UC San Diego

Technical Reports

Title

Hurwitz Interconnect Delay Evaluation - HIDE: User's Manual

Permalink

https://escholarship.org/uc/item/036254bd

Authors

Yang, Xiao-Dong Qin, Zhanhai Cheng, Chung-Kuan

Publication Date

2000-11-09

Peer reviewed

Hurwitz Interconnect Delay Evaluation - HIDE

User's Manual

Xiao-Dong Yang Zhanhai Qin Chung-Kuan Cheng

VLSI Lab, Computer Science & Engineering Department University of California San Diego Oct 27, 2000

Introduction

This manual describes how to use HIDE as an efficient RC Interconnect Delay Evaluation software. The program features:

- Delay evaluation for any user-defined delay threshold;
- Rise time evaluation between any start and end delay thresholds;
- Waveform evaluation for user-defined test node(s);
- Equivalent load generation for gate delay evaluation;
- Hspice netlist generation for verification;
- Moment generation.

These features will be introduced in detail in the part "Input Command Format" below.

Supported Input Signals

Three types of input signals are supported in the program: exponential, ramp, and step functions. Users can specify the input signal type and the corresponding control parameters in input command files.

• Exponential function:

$$V(t) = \left(1 - e^{-\frac{t}{tr}}\right) U(t) \qquad t \ge 0 \tag{1}$$

• Ramp function:

$$V(t) = \begin{cases} \frac{t}{tr} & 0 \le t \le tr \\ 1 & t > tr \end{cases}$$
(2)

• Step function:

$$V(t) = 1 \qquad t \ge 0 \tag{3}$$

where tr is the input signal rise time, which is an constant defined in the input command file, and U(t) is the unit step function.

Supported Delay Evaluation

For delay evaluation, presently we provide three delay models:

- Elmore delay model;
- D2M delay model;
- HIDE delay model.

The first two are provided for comparisons with our HIDE model. So waveform evaluation, delay metrics for arbitrary delay threshold (0% ~ 100% of V_{DD}), and rise time for arbitrary starting and ending delay threshold (0% ~ 100% of V_{DD}) are provided only for HIDE delay model. As for Elmore delay model and D2M delay model, we only provide delay metrics.

Input Command Format

*keyword are highlighted.

InputFile: < input file name >

InputFile specifies a spice or dspf formatted input netlist file. The file should define a circuit case.

OutputFile: < *output file name >*

OutputFile specifies the output file in which all the evaluation results are going to be saved.

InputFileFormat[dspf/spice]: < dspf | spice >

InputFileFormat defines the input netlist file format. This file is the one specified in InputFile entry.

IsGenHspiceNetlist[Yes/No]: < Yes | No >

IsGenHspiceNetlist tells the program if the input netlist file *<input file name>* needs to be translated into Hspice-formatted input netlist file. This entry should be checked as *<yes>* if you want to compare HIDE with Hspice.

Fspice: <hspice-formatted input netlist file name>

Fspice specifies the hspice-formatted input netlist file name. This file is translated from *<input file name>* indicated in **InputFile** entry. **Fspice** should be checked correctly if **IsGenHspiceNetlist** is checked as *<yes>*. But **Fspice** will be ignored if **IsGenHspiceNetlist** is entered as *<No>*.

InputSignalType[exp/ramp/step]:

< exp | ramp | step >

InputSignalType defines the input signal type. *<exp>* denotes the input signal as an exponential function, *<ramp>* as a ramp function, and *<step>* as a step function. Presently only these three types are supported.

InputSignalRiseTime:

>

InputSignalRiseTime is the parameter defined in equation (1) and (2) above.

DelayThreshold[0-1.0]: $\langle Delay_{th} \rangle$

DelayThreshold defines the delay observation point at which the output signal is $Delay_{th}$ of V_{DD} . It is effective to HIDE delay model only.

IsRiseTime[Yes/No]: < Yes | No >

IsRiseTime tells the program if the rise time of the output signal needs to be printed out. It is effective to HIDE delay model only.

RiseTimeStart defines the starting delay observation point at which the output signal is $Delay_{start}$ of V_{DD} . It is used with **Rise-TimeEnd** together. It is effective to HIDE delay model only.

RiseTimeEnd defines the ending delay observation point at which the output signal is $Delay_{end}$ of V_{DD} . It is used with **Rise-TimeStart** together to specify that from where to where on the output signal users are interested in. It is effective to HIDE delay model only.

IsOutputWaveform[Yes/No]: < Yes | No >

IsOutputWaveform tells the program if the output waveform needs to be printed out. This entry is optional. It is effective to HIDE delay model only.

BeginWaveFormParameters

Vdd < power supply voltage > tstep < step size > / tstop < stop time > EndWaveFormParameters

This option is optional and will be ignored if **IsOutputWaveform** is checked as *<No>*. The starting time is assumed to be zero.

IsGenMoment[Yes/No]: < Yes | No >

IsGenMoment is optional and if it is checked as *<Yes>*, the program will calculate the moments up to the third order and print them out.

IsElmore[Yes/No]: < Yes | No >

IsElmore is optional and if it is checked as < Yes>, the program will calculate Elmore delay and print it out.

IsD2M[Yes/No]: < Yes | No >

IsD2M is optional and if it is checked as < Yes >, the program will calculate D2M delay metrics and print it out.

IsDebug[Yes/No]: < Yes | No >

IsDebug is optional and only useful for programmers. When it is checked as < Yes >, more detailed information will be printed out.

IsOutputAll[Yes/No]: < Yes | No >

IsOutputAll is optional and if it is checked as < Yes >, all the nodes in the input netlist file will be printed out.

IsUseDefaultTestNode[Yes/No]: < Yes | No >

IsUseDefaultTestNode is optional and if it is checked as < Yes >, **TestNodeList** entry will be read in and only listed test nodes will be printed out.

TestNodeList: <Node Name > EndTestNodeList

This entry specifies the test nodes users are interested in. If a test node defined by user is not found in the netlist, this node will be skipped and a warming may be printed out. See IsUseDe-faultTestNode for details.

Bug report

Please feel free to contact Zhanhai Qin via zqin@cs.ucsd.edu or 1-858-534-8174 if you found any bugs in the program or if you want us to improve it.