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485netCDF OPERATOR (NCO) SCALING

SCALING PROPERTIES OF COMMON 
STATISTICAL OPERATORS FOR 
GRIDDED DATASETS

Charles S. Zender
Harry Mangalam
DEPARTMENT OF EARTH SYSTEM SCIENCE, 
UNIVERSITY OF CALIFORNIA, IRVINE
(ZENDER@UCI.EDU)

Abstract

An accurate cost model that accounts for dataset size and
structure can help optimize geoscience data analysis. We
develop and apply a computational model to estimate
data analysis costs for arithmetic operations on gridded
datasets typical of satellite- or climate model-origin. For
these dataset geometries our model predicts data reduction
scalings that agree with measurements of widely used
geoscience data processing software, the netCDF Opera-
tors (NCO). I/O performance and library design dominate
throughput for simple analysis (e.g. dataset differencing).
Dataset structure can reduce analysis throughput ten-fold
relative to same-sized unstructured datasets. We demon-
strate algorithmic optimizations which substantially increase
throughput for more complex, arithmetic-dominated anal-
ysis such as weighted-averaging of multi-dimensional data.
These scaling properties can help to estimate costs of dis-
tribution strategies for data reduction in cluster and grid
environments.

Key words: computational model, geoscience, scaling, data
analysis, netCDF

1 Introduction

Scientific advances in geosciences increasingly depend
on large scale computing (e.g. NRC 2001; NSF 2003).
Appropriately, much attention has been given to the com-
putational resources, sometimes called cyberinfrastructure,
required to produce such massive numerical experiments
(e.g. UCAR 2005). Analysis and post-processing of the
resulting tera-scale geoscience datasets presents its own set
of problems. The solutions to these problems include seam-
less or virtual data grids (e.g. Foster et al. 2002; Cornil-
lon, Gallagher and Sgouros 2003) and middleware which
optimizes the distribution of data analysis across the
available computing resources (e.g. Woolf, Haines and Liu
2003; Chen and Agrawal 2004).

Geoscience datasets typically have characteristics dis-
tinct from tera-scale datasets from other scientific disci-
plines. In contrast to computational biology, where datasets
are often irregular in size and stored in databases, and par-
ticle physics, where data reduction often consists of sift-
ing records for “events”, geoscientists often work with
gridded data which facilitates simple storage and mem-
ory access patterns. In particular, we are interested in
data analysis optimization for geoscience datasets stored
on rectangular grids rather than, for example, polygonal
meshes common in GIS applications. The size and coor-
dinate values of each dimension in a rectangular dataset
are independent of all other dimensions. Often in geo-
science datasets the rectangular coordinates include lati-
tude, longitude, and time. Rectangular datasets are well
suited to parallel analysis because their mutually inde-
pendent coordinates facilitate decomposition into smaller
datasets of finer granularity, e.g. chunking (Li et al.
2003; Drake, Jones and Carr 2005).

The volume of data and storage space in a rectangular
dataset scales exactly 1 : 1 with the total number N of
gridpoints (neglecting compression) and the computa-
tional requirements for analyzing the dataset usually
scale as �(N) for simple arithmetic analyses. However,
the constant of proportionality lurking in �(N) depends
strongly on the dataset rank and arithmetic operation
type. As we show below, dataset rank R can change the
computational requirements by more than an order of
magnitude for typical geoscience datasets. To make on-
line data-processing cost-estimators more efficient,
processing costs must be estimated with higher accuracy
than this.

Here we develop a framework for predicting resources
required to analyze and reduce geoscience datasets stored
in rectangular gridded files. This framework enables us
to quantitatively estimate data analysis costs associated
with the increasing resolution, length, and structure of
geoscience datasets. Our analysis focuses on the scaling
properties of fundamental statistical operations (differ-
encing, averaging) in uniprocessor environments. These
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486 COMPUTING APPLICATIONS

scaling properties can be used in cost-models to allocate
and optimize resources in more complex data analysis
workflows in parallel and distributed environments (e.g.
Woolf, Haines and Liu 2003; Chen and Agrawal 2004).

To place this research in context, groups such as the
Intergovernmental Panel on Climate Change (IPCC) and
the Program for Climate Model Diagnosis and Intercom-
parison (PCMDI) coordinate intercomparisons of dozens
of General Circulation Model (GCM) simulations (e.g.
Cubasch and Meehl 2001; Fiorino and Williams 2002),
each of which may occupy several terabytes (TB) of
netCDF data. Post-processing data reduction for current
and previous IPCC assessment reports relies heavily on the
netCDF Operators used here (Zender n.d.) and other toolkits
such as the Climate Data Analysis Tools (CDAT; Fiorino
and Williams 2002), the Climate Data Operators (CDO;
http://www.mpimet.mpg.de/fileadmin/software/cdo), the
Grid Analysis and Display System (GrADS; http://-www.
iges.org/grads/grads.html), and the NCAR Command Lan-
guage (NCL; http://www.ncl.ucar.edu). The ability to
model the workflow costs will help analysts optimize
workflow distribution amongst available computational
resources (Foster et al. 2002; Chen and Agrawal 2004)
with their toolkit-of-choice.

2 Methods

This section first presents a framework for describing the
geometry of gridded scientific datasets. The descriptors
include dataset shape and size, as well as nomenclature for
how shape and size change during data reduction. Next,
we enumerate the algorithmic costs of the fundamental
data reduction operations. Finally, we present the aggre-
gate costs of high-level data reduction operations such as
dataset differencing and weighted averaging.

2.1 Framework for Dataset Geometry

The gridded geophysical data of interest are assumed to
obey

N  D  R > 1 (1)

where N is the size (number of elements) of a variable, D
is the length of a dimension (e.g. spatial or temporal), and
R is the rank (number of dimensions) in the variable.
(Table 4 in the Appendix contains a symbol list.) In our
experience, this assumption applies to most gridded data
generated or stored on high performance computers.

The exact size N of a rank R variable is

N ≡  Dk (2)

The cost to process N elements depends on the arithmetic
algorithm which may explicitly depend on the Dk, i.e. on
the variable shape. Computational grids are approxi-
mately hypercubes if their dimensions satisfy

D1 ≈ D2 ≈  ≈ DR – 1 ≈ DR (3)

For such cases (2) simplifies to

N = R where (4)

≡ (5)

which defines the mean dimension size . A rank R
hypercube with N elements has R dimensions each of the
same geometric mean size . Current Earth System
Models are approaching a spatial  ~128 (Cubasch and
Meehl 2001). Equation (4) suffices to estimate storage
costs for changing resolution. For example, doubling
resolution in all three spatial dimensions increases N,
i.e. storage, by 23 or eight-fold. However, estimating data
analysis costs requires knowledge of N and rank R (and
other, analysis-specific parameters) on which we now
focus.

Data analysis often involves transforming variables
from an initial rank Ri to a final rank Rf. Rank-reducing
operations have Ri > Rf, while rank expansion operations
have Rf > Ri. A typical example of rank reduction is dis-
tilling raw data down to one or two meaningful statistics,
e.g. mean and standard deviation. A form of rank expan-
sion called broadcasting is often a required intermediate
data processing step.

A prime example of broadcasting occurs when gridded
quantities are aggregated. Geophysical computational grids
are (typically) rectangular coordinate grids where the
number of longitudes per latitude is constant. Such rec-
tangular grids on the sphere (e.g. Earth) are not equi-areal
grids. Hence aggregation and manipulation of conserva-
tive physical quantities (e.g. fluxes, concentrations, state
variables) requires area-weighting the grid data in order
to conserve mass, energy, tracers, and momentum. The
weights (relative areas) are one-dimensional for many
popular geophysical grids such as equi-angular and Gaus-
sian grids. Thus it is common to “broadcast” weights from
Ri = 1 to the variable rank R prior to processing varia-
bles.

Broadcasting algorithms transform smaller-ranked vari-
ables into larger ranks by duplicating existing values into
the new dimensions. For broadcasting to work, the initial
and final variable shapes must conform. Variable shape
is the vector representation of its dimensionality. A rank
R variable has shape S

S = [D1, D2, …, Dk – 1, Dk, Dk + 1, …, DR – 1, DR] (6)

>> >>

k 1=

k R=

∏

…

D

D NR

D

D
D
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487netCDF OPERATOR (NCO) SCALING

Consider two variables with shapes S1 and S2 where R1 <
R2. Shapes S1 and S2 conform only if S1 is a subset of S2
(S1  S2) so that all axes (dimensions) in S1 appear in S2.
Broadcasting algorithms are more efficient if the com-
mon dimensions, i.e. all S1 dimensions, appear in the same
order in S2. However, S2 may contain any number of
additional dimensions arbitrarily interspersed among the
common S1 dimensions.

The preceding discussion of shapes S1 and S2 applies
equally to two other important tasks in geophysical data
reduction: rank reduction and re-ordering. The most
common form of rank reduction is averaging, which geo-
physicists often perform on spatio-temporal datasets. Vari-
ables of shape S (6) may be reduced (e.g. averaged) over
a rank-RA averaging space SA if SA  S. The RA dimen-
sions in SA are enumerated from one to RA so that

SA = A1, A2, …, A , A (7)

NA = Ak (8)

where NA is the number of elements in an input variable
reduced to a single element of the output variable. Hence
NA is the product of all RA reduced dimensions (8).

Data reduction algorithms must be flexible enough to
handle not only weights, but also masks and invalid val-
ues. Masks are boolean flags m which indicate whether a
datum should be included or excluded from the arithme-
tic operation. For instance, spatial masks are used to restrict
arithmetic operations to specific geographic regions. In
gridded datasets, invalid or missing data are indicated by
a special value often called the missing value (Rew and
Davis 1990). The boolean missing value flag µ indicates
whether a datum should be included or excluded from the
arithmetic operation. The average  of a variable x
weighted by w with mask m and missing value µ is

j = µimiwixi  µimiwi (9)

where the subscripts i and j range over the input and aver-
aged hyperslabs, respectively. The denominator of (9)
makes clear that the weight w must be arithmetically
reduced like the variable x to ensure proper normalization.
The remainder of this paper neglects µ and m since our
investigations showed that their presence introduces neg-
ligible computational overhead in modern compilers.

2.2 Operation Counts

Data reduction operations occur in five phases: input,
pre-processing, arithmetic, post-processing, and output.

Input and output refer to reading and writing, respec-
tively. In this paper, we restrict our attention to local data
reduction, where I/O occurs from/to local disks rather than
across networks. Pre-processing may also include alloca-
tion of intermediate buffers, data broadcasting, and type
promotion. Post-processing often includes similar opera-
tions in the reverse order, e.g. buffer de-allocation, type
demotion. Pre- and post-processing include, when neces-
sary, byte-swapping to convert between disk and mem-
ory byte-ordering. The arithmetic phase encompasses
those computations strictly required by the specific anal-
ysis (e.g. differencing and averaging).

To quantify the computational complexity of data-
processing, we count the number of operations the netCDF
binary operator ncbo and netCDF weighted averager ncwa
use for data reduction. These programs are two of the
twelve netCDF Operators (NCO; Zender n.d.) commonly
used to analyze gridded geoscience data stored in the self-
describing netCDF format (Rew and Davis 1990). We
counted four basic types of operations: floating point arith-
metic (addition, division), integer arithmetic, user memory
management, and system memory management. (Table 1).
Integer arithmetic operations IA include pointer arithmetic
and all arithmetic between non-floating point values. User
memory operations Mu include memory fetches and writes
without system calls. System memory management Ms
includes all memory manipulation performed with system
calls such as memcpy().

Counting the three sub-categories (IA, Mu, Ms) of inte-
ger operations separately provided us with useful infor-
mation on algorithmic design. However, we can only
measure the total number of integer operations I = IA +
Mu + Ms. For brevity, we report only I for our computa-
tional model. Contact the authors directly for the individ-
ual relations for IA, Mu, and Ms.

2.2.1 Byte-swapping netCDF3 imposes a byte-swap-
ping overhead on little-endian machines (Rew and Davis
1990). A byte-swap per datum translates the on-disk
netCDF format data (big-endian) to/from the native
machine type (often little-endian) prior to arithmetic and

⊂

⊂

RA 1– RA

k 1=
Ak SA∈

k RA=

∏

x

x
i 1=

i NA=

∑
i 1=

i NA=

∑

Table 1
Operation count notation.

Parameter description

F Floating point operations

I Total integer operations = IA + Mu + Ms

IA Integer arithmetic operations

Mu User memory operations

Ms System memory operations
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488 COMPUTING APPLICATIONS

storage, respectively. The netCDF3 byte-swapping imple-
mentation scales as

I(byte-swap) ≈ N(W + e) (10)

where W is the number of bytes per datum and e is an
implementation-defined constant. Geoscience data are
usually stored as single precision (W = 4) floating point
numbers so we use single precision in our tests. netCDF3
library versions ≤ 3.6.1 implement an e = 2 algorithm.
We propagate e = 2 to the cumulative operation counts
described below. Future byte-swapping implementations
for the netCDF3 library (i.e. versions ≥ 3.6.2) may use
loop-unrolling techniques to achieve e  0.5. This could
reduce the arithmetic cost of byte-swapping by up to
25%.

All benchmarks reported here were performed on an
Opteron (little-endian) system. Hence our predicted (and
observed) operation counts account for byte-swapping
(10) during data pre-processing (after disk-reads) and
post-processing (before disk-writes).

2.2.2 Binary operations Simple data reduction often
involves straightforward binary (i.e. dual operand) arith-
metic operations such as subtraction, addition, or com-
parison. For binary operations,

F(binary) = N = R (11)

We do not explicitly report zero-valued counts so the
absence of a formula for I in equation (11) implicitly
indicates that binary operations require no integer opera-
tions that scale with N. Hence, the computational model
sets I = 0.

2.2.3 Broadcasting The integer operations required
to broadcast a variable (such as a weight) of rank Rw to
conform to a variable of rank R and size N are

I(broadcast) ≈ N(6R + 8Rw + 2) for  R > Rw (12)

Broadcasting uses a large number of arithmetic opera-
tions and no floating point arithmetic.

Our broadcast algorithm deconstructs each one-
dimensional offset of the target buffer to fill into the
R subscripts or the target shape. These subscripts are
then mapped to the address of the source element in the
array to broadcast. This mapping requires a loop over
the Rw dimensions of the variable to broadcast, so
increasing Rw is expensive (12). For example, it requires
about 25% more integer operations to broadcast into an
Rw = 3 shape S3 = [D1, D2, D3] from an Rw = 2 shape
such as S2 = [D1, D3] than from an Rw = 1 shape such as
S1 = [D2].

2.2.4 Intra-file reduction Three sequential algorithms
are employed to rank-reduce a variable over an arbitrary
subset of its dimensions. Averaging is the most common
rank reduction procedure performed, so we describe the
scaling of our multi-dimensional averaging algorithms.
First, the hypercube of input values associated with each
averaged value (9) is placed in a one-dimensional array
called an averaging block. This is the collection step. It
places data in sequential, non-strided, memory that chips
may cache during arithmetic. Collecting together all input
values which contribute to a given output value demands
many integer arithmetic, pointer manipulation, and memory
re-arrangement operations. After collection, each averag-
ing block is summed and a tally made of the valid input
values contributing to each output value (missing values,
for example, are invalid data). This step is called reduction
since it condenses all the values from the RA-averaged
input dimensions into a single (summed) output value, thus
reducing the variable rank. Reducing the averaging blocks,
even though it involves floating point arithmetic, can be
an order of magnitude faster than the collection step,
depending on the variable rank. After reduction, the nor-
malization step divides the sum of each averaging block
by the tally to obtain the mean.

The collection step for a variable of rank R > 1 and
size N to be averaged over RA dimensions requires

I(collect) ≈ N(14R + 4) for R > 1 (13)

operations. Our collection algorithm deconstructs the
one-dimensional offset of each element in the source
buffer to be averaged into its R-subscripts. The subscripts
for the (R – RA)-non-averaged dimensions determine the
address of the appropriate averaging block, while the
subscripts for the RA-averaged dimensions determine the
offset within the averaging block. Since the inner loop
traverses all R-dimensions for each element, the collec-
tion step is independent of RA. The collection algorithm
and its integer operation count are similar to broadcasting
(12) with Rw = R. In practice, masking and weighting (9)
may precede collection to minimize the number of buff-
ers that require collection.

Rank R = 1 data (aka unstructured data, arrays) are
stored in averaging block order and so never require col-
lection. Quantifying the change in data analysis cost due
to the dataset structure—by which we mean variable size,
shape, and rank—is a central objective of this work. It is
worth noting that perhaps the most significant difference
between single and multi-dimensional data reduction is
that the former has no collection cost.

The collection procedure (13) for creating averaging
blocks always works, though it is unnecessary and there-
fore should be omitted in an important class of averages
(including R = 1). Variables are already stored in averag-

<∼

D
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ing block order if the averaging space SA (7) comprises
the most rapidly varying (MRV) dimensions of S (6).
The averaging dimensions are the MRV dimensions if

SA = A1, A2, …, A , A  

 D  , D , …, DR – 1, DR (14)

The collection step (13), therefore, is unnecessary for
averages over MRV dimensions.

Many geophysical applications order data output so
that frequently reduced dimensions are MRV dimensions
(14). For example, the widely used Climate and Forecast
(CF) metadata convention (Gregory 2003) recommends
ordering geophysical variables in (t, z, y, x) = (time,
level, latitude, longitude) order. This assumes the right-
most dimension varies most quickly in storage order. The
C-language adopts this convention. Fortran defines the
left-most dimension to vary most rapidly in storage order
so that the CF-recommended storage order in Fortran
notation is (x, y, z, t). Hence commonly requested longitude-
averages (i.e. zonal means) and longitude/latitude averages
(i.e. area means) reduce MRV dimensions of CF-compliant
datasets.

The reduction step for averaging has

F(reduce) = N (15a)

I(reduce) ≈ N(6 + N ) (15b)

The reduction step implements the floating point opera-
tions specific to the requested arithmetic. For example,
reduction of N elements requires N additions for deter-
mining averages, N compares for determining extrema,
and N adds and N multiplies for determining standard
deviations. Reduction (15) is much quicker than collec-
tion (13) since one of the purposes of collection is to
place all averaging blocks in contiguous memory. Reduc-
tion then accesses this sequential, non-strided, memory
which often causes values to be stored in fast cache
before averaging.

The factor NW = N/NA in (15) is the number of ele-
ments remaining in the rank-reduced (i.e. output) varia-
ble. Exact and approximate values for NW come from (8)
and (5), respectively

NW = N/NA =  Dk ≈ (16)

The number NW of output elements to write decreases
geometrically as RA increases (16) until NW = 1 (i.e. a
scalar) for RA = R (i.e. complete averaging).

The operation counts for the final step, normalization,
are

F(normalize) = N/NA (17a)

I(normalize) ≈ 4N/NA (17b)

Normalization does not occur when the output is inde-
pendent of the number of contributing values. Integra-
tion, minimization, and maximization, for example, do
not require normalization.

2.2.5 Multi-file reduction Computing statistics (e.g.
averages) of an arbitrary number of input files results in
significantly different memory and disk access patterns
than the intra-file averaging described above. Geoscience
data producers (e.g. GCMs, satellites) typically truncate
files after a sufficient number of records have been stored.
We will describe scaling and optimization of multi-file
data reduction in future work.

2.3 Total Operation Counts

2.3.1 Binary operations The total operation counts
for a binary operation on a variable of size N is the sum
of the counts from byte-swapping (10) each datum three
times (once when reading each input buffer and once
when writing the output buffer) and of the binary opera-
tion (e.g. subtraction) itself (11)

F(binary) = N (18a)

I(binary) ≈ 3N(W + 2) (18b)

Hence binary operations do not depend on variable
rank R.

2.3.2 Averaging The total operation counts to aver-
age (without weighting) a variable of rank R > 1 and size
N are the sum of the counts from byte-swapping (10),
collection (13), reduction (15), and normalization (17) of
the variable.

F(average) = N(1 + N ) (19a)

I(average) ≈ N[14R + 13 + W + (W + 6)N ] (19b)

Hence averaging (and similar reduction operations) scales
linearly with variable rank R. The averaging cost depends
on the number RA of averaged dimensions through the N
terms (19). Interestingly, RA has a negligible effect on

RA 1– RA

∈ RA R–
A

1+ RA R–
A

2+

A
1–

k 1=
Dk SA∉

k R R– A=

∏ D
R RA–

A
1–

A
1–

A
1–
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arithmetic time since N 1 (1). The more significant
impact of RA on processing time occurs through its effect
on NW (16) and the time to write the output to disk.

As described in Section 2.1 above geophysicists often
compute weighted moments of variables. The averaging
costs summarized in (19) can be extended to weighted
averaging by taking into account the additional costs
imposed by processing the weights (9). Weighted aver-
ages incur collection costs (13) for both the numerator
and denominator (9). Accounting for byte-swapping,
broadcasting, collection, reduction, and normalization of
the weights and values in (9) leads to

F(wgt.avg.) = N(3 + 2N ) (20a)

I(wgt.avg.) ≈ N[34R + 8Rw + 25 + W 

+ (W + 11)N ] + (W + 2)Nw (20b)

where Rw and Nw are the rank and number of elements in
the weight, respectively, and R > Rw. Weighting a varia-
ble more than doubles the operations required to reduce
it.

Other statistical and arithmetic rank reduction proce-
dures such as minimization, maximization, standard-devi-
ations may be performed with very similar algorithms to
averaging. The collection step is identical to (13) for
many simple rank-reduction procedures, and it suffices to
replace the reduction step (15) with the appropriate oper-
ator (e.g. minimization, summation of squares). Hence
many rank reduction operations scale like averaging, and
allow the same optimizations.

2.4 Optimizations

Two optimizations to weighted rank reduction are suffi-
ciently general and powerful as to warrant special men-
tion. First, MRV optimization (Section 2.2.4) eliminates
twice the collection cost indicated by (13), a substantial
fraction of (20). Throughput can increase by an order-of-
magnitude in such cases (cf. Figure 5).

Second, weights are often broadcast prior to rank
reduction (9) when Rw < R to facilitate fast, non-strided
“dot-product” arithmetic which maximizes caching effi-
ciencies. Reduction never need alter the broadcast weight
which may, therefore, be re-used to average other varia-
bles of the same shape. This weight re-use (WRU) tech-
nique can eliminate all but the first weight broadcast for a
set of identically shaped variables. To obtain the full
value of WRU with minimum cost, identically shaped
variables should be averaged consecutively. Otherwise a
variety of broadcast weights (of different shapes) must be
maintained. NCO (Zender n.d.) implements a simple
WRU form in which the last broadcast weight is always

retained and re-used, if possible, until it is destroyed
when a differently shaped weight is required. This is a
compromise between optimization complexity and mem-
ory use.

These optimizations significantly reduce the total inte-
ger operations required by weighted rank reduction from
(20) to

I(Un-optimized) ≈ N[34R + 8Rw + 25 + W 

+ (W + 11)N ] + (W + 2)Nw (21a)

I(WRU) ≈ N[28R + 0 + 23 + W + (W + 11)N ] 

+ (W + 2)Nw (21b)

I(MRV) ≈ N[6R + 8Rw + 17 + W + (W + 11)N ] 

+ (W + 2)Nw (21c)

I(WRU + MRV) ≈ N[0 + 0 + 15 + W 

+ (W + 11)N ] + (W + 2)Nw (21d)

for the WRU and MRV optimizations, and their combi-
nation, respectively (floating point operations are unaf-
fected).

2.5 Elapsed Time

The execution time T is the sum of integer and floating
point operation times TI and TF, respectively, and the
times TR and TW required to read and write data, respec-
tively.

T = TI + TF + TW + TR (22a)

= I/υI + F/υF + NWW/υW + NRW/υR (22b)

Right hand side terms are in decreasing order of impor-
tance for typical data reduction operations. Here υI and
υF are the (machine-specific) rates at which integer and
floating point operations are performed, respectively.
Our software performs I/O and arithmetic sequentially
(without overlap), as indicated in Equation 22 (potential
improvements to this design are discussed below). We
assume that I/O times are constant read and write speeds
υR and υW, respectively, times the number of input and
output data, NR and NW, respectively. For instance, binary
operations have NR = 2N and NW = N, while complete
rank reduction has NR = N and NW = 1. We determined
the machine and compiler-dependent speed parameters
in (22) from these assumptions and empirical testing
(Table 2).

A
1– <<

A
1–

A
1–

A
1–

A
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2.6 File Geometry

We picked two file geometries to try to represent resolu-
tions, file sizes, and file complexities of two common
types of geoscience datasets, designated Satellite and
GCM, respectively. The Satellite dataset mimics storage
requirements typical of global satellite imagery at about
5km resolution (near the equator). Eight variables are
stored on a regular 2160 × 4320 (latitude × longitude)
grid. A real world analog of this synthetic Satellite test file
is a 5km set of images from the seven spectral channels of
the NASA MODIS instrument. The GCM dataset repre-
sents output from a relatively high resolution general cir-
culation model (i.e. climate model). The Community
Atmosphere Model (Drake, Jones and Carr 2005; Col-
lins et al. 2006) at T85xL32 resolution produces a file
of approximately this geometry once per simulated-day
when data are archived every three simulated hours.
Table 3 summarizes the geometries in the Satellite and
GCM datasets tested. The Satellite and GCM datasets are
examples of ranks R = 2 and 4 geometries, respectively.
Datasets with R = 5 might contain, for example, spatio-
temporal distributions of spectral information, or multiple
chemical species information, at each grid point. Geo-
science datasets with R > 5 are too rare to warrant further
consideration in this study. Geoscience data are usually
stored as single precision (four-byte) floating point
numbers. In our tests, coordinate axes are stored in dou-
ble precision and all other data are stored in single pre-
cision.

2.7 Measurements

The netCDF Operators (NCO; Zender n.d.) are a suite of
command-line operators widely used for analyzing geo-
science datasets stored in the self-describing netCDF for-
mat (Rew and Davis 1990). NCO implements the data
reduction algorithms described above. Many institutions
(including, to our knowledge, all climate modeling cent-
ers) use NCO for data post-processing, hyper-slabbing
and serving. This manuscript compares the data process-
ing metrics defined above against measurements of NCO
processing standard netCDF3 datasets.

Modern CPUs all have special registers to monitor
performance. We use the Performance Application Pro-
gramming Interface (PAPI; Browne et al. 2000) as inter-
preted by the HPCToolkit (Mellor-Crummey et al. 2002)
to count CPU instructions executed. HPCToolkit pro-
vides a convenient way to select the counters to monitor,
record them, and attribute counts to particular source
code blocks. Compiler optimization and CPU-level
instruction re-ordering renders analysis beyond the level
of a logical code block meaningless. PAPI samples our
NCO applications running at nearly full speed without
significant interference.

We present our results below in terms of floating point
and integer operation counts and total elapsed time-to-
completion. It is necessary to convert floating point and
integer instructions (measured by PAPI) to operations for

Table 2
Machine/compiler-dependent parameters.a

Symbol Description [units] Value

υF Floating point (averaging) 153 × 106

υF Floating point (subtraction) 353 × 106

υI Integer (averaging) 200 × 106

υI Integer (subtraction) 1386 × 106

υR Read 63.4 × 106

υW Write 57.9 × 106

IPOI Averaging 0.38

IPOI Subtraction 2.0

IPOF Floating point 7.0
a Parameters used in figures based on Opteron 246 sys-
tem with GCC 4.0. Operation speeds υI and υF in opera-
tions per second. I/O speeds υR and υW in bytes per 
second. IPO in PAPI-measured instructions per operation.

Table 3
File geometries.

Satellite GCM

Max. Rank R 2 4

Variables 8a 128

Time — 8

Level — 32

Latitude 2160 128b

Longitude 4320 256

Meanc 3055 55

Elements N [#] 75 × 106 285 × 106

Total Size [MB] 299 1143
a All eight variables are rank R = 2.
b Eight variables are scalars (R = 0), eight variables 
contain the time dimension only (R = 1), sixteen variables 
contain only latitude and longitude (R = 2), sixty-four 
variables have time, latitude, and longitude (R = 3), 
thirty-two variables have contain all four dimensions 
(R = 4).
c Weighted by variable size and number.

D
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comparison with the computational model described
above. To do this we sampled large numbers of opera-
tions and imputed a conversion factor from PAPI-meas-
ured instructions to model-estimated operations. The
resulting number of Instructions Per Operation (IPO)
depends on the instruction type and, for integer instruc-
tions, the algorithm employed (Table 2).

PAPI cannot distinguish between instructions gener-
ated by memory operations (e.g. fetching from memory)
and integer arithmetic (e.g. pointer arithmetic). PAPI
counts the instructions (or cycles) for each such operation
equivalently. Hence we compare PAPI’s measurement of
total integer instructions to I. PAPI counts floating point
operations unambiguously so we directly compare meas-
ured vs. predicted F.

All measurements were performed on an Opteron
Model 246 processor with 4GB RAM, 1MB Level 1
cache (Table 2). The RAM was adequate to hold all data
memory-resident in all tests (i.e. no swap space was used).
The test results were highly reproducible and the standard
error shown is often less than 5% using only four repli-
cates. Automatic caching led to significant performance
increases which are unlikely to be met in real-world data
processing. Hence we flush all RAM with random data
prior to each test except where explicitly noted.

The IPO ratio for all floating point operations on the
benchmark system was IPOF ≈ 7.0 (Table 2). However,
the integer IPO ratio increased from IPOI ≈ 0.38 for the
dataset averaging algorithms to IPOI ≈ 2.0 for the dataset
subtraction algorithms. The difference in integer IPO
ratios may stem from the algorithmic differences between
subtraction and averaging which lead to different com-
piler optimizations, data locality, and pipelining efficien-
cies. Moving data to and from main memory is very
expensive relative to accessing registers or local cache.
In situations where the data are retained local to the CPU
registers or primary cache, the Opteron can dispatch up
to six instructions per clock cycle, consistent with the
six-fold increase in IPOI from averaging to subtraction.

The algorithm-specific changes in υF and υI (Table 2)
may be due to algorithm-specific variation in wait states
due to data locality. The compiler and CPU can optimize
with block copies, speculative execution, and procedures
which are beyond our expertise to count. Accounting for
these optimizations would significantly increase the
architecture-dependence and complexity of the computa-
tional model, and is beyond the scope of this paper.

The experiments measure and model the operation
counts and times to process Satellite and GCM datasets
(Table 3). The one-eighth increments in dataset size were
achieved by processing a fraction of the variables, or by
hyperslabbing the dataset dimensions.

3 Results

We measured the scaling of typical data reduction opera-
tions on the Satellite and GCM data files (Table 3) which
are distributed with NCO (Zender n.d.). The numbers of
integer and floating point operations necessary to perform
a binary operation between datasets with N elements are
simple to predict (18), and agree well with the observed
(with PAPI) operation counts (Figure 1) for dataset differ-
encing with the NCO ncbo program (Zender n.d.). The
integer operations arise from byte-swapping overhead
imposed by the netCDF library which translates IEEE
(big-endian) netCDF data to/from native Opteron (little-
endian) order before and after arithmetic (18). There is
exactly one floating point operation per datum. Some dis-
crepancy between observed and predicted counts is inev-
itable since our model neglects the number of operations
devoted to program overhead and metadata manipulation.
However, this discrepancy is small relative to the number
of arithmetic operations.

Figure 1 shows results for the Satellite dataset (Table 3).
The results for the GCM dataset (not shown) look identical
since binary operation counts depend only on N. Dataset-

Fig. 1 Observed (solid) and predicted (dashed) inte-
ger I and floating point F operations necessary to
difference datasets with N elements. Horizontal axis
scaled to units of N0 = 9.3 × 106 elements. Note dif-
ferent scales for integer and floating point opera-
tions.
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differencing costs are independent of dataset geometry and
rank R (18).

Dataset structure plays a strong role in data reduction
operations such as averaging. The computational model
(19) predicts that averaging the Satellite dataset without
weights requires approximately forty times more integer
than floating point operations, and this is consistent with
measurements (Figure 2). Most of the integer operations
occur in the collection step (13) required prior to averaging
any variable with rank R > 1. Beacause algorithms such as
collection become more expensive with increased rank, it
is less expensive to average the Satellite dataset, with R =
2 (Table 3), than the same amount of data stored in varia-
bles with greater rank. The shaded areas show the integer
operations required for datasets with rank ranging from 2
≤ R ≤ 5. Floating point operations are very nearly rank-
independent (19).

The computational model (19) predicts about 10%
more integer operations than observed (Figure 2). This
bias scales with N and is consistent with processor and
compiler efficiencies specific to unweighted averages.

Computing weighted averages of the Satellite dataset
increases the integer and floating point operations by

about 250% and 300%, respectively (20). A small bias in
predicted integer operations changes sign from negative
to positive near N = 4N0. A small and nearly constant off-
set between predicted and observed floating point opera-
tions required for weighted averages is also evident in
Figure 2. The offset is consistent with a fixed cost proce-
dure that is not included in the model.

The remaining figures are shown in terms of elapsed
time T rather than operation counts. Elapsed times may
be thought of as operation counts times operation rates
(22), including I/O times. The elapsed time T required to
perform a binary operation between datasets scales
closely with the operation counts (Figure 3). The increase
in T with N is roughly linear as predicted (22). Measure-
ments show that T is roughly 100% worse than predicted
for N/N0 = 1, scales better-than-expected for 2 ≤ N/N0 ≤
6, and plateaus for 7 ≤ N/N0 ≤ 8. Timings are consistent
for N/N0 = 1, 4, 7 but show up to about 30% variability in
successive replicates for N/N0 = 3, 5, 6. This variability is
difficult to interpret systematically. Most of the variabil-
ity occurs in the netCDF library during the definition and
allocation of the output file, which is the same size as the
input files. We think this indicates a combination of hard-

Fig. 2 Observed (solid) and predicted (dashed) inte-
ger I and floating point F operations necessary to aver-
age an N element dataset with (upper two sets of
curves) and without (lower two sets of curves) weight-
ing. Gray areas indicate I predicted for rank R = 2–5
datasets. Other markings as in Figure 1.

Fig. 3 Elapsed time T [s] to difference two datasets
each with N elements. Measurements (solid) are for
non-cached and cached datasets, model (dashed) is for
non-cached only. Vertical bars span range of four repli-
cate measurements. Other markings as in Figure 1.
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ware- and software-specific efficiencies that are triggered
by different size I/O requests. This variability is greatly
reduced when the output file is small such as after rank
reduction of the input files (cf. Figure 4).

To illustrate the effect of automatic caching we repeated
the subtraction operation in Figure 3 many times consec-
utively. The resultant caching improves throughput by
roughly a factor of two. As mentioned previously, real-
world data analysis rarely repeats operations on identical
datasets so we used a cache-flushing protocol to obtain all
other results reported here.

Weighted averaging takes about three times longer
than non-weighted averaging when no optimizations are
applied (Figure 4). While disabling optimizations to meas-
ure these worst-case times, we found that the measured
cost of broadcasting weights was approximately 80%
larger than predicted (12). We increased the computa-
tional model cost of broadcasting by 80% to better fit
the non-WRU (Section 2.4) measurements in Figures 4
and 5.

The tripling in processing time of the structured (R > 1)
data due to weighting is approximately the ratio of

I(Un-optimized) (21a) to I(average) (19) for rank R = 4
datasets. Note that the GCM dataset (Table 3) averaged
here is more complex, and about four times larger, than
the satellite dataset used in Figures 1–3.

For both weighted and non-weighted averages, the dis-
tinction between processing times for structured data
(Figure 4 gray areas show 2 ≤ R ≤ 5) and unstructured data
are striking. The unstructured (R = 1) curves represent the
costs of averaging the full GCM dataset stored as R = 1
arrays. These costs are assumed to equal the costs of aver-
aging the full structured GCM dataset with WRU+MRV
optimizations (21d), i.e. with no collection or broadcasting.
This is permissible because the only structure-dependent
costs of averaging are due to collection and broadcasting.
We find that averaging an equivalent amount of unstruc-
tured (R = 1) data reduces operation counts and elapsed
time by nearly an order of magnitude. Weighted averag-
ing of unstructured data costs nearly the same as non-
weighted averaging because collection and broadcasting
are unnecessary and the weighting itself (i.e. the addi-
tional floating point multiply) costs relatively little.

The weighted-average timings have about ± 1second
variability in four replicate experiments. This is less varia-

Fig. 4 Observed (solid) and predicted (dashed)
elapsed time to perform weighted and non-weighted
averages on N element GCM-geometry (R = 4) and
unstructured (R = 1) datasets. Gray areas indicate pre-
diction range for rank R = 2–5 datasets. Horizontal axis
scaled to units of N0 = 36 × 106 elements. Other mark-
ings as in Figure 1.

Fig. 5 Observed (solid) and predicted (dashed)
elapsed times to perform a weighted average of an N
element GCM-geometry (R = 4) dataset with and with-
out WRU and MRV and both optimizations. Un-opti-
mized curves same as Figure 4. Other markings as in
Figure 1.
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bility than that generated by dataset differencing (Figure 3),
even though the numbers of file-layout and disk geometry
factors in the GCM dataset are greater than those in the
Satellite dataset. We attribute most of the reduced varia-
bility with averaging to the reduced output file require-
ments. Averaging all output variables to scalars makes
the output file trivially small and easy for the netCDF out-
put layer to allocate. Moreover, the fraction of time spent
on I/O decreases from about 90% with dataset differencing
to about 10% with weighted averaging (Figures 3 and 4,
respectively), while arithmetic uses the remaining time.
Hence the I/O variability is less than about 1% of elapsed
time for weighted averaging, compared to about 30%
variability for differencing.

Observed throughput is about 10% better than pre-
dicted (Figure 4) for the unweighted case. While attempt-
ing to reconcile the predictions and observations, we
learned that the broadcasting and weighting algorithms
reduce throughput disproportionately to their predicted
arithmetic requirements, (12) and (20), respectively. A
single empirically determined integer operation speed υI
(Table 2) does not fit both weighted and unweighted aver-
ages. Figure 4 uses one speed υI which best fits the weighted
average data and leads to the ~10% over-estimate for non-
weighted averages.

Our model of averaging algorithms suggests that
averaging over all dimensions takes no longer, and may
even be slightly faster, than averaging over a subset of
dimensions because of the N  -dependence of reduc-
tion (15) and normalization (17) and the larger output
size of partially averaged variables. We tested this pre-
diction by measuring the elapsed time (T) to average the
Satellite dataset over latitude-only, longitude-only, and
both dimensions: 32s, 26s, and 26s, respectively. Aver-
aging over latitude-only takes about 15% longer than
completely averaging each variable over longitude-only
or over both dimensions. This asymmetry in averaging
behavior appears to arise from the location of longitude
as the outermost or most rapidly varying (MRV) dimen-
sion. When the dimensions to be averaged are MRV, the
average accumulates values from consecutive memory
locations which are likely already cached by the proces-
sor. This increases memory performance significantly
and, we think, leads to the the observed 15% increase in
averaging throughput for MRV dimensions. Note that
this modest performance boost occurs automatically
when averaging MRV dimensions because of hardware-
implemented caching.

The MRV dimension optimization described in Sec-
tion 2.2.4 is a software-implemented algorithm accelera-
tion which boosts performance even more (Figure 5).
The worst case times to perform weighted averages occur
when neither the WRU nor the MRV optimizations apply
or, equivalently, if the averaging software implements

“brute force” techniques rather than the WRU and/or
MRV optimizations.

The WRU optimization alone reduces the elapsed time
to average the GCM dataset from 285s to 200s. This is a
throughput increase of about 40%. However, not all data-
sets are as amenable to WRU as the GCM dataset. For
instance, averaging variables which alternated in shape
rather than averaging groups of identically shaped-varia-
bles (as we did) could significantly degrade the WRU
benefits.

The MRV optimization alone increases GCM dataset
averaging throughput by about 140%. Figure 5 shows
that MRV causes impressive gains when averaging over
all dimensions (i.e. RA = R). In fact, MRV optimization is
nearly as effective for partial averages (RA < R, not shown).
The MRV improvement is distinct from and in addition
to the acceleration which hardware-based caching provides
for accessing contiguous non-strided datasets, such as MRV
averages.

The MRV and WRU optimizations are often applicable
in tandem. The MRV and WRU combination reduces the
elapsed time to average the GCM dataset from 285s to
30s. This order-of-magnitude throughput increase agrees
well with the ratio I(Un-optimized)/I(MRU+MRV) (21)
for the GCM dataset (Table 3) which has R = 4 and Rw = 1.
The combination of MRV and WRU optimizations shifts
the I/O time for weighted averaging of the GCM dataset
from < 10% to about 50%.

4 Discussion

Our computational model of arithmetic throughput agrees
well with throughput measurements for simple analyses
and file geometries typical of geoscience studies. The com-
putational model requires about a half-dozen machine-
specific parameters (Table 2). These results demonstrate
the feasibility of constructing accurate cost-predictors for
more complex and extensive data analyses. In most cases
it should suffice to estimate machine-specific parameters
on new hardware by performing a simple least squares
fit between the measured and predicted elapsed times
(22).

Algorithmic optimizations can significantly increase
analysis throughput. Two optimizations were shown here.
First, the most rapidly varying (MRV) optimization elim-
inates the collection step for data reduction across contig-
uous most rapidly varying dimensions. Second, weight
re-use (WRU) eliminates the broadcasting step when a
weight has already been broadcast to the desired shape
for a previous variable.

Predicting dataflow throughput on dedicated uniproc-
essor workstations is a necessary first step to understand-
ing, and eventually exploiting, distributed data reduction
and analysis environments. In future work we will use

A
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this information to optimize evaluation of (9) when j
depends on input elements xi distributed across a net-
work. Some statistical procedures require multiple rank-
reduction operations each of which scales like (19) or
(20). For example, standard deviations require sum and
sum-of-squares operations over each averaging block.
Retaining and re-using the mapping information derived
in the expensive collection step (13) is a promising strat-
egy to accelerate such procedures. Such techniques are
already used on-line in numerical model couplers (Jacob,
Larson and Ong 2005) which decompose, analyze (e.g.
average), and re-map model data among multiple fixed
grids each timestep (Craig et al. 2005).

Opportunities to further improve data processing effi-
ciency exist at many levels from software to hardware. At
the file level, netCDF3 imposes an unnecessary byte-
swapping penalty on little-endian machines which, we
have shown, can dominate total execution time. The forth-
coming netCDF version, netCDF4, will not perform unnec-
essary byte-swapping (Rew, Hartnett and Caron 2006).
Significant improvements to the current synchronous
netCDF I/O library (Rew and Davis 1990) are possible, as
are client optimizations such as pre-staging data or work-
ing with partial results. MPI-IO can further reduce I/O
bottlenecks (Gropp et al. 1998), although it requires spe-
cialized file-systems to fully exploit this. Parallel netCDF
(pnetCDF; Li et al. 2003) currently offers an MPI-IO
implementation of the netCDF3 API and file format, and
netCDF4 will also support MPI-IO via its HDF5 back-end
(HDF; http://hdf.ncsa.uiuc.edu). Exploiting these and
other technologies to optimize data analysis throughput
are topics of our current and future research.

5 Conclusions

Our computational model of arithmetic throughput on
gridded geoscience datasets agrees well with throughput
measurements. The datasets tested represent file geometries
typical of satellite sensor data and weather/climate mod-
els. The data reduction tested represented simple arithme-
tic operations which resulted in I/O-bound processing
(differencing files), to arithmetic-dominated processing
(weighted averages).

We find that dataset structure can reduce analysis
throughput ten-fold relative to same-sized unstructured
datasets. Our computational model accurately predicts
this reduction. Algorithmic optimizations can substan-
tially increase throughput for more complex, arithmetic-
dominated analysis such as weighted-averaging of multi-
dimensional data.

This study defined the costs of local data reduction,
that is, the analysis of data already stored on a local file-
system. This local focus allowed us to characterize the
efficiencies of storage and analysis procedures without
considering the complexity that networks and client-
server models add. Moreover, this study focused on uni-
processor systems and neglected data reduction effi-
ciencies achievable with parallel environments and multi-
CPU systems. Although such systems are used operation-
ally in production of geoscience data (e.g. satellite data
archival, climate models), data reduction strategies which
take advantage of distributed (or shared) memory paral-
lelism and/or parallel filesystems are rare. More research
on, and implementation of, efficiencies (scaling improve-
ments) to be gained through distributed and server-side
data reduction are needed. We designed our analysis
framework to be readily extensible in these directions and
are currently conducting such studies.
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