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Abstract

Artificial intelligence (AI) has recently become a very popular buzzword, as a consequence of 

disruptive technical advances and impressive experimental results, notably in the field of image 

analysis and processing. In medicine, specialties where images are central, like radiology, 

pathology or oncology, have seized the opportunity and considerable efforts in research and 

development have been deployed to transfer the potential of AI to clinical applications. With AI 

becoming a more mainstream tool for typical medical imaging analysis tasks, such as diagnosis, 

segmentation, or classification, the key for a safe and efficient use of clinical AI applications 

relies, in part, on informed practitioners. The aim of this review is to present the basic 

technological pillars of AI, together with the state-of-the-art machine learning methods and their 

application to medical imaging. In addition, we discuss the new trends and future research 

directions. This will help the reader to understand how AI methods are now becoming an 

ubiquitous tool in any medical image analysis workflow and pave the way for the clinical 

implementation of AI-based solutions.
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1. Introduction

For the last decade, the locution Artificial Intelligence (AI) has progressively flooded many 

scientific journals, including those of image processing and medical physics. Paradoxically, 

though, AI is an old concept, starting to be formalized in the 1940s, while the term of 

artificial intelligence itself was coined in 1956 by John McCarthy. In short, AI refers to 

computer algorithms that can mimic features that are characteristic of human intelligence, 

such as problem solving or learning. The latest success of AI has been made possible thanks 

to tremendous growths of both computational power and data availability. In particular, AI 

applications based on machine learning (ML) algorithms have experienced unprecedented 

breakthroughs during the last decade in the field of computer vision. The medical 

community has taken advantage of these extraordinary developments in order to build AI 

applications that get the most of medical images, automating different steps of the clinical 

practice or providing support for clinical decisions. Papers relying on AI and ML report 

promising results in a wide range of medical applications [1–7]. Disease diagnosis, image 

segmentation or outcome prediction are some of the tasks that are experiencing a disruptive 

transformation thanks to the latest progress of AI.

More recently, ML tools have become mature enough to fulfill clinical requirements and, 

thus, research and clinical teams, as well as companies are working together to develop 

clinical AI solutions. Today, we are closer than ever to the clinical implementation of AI 

and, therefore, getting to know the basics of this technology becomes a “must” for every 

professional in the medical field. Helping the medical physics community to acquire such a 

solid background knowledge about AI and learning methods, including their evolution and 

current state of the art, will certainly result in higher quality research, facilitate the first steps 

of new researchers in this field, and inspire novel research directions.

The goal of this review article is to briefly walk the reader through some basic AI concepts 

with focus on medical imaging processing (Section 2); followed by a presentation of the 

state-of-the-art methods and current trends in the domain (Section 3). To finish, we discuss 

the future research directions that will make possible the next generation of AI-based 

solutions for medical image applications (Section 4).

2. Building blocks of AI methods for medical imaging

The field of AI evolves rapidly, with new methods published at a high pace. However, there 

are several central concepts that have settled for good. This section presents a brief overview 

of these building blocks for AI methods, with a focus on medical imaging. For more detailed 

descriptions we refer to relevant books [8–11] and publications [12,13].

2.1. Artificial intelligence, machine learning, and deep learning

As mentioned previously, AI broadly refers to any method or algorithm that mimics human 

intelligence. Historically, AI has been approached from two directions: computationalism 

and connectionism. The former attempts to mimic formal reasoning and logic directly, 

regardless of its biological implementation. Mostly based on hardcoded axioms and rules 

that are combined to deduce new conclusions, computationalism is conceptually similar to 
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computers, storing and processing symbols. Connectionism, on the other hand, rather 

follows a bottom-up approach, starting from models of biological neurons that are 

interconnected in large numbers and from which intelligence is intended to emerge by 

learning from experience. Expert systems [14–16], which started to be very popular in the 

1980, are a classical example of computationalism. Some famous applications of expert 

systems to the medical field are MYCIN (diagnosis of bacterial infection in the blood) [17], 

PUFF (interpretation of pulmonary function data) [18], or INTERNIST-1 (diagnosis for 

internal medicine) [19]. However, the bottleneck of expert systems is the complexity of 

acquiring the required knowledge in the form of production rules and, thus, interest in 

computationalist algorithms started to fade since the 1990’s in favor of connectionism 

approaches [20,21]. The appeal of connectionism and learning-based AI holds in that it 

delegates the responsibility for accuracy and exhaustiveness to data instead of human 

experts, who might be poorly available, prone to error, bias, or subjectivity. The ever 

growing abundance of data, including medical images, then typically tilts the scales in favor 

of learning techniques, and the community has focused successively on two nested 

subfamilies (Figure 1): machine learning and deep learning.

The specificity of Machine learning (ML) is to be driven by data, which gives machines 

(computers) “the ability to learn without being explicitly programmed”, as formulated by 

Arthur Samuel in 1959, a pioneer in the ML field. ML typically works in two phases, 

training and inference. Training allows patterns to be found in previously collected data, 

whereas inference compares these patterns to new unseen data to then carry out a certain 

task like prediction or decision making. Since the 1990’s, ML algorithms have continuously 

evolved and improved, becoming more sophisticated and including hierarchical structures, 

which gave rise to the popular Deep Learning. The term Deep Learning (DL) was first 

coined by Aizenberg et al.[22] in the 2000s, and refers to a subset of ML algorithms, with 

the particularity of being organized hierarchically, on multiple levels, hence the term “deep”, 

to automatically extract meaningful features from data.

Although ML encompasses DL, DL is often opposed to classical “shallow” ML, the latter 

relying on algorithms that have a flatter architecture and depend on previous feature 

engineering to extract data representations. This distinction also reflects the evolution from 

ML to DL, namely, from specific feature engineering to generic feature learning. While ML 

generally relies on domain knowledge and expertise to define relevant features, DL involves 

generic, trainable features. In other words, despite the modeling power of ML, global 

performance remains limited by the adequacy of manually picked features. Alternatively, DL 

replaces these fixed specialized features with generic, trainable, low-level features that are 

involved in the learning procedure, thereby offering better performance guarantees. 

Sophistication is here achieved by stacking layers of simple features, leading to a 

hierarchical model structure. As training in DL concerns both the low-level features and the 

higher-level model, DL is often referred to as an end-to-end approach. For image data, this 

approach typically allows DL to learn optimal filters.

Today, ML models have reached important milestones, in some cases being able to 

accomplish tasks with an accuracy that is similar to or even better than human experts. For 

instance, the diagnostic performance of DL models has demonstrated to be equivalent to that 
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of health-care professionals for certain applications [23], such as skin-cancer detection [24] 

or breast cancer detection [25]. In particular, the latter reported a DL model that not only 

reached an excellent performance in mammogram classification, but also outperformed five 

out of five full-time breast-imaging specialists with an average increase in sensitivity of 14% 

[25]. Image segmentation is another task that has experienced a transformation with the 

advent of ML algorithms. For instance, a recent study has described a DL model that can 

perform organ segmentation in the head and neck region from CT images with performance 

comparable to experienced radiographers [26]. For more detailed examples of the 

performance of state-of-the-art ML and DL methods for medical applications we refer to 

Section 3.

2.2. Learning frameworks and strategies

Machine learning can be broadly split into two complementary categories, supervised and 

unsupervised, which are inspired from human learning (Table 1). Supervised learning is the 

simplest and provides the tightest framework with strongest guarantees. It formalizes 

learning with a parent or teacher, providing the inputs and controlling the outputs. In 

supervised learning, the training data consists thus of labelled or annotated (input,output) 

pairs, and the model is trained to yield the right desired output when presented with some 

input. When data is not annotated, unsupervised learning, also known as self-organization, 

aims at discovering patterns in data (Figure 2).

Typical supervised tasks involve function approximation, like regression and classification. 

Classification can be binary, like in determining whether a pathology is present or not in an 

image [25,27], involve multiple classes, as in determining a particular pathology among 

several labels [28–30], or concern not the whole image but each pixel, as done for image 

segmentation [31,32]. On the regression side, also in a pixel-wise way, image enhancement 

(e.g. improving a low-quality image, the input, by mapping it to its higher quality 

counterpart, the output label or annotation) [33] or image-to-image mapping (e.g. mapping a 

CT image, the input, to the corresponding dose distribution, the output) [34]. More examples 

of clinical applications of supervised learning and the common ML methods used within this 

learning framework are presented in Table 1.

In contrast, most unsupervised tasks relate to probability density estimation, like clustering 

(finding separated groups of similar data items), outlier or anomaly detection (isolated 

items), or even manifold learning and dimensionality reduction (subspaces on which data 

concentrate). The use of unsupervised learning has been, so far, much more limited than its 

supervised counterpart, although useful applications for medical imaging exist, such as 

domain adaptation (e.g., adapting a segmentation model trained on an image modality to 

work on a different image modality) [35–37], data generation (e.g., generate artificial 

realistic images) [38–40] or even image segmentation [41]. Table 1 presents some of the 

main ML methods that work in an unsupervised framework.

Semi-supervised learning is a hybrid framework halfway between supervised and 

unsupervised and thus it involves data for which desired outputs are only partly known. 

Groups identified as clusters by unsupervised learning can be used as possible class labels 

[42] (Figure 2). Some examples of clinical applications for semi-supervised learning include 
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the generation or translation of images from a specific class to another in a semi-supervised 

setting (e.g., generation of synthetic CTs from MR images) [43,44], and segmentation or 

classification of images with partially labelled data [45,46].

So far, supervised learning has been the most used learning framework for medical imaging 

applications, as it is totally univocal and models are very easy to train. However, it is well-

known that data labelling in the medical domain is an extremely time-consuming task, 

subject to costly inspection by human experts. Therefore, more and more researchers are 

now exploring semi-supervised learning techniques because they are an excellent alternative 

to complement small sets of carefully labelled data with large amounts of cheap unlabelled 

data collected automatically [42,47]. In fact, many of the current limitations of ML/DL 

algorithms come from the use of labelled data (e.g., errors in labels [48], limited size 

labelled databases, etc) and thus, although the use of fully unsupervised learning in the 

medical field is still very limited, we believe that future research will focus on unsupervised 

techniques in order to unlock the full potential of ML. Very recently, unsupervised models 

are achieving improved performances over supervised models for computer vision tasks 

[49], and the same is likely to happen for medical imaging applications.

Yet another type of learning is by interacting with an environment where an agent gets 

feedback from its actions over the course of time, which is known as reinforcement learning. 

After each action towards a new state, the environment can either reward or punish the agent 

who has then to best predict the longer-term consequences of future actions in a trial and 

error fashion. The use of reinforcement learning for medical imaging is still not very 

extended, but has increased in the last couple of years, with promising applications that 

allow mimicking physician behaviour for typical tasks such as the design of a treatment [50–

55], among others (Table 1).

On top of these three basic learning frameworks (supervised, unsupervised and 
reinforcement learning), there are other strategies that enable us to reuse previously trained 

models (transfer learning) or combine models (ensemble learning). Transfer learning [56,57] 

reuses blocks and layers from a model that was pre-trained with some data and for a certain 

task (source domain and task) and fine-tune it to be applied to different data and/or task 

(target domain and task). For example, a classification model pre-trained on ImageNet (a big 

collection of natural images) can be partly reused and fine-tuned for medical imaging 

applications, such as organ segmentation or treatment outcome prediction [58–60]. Transfer 

learning allows us to exploit knowledge from different but related domains, mitigating the 

necessity of a big dataset for the target task, and improving the model performance [60–62]. 

Ensemble learning methods are also a way to improve the overall performance and the 

stability of the model, by combining the output of multiple models or algorithms to perform 

a task [63]. Some examples of medical applications include the mapping of patient anatomy 

to dose distribution for radiotherapy treatments [64], image segmentation [65], or 

classification [66].

Last but not least, self-supervised learning is a recent hybrid framework that has become 

state-of-the-art in natural language processing [67–69]. It is gaining attention for computer 

vision tasks [70–73] and it could play an important role in future research directions for 
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medical imaging applications. Self-supervised learning can be seen as a variant of 

unsupervised learning, in the sense that it works with unlabelled data. However, the trick 

here is to exploit labels that come for “free” with the data, namely, those that can be 

extracted from the structure of data itself. Self-supervised algorithms work in two steps. 

First, the model is pre-trained to solve a “pretext task” where the aim is to obtain those 

supervisory signals from the data. Second, the acquired knowledge is transferred and the 

model is fine tuned to solve the main or “downstream task”. The literature on self-

supervision for medical imaging applications is still scarce [74–77], but for instance, a 

recent work used context restoration as a pretext task [76]. Especifically, small patches in the 

image were randomly selected and swapped to obtain a new image with altered spatial 

information, and the pretext task consisted in predicting or restoring the original version of 

the image. They later used this knowledge to tune the model for image classification of 2D 

fetal ultrasound images; organ localization on abdominal CT images, and segmentation on 

brain MR images.

The existence of several hybrid learning frameworks shows that the boundaries between 

supervised and unsupervised learning has been progressively blurred to accommodate hybrid 

framework and combined strategies (Table 1), which can address real-world problems and 

data sets pragmatically (see Figure 3).

2.3. Typical AI-based medical imaging analysis workflow

Reviewing past works in the AI and ML literature shows that common blocks are used in 

most workflows for medical imaging processing (Figure 4). As ML is driven by data, 

preliminary steps are to extract and select relevant features from data, that is, quantitative 

characteristics that summarize information conveyed by data into vectors or arrays. Then, 

this information is fed to generic predictive models, like classifiers or regressors, which 

learn to perform a certain task. An example of this strategy is the field of radiomics 

[104,105], where “-omics-like” features are extracted from radiological images in order to 

predict some indicator of interest like a disease grade or a patient’s survival.

Feature engineering, extraction, and selection—Feature engineering, extraction, 

and selection are key steps to channel data to an AI method [8]. Feature engineering refers to 

crafting features by hand, either in ad hoc fashion or by relying on generic features from the 

literature. For images, the former could be gray level, color statistics, or shape descriptors 

(volume, diameter, curvature, sphericity, …). Image features are often classified in local or 

low-level features (specific to a small group of pixels in the image) and global or high-level 

features (characterizing the full image). For the latter, generic features would for instance 

result from applying Gabor or Laplace filters, edge detectors like Sobel operators, texture 

descriptors, Zernike moments, or popular transforms like Fourier’s or wavelet bases. In 

radiomics, all the above mentioned features can be used together, like ad hoc tumor shape 

and intensity descriptors, as well as textural descriptors (typically, Haralick’s gray level co-

occurrence matrix [106]).

As an alternative or in a second time, higher-level features can be extracted in a more data-

driven way, using dimensionality reduction. Methods like Principal Component Analysis 

Barragán-Montero et al. Page 6

Phys Med. Author manuscript; available in PMC 2022 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[107]. Linear Discriminant Analysis [108], auto-associative [109] networks can reduce the 

number of input variables according to some unsupervised or supervised criterion. For 

images more specifically, the convolutional filters involved in CNNs bear similarity with the 

filters above: they extract local features, but their parameters are learnt from data and 

stacking them allows the global higher-level features to emerge. When features are not 

extracted in a supervised, data-driven way, it might happen that some of them are redundant 

or not relevant. To address this issue, a feature selection step can discard those to focus on a 

reduced set of features. Feature selection can follow several strategies, by either selecting or 

discarding. Wrappers [110] use a supervised predictive model to score subsets of features. 

To avoid the burden of a full fledged predictive model, feature filters [111], not to be 

confused with image filters above, use an unsupervised surrogate to score feature subsets, 

like their correlation or mutual information. Embedded methods [112] are directly integrated 

into the predictive model. For instance, feature weight regularization can favor sparse 

configurations, where irrelevant features get null weights. Examples of features selection in 

radiomics can be found in [113–119], for instance. Deep neural networks typically rely on 

this last approach with regularization. In the example of radiomics, embedded feature 

selection can be implemented with deep neural networks [120] and regularization, hence 

allowing for end-to-end learning instead of combining manually engineered features with 

shallow predictive models.

Predictive models—Common tasks in AI are regression and classification. The AI/ML 

model then attempts to predict either continuous values (e.g., a dose or a survival time) or 

class probabilities (e.g., benign vs malignant) starting from input features. In the following, 

we describe the main methodological aspects of the basic predictive ML models, state-of-

the-art ML/DL methods and examples of their clinical applications for medical imaging are 

presented in the next section.

Regression is the most generic task in supervised learning. Linear regression is well known 

but other mathematical models can involve exponential or polynomial functions. ML 

generalizes this concept to universal approximators that can fit data sampled from almost 

any smooth function, with also possibly many input and output variables. Artificial neural 

networks (NNs) are the most iconic universal approximators (Figure 5). They consist of 

interconnected formal models of neurons, a mathematical ‘cell’ combining several 

‘dendritic’ inputs into a weighted sum that triggers an ‘axonal’ output through a nonlinear 

activation function, like a step, a sigmoid, or a hinge (Rectified Linear Unit, ReLU).

As soon as a hidden layer of neurons with nonlinear activation functions is inserted between 

the input and the output layers, a NN becomes a universal approximator [121]. However, a 

notion of capacity is associated with the NN architecture: the more neurons the hidden layer 

counts, the more complex functions can be approximated. The capacity is roughly 

proportional to the number of synaptic weights (parameters) in the NN and it is analogous to 

the polynomial order in polynomial regression (the number of weights in the terms). Deep 

NNs are obviously also universal approximators [121,122]. Their interest lies in trading 

width of a single hidden layer for depth, as stacks of hidden layers allow functional 

difference (e.g., convolutive neurons for image data) and thus hierarchical processing, 

explaining the later success of deep networks compared to shallow ones. Most NNs are feed-
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forward, meaning that data flows unidirectionally from inputs to outputs. Recurrent NNs 

(RNNs) add feedback loops to feedforward connections, allowing them to process sequences 

of data (text, videos) and somehow to keep memories of past inputs, which then gives 

context to new inputs.

Training of NNs relies on minimizing a loss function between the desired output and the one 

provided by the NN in its current parameter configuration. The partial derivatives, or 

gradient, of the loss function with respect to these parameters indicates the direction in 

which tuning the parameters is likely to decrease the loss. In a feedforward NN, this 

derivative information flows back from layer to layer and is therefore called gradient 

backpropagation.

For regression, typical loss functions can be the mean square error or mean absolute error. 

With a suitable change of the output layer (softmax or normalized exponential) and loss 

function (the cross entropy), the NN can approximate class probabilities.

Classification is the other prominent task in ML. Classifiers are simply algorithms that can 

sort data into groups or categories, and there exists a large variety of them [123]. Some of 

the most popular ones are very intuitive and easy to interpret, such as decision trees [124], 

where input data is classified by going through a hierarchical, tree-like process including 

different branching tests of the data features (Figure 6.a). Growing several complementary 

decision trees together, in an ensemble learning strategy, leads to random forests (Figure 6.b 

see also Section 3). Other simple algorithms for classification include the linear classifier, 

the Bayesian classifier, or the Perceptron (Figure 5.a). More sophisticated algorithms can 

actually be used for both regression and classification tasks. Some examples are NNs 

(Figure 5.b), which can yield class probabilities with suitable output layers; or support 

vector machines [125], which can be seen as an improved linear classifier that works in a 

higher-dimensional space and try to fit the separation (hyper)plane with the thickest margin 

in between points of two classes (Figure 7).

3. State-of-the-art AI methods for medical image analysis

In the last decade, intensive research in AI methods for medical applications, and 

specifically in ML/DL (Figure 8, left), yielded thousands of publications reporting the 

performance of new algorithms and/or original variants of the existing ones. The number of 

publications using some of the most popular ML/DL methods is presented in Figure 8. In 

particular, in recent years, attention has moved from ML methods such as SVMs and 

Random Forests to Convolutional Neural Networks (Figure 8, right). In addition, since 2018, 

the use of other DL methods such as Generative Adversarial Networks or reinforcement 

learning algorithms is rapidly increasing. Notice that this section is not intended to be an 

exhaustive review of the application of AI methods to the medical field, but rather an 

illustration of the potential of these methods. Thus, in the following, we describe the basic 

methodological aspects of two of the most widely used algorithms (Random Forests and 

CNNs), as well as the increasingly popular GANs, and we provide some examples of recent 

applications of these methods to the field of medical image processing.
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Random Forests (RFs)

Random forests (RFs) [126,127] use an ensemble of uncorrelated binary decision trees 

(multiple learning models) to find the best predictive model (Figure 6). Each decision tree 

can be seen as a base model (binary classifier) with its respective decision, where a 

combination of such decisions leads to the final output. This is achieved in RFs by using two 

distinctive mechanisms, i.e., internal feature selection and voting [128]. The RFs algorithm 

extracts a multitude of low-level (simple) data representations and uses the feature selection 

mechanism on all collected features to find the most informative ones. After feature 

selection, a majority vote on selected classifiers yields the final decision. For a full detailed 

description of the RF algorithm we refer to [128].

The earliest applications of RFs date from a decade ago for organ localization [129] and 

delineation [130]. Since then, RFs have been applied to numerous tasks, including detection 

and localization, segmentation, and image-based prediction [128]. For some specific 

applications, RFs have demonstrated an improved performance over other classical ML 

methods. For instance, Deist et al. [131,132] compared six different classification algorithms 

(decision tree, RFs, NNs, SVM, elastic net logistic regression, LogitBoost) on 12 datasets 

with a total of 3496 patients, for outcome and toxicity prediction in (chemo)radiotherapy. 

They concluded that RFs was the algorithm achieving higher discriminative performance (on 

6 over 12 datasets). This goes in line with the findings from more fundamental ML research 

studies, which have reported RFs as one of the best classical learning algorithms [133]. 

However, many other works in the medical field have also compared the accuracy of RFs 

against more complex or simpler ML classifiers, and it is well known that their performance 

may vary for different applications [103,113,132,134–139] and even for different datasets 

within the same application [131,132]. This makes it hard to conclude on the absolute 

superiority of RFs algorithm over other ML classifiers. Nevertheless, the work of Deist et al. 

included one of the largest datasets investigated so far for radiotherapy outcome prediction, 

which is a strong argument in favor of considering RFs as one of the first options to 

investigate for this kind of application. In addition, RFs keep achieving very promising 

results in recent applications related to outcome prediction [135,139–143], but also for other 

domains like image classification [113,144] or automatic treatment planning [100,145–147]. 

Regarding other tasks where RFs were among the state-of-the-art methods a few years ago, 

like image synthesis [148–150] or segmentation [151,152], the community has now fully 

switched the attention to CNNs [5,153,154]. Nevertheless, in favor of RFs one could argue 

that they are easy to implement and less computationally expensive than CNNs (i.e., they 

can work in regular CPU). Therefore, they still deserve an important place in the ML 

toolbox for medical imaging.

Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are inspired by the human visual system and exploit 

the spatial arrangement of data within images. Their remarkable capacity to detect 

hierarchical data representations has made CNNs the most popular architecture for current 

medical image processing applications.

Barragán-Montero et al. Page 9

Phys Med. Author manuscript; available in PMC 2022 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Traditionally, CNNs stack successive layers of convolutions and down-sampling, and fully 

connected layers towards the output (Figure 9). Sequential applications of multiple 

convolutions enable the network to extract first simple features, like edges, in the deepest 

layers, which are next combined and refined into richer, more complex, hierarchical features, 

like full organs. Within each convolutional layer, feature saliency is determined by scanning 

a fixed-size convolution kernel (typically 3x3) all over the image to yield a feature map. This 

allows for an economy of parameters (weight sharing) and hence easier training. 

Downsampling layers are inserted between convolutional layers to reduce the size of feature 

maps, typically by applying a max-pooling operation, which keeps the maximum pixel value 

out of all non-overlapping 2-by-2 blocks in the feature map. To some extent, successive 

max-pooling allows for some shift invariance with respect to image content, as the salient 

maximum might stem from anywhere in the block. Downsampling trades resolution for 

number, as more convolution filters can be applied to smaller features maps within the same 

memory footprint. Eventually, fully connected layers generate the outputs, where all neurons 

are interconnected.

Fully convolutional networks (FCNs) [155] were proposed to efficiently perform image-to-

image tasks like segmentation. In CNNs, repeated convolution and max-pooling layers lead 

to low resolution abstract outputs. In order to return to full-resolution images, fully 

connected layers in CNNs are replaced in FCNs with operations that revert convolution and 

max-pooling. Following the same line, U-net [156] was presented for biomedical image 

segmentation, and is now widely used in medical imaging. It is an encoder-decoder styled 

network, where the encoder can be seen as a feature extraction block, and the decoder as 

output generation block. Within medical imaging, FCNs are used in both supervised, and 

unsupervised settings depending on the respective architecture. In supervised training, FCNs 

are mostly used for discriminative tasks, such as detection, localization, classification, 

segmentation, and denoising. Note that CNNs and FCNs are often used interchangeably.

For certain applications, such as image segmentation [154,157,158] or synthesis [5], CNNs 

are now considered the state-of-the-art methods [4]. Although the comparison of different 

algorithms on the same dataset is not so common, an excellent way to track the evolution of 

the state-of-the-art algorithms is to look at the challenges and competitions organised around 

specific topics. In certain cases, CNNs have clearly surpassed the performance of more 

classical methods. A good example is the Challenge on Liver Ultrasound Tracking 

(CLUST): the winning team in the first edition (2014) achieved a tracking error of 1.51 ± 

1.88 mm using an approach based on image registration algorithms [159]; whereas the 

current best performing algorithm, based on CNNs, achieves under 1 mm accuracy (0.69 ± 

0.67 mm), demonstrating a more robust model [160]. Another example is the database from 

the MICCAI Head and Neck Auto-segmentation Challenge 2015 [161], for which the most 

recent methods based on CNNs [26,162–164] has improved the Dice coefficients obtained at 

that time with model- and atlas-based algorithms by more than 3% on average. In particular, 

the work of Nikolov et al [26] has recently reported a U-Net architecture with an accuracy 

equivalent to experienced radiographers. These are just two of the many competitions 

organised around medical imaging tasks [165], but year after year CNNs are becoming the 

backbone of the best performing algorithms.
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Some of the latest methodological improvements in the architecture of CNNs that have 

contributed to more robust and accurate models include coarse-to-fine cascade of two CNNs 

[166] to address class-imbalance issues; the addition of squeeze-and-excitation (SE)-blocks 

to allow the network to model the channel and spatial information separately [167], 

increasing the model capacity; or the implementation of attention mechanisms, which 

enables the network to focus only on most relevant features [168–170].

Besides image segmentation, other recent successful applications of CNNs include 

classification [171,172], outcome prediction [120,173,174], automatic treatment planning 

[62,87,175], motion tracking [176,177] or image enhancement [33]. In numerous 

applications, CNNs have either demonstrated an accuracy similar to human experts 

[26,80,178,179], decreased the interobserver variability [180,181] or reduced the physician’s 

workload for a specific task [157]

Generative adversarial networks (GANs)

Generative adversarial networks (GANs) Generative adversarial networks (GANs) [182] are 

popular archi-tectures used for generative modeling. GANs consists of two networks: 

generator ℊ and discriminator (Fig. 10). The intuition is that ℊ iteratively tries to map a 

random input distribution to a given data distribution to generate new data, which D 

evaluates. Depending on the feedback from D, ℊ tends to minimize the loss between the two 

distributions, thus generating similar samples as input data. The goal is to trick D into 

classifying generated data as real. Both networks are trained simultaneously to get better at 

their respective tasks: while ℊ is learning to fool D, D is concurrently learning to better 

distinguish generated data from real input data. Note that both D and ℊ are generally CNNs 

trained in an adversarial setup.

Unlike CNNs, which have relatively old foundations dating back to 1980 (Section 2), 

adversarial learning is a rather new concept. However, it has rapidly rooted in the medical 

imaging field, leading to numerous publications in the last few years [183,184]. The initially 

proposed architecture for GANs [182] suffered from several drawbacks, such as a very 

unstable training, but the intensive research in the field of computer vision has lead 

substantial improvements by either changing the architecture of D and ℊ, or investigating 

new loss functions [183,185]. A way to better control the data generation process in GANs 

is to provide extra information about the desired properties of the output (e.g. ex amples of 

the desired real images or labels). This is known as conditional GANs (cGANs) [186], and it 

can be categorized as a form of supervised learning since it requires aligned training pairs. 

However, we believe that the real strength of GANs relies on their ability to learn in a semi-

supervised or fully unsupervised manner. Specifically, in the medical imaging field, where 

aligned and properly annotated image pairs are seldom available, GANs are starting to play a 

very important role. In this context, cycleGANs [187] is probably one of the most famous 

architectures allowing bidirectional mapping between two domains using unpaired input 

data.

So far, in the medical imaging field, GANs have been mostly applied to synthetic image 

generation for data augmentation [188–190] and multi-modality image translation (e.g. MR 

to CT [90,191–193], CBCT to CT [97,194], among others [5,183]). Regarding data 
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augmentation applications, we believe that GAN-based models have the potential to better 

sample the whole data distribution and generate more realistic images than traditional 

approaches (e.g. rotation, flipping, etc), which may contribute to a higher generalizability of 

the model [188] and more efficient training [195]. For multi-modality image translation, 

although cGANs have achieved good results [90,191,193,196], cycleGANs usually 

outperforms in terms of accuracy, in addition to overcome the issues related to paired image 

training (i.e. inaccurate aligning or labelling) [39,97,194,197]. Besides image translation, 

GANs have also been applied to other tasks, such as segmentation [198–203] or 

radiotherapy dose prediction [204–207], or artifact reduction [208], among others [183].

All above-mentioned applications have explored the generative capacity of GANs, but we 

believe that their discriminate capacity may also have some potential, since it can be used as 

regularized or detector when provided with abnormal images [209], which might be an 

excellent application for quality assurance tasks in radiation oncology, for instance.

4. Discussion and concluding remarks: where do we go next?

This article provided an overview of AI with a focus on medical imaging analysis, paying 

attention to key methodological concepts and highlighting the potential of the state-of-the-

art ML and DL methods to automate and improve different steps of the clinical practice. 

Incorporating such knowledge into the clinical practice and making it accessible to the 

medical community will definitely help to demystify this technology, inspire new and high 

quality research directions, and facilitate the adoption of AI methods in the clinical 

environment.

Looking at the evolution of AI methods, one can certainly conclude that shifting from 

computationalism to connectionism, together with the transition from shallow to deep 

architectures, has brought a disruptive transformation to the medical field. However, an 

important part of the research so far has focused on simply translating the latest ML/DL 

advances in the field of computer vision to medical applications, in order to demonstrate the 

potential of these methods and the feasibility to use them to improve the clinical practice. It 

is the case of some of the papers cited in this manuscript, such as the first proof-of-concepts 

of the use of CNNs for organ segmentation [32] and for dose prediction for radiotherapy 

treatments [34], or the use of GANs for conversion between image modalities [97]. 

Although the technological transfer from computer science to the medical field will certainly 

continue to bring important progress, the next generation of AI methods for medical 

applications will only emerge if the medical community steps up to embrace AI technology 

and integrate all the domain-specific knowledge into the state-of-the-art AI methods 

[210,211]. This can be done in several ways, such as adding extra information in the input 

channels of the models or using dedicated loss functions during the model training. Some 

groups have already started to explore these research directions. For instance, instead of 

using generic loss functions from computer vision tasks, like the mean squared error, one 

could use loss functions that better target the specificities of our medical problem, such as 

including mutual information for the conversion of different image modalities [90,193] or 

dose-volume histograms for radiotherapy dose predictions [212]. Regarding the injection of 

domain-specific knowledge as input to the models, some examples include the addition of 
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electronic health records and clinical data, like text and laboratory results, to the image data 

[213–215], or having first-order prior or approximations of the expected output [175,216–

219]

Integrating domain-specific knowledge cannot only serve to improve the performances of 

state-of-the-art AI models, but also to increase the interpretability of the results, which is one 

of the well-acknowledged limitations of the current ML/DL methods [220–223]. This is the 

idea behind the so-called Expert Augmented Machine Learning (EAML), whose goal is to 

develop algorithms capable of extracting human knowledge from a panel of experts and use 

it to establish constraints for the model’s prediction [224]. This “human-in-the-loop” 

approach is also useful to train our AI models more efficiently. Indeed, some preliminary 

studies have reported that blindly increasing the training databases will not bring much 

improvement to our AI model’s performance [225]. In contrast, active learning [226] is a 

type of iterative supervised learning that follows this human-in-the-loop concept, where the 

algorithm itself query the user to obtain new data points where they are most needed, in 

order to build up an optimally balanced training dataset [227,228]. Nevertheless, although a 

human-centered approach for AI models is certainly the way to go in the close future, 

parallel research should focus on implementing strategies that leverage the problem of data 

labelling with semi-supervised, unsupervised or yet the increasingly popular self-supervised 

learning.

The quality of the data itself is certainly another important aspect that is worth discussion. 

Data collection and curation are indeed of paramount importance, since errors, biases, or 

variability in the training databases are often directly reflected in the model behavior and can 

have dramatic consequences in the model performances and its clinical outcome. Some 

examples of these issues include gender imbalance [229], racial bias [230], or data 

heterogeneity due to changes in treatment protocols overtime [225]. Despite progress in AI 

methods, data collection remains poorly automatized and the time dedicated to data 

collection and curation is often overly long. In fact, most state-of-the-art AI algorithms can 

be trained in a few hours, whereas building a large-scale well curated database can take 

months. Therefore, the same way physicians are familiar with planning protocols or 

delineation guidelines, the clinical teams should start being familiar with guiding principles 

for data management and curation in the era of AI. The FAIR (Findability, Accessibility, 

Interoperability, and Reusability) Data Principles [231] are the most popular and general 

ones, but the medical community should focus efforts on adapting those principles to the 

specificities of the medical domain [232–234]. Only in this way, we will manage to have a 

safe and efficient clinical implementation of AI methods. In addition, federated learning 

approaches [235–237] can be used to train AI models across institutions while ensuring data 

privacy protection, sharing the clinical knowledge and getting the advantages of 

collaborative AI solutions.

Investing time and collaborative effort in high-quality databases is certainly the way to move 

forward. So far, two aspects have played an important role in the recent development of AI 

and ML, namely, data repositories [238] and contests [239,240], the former feeding the 

latter. Competitions generate emulation among actors of the domain and allow state-of-the-

art models to be benchmarked. A few examples have been cited in this manuscript, but there 
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are multiple competitions every year that lead to public data repositories [241–243]. A very 

recent example is the breakthrough of AI in the CASP competition [244]. However, the 

results and rankings from competitions must be interpreted carefully when transferring the 

acquired knowledge into clinical applications [245,246]. Due to the high stakes in the 

medical domain, the community should devote even stronger efforts and international 

organizations should emit recommendations for data collection and curation, as well as for 

the design of contests and competitions. In the long term, this would lead to a much more 

structured and uniform clinical practice, with reduced differences between centres. Bigger, 

more homogeneous data could then potentially allow for another level of AI, by extracting 

much finer information, at the level of large populations. If data for AI is still in its infancy, 

so are also the methods. In spite of amazing progress and wowing results, current AI 

remains cast within tight frameworks. AI for images has been dealt here. Other application 

domains focus on natural language and speech processing with related but quite different 

approaches. So far, computer vision and audition follow different specialized approaches, 

although some works attempt to bridge the gap, like automatic image captioning. 

Nevertheless, these blocks remain mostly separated and current AI blocks lack integration 

and are still considered as weak AI. For instance, typical CNNs can boil down to just big 

filter banks, without any notion of time, and thus no memory and no experience. Strong AI 

is going to emerge when AI for images and speech, as well as active learning [227,228], will 

be combined into a sort of Frankensteinian brain, in which specialized lobes for the different 

senses get interconnected. This will allow for richer interaction, explainability through 

speech, reference to past experience, and continuous improvement. Such a strategy has been 

paved for autonomous driving, with different levels of automation. Confidence into ever 

more complex AI will grow only if AI can get more anthropomorphic, at least from a 

functional point of view.

In conclusion, artificial intelligence methods, and in particular, machine and deep learning 

methods, have reached important milestones in the last few years, demonstrating their 

potential to improve and automate the medical practice. However, a safe and full integration 

of these methods into the clinical workflow still requires a multidisciplinary effort (computer 

science, IT, medical experts, …) to enable the next generation of strong AI methods, 

ensuring robust and interpretable AI-based solutions.
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Highlights

• Artificial intelligence (AI) has transformed the field of medical image 

analysis

• Gathering key knowledge about AI becomes a must for the medical 

community

• This review presents the basic technological pillars of AI for medical image 

analysis

• We also discuss how the state-of-the-art AI methods and the new trends in the 

field
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Figure 1. 
Artificial intelligence, machine learning, and deep learning can be seen as matryoshkas 

nested in each other. Artificial intelligence gathers both symbolic (top down) and 

connectionist (bottom up) approaches. Machine learning is the dominant branch of 

connectionism, combining biological (neural networks) and statistical (data-driven learning 

theory) influences. Deep learning focuses mainly on large-size neural networks, with 

functional specificities to process images, sounds, videos, etc.
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Figure 2. 
Three classical learning frameworks in artificial intelligence: supervised, semi-supervised, 

and unsupervised learning. Supervised learning relies on known input-output pairs. If some 

output labels are difficult or expensive to get, semi-supervised learning can apply. If no 

labels are available, unsupervised learning allows for a more exploratory approach of data.
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Figure 3. 
The tight framework of supervised learning can be hybridized with unsupervised learning to 

make room for practical cases and problems, as well as to accommodate temporality. 

Delaying supervision in future times leads towards reinforcement learning. Incompletely 

labelled data fosters semi-supervised learning, whereas small data sets encourage reusing 

(parts of) models trained previously on similar but bigger data sets, like in transfer learning. 

In self-supervision, pretraining relies on solving dummy supervised problems, where fake 

labels are created based on the inherent structure of image or sound data.
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Figure 4. 
General ML pipeline for supervised learning: supervised predictive models are fed with 

features that are extracted and/or selected beforehand in an unsupervised way. Feature 

selection can, however, be embedded in some models, using regularization, for instance; 

selection then becomes supervised and therefore often improved. Classical (shallow) models 

tend to critically depend on unsupervised feature extraction and selection to preprocess data. 

In contrast, deep learning drops unsupervised feature extraction and selection; instead, it 

embeds multiple trainable layers of feature extractors and selectors, allowing the full 

pipeline to be supervised, end to end.
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Figure 5. 
Artificial neural networks in a nutshell. (a) The formal neuron, processing several dendritic 

inputs through a nonlinear activation function f, to produce its actional output. (b) The 

neurons can be interconnected in a feed-forward way, into successive layers; as soon as a 

nonlinear ‘hidden’ layer is inserted in between the inputs and outputs, the network can 

potentially approximate any function; specific activation functions can be fitted in the output 

layer to achieve either regression or classification. (c) Examples of nonlinear activation 

functions in the hidden layers: the step function, from biological inspiration, the sigmoid, its 

continuous and differentiable surrogate, and the rectified linear unit (ReLU), that improves 

training of deep layers.
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Figure 6. 
(a) Decision trees assign labels (leafs) to a given sample by going through a multi-level 

structure where different features (root nodes) and solutions (branches) are tested. (b) In a 

Random Forest algorithm, decision trees are combined, following an ensemble learning 

approach, which enables to get more accurate predictions than a single tree. Each individual 

tree in the forest spits out a class prediction and the class with the most votes becomes the 

final model’s prediction.
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Figure 7. 
Principle of the linear support vector machine, which lifts the indeterminacy of separable 

classification by fitting the thickest margin, stuck in between a few ‘support vectors’. The 

principle can be extended to nonlinear class separation by using Mercer kernels [125].
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Figure 8. 
Number of publications since 2010 till 2020 in the PubMed repository, containing keywords 

related to AI/ML/DL methods in the title and/or abstract.
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Figure 9. 
Typical architecture for a (deep) Convolutional Neural Network (CNN). Different 

convolutional kernels scan the input images leading to several feature maps. Then, down-

sampling operations, such as max-pooling (i.e., taking the maximum value of a block of 

pixels), are applied to reduce the size of the feature maps. These two operations, convolution 

and pooling, are applied multiple times to extract higher-level features. At the end, the 

feature maps are flattened and passed through fully connected layers of neurons (see Figure 

5), to obtain a final prediction. The embedded (automatic and unsupervised) feature 

extraction (Figure 4) is what enables CNNs to remove all handcrafted operations and makes 

them so powerful.
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Figure 10. 
Structure of Generative Adversarial Networks (GANs). Starting from random noise, the 

generator (G) uses the feedback from the discriminator (D) and learns to create images that 

are similar to the provided ground truth.
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Table 1.

Different learning frameworks and strategies, together with some of the most popular algorithms or techniques 

that are used for each of them, as well as a few examples of common applications in the field of medical 

imaging. The table is divided in three parts: the basic learning frameworks (supervised, unsupervised and 

reinforcement learning), the hybrid learning frameworks blending supervised and unsupervised, and finally 

common learning strategies that solve consecutive learning problems or combine several models together.

Learning style Common algorithms / methods Examples

BASIC LEARNING FRAMEWORKS

Supervised learning

• Linear or logistic regression
• Decision trees and random forests
• Support vector machines
• Convolutional neural networks
• Recurrent neural networks

• Cancer diagnosis [78–81]
• Organ segmentation [26,82–86]
• Radiotherapy dose denoising [33]
• Radiotherapy dose prediction [87,88]
• Conversion between image modalities [89,90]

Unsupervised learning
• (Variational) Auto encoders
• Dimensionality reduction (e.g., Principal component analysis)
• Clustering (e.g., K-means)

• Domain adaptation tasks[35–37,91,92]
• Classification of patient groups [93]
• Image reconstruction [94]

Reinforcement learning • Q-learning
• Markov Decision Processes

• Tumor segmentation [54,55]
• Image reconstruction [95]
• Treatment planning [50–53,96]

HYBRID LEARNING FRAMEWORKS

Semi-supervised learning • Generative Adversarial Networks
• Tumor classification [45,46]
• Organ segmentation [46]
• Synthetic image generation [97,98]

Self-supervised learning • Pretext task: distortion (e.g. rotation), color- or intensity-based, 
patch extraction • Image classification or segmentation [76]

LEARNING STRATEGIES

Transfer learning
• Inductive
• Transductive
• Unsupervised

• Radiotherapy toxicity prediction [58]
• Adaptation to different clinical practices [62]
Improving model generalization[99]

Ensemble learning • Bagging - Bootstrap AGGregatING - (e.g. random forests)
• Boosting (e.g. AdaBoost, gradient boosting)

• Radiotherapy dose prediction [100,101]
• Estimation of uncertainty [102]
• Stratification of patients[103]
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