether diabetes is the cause of ESRD and 23 

comorbidities, ranging from chronic obstructive pulmonary disease (COPD), seizure 

disorder, ulcers, drug and alcohol disorders, end-stage liver disease, severe cancer to 

psychiatric comorbidities and transplants. Each of the 23 comorbidities (indicator variables) 
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are determined based on the presence of the condition from the previous 12 months prior to 

the initiation of dialysis treatment for each person based on Medicare claims. Total number 

of patients, nurse-to-staff ratio and non-nurse-to-patient ratio (i.e., patient care technician 

(PCT)-to-patient ratio) are included for the facility-level covariates. For convenience of 

interpretation, we consider nurse-to-patient ratio and non-nurse-to-patient ratio as 

percentages, by multiplying the relevant ratios by 100. The standard deviation of the subject-

specific random effects is estimated to be σb = 1.12, larger than the magnitude of most 

estimated γi(t) values, signaling that the variation of the overall hospitalization risk across 

patients is generally larger than the variation across dialysis facilities. For details on the 

selection of the bandwidths of the varying coefficient functions, corresponding to the 

multilevel risk factors, see Appendix C of the Supporting Information.

All of the patient-level risk factors are found to have significant effects on patient 

hospitalization risk except for the two comorbidities considered, fibrosis of the lung or other 

chronic lung disorders and respirator dependence. In addition, all of the comorbidities that 

are found significant are associated with an increase in hospitalization risk, as expected. 

Figure 1 displays the estimated varying coefficient functions for a sample of eight patient-

level risk factors which are found significant, (a) age, (b) BMI, (c) whether diabetes is the 

cause of ESRD, (d) gender, COPD, (f) ulcers, (g) transplants and (h) seizure disorders and 

convulsions. The point-wise 95% bootstrap confidence intervals based on 200 bootstrap 

replications are also provided (dashed lines). For easier comparison, we plot effect sizes 

corresponding to the changes in age and BMI in 10-year and 5-unit increments, respectively 

(close to their respective unit standard deviations). Older age at initiation of dialysis is 

associated with higher hospitalization risk except for the first few years on dialysis. 

Although time-varying effects of age on the risk of hospitalization has not been examined in 

this population, this finding may be partly attributed to the cumulative burden of dialysis 

treatment which typically leads to the deteriorating conditions of end stage renal disease. 

Diabetes being the cause of ESRD is associated with higher hospitalization risk with the 

effect getting stronger as patients stay longer on dialysis. Females have more 

hospitalizations than males, but this difference in hospitalization risk gets smaller in the later 

years of dialysis treatment. As observed also in other chronic conditions, higher BMI is 

associated with lower hospitalization risk, with a protective effect. All four comorbidities 

displayed are associated with higher hospitalization risk, with some time-varying effects 

throughout the course of dialysis. For example, the association between seizure disorders 

and convulsions and increased hospitalization risk gets weaker as patients stay longer on 

dialysis.

At the facility-level, Figure 2(a)-(c) display the time-varying effects of the three risk factors 

considered: (a) nurse-to-patient ratio (in percent), (b) non-nurse-to-patient ratio (in percent) 

and (c) total number of patients. The effect sizes plotted correspond to changes of 5-

percentage point increments in both nurse-to-patient and non-nurse-to-patient ratios and a 

change by 50 patients in the total number of patients. Higher number of total patients (hence 

larger facility size) is significantly correlated with lower hospitalization risk. Both nurse-to-

patient ratio and PCT-to-patient ratio have a significant effect on the patients’ hospitalization 

risk, where the higher ratio of nurse-to-patient and PCT-to-patient are both correlated with a 
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lower risk of hospitalization, as expected. Note that the effect size of PCT-to-patient ratio is 

found to be larger than that for the nurse-to-patient ratio on hospitalization risk. For 

example, at the end of the first year of dialysis, a five percentage points increase in the PCT-

to-patient ratio is associated with a seven percent decrease in the odds of hospitalizations, 

whereas the same amount increase in the nurse-to-patient ratio is only associated with a 4 

percent decrease in the odds. The effects of all significant risk factors at the facility-level 

increase with time on dialysis, i.e. for patients who have been on dialysis longer, an increase 

in facility size or nurse-to-patient ratio is associated with larger reductions in hospitalization 

risk. Also plotted in Figure 2 is the estimated varying coefficient function for the calendar 

year effect at initiation of dialysis. The bootstrap confidence interval for η(c) contains a 

constant function around zero except at the boundaries, providing evidence for non-

significant calendar year effects in the study cohort.

In addition, as explained in Section 2.3, γi(t) captures facility-specific fixed effects. We want 

to caution the reader that in the presence of facility-level covariates in the model, γi(t) alone 

does not reflect facility performance and should not be used for facility comparisons; instead 

it should be interpreted as a residual facility-specific deviation captured beyond what is 

explained by baseline case-mix and facility-level covariates. Hence, positive γi(t) correspond 

to higher risks of hospitalization after adjusting for patient case-mix and facility-level risk 

factors, while negative γi(t) correspond to lower risks of hospitalization. All facilities have 

been tested for significant effects (H0 : γi(t) = 0). Overall 15% of facilities have significant 

effects, where the significant facility effects represent 16.2% of small facilities (0.1% always 

positive, 15.7% always negative and 0.4% mixed), 14.8% of medium facilities (0.1% always 

positive, 14.4% always negative and 0.3% mixed) and 13.9% of large facilities (13.8% 

always negative and 0.1% mixed). For illustration of the different trends, we plot a sample of 

facilities whose time-varying effect γi(t) estimates are found significantly different than zero 

and are always negative, always positive or mixed in the Supporting Information Figure S1.

3.3 Predicted Multilevel Hospitalization Trajectories

Using the estimated model components, the proposed VCM-MR can also be used for 

obtaining predictions of hospitalization risk trajectories. Similar to the hierarchical nature of 

the proposed modeling, prediction obtained from VCM-MR is also multilevel, at the patient- 

and facility-levels. The goal of the patient-level prediction considered is to provide 

information to patients in selecting facilities at initiation of dialysis and for patients to 

predict their specific risk trajectories after initiation of dialysis based on their baseline 

covariates. While for selecting facilities, multiple risk trajectories can be obtained using 

facility characteristics from multiple facilities and ‘average’ case-mix values, for the second 

goal of creating subject-specific predicted hospitalization risk trajectories, subject-specific 

case-mix would be utilized in obtaining risk predictions. For illustration, we plot the patient-

level hospitalization risk predictions for a single patient from the USRDS cohort using three 

facilities including the patient’s current facility (Figure 3(a)). Because calendar year effect 

η(c) is not found significant, it does not contribute to patient-level predictions given by 

pi j′ (t) = g−1{γi(t) + Zi( j)
⊤ θ (t) + Xi j

⊤β(t)} for patient j at facility i, targeting 

pi j′ (t) = g−1{γi(t) + Zi( j)
⊤ θ(t) + Xi j

⊤β(t)}. Note that the dependence on calendar year c is 
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suppressed due to the nonsignificance of η(c) and that patient-specific predictions only use 

information at baseline (initiation of dialysis) and therefore do not include estimates of 

subject-specific random effects.

Figure 3(a) displays the three predicted risk trajectories for the patient from the USRDS 

study cohort along with the observed risk trajectory. As expected, the predicted risk 

trajectory using the current case-mix and facility-level risk factors is found to be the closest 

to the smooth of the observed outcome. Also, the two predicted risk trajectories 

corresponding to a medium (with 32–44 patients) and a small (with 20–31 patients) facility 

are above the predictions from the current large facility (with > 44 patients), showing that 

smaller facilities have higher risk of hospitalization, which agrees with data analysis results 

outlined in Section 3.2. For a new patient who is outside the study cohort used to build the 

model, patient-level prediction would use the patient’s current case-mix at the initiation of 

dialysis and facility-level covariates from facilities which the patient is considering for 

receiving dialysis. While we assume these candidate facilities would exist in the original 

data used to build the model (with their estimated γi(t)), their Zi(j) would have to be obtained 

to reflect facility characteristics from the time of predictions. Note that the predicted 

hospitalization risk based on the partly conditional VCM-MR, conditions on the patient 

being alive, with the predicted patient-level trajectory representing the patient’s 

hospitalization risk t years after initiation of dialysis if the patient were alive at that time.

Prediction at the facility-level provides information to facilities for improving patient care. 

More specifically, it provides guidance on how much decrease in patient hospitalization risk 

is associated with the change in a modifiable facility-level risk factor while keeping the 

decomposition of the patients whom the facility is serving fixed. In facility-level prediction, 

the patient case-mix of the facility, including patient comorbidities, are assumed to be 

known and fixed, while the differing predictions correspond to the differing choices of the 

facility-level characteristics considered. Define the mean hospitalization risk as 

pi′′(t) = 1/Nit ∑ j = 1
Nit pi j′′(t) where Nit is the number of patients who are alive and receiving 

dialysis treatment at facility i at time t and pi j′′(t) = g−1 γi(t) + Zi( j)
⊤ θ(t) + Xi j

⊤β(t) + bi j . Note 

that different from pi j′ (t), pi j′′(t) includes patient-specific random effects bij since the 

decomposition of the patient-level characteristics are assumed known and fixed in facility-

level prediction. The mean hospitalization risk can be interpreted as the average 

hospitalization risk of all patients who are receiving treatment at facility i at time t. Using 

the mean risk trajectory defined above, we obtain the facility-level predicted hospitalization 

risk trajectory as pi′′(t) = 1/Nit ∑ j = 1
Nit pi j′′(t) with 

pi j′′(t) = g−1 γi(t) + Zi( j)
⊤ θ (t) + Xi j

⊤β(t) + b i j . Note that different from pi j′ (t) in patient-level 

prediction obtained throughout the entire follow-up, conditional on the patient being alive, 

the pi j′′(t) is obtained only over the time period for which the patient is alive, based on the 

assumption that the patients’ survival time (Sij) is known.

Figure 3(b) shows three facility-level predicted mean risk trajectories for a large facility with 

current PCT-to-patient (ptp) ratio of 4.5%, along with two predictions that correspond to an 

Li et al. Page 12

Stat Med. Author manuscript; available in PMC 2018 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increase in the facility’s ptp ratio to 9.5% and 14.5%. Also plotted is the observed risk, 

which is the smooth of observations from all patients within the facility. The predicted mean 

risk trajectory using the current data (in gray) is the closest to the observed risk, as expected. 

Increasing the ptp ratio within the facility is associated with a decrease in its predicted 

average patient hospitalization risk, consistent with the data analysis findings of Section 3.2. 

Facility- and patient-level prediction can be assessed using relative mean squared deviation 

error (MSDE), ∫ pi′′(t) − pi′′(t)
2dt /∫ pi′′(t)

2dt, and mean squared error (MSE), 

∑k = 1
Ni j pi j′ ti jk − Y i jk

2 /Ni j, respectively. For the facility-level prediction, pi′′(t) is set to the 

observed hospitalization risk in facility i. MSE is used instead of MSDE for patient-level 

prediction since it is well-defined even for subjects with no hospitalizations in their follow-

up (where the denominator of MSDE would be zero) and for subjects with a single 

observation (where the integral in the denominator of MSDE cannot be computed). The 

(25%, 50%, 75%) percentiles of the MSDE for facility-level prediction are (.021, .044, .

077), (.018, .034, .061) and (.014, .025, .043) for small, medium and large facilities, 

respectively. Note that the facility-level prediction gets smaller with increasing facility size, 

mainly due to more precise estimation of γi(t) for larger facilities. The (25%, 50%, 75%) 

percentiles of the MSE for patient-level prediction are (.100, .200, .291) in the data 

application. The mean of the patient-level prediction error (.218) is slightly below the 

benchmark approach of using the overall mean hospitalization rate 0.27 in place of all 

pi j′ ti jk , yielding an average prediction error of .232.

4 Simulation Studies

We carry out simulation studies to examine the finite sample properties of the proposed 

estimation and inference procedures. Studies include assessment of the validity of the 

hypothesis testing procedure, performance of the bootstrap confidence intervals and 

multilevel predictions. Similar to our modeling in applications to USRDS data, we consider 

the following partly conditional model: 

g[E{Y i j(t, c) | Zi( j), Xi j, bi j, Si j > t}] = η(c) + γi(t) + Zi( j)
⊤ θ(t) + Xi j

⊤β(t) + bi j for t ∈ [0, 5] and c 

∈ [0, 3]. The details of the simulation design are deferred to Appendix D of the Supporting 

Information.

4.1 Estimation

A preliminary simulation using the sequential 10-fold cross-validation described in 

Appendix B of the Supporting Information is conducted for choosing the bandwidths of the 

varying coefficient functions in the full simulations. The most commonly selected 

bandwidths for small, medium and large facilities are fixed at 1.85, 1.65 and 1.35, 

respectively, for estimation of γi(t). In addition, the selected bandwidths for {θ(t), β(t)} and 

η(c) are 1.8 and 2.4, respectively. Mean squared error (MSE) is used to assess estimation of 

the time-invariant model parameter σb
2, and relative mean squared deviation error (MSDE), 

MSDE
ξ

= ∫ ξ (t) − ξ(t) 2dt /∫ ξ2(t)dt (for a generic function ξ(t)), is used to assess 

estimation of the time-varying functions, γi(t), θ(t), β(t) and η(c). In addition, multilevel 
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prediction is assessed by MSE and MSDE for patient- and facility-level prediction as 

defined in Section 3.3, with the difference that true pi′(t, c) and pi j′′ ti jk, ci j  available in the 

simulation setting replace the observed values utilized in data analysis. More specifically, for 

patient-level prediction, pi j′ (t, c) = g−1{γi(t) + Zi( j)
⊤ θ(t) + Xi j

⊤β(t) + η(c)} and 

pi j′ (t, c) = g−1{γi(t) + Zi( j)
⊤ θ (t) + Xi j

⊤β(t) + η(c)} and for facility-level prediction 

pi j′′(t, c) = g−1{γi(t) + Zi( j)
⊤ θ(t) + Xi j

⊤β(t) + bi j + η(c)} and 

pi j′′(t, c) = g−1{γi(t) + Zi( j)
⊤ θ (t) + Xi j

⊤β(t) + b i j + η(c)}.

Simulations are conducted for two cases with I = 100 and 500 total number of facilities and 

results are presented based on 200 Monte Carlo runs. Supporting Information Figure S2 

displays the estimated time-varying coefficient functions of the multilevel risk factors and 

η(c), along with their 95% bootstrap CIs from the simulation run with the median MSDE 

based on I = 100 total facilities. The estimates track the true functions which lie within the 

CIs for most of the time points. The (25th, 50th, 75th) percentiles of the MSDEs obtained 

for the varying coefficient functions from both simulation cases are summarized in Table 1. 

Also given in Table 1 are the MSDE and MSE for facility- and patient-level prediction, 

respectively. The increase in the total number of facilities leads to smaller MSDE values in 

estimation of β(t),θ(t) and η(c), as expected, but does not affect MSDEs for γi(t), since their 

estimation is based only on within facility data. The results for γi(t) are categorized by 

facility size where the precision in estimation of γi(t) improves for larger facilities. This is 

also the reason for the decrease in the MSE and MSDEs of patient- and facility-level 

predictions with increasing facility size. Since γi(t) is the component estimated with the 

least precision (based on facility-specific data) among the varying coefficient functions, the 

improvement in their estimation has the largest effect on the improvement observed in the 

multilevel prediction. Multilevel prediction is less affected by the increase in the total 

number of facilities. Note that MSDE values from estimation of η(c) are higher compared to 

other varying coefficient functions due to the smaller norm of the varying coefficient 

function which is centered around zero for identifiability. Overall, the estimation is on target 

as illustrated in Supporting Information Figure S2.

4.2 Inference: Bootstrap Confidence Intervals and Hypothesis Testing

We also examine the performance of the bootstrap confidence intervals proposed for the 

varying coefficient functions β(t),θ(t), η(c) and the validity of the proposed hypothesis 

testing procedure to identify significant facility-specific effects.

To study the coverage and length of the proposed bootstrap CIs for β(t), θ(t), η(c), results 

are reported from 200 Monte Carlo runs for I = 100 and I = 500 total number of facilities, at 

three time points in Table 2. As expected, the length of the CIs decrease with increasing 

number of facilities. Observed coverage probabilities (CPs) typically range between 85%

−95% with a low of 77% (Table 2). This is to be expected since the proposed CIs are 

pointwise CIs.

To assess the validity of the proposed hypothesis testing procedure for H0 : γi(t) = γ0(t), 
data for all facilities were generated from the simulation design described in Appendix D of 
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Supporting Information except for the first facility with facility-specific effects γ1(t) = 

γ0δ(t), where γ0δ(t) = (1 − δ)γ0(t) + δ( − t /5 − 1) for δ = 0, .25, .50, .75, and 1, and γ0(t) = 

0. Under this setup, the first facility effect deviates more from H0 with increasing δ, where 

γ0δ(t) = γ0(t) for δ = 0, and γ0δ(t) = − t /5 − 1 for δ =1. We tested H0 : γ1(t) = γ0(t) for δ = 

0, .25, .50, .75 and 1, to assess the level and power of the proposed hypothesis test. In 

addition to varying δ, we also generated the first facility at three different facility sizes (N1 = 

27, 43 and 69 subjects similar to real data, referred to as the small, medium and large 

facility, respectively). We considered two simulation cases with I =100 and 500 facilities and 

calculated the test statistics r1 and the associated p-values from 500 Monte-Carlo runs. 

Supporting Information Figure S3 displays three power curves from varying δ based on I = 

100 total facilities corresponding to small, medium and large facilities that are tested (results 

from I = 500 facilities are similar). The level of the test is on target at .028, .030, .052 for 

small, medium, and large facilities, respectively; and the power increases with increasing δ, 

as expected. More specifically, note that the power at δ = 1 are .452, .682 and .924 for small, 

medium and large facilities, respectively, and that the power increases more rapidly with 

increasing facility size.

5 Discussion

Studying leading risk factors of hospitalizations for patients on dialysis is important for 

identifying strategies that can improve their health. Due to the multilevel (subject- and 

facility-level) nature of the risk factors, we propose a novel varying coefficient model for 

multilevel risk factors to characterize effects as a function of the time patients are on 

dialysis. In addition to capturing multilevel effects, the proposed model allows for 

comparison of the effects of significant subject- and facility-level factors. To handle the 

computational challenges due to the high-dimensional parameter space and the large size of 

the data from USRDS, we develop a novel iterative estimation algorithm and an efficient 

hypothesis testing procedure. In the USRDS application, VCM-MR identifies significant 

multilevel risk factors for patient hospitalizations and leads to insights on modifiable 

facility-level risk factors (e.g. nurse-to-patient and PCT-to-patient ratios) which are 

associated with reductions in patient hospitalization risk.

We note that the proposed partly conditional modeling targets the hospitalization risk 

directly as the patient outcome. This can be extended through joint modeling to also handle 

patient survival. However, this extension requires further research as the multilevel varying 

coefficient models for joint modeling have not been considered to date. Finally, the goal of 

the proposed multilevel predictions, especially at the subject-level, is to make an entire risk 

trajectory prediction over the course of dialysis treatment using patient characteristics from 

initiation of dialysis. Time-dynamic predictions using time-varying multilevel covariates 

during dialysis, while also of interest, require further research. Additional issues to be 

considered for time-dynamic predictions would be the nature of the dependency of the time-

varying response on the time-varying covariates, whether it be contemporaneous, or 

involving delayed covariate values or dependent on the entire covariate history.
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We provide R codes for running our VCM-MR algorithm on simulated datasets on Github 

(https://github.com/dsenturk/VCM-MR).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Estimated patient-level effects β(t) (solid) on hospitalization risk corresponding to (a) a 

change of 10-years in age at initiation of dialysis, (b) a change of 5-units in BMI, (c) 

whether diabetes is the cause of ESRD, (d) gender, (e) COPD, (f) ulcers, (g) transplants, (h) 

seizure disorders and convulsions along with their 95% confidence intervals (dashed).
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Figure 2: 
Estimated facility-level effects θ (t) (solid) on hospitalization risk corresponding to a change 

of (a) 5-percentage points in nurse-to-patient ratio, (b) 5-percentage points in patient care 

technician (PCT)-to-patient ratio and (c) 50 patients in total number of patients, along with 

their 95% confidence intervals (dashed). Horizontal lines at zero are plotted in gray for 

reference and positive numbers on the y-axis correspond to increased risk of hospitalization. 

All three facility-level covariates are associated with protective effects on risk of 

hospitalization where PCT-to-patient ratio has a stronger association than nurse-to-patient 

ratio. Estimated calendar year effect η(c) and its corresponding 95% confidence interval are 

plotted in (d).
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Figure 3: 
(a) Patient-level predicted hospitalization probability. The smooth of a patient’s observed 

outcomes is given in solid black. Predicted hospitalization risk trajectories from the patient’s 

current large facility (> 44 patients) and two new facilities of sizes medium (32–44 patients) 

and small (20–31 patients) are given in gray, dashed and dotted, respectively. (b) Facility-

level predicted hospitalization probability for a large facility. The observed risk given in 

solid black represents the smooth of observations from all patients within a facility. 

Predicted mean hospitalization risk trajectories with the current PCT-to-patient (ptp) ratio 
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(4.5%) and higher ptp ratios of 9.5% and 14.5%, are given in gray, dashed and dotted, 

respectively.
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Table 1:

Percentiles of the mean squared deviation error (MSDE) for the time-varying coefficient estimates of facility-

specific fixed effects γi(t), effects of facility-level covariates θ(t), effects of subject-level covariates β(t), 

calendar time effect at initiation of dialysis η(c) and for facility-level prediction, based on 200 Monte Carlo 

runs. Percentiles of mean squared error (MSE) are reported for patient-level prediction error. MSDE for γi(t) 

and facility-level prediction and MSE for patient-level prediction are stratified by small (20–34 patients), 

medium (35–54 patients) and large (> 54 patients) facility sizes.

Part I I=100 I=500

MSDE 25% 50% 75% 25% 50% 75%

θ1(t) 0.012 0.023 0.04 0.003 0.005 0.009

θ2(t) 0.014 0.027 0.041 0.003 0.006 0.008

β1(t) 0.011 0.02 0.032 0.002 0.005 0.008

β2(t) 0.01 0.018 0.032 0.003 0.005 0.008

η(c) 0.382 0.583 0.917 0.29 0.425 0.53

Part II
MSDEγi(t) Facility-level prediction (MSDE) Patient-level prediction (MSE)

I=100 25% 50% 75% 25% 50% 75% 25% 50% 75%

All .022 .045 .099 .008 .015 .028 <.001 .001 .003

Small .035 .077 .158 .013 .024 .044 .001 .002 .006

Medium .024 .045 .095 .008 .015 .027 <.001 .002 .004

Large .012 .028 .056 .005 .009 .016 <.001 <.001 .002

I=500

All .020 .044 .096 .007 .014 .028 <.001 .001 .003

Small .033 .073 .154 .012 .023 .043 <.001 .002 .005

Medium .022 .046 .093 .008 .015 .027 <.001 .002 .003

Large .013 .027 .053 .005 .009 .016 <.001 <.001 .002
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Table 2:

Coverage probability (CP, in %) and length (LEN) of the 95% bootstrap confidence intervals at three time 

points (beginning, middle and end of follow-up) for varying coefficient functions (VCFs) associated with 

facility-level covariates (θ(t)), subject-level covariates (β(t)) and calendar time effects at initiation of dialysis 

(η(c)).

I = 100 I = 500

Year t = 0 t = 2.5 t = 5 t = 0 t = 2.5 t = 5

VCF CP LEN CP LEN CP LEN CP LEN CP LEN CP LEN

θ1(t) 87.0 .464 76.5 .233 89.5 1.04 92.0 .221 80.0 .119 93.5 .496

θ2(t) 91.0 .468 79.0 .235 93.0 1.05 86.0 .222 83.5 .117 92.0 .492

β1(t) 85.0 .426 77.5 .234 94.0 .974 83.5 .202 77.0 .115 95.0 .472

β2(t) 89.0 .426 82.5 .233 94.0 .976 87.0 .202 78.0 .115 92.0 .467

η(c) 94.0 .272 90.0 .126 90.0 .265 91.5 .182 92.5 .091 93.5 .181
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