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Site-Selective Silver-Catalyzed C–H Bond Deuteration of Five-
Membered Aromatic Heterocycles and Pharmaceuticals

Adrian Tlahuext-Aca, John F. Hartwig
Department of Chemistry, University of California, Berkeley, California 94720, United States

Abstract

Catalytic methods for the direct introduction of hydrogen isotopes into organic molecules are 

essential to the development of improved pharmaceuticals and to the alteration of their absorption, 

distribution, metabolism, and excretion (ADME) properties. However, the development of 

homogeneous catalysts for selective incorporation of isotopes in the absence of directing groups 

under practical conditions remains a long-standing challenge. Here, we show that a phosphine-

ligated, silver-carbonate complex catalyzes the site-selective deuteration of C–H bonds in five-

membered aromatic heterocycles and active pharmaceutical ingredients that have been resistant 

to catalytic H/D exchange. The reactions occur with CH3OD as a low-cost source of the isotope. 

The silver catalysts react with five-membered heteroarenes lacking directing groups, tolerate a 

wide range of functional groups, and react in both polar and nonpolar solvents. Mechanistic 

experiments, including deuterium kinetic isotope effects, determination of kinetic orders, and 

identification of the catalyst resting state, support C–H bond cleavage from a phosphine-ligated, 

silver-carbonate intermediate as the rate-determining step of the catalytic cycle.
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INTRODUCTION

Synthetic methods to incorporate hydrogen isotopes selectively into organic molecules have 

attracted considerable interest, due to the widespread application of isotopically labeled 

compounds in chemical and pharmaceutical research. For example, the selective replacement 

of hydrogen for deuterium at C–H bonds prone to metabolic degradation is a useful 

approach for the development of new pharmaceuticals with improved pharmacokinetic 

and pharmacodynamic properties (Scheme 1a).1 Deuterated and tritiated biologically active 

compounds and pharmaceuticals are also employed in absorption, distribution, metabolism, 

and excretion (ADME) studies, which are pivotal for the understanding of their of mode of 

action and toxicology.2 In addition, deuterated molecules are used to investigate reaction 

mechanisms and are used as standards for mass spectrometry and nuclear magnetic 

resonance.3

Classical methods to synthesize deuterated and tritiated compounds require 

prefunctionalized starting materials, which are subjected to reductive or dehalogenative 

processes during the installation of the desired hydrogen isotope.1b,4 However, hydrogen 

isotope exchange (HIE) catalyzed by homogeneous transition metals has become a widely 

applicable method for the late-stage introduction of hydrogen isotopes directly into C–H 

bonds.5 Thus, this method, which can be conducted with commercially available sources 

of deuterium or tritium, is employed in industry for the isotopic labeling of complex 

pharmaceuticals.

Ir catalysts, including Crabtree’s catalyst and variants developed by Kerr, are the most used 

catalyst for H/D exchange because they catalyze the selective isotopic labeling of sp3 and 

sp2 C–H bonds with the tolerance of many functional groups.6 However, these catalysts 

require directing groups, and binding of other Lewis basic functional groups to the catalyst 
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reduces the level of isotopic incorporation, presumably because these functional groups bind 

and poison the catalyst (Scheme 1b).6a,f

Recently, research by Chirik7 and MacMillan8 on base-metal and photoredox catalysts has 

enabled reactivity and site selectivity that are complementary to those of the Ir-catalyzed 

methods. As a result, these studies have provided new methods for the selective deuteration 

and tritiation of sp3 and sp2 C–H bonds in complex pharmaceuticals without the need for 

directing groups. In spite of these recent advances, common, medicinally relevant molecular 

scaffolds, such as those based on five-membered ring heteroarenes, remain resistant to HIE 

under practical conditions with any type of catalyst.

Five-membered aromatic heterocycles are prevalent in pharmaceuticals, agrochemicals, and 

natural products.9 The introduction of these heterocycles into biologically active agents is 

a widely used approach for the optimization of their toxicology properties10 because they 

can alter lipophilicity, polarity, and hydrogen-bonding capacity.10a Five-membered aromatic 

heterocycles are also used in drug discovery as bioisosteres of benzene rings, carboxylic 

acids, and esters.10b,11 Despite the value of such heteroarenes, homogeneous catalysts for 

the selective incorporation of hydrogen isotopes in a broad range of five-membered aromatic 

heterocycles embedded in complex pharmaceuticals without the assistance of directing 

groups have been elusive. Base-induced H/D exchange under stoichiometric conditions 

has been employed for the isotopic labeling of a handful of five-membered heterocycles 

at multiple positions with limited tolerance of functional groups; however, these methods 

require high reaction temperatures (over 120 °C) and in some cases supercritical conditions 

(high temperatures combined with high pressures).12

Our group13 recently reported the activation of C–H bonds in arenes by silver complexes as 

part of a study of the mechanism of the direct allylation of arenes catalyzed by palladium 

complexes with silver additives. The groups of Larrosa,14 Sanford,15 and Zhu16 have 

reported that related silver complexes cleave the C–H bonds of arenes bound to Cr(CO)3, 

activated arenes containing multiple fluorine substituents, thiophene, and benzothiophene. 

The reactions of less activated arenes and heteroarenes have not occurred.

These previous studies suggested that silver salts and phosphine-ligated silver complexes 

bearing carboxylate ligands were the species in palladium-catalyzed couplings that cleaved 

C–H bonds, presumably by a carboxylate-assisted concerted metalation deprotonation 

step.14–16 However, characterization of a silver carboxylate species that effects C–H bond 

cleavage, particularly cleavage of the C–H bonds in heteroarenes, has not been conducted,14a 

and ligands that accelerate the rate of the C–H activation step were not identified. Thus, 

high concentrations of silver catalysts and stoichiometric amounts of bases were needed 

to activate the C–H bonds, even of these more reactive arenes, and moderate degrees of 

isotopic incorporation were observed during mechanistic experiments.

We considered that this C–H activation chemistry could be applied to unsolved problems 

in H/D exchange by creating silver complexes that cleave the C–H bonds of medicinally 

important five-membered heteroarenes and enable H/D exchange under practical conditions. 

This goal would require the development of discrete silver catalysts that cleave C–H bonds 
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at faster reaction rates and with greater tolerance of functional groups than prior silver 

systems that were part of catalytic C–C bond-forming processes.

Herein, we describe the identification of a catalytic system based on silver for such 

site-selective deuteration of C–H bonds in medicinally relevant five-membered aromatic 

heterocycles, including imidazole, thiazole, triazole, thiophene, and indole. The developed 

method proceeds in the absence of directing groups, and it uses commercially available 

silver catalysts, phosphine ligands, and CH3OD as a low-cost source of deuterium (Scheme 

1c). Moreover, we demonstrate that the functional group compatibility of this silver-

catalyzed method is broad, and this property enables the isotopic labeling of complex 

pharmaceutical ingredients to produce new isotopologues.

RESULTS AND DISCUSSION

Development of Silver-Catalyzed C–H Deuteration.

We began our studies to achieve mild, silver-catalyzed HIE with 2-methylthiophene (1) 

as a model substrate for an electron-rich, five-membered heterocycle (Table 1). Initial 

experiments showed that the deuterated thiophene [2H]1 formed with moderate isotopic 

incorporation and perfect site selectivity toward the most acidic sp2 C–H bond in the 

presence of Ag2CO3 (2.5 mol %) and PPh3 (5 mol %) in CH3OD solvent after 8 h 

at 40 °C (Table 1, entry 1). A series of experiments with a range of commercially 

available phosphines demonstrated that [2H]1 formed in high isotopic incorporation (up to 

95%) when the silver catalyst contained the electron-rich 2-(biphenyl)di-tert-butylphosphine 

(JohnPhos) ligand (Table 1, entry 5). Catalysts containing related electron-rich dialkylbiaryl 

phosphines, namely, 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (SPhos) and 2-

(dicyclohexylphosphino)biphenyl (Cy-JohnPhos), led to lower degrees of isotope exchange. 

A notable feature of the silver catalyst ligated by JohnPhos is its high activity in the presence 

of atmospheric oxygen, which allowed the synthesis of [2H]1 in air with high isotopic 

composition (Table 1, entry 8) and with rates that were identical to those measured under 

nitrogen (see SI for details). Silver catalysts containing other anionic ligands were also 

tested. The analogues containing acetate and pivalate ligands were not active toward the 

deuteration of 1 (Table 1, entries 9–10). Control experiments in the absence of JohnPhos or 

Ag2CO3 showed the necessity of both components for the C–H bond deuteration reaction 

to proceed (Table 1, entries 11–12). Other commercially available sources of deuterium, 

including CH3CH2OD and D2O, in different organic solvents were also investigated, but 

reactions with these sources led to lower degrees of deuterium incorporation into 1 than did 

reactions conducted in CH3OD (see SI for further details).

Scope of the Silver-Catalyzed C–H Deuteration.

The functional group compatibility of the silver-catalyzed C–H deuteration was first 

examined with mono- and disubstituted thiophenes.17 During the course of these 

experiments, we observed that a high degree of isotopic incorporation (up to 99%) was 

obtained after two cycles of C–H deuteration in air after 10–48 h at temperatures between 

50 and 80 °C (see SI for details). After the first reaction cycle, purification of the 

intermediate deuterated product was not required, although addition of further silver catalyst 
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was necessary in a few cases to obtain high isotopic incorporation (see SI for complete 

experimental details).

As shown in Scheme 2, thiophene 2, containing the electron-donating 3,4-ethylendioxyl 

moiety, underwent high deuterium incorporation at the position α to the sulfur atom. The 

thiophene in 3 was more reactive toward C–H bond deuteration than the phenyl unit, 

giving [2H]3 selectively in high yield. Reactions of thiophenes containing ester, benzoyl, 

carboxamide, and carbamate moieties showed that these coordinating functionalities did 

not direct C–H activation; selective deuteration at the C5-position of the thiophenes 

provided [2H]4–[2H]7 in high yield. The lack of directing effect of the pyridine in 2-(2-

pyridyl)thiophene 8 is particularly noteworthy. The major site of incorporation of deuterium 

was the C–H bond distal to, rather than adjacent to, the basic nitrogen.

Thiophenes bearing an unprotected alcohol or containing amines (9–11) underwent this 

HIE process, but the latter reactions required higher concentrations of silver catalysts and 

reaction temperatures to achieve high levels of isotopic incorporation. Accordingly, the 

deuterated [2H]10 product was formed from a reaction with 10 mol % of Ag2CO3 and 20 

mol % of JohnPhos at 80 °C for 48 h under nitrogen to suppress partial decomposition of 

the starting material. Under the same reaction conditions, the thienopyridine 11, a secondary 

amine scaffold present in antiplatelet drugs,18 underwent deuteration at the two C–H bonds 

of the thiophene ring.

Finally, the broad functional group tolerance of the silver-catalyzed deuteration was further 

highlighted by the deuteration of 12 and 13. Existing homogeneous Ir catalysts for HIE do 

not tolerate unsaturated C–C bonds and nitriles, due to the sensitivity of the former toward 

reduction in the presence of deuterium or tritium gas and the irreversible binding of nitriles 

to Ir catalysts.6a,f Our developed method tolerated the aforementioned functionalities, as 

shown for [2H]12 and [2H]13. The synthesis of [2H]12 and [2H]13 also inspired further 

experiments on the use of cosolvents for catalytic HIE due to the insolubilities of 12 
and 13 in CH3OD. We found that the developed silver catalyst is active for exchange 

of the C–H bonds with CH3OD in a range of polar and nonpolar solvents, including 

dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, and dichloromethane (see SI for 

further details). Thus, the syntheses of [2H]12–[2H]13 were performed with THF or CH2Cl2 

as cosolvent, respectively.

The scope of the silver-catalyzed method with a series of different classes of five-membered 

aromatic heterocycles is shown in Scheme 3. Thiazoles, imidazoles, and 1,2,4-triazoles are 

electron-poor five-membered heterocycles found in modern antibiotics, antifungal drugs, 

and agrochemicals.9a Despite this prevalence, homogeneous catalysts for isotopic exchange 

with these heterocycles without directing groups are lacking.7a,c Our data show that 

methyl thiazole-4-carboxylate (14) undergoes high deuterium incorporation at the 2- and 

5-positions, and N-benzyl-1,2,4-triazole (15) undergoes selective deuteration at its most 

acidic C–H bond under the conditions we developed with the silver catalyst.

N-Benzyl-imidazole (16) proved less reactive than other heteroarenes under the standard 

conditions. However, 16 underwent C–H deuteration at faster reaction rates when di-tert-
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butylphenylphosphine was used as ligand in place of JohnPhos (see SI for details). 

Therefore, the deuteration of 16 was performed after two reaction cycles over a period 

of 48 h at 65 °C under nitrogen in the presence of 10 and 20 mol % of Ag2CO3 and di-tert-
butylphenylphosphine, respectively. This protocol led to deuteration of 16, with relative rates 

of reaction at the 2-, 4-, and 5-positions that follow the trend C2 > C4 > C5.

Indoles and pyrroles are important electron-rich heterocycles. However, isotopic labeling of 

these nitrogen heterocycles to high levels has required directing groups that enable C–H 

activation.19 In contrast, our silver-catalyzed method enabled high levels of incorporation 

of deuterium into 17 and 18 at the positions α and β to the nitrogen atom with the 

silver complex of JohnPhos as catalyst in air at 80 °C. Other fused heterocycles including 

benzofuran (19), benzothiophene (20), benzoxazole (21), benzothiazole (22), and caffeine 

(23) also underwent deuteration with a high level of deuterium incorporation at the most 

acidic C–H bond with the silver complex of JohnPhos as catalyst in air.

Deuteration of Pharmaceuticals.

The broad functional group tolerance and the site selectivity of the silver-catalyzed method 

complementary to that of existing methodologies20 prompted us to examine its applicability 

to the deuteration of C–H bonds in pharmaceuticals by conducting reactions with a series 

of active pharmaceutical ingredients. As shown in Scheme 4, pharmaceuticals containing 

xanthine heterocycles, namely, doxofylline (24) and pentoxyfilline (25), underwent high 

levels of incorporation of deuterium at the most acidic sp2 and sp3 C–H bonds at 50 °C 

after 24 h. The labeling of sp3 C–H bonds in 25 resulted from the facile enolization of 

the hydrogen atoms α to the carbonyl group. Etomidate (26), an anesthetic agent, and 

flumazenil (27), a GABA-antagonist, developed by Roche underwent deuteration at the 

imidazole core, while trace amounts of isotopic incorporation also were observed at the 

sp3 C–H bonds of the benzodiazepine ring of 27. It is important to note that 26 and 27 
were deuterated with commercially available CH3CH2OD to avoid transesterification with 

CH3OD.

Antifungal drugs, such as clotrimazole (28) and tioconazole (29), which contain imidazole 

and thiophene, underwent C–H bond deuteration in these heterocycles at 65 °C after 48 

h. In addition, partial isotopic incorporation at one position of the benzene ring of 29 
was observed, which presumably resulted from the moderate acidity of the labeled C–H 

bond. The antidepressant (S)-duloxetine (30) and the antiplatelet drug ticlopidine (31) both 

underwent selective deuteration at the thiophene heterocycle. Finally, fluconazole (32) and 

tebuconazole (33), an antifungal and agrochemical agent, respectively, underwent selective 

deuteration at the most acidic position of their triazole units in excellent yield and isotopic 

incorporation.

Mechanistic Investigation.

Having demonstrated the synthetic applications of the silver-catalyzed HIE, we performed 

a series of experiments to gain insight into the reaction mechanism. We first examined 

whether C–H bond cleavage was involved in the rate-determining step of the reaction. To 

do so, we measured the initial rates of deuterium and protium incorporation in parallel 
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reactions of 34 and [2H]34 in separate vessels. As shown in Scheme 5a, a large primary 

kinetic isotope effect (KIE) of 4.8 ± 0.3 was measured from experiments with 2.5 mol % of 

Ag2CO3 and 5 mol % of JohnPhos at 40 °C under air. The large value of the measured KIE 

strongly suggested that C–H cleavage occurs during the rate-determining step.

To gain additional kinetic data on the silver-catalyzed C–H deuteration, we measured 

the dependence of the reaction rate on the concentration of benzothiophene (34), silver 

catalyst, and CH3OD under air at 40 °C by the method of initial rates (Scheme 5b). The 

obtained data showed a first-order dependence on the concentration of 34 and on the 

concentration of the silver catalyst, and a zero-order dependence on the concentration of 

CH3OD (determined in THF).21 These kinetic data are consistent with the primary KIE and 

suggest a mechanism in which the phosphine-ligated silver catalyst cleaves the C–H bond 

during the rate-determining step of the reaction.

To help interpret the kinetic data, we conducted experiments to determine the resting 

state of the silver catalyst. We monitored the course of the deuteration of the C–H bond 

of 2-methylthiophene (1) by 31P NMR at 40 °C in CD3OD under air in the presence 

of Ag2CO3 (2.5 mol %) and JohnPhos (5 mol %). An examination of the 31P NMR 

spectra after different amounts of isotopic incorporation into the thiophene revealed the 

presence of a single species containing phosphorus in the reaction medium. This signal was 

observed at 44.0 ppm and comprises two superimposed doublets with large 1J A107 g − P31

and 1J A109 g − P31  coupling constants (657 and 758 Hz, respectively). The large 1JAg–P 

coupling constants indicate that the resting state of the silver catalyst consists of a metal 

species bearing a single coordinated phosphine per silver atom with a tricoordinated 

(JohnPhos)AgX2 (X = oxygen) coordination environment (Figure 1).22

We also isolated and structurally characterized the phosphine-ligated silver complex 

involved in the C–H bond activation step. To isolate the observed complex, we investigated 

the coordination chemistry of Ag2CO3 (1 equiv) with JohnPhos (2 equiv). After allowing 

the two catalyst components to react under conditions of the catalytic reaction (30 min in 

CH3OH at 50 °C under air, Scheme 6) and appropriate workup, an air-stable, light-brown 

solid was isolated in 69% yield. The 31P NMR spectrum of the isolated solid in CD3OD at 

room temperature revealed the same set of phosphorus resonances centered at 44.0 ppm, as 

observed during the catalytic reaction (Figure 1). Moreover, the isolated complex catalyzed 

the C–H deuteration of 1 with rates that were identical to those with the catalyst formed in 

situ from Ag2CO3 and JohnPhos (see SI for details).

An analysis by solid-state IR spectroscopy of the isolated solid revealed two strong 

absorption bands at 1338 and 1416 cm−1, respectively, which were assigned to the E′ ν(CO) 

ν3 mode of the silver-coordinated CO3
2− ligand. Previously characterized metal-carbonato 

complexes have E′ ν(CO) absorption bands in the range of 1200–1600 cm−1.23 The small 

separation of the observed E′ ν(CO) absorption bands in 36 (Δν = 78 cm–1) is characteristic 

of a metal complex containing a bridging carbonate ligand and is indicative of a minimal 

distortion around the O–C–O angles. The Δν values of the E′ ν(CO) absorption bands 

in metal complexes containing bridging carbonato ligands are smaller than 250 cm−1, 

a difference in frequency that has been associated with small distortions of the angles 
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around the carbonate moiety in this coordination mode.23 Solution molecular weight data 

indicate that the phosphine-ligated silver-carbonate complex contains two silver ions, two 

phosphines, and one carbonate.

The molecular weight determined by the Signer method24 was 717 g/mol in CH3OH at 

24 °C. Although this measured value is lower than that for complex 36 (872 g/mol), it is 

clearly smaller than that expected for higher aggregates of 36 and larger than values for 

potential mononuclear silver compounds (e.g., 466 g/mol for LAgCO3H, L = JohnPhos). 

Together, the recorded characterization data suggest that a binuclear, phosphine-ligated 

silver-carbonate complex (36) is the resting state of the catalyst for the C–H bond 

deuteration. Only two phosphine-ligated silver-carbonate complexes have been isolated 

previously and characterized by single-crystal X-ray diffraction; their solution chemistry 

has not been investigated.25

Although we were unable to obtain suitable crystals of compound 36 for X-ray 

diffraction, we isolated and characterized an analogue 37 containing tBuXPhos (2-di-tert-
butylphosphino-2′,4′,6′-triisopropylbiphenyl) by X-ray diffraction, solution NMR, and 

solid-state IR spectroscopy (Scheme 7a and Figure 1). The relevance of the structural studies 

of 37 to the C–H deuteration reaction is demonstrated by the reaction of 2-methylthiophene 

(1) catalyzed by 37. This reaction led to the formation of [1H]1 with 91% deuterium 

incorporation at the 5-position after 6 h in CH3OD (Scheme 7b).

An examination of the 31P NMR spectra of 37 in CH3OH-d4 revealed two superimposed 

doublets centered at 43.5 ppm, with1J A107 g − P31  and 1J A109 g − P31  coupling constants of 

649 and 748 Hz, respectively. The solid-state IR spectrum of 37 showed bands for the E′ 
ν(CO) ν3 mode of the silver-coordinated CO3

2− ligand at 1315 and 1440 cm−1. These NMR 

and IR data are comparable to the analogous data recorded for the isolated complex 36 (vide 
supra).

An ORTEP diagram of the solid-state structure of silver complex 37 is depicted in Figure 2 

and consists of a binuclear tBuXPhos-ligated silver carbonate structure, in which both silver 

atoms are tricoordinated with slightly distorted trigonal PAgO2 environments. The CO3
2− 

ligand in 37 bridges the two silver atoms in a highly symmetric κ2:κ2 coordination mode.25b 

The symmetric coordination environment around the CO3
2− ligand is reflected in its O–C–O 

angles, which are close to 120°.

To gain information on the elementary C–H bond cleavage step, we conducted reactions 

with a series of thiophenes containing electron-donating and electron-withdrawing 

substituents (Figure 3). These studies showed that 2-bromo- and 2-methoxy-substituted 

thiophene underwent deuteration with comparable rates (kOMe/kBr = 0.9). However, both 

substrates reacted faster than 2-methylthiophene (kBr/kMe = 2.6, kOMe/kMe = 2.4). The faster 

rates for reaction of the more electron-rich and electron-poor thiophenes are inconsistent 

with an SEAr pathway for the rate-determining, C–H bond cleavage step.26 Moreover, the 

general selectivity of the silver-catalyzed method for H/D exchange at the most acidic C–H 

bonds in the five-membered heterocycles strongly suggests that the C–H bond cleavage step 

occurs by a concerted metalation-deprotonation mechanism.
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Although more research is needed to fully understand the mechanism of the silver-catalyzed 

deuteration of C–H bonds, an initial hypothesis that is consistent with all of our data is 

depicted in Scheme 8. The phosphine-ligated silver catalyst I undergoes rate-determining 

C–H bond activation with the heterocyclic substrate by a carbonate-assisted, concerted 

metalation-deprotonation step. This reaction would form one heteroarylsilver complex and 

one bicarbonate complex. Rapid H/D exchange between CH3OD and the bicarbonate O–H 

bond, followed by demetalation of the (hetero)aryl phosphine-ligated silver intermediate II 
by reaction with the isotopically enriched bicarbonate complex III, regenerates the starting 

silver complex and forms the labeled product.

CONCLUSIONS

In summary, we have developed a silver-catalyzed method to conduct the previously 

elusive, catalytic, site-selective deuteration of C–H bonds in medicinally relevant five-

membered aromatic heterocycles, including thiazole, imidazole, triazole, thiophene, and 

indole. These results hold promise for the synthesis of deuterated heterocyclic building 

blocks, an approach that can be applied for the development of pharmaceuticals with 

improved pharmacodynamic and pharmacokinetic properties. The developed method occurs 

in the absence of directing groups, under mild reaction conditions, and in the presence 

of a diverse array of potentially reactive functional groups, such as alcohols, amines, 

alkenes, alkynes, and nitriles. These attributes enable the deuterium labeling of complex 

pharmaceuticals ingredients,27 a result that can be extended to the incorporation of tritium 

because sources of this isotope in the form of T2O and CH3OT have been reported in the 

literature.8,28 Mechanistic experiments support turnover-limiting C–H bond activation by a 

new phosphine-ligated, silver-carbonate catalyst, which presumably occurs by a carbonate-

assisted concerted metalation deprotonation step. The unique C–H bond activation chemistry 

by the herein reported phosphine-ligated, silver-carbonate complex lays the foundation for 

the development of a new class of catalysts that are currently being developed in our 

laboratory for previously elusive C–H functionalization reactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
31P NMR spectra of the reaction mixture of 2-methylthiophene, Ag2CO3, and JohnPhos in 

CD3OD at different amounts of deuterium incorporation.
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Figure 2. 
ORTEP diagram of tBuXPhos-ligated silver-carbonate complex 37. Bonds (Å): Ag1–P1, 

2.3465(4); Ag1–O1, 2.2337(12), Ag1–O2, 2.4227(14); C1–O1, 1.295(2); C1–O2, 1.274(2); 

C1–O3, 1.2904(19); Ag2–O1, 2.4651(12); Ag2–O3, 2.1912(12); Ag2–P2, 2.3415(4). Angles 

(deg): O3–C1–O2, 122.49(16); O2–C1–O1, 119.51(15); O3–C1–O1, 118.00(15). Ellipsoids 

are shown at 50% probability. Hydrogen atoms, THF, and water within the crystal structure 

are omitted for clarity.
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Figure 3. 
C–H Bond deuteration of 2-substituted thiophenes. C–H Deuteration of 2-substituted 

thiophenes. Rate constants (h−1): Me, 0.76; OMe, 1.8; Br, 2.0.
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Scheme 1. 
Applications of Deuterium and Recent Developments in Catalytic Hydrogen Isotope
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Scheme 2. Scope of Thiophenes That Undergo Selective C–H Deuterationa

aPerformed over two reaction cycles (see SI for details). bUnder nitrogen and isolated as the 

hydrochloride salt. cWith THF as cosolvent. dWith CH2Cl2 as cosolvent.
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Scheme 3. Scope of Five-Membered Heterocycles That Undergo Selective C–H Deuterationa

aPerformed over two reaction cycles (see SI for details). bWith di-tert-butylphenylphosphine 

under nitrogen. cWith CH2Cl2 as cosolvent.
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Scheme 4. Scope of Pharmaceuticals That Undergo Selective C–H Deuterationa

aPerformed over two reaction cycles (see SI for details), 50 equiv of deuterium was used 

for each of the 2 reaction cycles. For results with selected heterocycles and pharmaceuticals 

after one single cycle of deuteration, see Section 3 of the Supporting Information. bWith 

CH2Cl2 as cosolvent. cWith THF as cosolvent. dWith di-tert-butylphenylphosphine under 

nitrogen. eWith CH3CH2OD as deuterium source. fIsolated as the hydrochloride salt.
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Scheme 5. 
Determination of KIE and Reaction Orders of the Silver-Catalyzed C–H Deuteration: (A) 

Determination of KIE and (B) Kinetic Orders
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Scheme 6. 
Synthesis of a Phosphine-Ligated Silver–Carbonate Complex
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Scheme 7. 
Synthesis of tBuXPhos-Ligated Silver Carbonate Complex 37 and Evaluation of Its 

Competence as a Catalyst for C–H Deuteration
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Scheme 8. 
Mechanistic Hypothesis for the Site-Selective C–H Deuteration of Five-Membered 

Heterocycles

Tlahuext-Aca and Hartwig Page 23

ACS Catal. Author manuscript; available in PMC 2022 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tlahuext-Aca and Hartwig Page 24

Table 1.

Evaluation of Reaction Conditions for the Site Selective C–H Deuteration of 2-methylthiophene (1)

entry silver catalyst ligand %D
a

1 Ag2CO3 Ph3P 29

2 Ag2CO3 Cy3P 39

3 Ag2CO3 tBu3P 52

4 Ag2CO3 tBu2PPh 77

5 Ag2CO3 JohnPhos 95

6 Ag2CO3 CyJohnPhos 92

7 Ag2CO3 SPhos 90

8
b Ag2CO3 JohnPhos 95

9
b,c AgOAc JohnPhos 0

10
b,d AgOPiv JohnPhos 0

11
b JohnPhos 0

12
b Ag2CO3 0

a
Determined by 1H NMR in CDCl3.

b
Under air.

c
With 5 mol % of AgOAc.

d
With 5 mol % of AgOAc.
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