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Validity of sound-proof approaches in rapidly-rotating
compressible convection: marginal stability versus turbulence

Jan Verhoeven and Gary A. Glatzmaier

Earth and Planetary Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA

ABSTRACT

The validity of the anelastic approximation has recently been
questioned in the regime of rapidly-rotating compressible convection
in low Prandtl number fluids (Calkins, Julien and Marti, Proc. R.
Soc. A, 2015, vol. 471, 20140689). Given the broad usage and the
high computational efficiency of sound-proof approaches in this
astrophysically relevant regime, this paper clarifies the conditions
for a safe application. The potential of the alternative pseudo-
incompressible approximation is investigated,which in contrast to the
anelastic approximation is shown to never break down for predicting
the point of marginal stability. Its accuracy, however, decreases close
to the parameters corresponding to the failure of the anelastic
approach, which is shown to occur when the sound-crossing time
of the domain exceeds a rotation time scale, i.e. for rotational Mach
numbers greater than one. Concerning the supercritical case, which
is naturally characterised by smaller rotational Mach numbers, we
find that the anelastic approximation does not show unphysical
behaviour. Growth rates computed with the linearised anelastic
equations converge toward the corresponding fully compressible
values as the Rayleigh number increases. Likewise, our fully nonlinear
turbulent simulations, produced with our fully compressible and
anelastic models and carried out in a highly supercritical, rotating,
compressible, low Prandtl number regime show good agreement.
However, this nonlinear test example is for only a moderately low
convective Rossby number of 0.14.
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1. Introduction

The interiors of stellar and many planetary bodies can be characterised as compressible
rapidly-rotating fluids that have small viscous compared to thermal diffusivities, i.e. Prandtl
numbersmuch less thanunity. These astrophysical fluiddynamical systems canbemodeled
with the fully compressible equations that follow from first principles of physics. Their
generality comprises a broad range of temporal and spacial scales corresponding to physical
phenomena reaching from sound waves over buoyancy induced flows up to atmospheric
jets. Accounting for each of these processes, however, implies high computational costs
for numerical simulations. In order to more adequately understand the structure and
evolution of planetary and astrophysical objects, it is often favourable to channel all
available resources into only the relevant physical phenomena, which has motivated the
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development of reduced forms of the fully compressible equations. For the purpose of
modeling planetary and stellar convection, it is believed that dynamically unimportant
sound waves can safely be neglected, which, due to the reduced spectrum of time-scales
that needs to be resolved, effectively decreases the necessary computational effort.

Several so-called sound-proof approaches retaining the major compressibility effects
are in use for modeling these kind of systems. The most widely employed ones are
the anelastic approximation (e.g. Batchelor 1953, Ogura and Phillips 1962, Gough 1969,
Gilman andGlatzmaier 1981, Braginsky and Roberts 1995, Lantz and Fan 1999, Jones et al.
2009, Glatzmaier 2014, Verhoeven et al. 2015), the pseudo-incompressible approximation
(Durran 1989, 2008, Klein and Pauluis 2012, Vasil et al. 2013, Wood and Bushby 2016),
and the closely related low Mach number approach (Majda and Sethian 1985, Bell et al.
2004, Almgren et al. 2006a,b, 2014). Two necessary conditions for all these approaches to
be valid are that the Mach number, which is defined as the ratio of the fluid velocity to the
local sound speed, is much smaller than unity and that pressure perturbations are small
relative to the depth-dependent background pressure. For the pseudo-incompressible and
low Mach number approaches this is also sufficient, but for the anelastic approximation
all thermodynamic perturbations from a depth-dependent background state must also be
small.

Only few studies are available that verify these theoretical predictions quantitatively for
thermal convection,withmost of themconfirming a good agreement between anelastic and
fully compressible computations and paying less attention to the pseudo-incompressible
approach. Whereas Berkoff et al. (2010) addressed linear magneto-convection, Lecoanet
et al. (2014) investigated differences between thermal conductivity and large-eddy entropy
diffusion (Glatzmaier 1984) and additionally considered the pseudo-incompressible case.
This was followed by Calkins et al. (2015a) verifying the accuracy of the anelastic approxi-
mation at the point of marginal stability under the influence of rotation in Prandtl number
unity fluids. However, in a follow-up study Calkins et al. (2015b) showed that the linear
anelastic equations fail to produce physically meaningful results for marginally stable,
rapidly-rotating, low Prandtl number systems. Against their theoretical expectations, they
report that this breakdown of the anelastic approximation is caused by the temporal
derivative of the density perturbation becoming an important component in the continuity
equation. Furthermore, they suspect related problems in the astrophysically relevant
nonlinear turbulence regime. So far, Verhoeven et al. (2015) carried out the only systematic
one-to-one comparison for fully compressible and anelastic turbulent convection, which
again proved the functionality of the anelastic equations. They, however, did not consider
the problematic regime of rapid-rotation and low Prandtl number.

Although there has been no such study that proves the breakdown of the anelastic
approximation for the nonlinear case, the findings of Calkins et al. (2015b) are alarming,
as they implicitly question the validity of works that investigate astrophysical objects by
means of the anelastic equations. There are two possible ways to deal with this problem:
Firstly, alternative sound-proof approaches must be studied concerning their applicability
at the point of marginal stability. Secondly, the possible breakdown of the anelastic
approximation in the astrophysically more relevant turbulence regime must be either
confirmed or disproved. Here we extend the work of Calkins et al. (2015b) on rapidly-
rotating, low Prandtl number compressible convection and present a study on the accuracy
of the linear pseudo-incompressible equations at the point of marginal stability. This
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approach is promising as it retains parts of the problematic temporal derivative of the
perturbational density term and thusmay provide amore accurate alternative to the anelas-
tic approximation. Furthermore, we present the first one-to-one comparison between fully
compressible and anelastic numerical simulations of rapidly-rotating convection in the
fully nonlinear turbulent regime at low Prandtl number.

The following questions are addressed:

• How do the anelastic and the pseudo-incompressible approaches vary with respect
to their accuracy in predicting the point of marginal stability for rapidly-rotating
compressible convection in low Prandtl number fluids?

• Can we identify the physical process constraining their accuracy, which causes the
problems found by Calkins et al. (2015b)?

• Is it safe to apply the anelastic approximation to the astrophysically relevant fully non-
linear turbulent regime of rapidly-rotating compressible convection at low Prandtl
number?

The remainder of this paper is organised as follows. In section 2, we start with defin-
ing our idealised model and discussing the differences among the anelastic, pseudo-
incompressible and fully compressible approaches. Then in section 3 we describe our
numerical results concerning themarginal point of stability, supercritical linear convection
and the fully nonlinear turbulence regime. Finally, general conclusions are drawn in section
4.

2. Model

In this section the fully compressible, pseudo-incompressible and anelastic linear equations
are discussed along with the numerical approach to solve them.

2.1. Governing equations

Linear compressible convection within a Newtonian ideal gas is investigated in a plane
layer geometry rotating with angular velocity Ω = Ω ẑ. The rotation axis is aligned with
the unit vector ẑ and antiparallel to the constant gravity g = −g ẑ. The fluid is characterised
by constant specific heat capacities at fixed volume and pressure, cv and cp. The dynamic
viscosity and thermal conductivity,

μ = ρν , kt = cpρκ , (1a,b)

are taken as fixed functions of z and relate to the kinematic quantities ν and κ , which are
the viscous diffusivity and the thermal diffusivity, respectively.

The linear approximation to the governing equations for fully compressible convection
describing the temporal evolution of density ρ, fluid velocity v and entropy s within a
reference frame rotating at angular velocity Ω are

∂tρ1 = − ∇· (
ρ0v

)
, (2a)

ρ0∂tv = − ∇ (
p0 + p1

) − (
ρ0 + ρ1

)
g ẑ + ∇·Π − 2Ωρ0 ẑ × v , (2b)

ρ0T0∂t s1 = − vzρ0T0∂zs0 + ∇ [
kt∇

(
T0 + T1

)] + S , (2c)
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with t, p andT specifying time, pressure and temperature, and the indices 0 and 1 denoting
the z-dependent background state and its time and 3-D space dependent perturbation, re-
spectively.Πij = μ

(
∂jvi + ∂ivj − 2/3(∇·v)δij

)
is the viscous stress tensor for a Newtonian

fluid and S denotes a heat source or sink. Note that we have neglected centrifugal forces
in (2b) that express the conservation of mass, momentum and energy. They can be closed
with an equation of state, i.e. the ideal gas law

p0 = (cp − cv)ρ0T0 ,
p1
p0

= ρ1

ρ0
+ T1

T0
, (3a,b)

and a thermodynamic expression relating entropy, temperature and pressure,

∂zs0
cp

= ∂zT0

T0
− cp − cv

cp
∂zp0
p0

,
s1
cp

= T1

T0
− cp − cv

cp
p1
p0

. (4a,b)

The background state is chosen to satisfy hydrostatic and thermal equilibrium

∂zp0 = − ρ0g , ∂z
(
kt∂zT0

) = − S , (5a,b)

which results in these background terms dropping out of equations (2b) and (2c), respec-
tively. Furthermore, the background temperature gradient

∂zT0 = −
(
g
cp

+ 	T
d

)
(6)

is assumed constant in z and defined by the sum of the adiabatic temperature gradient
−g/cp and the ratio of superadiabatic temperature drop, 	T , prescribed by the boundary
conditions and the domain depth d. The background state results from solving equations
(3a), (4a), (5a) and (6). Therefore, for a constant thermal conductivity, S vanishes; but, for
a constant thermal diffusivity, S is negative, i.e. a heat sink.

2.2. Non-dimensionalisation and parameters

The background state can be non-dimensionalised by using the bottom temperature
Tr , bottom density ρr , bottom pressure pr = (cp − cv)ρrTr and cp for entropy. The
superadiabatic temperature difference 	T prescribed by the boundary conditions of the
system is chosen to be the scale for the temperature perturbations. As temperature, density
and entropy perturbations are usually assumed to be closely correlated in low Mach
number flows (see e.g. Clayton 1968), the density and entropy perturbations are scaled
correspondingly with 	ρ = ρr	T/Tr and 	s = cp	T/Tr . The domain depth d is used
as reference length scale. The velocity is non-dimensionalised with a convective free-
fall velocity vr = √

	ρgd/ρr and correspondingly time is scaled with the free-fall time
tr = d/vr = √

ρrd/(	ρg). The pressure perturbation scale 	p = ρrv2r = 	ρgd is
inferred from the fact that pressure extracts kinetic energy from the vertical flows to drive
horizontal motions. The scales for viscous and thermal diffusivities νr and κr are defined
as their respective values at the bottom boundary of the domain.
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When applying these scales, the following non-dimensional parameters emerge. The
dissipation number,

D = gd
/
(cpTr) , (7)

defines the absolute value of the non-dimensional global adiabatic temperature gradient.
With −(D + ε) being the total dimensionless temperature gradient, see (17a), the supera-
diabaticity of the system is given by

ε = 	T
/
Tr . (8)

The polytropic index

n = γ

γ − 1
D

D + ε
− 1 , (9)

with the ratio of specific heats

γ = cp
/
cv = 5/3 (10)

being chosen to represent a monatomic ideal gas, is an alternative (dependent) parameter
for the superadiabaticity ε, with a superadiabatic polytropic index satisfying n < 1.5. The
adiabatic polytropic index for an ideal monatomic ideal gas (with ε = 0) consistently
results in

nad = 1
γ − 1

= 1.5. (11)

The ratio of superadiabatic to adiabatic temperature gradient ε/D often given by 1-D solar
models1 follow from the derivatives of equations (17a,b).

ε

D
= nad − n

n + 1
. (12)

Another useful and widely used parameter is the number of density scale heights

Nρ = ln
(
ρbot

/
ρtop

) = − n ln
[
1 − (D + ε)

]
(13)

specifying the system’s density contrast ρbot/ρtop between bottom and top boundary that
can be used instead of the Dissipation number D. The Prandtl number,

Pr = νr
/
κr , (14)

is the ratio of momentum to thermal diffusivity. The Rayleigh number,

Ra = gd3	T
/(

κrνrTr
)
, (15)

1Christensen-Dalsgaard et al. (1996) for example specify values for ε/D ofO(10−4) in the bulk of the solar convection zone.
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controls the vigour of convection with large g , d, and ε = 	T/Tr enhancing and large
diffusivities ν and κ reducing the convective vigour. More formally Ra is the ratio of the
product of the diffusive timescales d2/κr d2/νr to the square of the free-fall timescale t2r .
The Ekman number,

Ek = νr
/(

2Ωd2
)
, (16)

is the ratio of the rotation time scale to the viscous diffusion time scale.
Note that all non-dimensional parameters given in this subsection are defined at the

bottom boundary and may vary strongly over the whole domain.

2.3. Non-dimensional equations

The background state results in

T̂0(ẑ) = 1 − (D + ε)ẑ, ρ̂0(ẑ) = [
1 − (D + ε)ẑ

]n , (17a,b)

p̂0(ẑ) = [
1 − (D + ε)ẑ

]n+1 , ∂̂z ŝ0(ẑ) = − ε
/
T̂0 , (17c,d)

and the governing non-dimensional equations read

εD
γ − 1

1
T̂0

∂̂t p̂1 − ερ̂0∂̂t ŝ1 = − ∇̂· (
ρ̂0v̂

)
, (18a)

ρ̂0∂̂t v̂ = − ∇̂p̂1 − ρ̂1 ẑ +
√

Pr
Ra

∇̂·Π̂ − 1
Ek

√
Pr
Ra

ρ̂0 ẑ × v̂ ,

(18b)

ρ̂0T̂0∂̂t ŝ1 = ρ̂0v̂z + 1√
PrRa

∇̂(
k̂t∇̂T̂1

)
, (18c)

ρ̂1 = D
γ − 1

1
T̂0

p̂1 − ρ̂0ŝ1, ŝ1 = T̂1

T̂0
− D

p̂1
p̂0

, (18d,e)

with the hat ˆdenoting non-dimensional quantities, e.g. T0 = TrT̂0.

2.4. Differences in the anelastic, pseudo-incompressible and fully compressible
equations

The density perturbation term in the continuity equation (18a) has been expressed in terms
of pressure and entropy by using (18d) in order to illustrate the approximations carried
out in the anelastic and pseudo-incompressible equations in the following.

The anelastic approximation neglects the time derivative of density ε∂̂t ρ̂1 = εD/(γ −
1)/T̂0∂̂t p̂1 − ερ̂0∂̂t ŝ1 in the continuity equation (18a), which is reasonable as long as all
perturbations remain small with ε � 1. The pseudo-incompressible approximation is less
restrictive and only neglects the time derivative of the perturbational pressure term. This
approach is justified for low Mach number flows but allows for temperature, density and
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entropy perturbations to be large.2 In order to check for the validity of both sound-proof
approaches the relative magnitudes of the terms being neglected in each approximation,
i.e. the perturbational density and pressure terms in the continuity equation

ρcont =
( ∣∣ε∂̂t ρ̂1∣∣
max

[ ∣∣∂̂x(ρ̂0v̂x)∣∣, ∣∣∂̂y(ρ̂0v̂y)∣∣, ∣∣∂̂z(ρ̂0v̂z)∣∣ ]
)top

, (19a)

pcont =
(

εD
γ − 1

1
T̂0

∣∣∂̂t p̂1∣∣
max

[ ∣∣∂̂x(ρ̂0v̂x)∣∣, ∣∣∂̂y(ρ̂0v̂y)∣∣, ∣∣∂̂z(ρ̂0v̂z)∣∣ ]
)top

, (19b)

will be quantified for various parameters in this paper. We have chosen to focus on the
values at the top boundary as the sound speed is the lowest at this location.

For simplicity wewill assume ε → 0 ⇐⇒ n → 1.5 for each anelastic simulation carried
out making the ε parameter obsolete. This yields the same equations as when assuming a
small but finite ε and neglecting all terms involving ε in (17a–d) and (18a) resulting in an
adiabatic background state, which is perturbed by a constant superadiabatic temperature
drop prescribed by the boundary conditions. Similar approaches are common practice
when applying the anelastic approximation for nonlinear turbulent convection simulations
(see, e.g. Gastine et al. 2014, Heimpel et al. 2015) and do not increase the error of the
anelastic approximation (Lantz and Fan 1999). Concerning the pseudo-incompressible
approach, however, the parameter ε is required, as it still appears in the continuity equation
(18a) in the entropy term.

2.5. Numerical approach for the linear stability problem

In order to solve the linear equations (18a–e) numerically, each variable is represented
by the typical normal mode ansatz, e.g. T̂1 = T̂(ẑ) exp

[
r̂ t̂ + i

(
ω̂t̂ + k̂xx̂ + k̂yŷ

)]
. Here, r̂

denotes the growth rate, ω̂ is the oscillation frequency and k̂x and k̂y are the horizontal
wavenumbers with k̂ =

√
k̂2x + k̂2y (not to be confused with the thermal conductivity k̂t).

The equations, as they are solved numerically, are given in appendix E, with the critical
frequency ω̂c and the critical Rayleigh number Rac being eigenvalues that depend on
the critical wavenumber k̂c , which is determined by using a nested intervals scheme for
r̂ = 0. Growth rates r̂ can be determined by prescribing the Rayleigh number Ra and
the wavenumber k̂. A positive r̂ with a non-zero ω̂ means that the onset of convection is a
temporal oscillation of all variables with theirmean amplitudes increasing exponentially in
time, whereas the instability is non-oscillatory for ω̂ = 0. As the solutions corresponding
to critical modes k̂c are independent of the individual choice of k̂x and k̂y and manifest
themselves in two-dimensional convection rolls, we restrict our linear analysis to the ky = 0
modes for simplicity without losing generality (see Calkins et al. 2015b).

The numerical framework is based on a second order accurate Newton–Raphson–
Kantorovich (NRK) method for solving eigenvalue problems. While the computational
domain is periodic in horizontal direction, stress free, impermeable and fixed temperature
(i.e. T̂1 = 0) top and bottom boundaries are applied.

2Note firstly that the prefactor in the perturbational pressure term equals the squared Mach number (see appendix B) and
secondly that −ρ0/cp∂t s1, which is the dimensional form of the −ερ̂0∂̂t ŝ1 term in the continuity equation (18a), equals
the temporal derivative of the pseudo-incompressible density ∂tρ∗ as first defined in Durran (1989).
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The numerical approaches for solving the nonlinear fully compressible and anelastic
equations given in appendix A are described in Verhoeven and Stellmach (2014), Verho-
even et al. (2015).

3. Results

In this section results from a suite of anelastic, pseudo-incompressible and fully compress-
ible computations are presented in order to test their accuracy and limitations. All linear
computations shown are carried out at fixed Ekman number Ek = 10−6 and reside in the
rapidly-rotating geostrophic limit at low Rossby number, i.e. the Coriolis forces are mostly
balanced by the pressure gradient and therefore the results will be essentially the same for
computations with smaller Ekman numbers. This was shown by Calkins et al. (2015b) for
the marginal stability cases and will be checked for the supercritical simulations presented
in the following. We start with studying the point of marginally stable convection, which
is followed by investigating the onset of convection in a supercritical setup and eventually
finish with the fully nonlinear turbulence regime.

3.1. Marginal stability

Although linear marginal modes at the onset of convection are not relevant to turbulent
convection in stars and planets, we start with the investigation of this topic. This will pave
the way for understanding possible problems in sound-proof approaches for supercritical
cases. Accordingly, some of the parameter values considered in this subsection do not
correspond to an astrophysically achievable system.

Figure 1 shows plots of critical wavenumbers k̂c =
√
k̂2x + k̂2y , frequencies ω̂c and

Rayleigh numbers Rac against the number of density scale heights 0 ≤ Nρ ≤ 5 for
all approaches with various polytropic indices 1 ≤ n ≤ 1.5 at low Prandtl numbers
0.01 ≤ Pr ≤ 0.1. The results from Calkins et al. (2015b) were reproduced for the anelastic
and the fully compressible equations for these constant dynamic viscosity μ and thermal
conductivity kt cases.3 In contrast to the anelastic approximation that produces infinitely
small Rac and k̂c at finite Nρ , which Calkins et al. (2015b) considered “unphysical”, the
pseudo-incompressible approach never fails and always produces physically meaningful
results with Rac > 0 and k̂c > 0 in our computations. The results obtained with the
pseudo-incompressible equations, however, deviate from those of the fully compressible
equationswhen the relativemagnitude of the perturbational pressure term pcont (see (19b))
gets larger than O(0.1). These transitions are marked with circles in figure 1 and generally
correspond to lower Nρ the lower the Prandtl number. These results suggest that the
anelastic and the pseudo-incompressible approximation both should be applied carefully
in marginally stable, rapidly-rotating, low Prandtl number convection systems.

Note that in our simplified model the failure of the anelastic approximation generally
involves a drastic decrease in critical wavenumbers kc corresponding to very large aspect

3Compare figures (1(a)–(d)) to Calkins et al. (2015b) figures (3(a)–(d)), respectively. Note that they plot slightly different
values than we do. While they plot k̂cEk1/3, we plot k̂c , which effectively makes our values 100 times larger for the
Ek = 10−6 cases shown. Moreover they scale their critical frequency ω̂Calkins

c with a timescale inferred from the free-fall
velocity based on values at the top boundary, see their equation (2.6). We, however, use reference values at the bottom
boundary. The relation between our critical frequency and theirs is given by ω̂c = exp

[
(Nρ)1/(2n)

]
ω̂Calkins
c . See also

their supplementary material for critical Rayleigh numbers.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Critical wavenumbers k̂c (a,b), frequencies ω̂c (c,d) and Rayleigh numbers Rac (e,f) are plotted
against the number of density scale heights Nρ for different polytropic indices n and Pr = 0.01 (a,c,e)
and Pr = 0.1 (b,d,f). The dynamic viscosity μ and thermal conductivity kt are constant and the Ekman
number Ek = 10−6 is fixed for all cases. Results obtained from the pseudo-incompressible equations
(PI) are plotted in lighter colours and match the ones provided by the fully compressible equations
(FC) in darker colours as long as the relative magnitude of the perturbational pressure term pcont is
negligible in the continuity equation, see (19b). The transitions to relative magnitudes higher than 0.1
are marked with circles on the fully compressible curves. As shown by Calkins et al. (2015b) the anelastic
equations (AE) fail at finite Nρ (plotted in black). Interestingly, all approaches show the general trend
of considerably decreasing critical Rayleigh numbers with decreasing superadiabaticity, i.e. n → 1.5, at
strong density contrasts.
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ratios Γ , which are given by the horizontal wavenumber kc and the depth of the domain d
with Γ = 2π/(kcd) = 2π/k̂c . Instead of solving for Γ , as we do here, one may choose to
model marginally stable convection in, for example, a particular spherical shell geometry
by prescribing the radii of both the inner and outer boundaries, which sets the value
of Γ and so places a lower limit on the possible values of the horizontal wavenumber
k̂c . How this affects the validity of the anelastic approximation for rapidly-rotating, low
Prandtl number, marginally stable convection is not clear. Two previous studies of this
linear stability problem for a 3-D spherical shell Glatzmaier and Gilman (1981a,b), Drew
et al. (1995) agree for cases with Pr = 1 and 10 but disagree for Pr = 0.1. It is worth
noting that many anelastic studies of convection in stars and giant planets have modeled
the transport of heat by turbulent eddies as a diffusion process based on a turbulent
thermal diffusivity and the gradient of entropy, instead of the gradient of temperature.
The argument (Glatzmaier 1984) is that the heat transport by eddies, that are too small to
numerically resolve in global models but contribute significantly more heat transport than
that by radiation or conduction, should be proportional to the local entropy gradient since
turbulence tends to maintain a constant entropy. Jones et al. (2009) has shown that using
entropy diffusive heat flux in an anelastic linear stabilitymodel of rotatingmarginally stable
convection cannot have negative critical Rayleigh numbers as Drew et al. (1995) found for
temperature diffusive heat flux at Pr = 0.1.

The constantμ and kt setup and the corresponding parameter range investigated so far,
which has been adopted from Calkins et al. (2015b), involves some problems that might
explain the observed breakdown of the anelastic approximation and the inaccuracies in the
pseudo-incompressible approach: First, the diffusivities ν and κ vary strongly with height
for large Nρ (see (1a,b)) partly resulting in diffusion velocities close to the sound speed.
Second, the phase velocity v̂phase = ω̂/k̂, which is the velocity of the pattern of the dominant
perturbation corresponding to the oscillatory instability through the domain, exceeds the
sound speed for specific parameters. Third, for other parameters the typical rotation time
trot = 1/(2Ω) falls below the sound-crossing time of the domain tsound = d/vsound.
All of these issues potentially introduce timescales shorter than the free-fall time, which,
although ε is small, hinders the justification of the approximations carried out in sound-
proof approaches.

In order to exclude the possibility that the accuracy problems of the anelastic and
the pseudo-incompressible approach are an artefact due to the very high diffusivities near
the top boundary, figure 2 shows the results from a second series of computations using the
same parameters as before but for constant diffusivities ν and κ throughout the domain
preventing larger diffusion velocities near the top boundary. Although the plots show
individual differences to figure 1, the overall result is similar. Alike the anelastic equations
that fail to produce physically meaningful outcomes at similar Nρ as in figure 1, the
pseudo-incompressible approach deviates from the fully compressible method at nearby
Nρ compared to the constant μ and kt case.

Interestingly, our fully compressible computation with constant diffusivities, Pr = 0.01
and n = 1 yields strongly decreasing critical wavenumbers with k̂c � 1 and Rayleigh
numbers of O(103) as Nρ approaches a value of approximately 3.2. We speculate that this
rather surprising result is caused by the influence of the heat sink that is necessary in order
to maintain the background state, see (5b). The investigation of this topic is beyond the
scope of this paper and left for future studies.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. The same as in figure 1, just for constant momentum ν and thermal diffusivities κ rather
than constant dynamic viscosity μ and thermal conductivity kt . The anelastic equations (AE) also fail at
finite Nρ for this case (plotted in black). Interestingly, for Pr = 0.01 and n = 1 the fully compressible
equations become unstable for infinitely small critical wavenumbers k̂c at Nρ ≈ 3.2 (see orange curve
in the left panels).

According to all our results the anelastic and the pseudo-incompressible approximation
both seem to lose accuracy when the perturbational density term and the perturbational
pressure term, respectively, have magnitudes that cannot be neglected in the continuity
equation anymore, see (19a,b). In sound-proof approaches it is typically assumed that
the magnitude of the neglected perturbational terms relative to the magnitude of the
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(a) (b)

(c) (d)

Figure 3. The number of density scale heightsNρ , for which the rotational Mach numberMrot reaches a
value of 1 (red) and the phaseMachnumberMtop

phase equals 0.1 (blue), is plotted againstnad−n = 1.5−n
for Ek = 10−6. It turns out that Nρ converges against constant values for the anelastic limit n → 1.5
in all panels representing cases of constant dynamic viscosity and thermal conductivity in the top row
(a,b), constant diffusivities at the bottom (c,d), Pr = 0.01 on the left (a,c) and Pr = 0.1 on the right
(b,d). Additionally, the value for Nρ corresponding to the breakdown of the anelastic approximation is
given by the black line, matching theNρ representingMrot = 1 in the limit n → 1.5.

other terms in the continuity equation scale with the square of the Mach number M2,
with M being defined as the ratio of a typical fluid velocity vr and the speed of sound
vsound = √

cp(cp − cv)T/cv , see appendix B. For linear stability calculations the mean
amplitudes of the fluid velocity and thermodynamic perturbations are arbitrary and
increase exponentially with time while the background state does not change. Therefore,
the regular Mach number M is not a useful diagnostic for linear calculations. However,
the phase velocity v̂phase = ω̂/k̂ is independent of time in linear computations. As the
sound speed decreases for smaller temperatures, the phase Mach number is the largest at
the top boundary where the fluid is cold. Such a phase top Mach number is derived in the
non-dimensionalisation used here in appendix C and reads

Mtop
phase = Mtop ω̂

k̂
=

√
εD

γ − 1
exp

(
Nρ

2n

)
ω̂

k̂
. (20)
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Additionally, in order for sound-proof approaches to be valid the rotation time scale must
be larger than the sound-crossing time of the domain (Braginsky and Roberts 1995). A
corresponding rotational Mach number can be defined as in appendix D, resulting in

Mrot = tbotsound
trot

= 2Ωd
vbotsound

= 1
Ek

√
εDPr

(γ − 1)Ra
. (21)

Please note that for the linear marginal stability case we are considering here, the Rayleigh
number in (21) must be consistently replaced by Rac , which is calculated and not a
prescribed parameter as it would be for the supercritical onset of convection or a non-
linear simulation. As both, the phase and the rotational Mach numbers, depend on the
superadiabaticity ε, no finite values can be determined for our anelastic computations with
ε = 0 directly. Furthermore, in the anelastic limit, ε → 0, the critical Rayleigh number
can become infinitely small, Rac → 0, prohibiting the calculation of Mrot. This can be
compensated by using fully compressible computations close to the anelastic limit with
ε � 1 ⇐⇒ 1.5 − n � 1. For Ek = 10−6, Pr = 0.01 and Pr = 0.1, and constant μ

and kt and constant diffusivities ν and κ , figure 3 shows plots of Nρ , for which the afore
mentioned Mach numbers exceed a specific limit, against 1.5 − n being proportional to ε

for ε � 1. The fully compressible simulations are closest to the anelastic limit for small
1.5− n, for which both Mach number cases show convergence against a constant value of
Nρ . Concerning the rotational Mach number case this plateau is caused by the constancy
of ε/Rac in this parameter range; see figure 1. Figure 3 shows that the breakdown of the
anelastic approximation (marked by the black line) coincides with the Nρ corresponding
to the rotational Mach number Mrot exceeding 1 (red). For comparison the values of Nρ

correlating with the phase Mach numberMphase = 0.1 are displayed in blue. The limit of
0.1 was chosen, as the limit of 1 was not exceeded for the computations with small 1.5−n.

In summary, the accuracy of the anelastic approximation for marginally stable con-
vection is controlled by the rotational Mach numberMrot in our simulations. Our results
suggest that Calkins et al. (2015b) found the anelastic equations to fail, as the typical
rotation time was smaller than the sound-crossing time of the domain in their respective
simulations. We speculate that the pseudo-incompressible approximation has a more
gentle changeover to being imprecise than the anelastic approximation to failure because
the temporal derivative term in the continuity equations compensates for the missing
pressure term and allows for numerically stable but nevertheless inaccurate solutions.

3.2. Supercritical onset of convection

So far, we focused on the marginal point of stability only. Natural systems, however, are
often characterised by strongly supercritical Rayleigh numbers, Ra 
 Rac , which in com-
bination with small superadiabaticity leads to small rotational Mach numbers, see (21). As
the supercriticality increases, non-oscillatory (i.e. ω̂ = 0) convective instabilities emerge.
The critical wavenumbers k̂non−osc

c and Rayleigh numbers Ranon−osc
c corresponding to this

kind of instability do not depend on the Prandtl number and are given in figure 4 for
the anelastic (n = 1.5) and the fully compressible case (n = 1.49) with Ek = 10−6 and
constant μ and kt . In contrast to the oscillatory instability, both cases closely match for all
Nρ considered.
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(a) (b)

Figure 4. Critical wavenumbers k̂non−osc
c (a) and Rayleigh numbers Ranon−osc

c (b) for non-oscillatory
convection are plotted against the number of density scale heights Nρ for the fully compressible (red)
and the anelastic (blue) case. The results from both approaches closely match and are independent
of the Prandtl number Pr. The dynamic viscosity μ and thermal conductivity kt are constant and the
Ekman number Ek = 10−6 is fixed for both cases.

(a) (b)

Figure 5. The relative magnitudes of the time derivative term in the continuity equation ρcont is plotted
against the Rayleigh number for oscillatory and non-oscillatory fully compressible linear convection
for different Ekman numbers, n = 1.49, Pr = 0.1 and Nρ = 2 in panel (a) and Nρ = 5 in panel
(b). ρcont strongly depends on the Rayleigh number and is noncontinuous for Ra = Ranon−osc

c . The
time derivative term is negligible with ρcont � 1 for all Rayleigh numbers larger than Ranon−osc

c . The
asymptotic limit, i.e. geostrophy, is reached for Ek ≤ O(10−6) for Nρ = 2 and Ek ≤ O(10−7) for
Nρ = 5.

The relative magnitudes of the time derivative term in the continuity equation at the
top boundary ρcont, see (19a), is plotted against the Rayleigh number for oscillatory and
non-oscillatory fully compressible linear convection in figure 5 for n = 1.49, Pr = 0.1 and
different Ekman numbers and numbers of density scale heights. The outcome of figure 5 is
twofold: First, the results shown do not vary for Ek ≤ O(10−6) forNρ = 2 in the left panel,
and for Ek ≤ O(10−7) for Nρ = 5 in the right panel as the geostrophic limit is reached for
all corresponding Rayleigh numbers displayed. Second, ρcont decreases for increasing Ra,
with ρcont � 1 for Ra > Ranon−osc

c . This strongly suggests the functionality of the anelastic



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 15

(a) (b)

(c) (d)

(e) (f)

Figure 6. Growth rates r̂ are plotted against the wavenumber k̂ for different Rayleigh numbers Ra,
numbers of density scale heights Nρ and polytropic indices n for Pr = 0.1. Rayleigh numbers increase
from the top to the bottom panels with Ra = 2Rac(n = 1.49,Nρ) in (a) and (b), Ra = 8Rac(n =
1.49,Nρ) in (c) and (d) and Ra = 2Ranon−osc

c (n = 1.49,Nρ) in (e) and (f), whereas the number of
density scale heights increases from the left to the right panels with Nρ = 2 in (a), (c) and (e) and
Nρ = 5 in (b), (d) and (f). The growth rates of the oscillatory instability associated with different
polytropic indices are colour coded for the anelastic limit n = 1.5 in red, for the fully compressible cases
n = 1.4999 in yellow, n = 1.499 in light green, n = 1.49 in dark green and n = 1.2 in blue. Growth
rates of the non-oscillatory instability are plotted in orange for n = 1.5, in turquoise for n = 1.49 and in
purple for n = 1.2. While r̂ strongly varies between different polytropic indices for largeNρ and low Ra,
the match increases for lowerNρ and larger Ra, with the latter being the most constraining parameter.
For theRa = 2Ranon−osc

c cases shown in panels (e) and (f), the growth rates of both kinds of instabilities
are indistinguishable for n ≥ 1.49 and just differ to the ones for n = 1.2 within a few percent.
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approximation for large Rayleigh numbers for rapidly-rotating convection, although the
Prandtl number is low, the density contrast is large and the geostrophic limit is reached.

In order to further ascertain this, the growth rates r̂ corresponding to both non-
oscillatory and oscillatory instabilities for anelastic and fully compressible convection
are displayed in figure 6 for Ek = 10−6 and Pr = 0.1. For given Rayleigh numbers
Ra, numbers of density scale heights Nρ and polytropic indices n, the growth rates r̂ are
plotted against the wavenumber k̂ . The anelastic approximation neither fails nor gives
rise to spurious growth for any parameters investigated in the supercritical regime. In fact
fully compressible growth rates generally converge to the anelastic limit case for n → 1.5.
While r̂ strongly varies between different polytropic indices for large Nρ and low Ra, the
match increases for lowerNρ and larger Ra, with the latter seeming to be the most relevant
parameter. For moderately high Ra = 2Ranon−osc

c the growth rates of non-oscillatory and
oscillatory instabilities are indistinguishable for n ≥ 1.49 and just differ to the ones for
n = 1.2 within a few percent.

In summary, the problemsof the anelastic approximation foundbyCalkins et al. (2015b)
only happen close to marginal stability and then only for rotational Mach numbers of
order one or larger. They do not occur for Rayleigh numbers more than twice the critical
Rayleigh number corresponding to the fully compressible framework. Given the very high
Rayleigh numbers required for nonlinear turbulent convection, this strongly suggests the
insignificance of this phenomenon for the turbulence regime relevant to planets and stars.

3.3. Nonlinear turbulent convection

In order to test the functionality of the anelastic approximation in rapidly-rotating tur-
bulent convection in low Prandtl number fluids, a one-to-one comparison with constant
μ and kt is carried out in the parameter range where Calkins et al. (2015b) suspect the
breakdown of the anelastic equations.

The employed parameters for the fully nonlinear anelastic simulation are Pr = 0.1,
Ek = 10−6, Nρ = 2 and the Rayleigh number is defined by two times the critical value
for non-oscillatory anelastic convection given in figure 4, which yields Ra ≈ 1.98 × 109.
The choice of these parameters ensures a major role of Coriolis forces with a convective
Rossby number (Gilman, 1977) of Roc = Ek

√
Ra/Pr ≈ 0.14 and correspond to the

geostrophic limit according to the linear results shown in figure 5. For the corresponding
fully compressible computation we have to additionally provide the superadiabaticity,
which is chosen to be ε = 0.1. This choice of the superadiabaticity is a trade-off between a
low value, which is predicted for planetary and stellar convection zones, to computational
feasibility. We further keep the adiabatic number of density scale heights Nad

ρ = 2, which
yieldsNρ ≈ 2.17 and n ≈ 1.20. The aspect ratioΓ = lx/d = ly/d, i.e. the horizontal width
divided by the domain height, is inspired by the critical wavenumber associated with the
non-oscillatory instability. The choice of Γ ≈ 0.39 ensures that several wavelengths of the
critical non-oscillatory (∼ 6) and oscillatory instabilities (∼ 2) fit into the domain in each
horizontal direction, see figures 1 and 4.

The anelastic and the fully compressible simulations turn out to be very similar. Figure
7 shows the time evolution of the root-mean-square velocity
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(a) (b)

Figure 7. The time evolution of the root-mean-square velocities v̂rms is plotted against time for nonlinear
simulations. Panel (a) displays the exponential growth of the convective instability in the nonlinear fully
compressible (red) and anelastic (blue) simulations with Pr = 0.1, Ek = 10−6 and Ra = 1.98 × 109,
Nad

ρ = 2. Both casesmatch their expectedgrowth rates corresponding to thenon-oscillatory instabilities
with r̂FC = 1.05 (orange) and r̂AE = 0.96 (green). Panel (b) shows the long-term evolution of vrms for
both cases. After the first five free-fall times characterised by exponential growth, a large-scale cyclonic
vortex emerges, which accumulates kinetic energy until about t̂ = 200 when the simulations reach
statistical equilibrium. The time averaged root-mean-square velocities and their standard deviations for
200 ≤ t̂ ≤ 400 result in

〈
v̂FCrms

〉 = 0.228 ± 0.009 and
〈
v̂AErms

〉 = 0.233 ± 0.010, a difference of about 2%.

v̂rms =
√

1
V̂

∫
dV̂ v̂2 , (22)

with V̂ being the volume of the domain, for the fully compressible and the anelastic
simulation in red and blue, respectively. Panel (a) displays the exponential growths of
vrms, which match the theoretical predictions for the fully compressible (orange) and
anelastic (green) non-oscillatory instabilities. Panel (b) shows the long-time evolution
of vrms being qualitatively the same for both cases. After the first five free-fall times
characterised by exponential growth, one large-scale cyclonic vortex emerges in each
simulation, which accumulates kinetic energy until about t̂ = 200 when the computations
reach statistical equilibrium. The time-averaged fully compressible value for vrms matches
the corresponding anelastic one within 2% in this final state. Also the net heat transport in
terms of the Nusselt number

Nu = − ∂z〈T̂1〉
∣∣
ẑ=0 , (23)

where the angle brackets imply temporal and horizontal averaging, turns out to be com-
parable in the final state, with Nu = 13.2 for the anelastic and Nu = 12.2 for the fully
compressible case representing a difference of roughly 8%. This conformity in the output
parameters agreeswith direct comparisons of anelastic and fully compressible non-rotating
convection (Verhoeven et al. 2015) and shows (albeit indirectly) that the time derivative
of the density fluctuation in the continuity equation is not important in our nonlinear
simulations.
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Figure 8. (a) Dynamics in an anelastic simulation run that reached statistical equilibrium, which is
illustratedby a volume renderingof the vertical vorticity ω̂z .While red and yellow colours denotepositive
ω̂z , blue and green signify negative ω̂z . Most conspicuous is the emergence of a large-scale cyclonic
vortex, whose angular momentum is balanced by many small-scale anticyclones. (b) The corresponding
superadiabatic temperature T̂1 is displayed with red specifying hot and blue indicating cold material.
The employed parameters are Ra = 1.98 × 109, Pr = 0.1, Ek = 10−6 and Nρ = 2, which is in
the regime of the suspected breakdown of the anelastic approximation. Nevertheless, corresponding
snapshots taken fromnumerical simulations of fully compressible convection look qualitatively the same
and are visually indistinguishable from the example at hand. For better visibility, the domain has been
horizontally stretched by a factor of 2.5.

In order to give a visual impression of the fluid dynamics, figure 8 shows snapshots of
the anelastic simulation in statistical equilibrium displaying (a) the vertical vorticity

ω̂z = ∂̂xv̂y − ∂̂yv̂x (24)

and (b) the superadiabatic temperature T̂1. Panel (a) clearly shows the large-scale cyclonic
vortex (red), whose angular momentum is balanced by many small-scale anticyclones
(blue). In panel (b) cold material (blue) is located near the top and hot fluid (red) close to
the bottom boundary.

Such symmetry breaking single large-scale cyclonic vortices typically emerge on the
verge of the regime of nonlinear rapid rotation (see, e.g. Guervilly et al. 2014, Favier et al.
2014). Ekman numbers of O(10−7) and below are necessary in order to reach the nonlinear
geostrophic turbulence regime, in which strong cyclonic and anticyclonic vortices are
generated with the symmetry being restored (Rubio et al. 2014, Stellmach et al. 2014). Such
parameter ranges are clearly desirable, albeit not accessible with our fully compressible
code, which prevents us from carrying out a direct comparison with anelastic results for
these extreme parameters. A broader parameter range needs to be tested in future studies.
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4. Conclusions

The validity of the anelastic approximation in the astrophysically relevant regime
of rapidly-rotating compressible convection has recently been questioned by
Calkins et al. (2015b). The high computational efficiency and broad application of sound-
proof approaches provided the motivation for this paper, that extends their work by
further constraining and reviewing the applicability of different sound-proof models in
this regime.

As a starting point we focused on the pseudo-incompressible approximation (Durran,
1989), which comprises more discreet simplifications in comparison to the anelastic
approach. This is indeed reflected in our computations and in contrast to the anelas-
tic approximation, the pseudo-incompressible approach does not fail in linear stability
calculations at the point of marginal stability. Instead its results slowly deviate from the
fully compressible solution as the perturbational pressure term in the continuity equation
becomes more and more non-negligible, which is usually the case for an increasing
number of density scale heights and decreasing Prandtl number shortly after the anelastic
approximation breaks down. Our results confirm what Calkins et al. (2015b) conclude
about anelasticmodels ofmarginally stable convection; i.e. that the anelastic approximation
for compressible convection in the rapidly-rotating low Prandtl number regime can be
inaccurate at marginal stability. We find that the anelastic approach breaks down for
simulations, in which the sound-crossing time of the computational domain exceeds the
rotation time scale. Correspondingly, a rotational Mach number is defined as the ratio of
both values, which in analogy to the classical Mach number needs to be small in order for
sound-proof approaches to be valid.

As the rotationalMach number is inversely proportional the square-root of the Rayleigh
number, the situation is much different for higher supercriticality, where the anelastic ap-
proximation neither fails nor gives rise to spurious growth for any parameters investigated.
Instead our computed fully compressible growth rates generally converge against the ones
of the anelastic limit case as the superadiabaticity decreases. In this regime, we found the
Rayleigh number to be themost constraining parameter in the sense that low values – close
to marginal stability – show distinct differences between anelastic and fully compressible
results, whereasmoderately high values – of the order of the critical value of non-oscillatory
convection – were sufficient to yield a match within a few percent for moderately low
superadiabaticities. As Rayleigh numbers in planetary and stellar convection systems are
oftenmuch higher and superadiabaticities lower than this, we expect the problems causing
the breakdown of the anelastic approximation at marginal stability to be insignificant in
such systems and predict the agreement between the approximated and the full equations
to get even closer.

These findings could be confirmed by fully nonlinear turbulent convection simulations.
The computations in the regime where Calkins et al. (2015b) suspected the breakdown of
the anelastic approximations, showed close qualitative andquantitative agreement between
the anelastic and the fully compressible case. However, further work needs to be done in
order to exclude effects other than the one suggested by Calkins et al. (2015b), which may
cause problems in the anelastic approximation in the geostrophic turbulence regime.

To sum up, the anelastic approximation breaks down for rapidly-rotating compressible
convection in low Prandtl number fluids at the point of marginal stability when the



20 J. VERHOEVEN AND G. A. GLATZMAIER

rotational Mach number is greater than one. According to our results, however, these
problems disappear in the astrophysically more relevant regime of turbulence typically
characterised by small rotational Mach numbers. Although we did not specifically test
the pseudo-incompressible approximation for supercritical convection, we do not see any
reason why the same should not be true for this less invasive approach.
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Appendix A. Nonlinear equations of compressible convection
Nonlinear equations for fully compressible and anelastic convection for the constant μ and kt case
as given by Verhoeven et al. (2015) with additionally considering rotation are displayed below. The
background profiles ρ̂0, T̂0 and p̂0 are assumed to be adiabatic.

A.1. Fully compressible equations

The non-dimensional fully compressible equations read

ε∂̂t ρ̂1 + ∇̂· [
(ρ̂0 + ερ̂1)v̂

] = 0 , (A.1a)

(ρ̂0 + ερ̂1)
[
∂̂t v̂ + (v̂·∇̂)v̂

] = − ∇̂p̂1 − ρ̂1 ẑ +
√

Pr
Ra

[∇̂2v̂ + 1
3 ∇̂(∇̂·v̂)

]
− 1

Ek

√
Pr
Ra

(ρ̂0 + ερ̂1) ẑ × v̂ , (A.1b)

(ρ̂0 + ερ̂1)
[
∂̂t T̂1 + (v̂·∇̂)T̂1

]
− Dρ̂1v̂z − D

[
∂̂t p̂1 + (v̂·∇̂)p̂1

] = 1√
RaPr

∇̂2T̂1 + 2D
√

Pr
Ra

[
êij − 1

3 (∇̂·v̂)δij
]2, (A.1c)

D
1 − (1/γ )

p̂1
p̂0

= T̂1

T̂0
+ ρ̂1

ρ̂0
+ ε

ρ̂1

ρ̂0

T̂1

T̂0
, (A.1d)

with êij = 1
2
(
∂̂j v̂i + ∂̂i v̂j

)
being the strain rate tensor.

A.2. Anelastic equations

The non-dimensional anelastic equations result from (A.1a–d) in the limit of ε → 0:

∇̂· (
ρ̂0v̂

) = 0 , (A.2a)

ρ̂0
[
∂̂t v̂ + (v̂·∇̂)v̂

] = − ∇̂p̂1 − ρ̂1 ẑ +
√

Pr
Ra

[∇̂2v̂ + 1
3 ∇̂(∇̂·v̂)

]
− 1

Ek

√
Pr
Ra

ρ̂0 ẑ × v̂ , (A.2b)

ρ̂0
[
∂̂t T̂1 + (v̂·∇̂)T̂1

]
− Dρ̂1v̂z − D

[
∂̂t p̂1 + (v̂·∇̂)p̂1

] = 1√
RaPr

∇̂2T̂1 + 2D
√

Pr
Ra

[
êij − 1

3 (∇̂·v̂)δij
]2, (A.2c)

D
1 − (1/γ )

p̂1
p̂0

= T̂1

T̂0
+ ρ̂1

ρ̂0
. (A.2d)

Appendix B. Mach number
The Mach number M is defined as the ratio of a reference velocity, which we assume to be the
free-fall velocity

vr =
√
gd	ρ

ρr
(B.1)
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to the sound speed

vsound =
√
cp(cp − cv)T

cv
=

√
cp(cp − cv)Tr

cv
ρ̂
1/(2n)
0 (B.2)

resulting in

M = vr
vsound

=
√

cvgd	ρ

cp(cp − cv)Trρr
ρ̂

−1/(2n)
0 =

√
εD

γ − 1
ρ̂

−1/(2n)
0 . (B.3)

Exploiting ρ̂
top
0 = exp

(−Nρ

)
yields the Mach number at the top boundary,

Mtop =
√

εD
γ − 1

exp
(
Nρ

2n

)
, (B.4)

where the sound speed is the lowest and thusM has a maximum.

Appendix C. Phase Mach number
The phase Mach number Mphase will be defined as the ratio of the phase velocity corresponding to
the oscillatory instability

vphase = ω

k
=

√
gd	T
Tr

ω̂

k̂
(C.1)

to the sound speed

vsound =
√
cp(cp − cv)T

cv
=

√
cp(cp − cv)Tr

cv
ρ̂
1/(2n)
0 (C.2)

resulting in

Mphase = vphase
vsound

=
√

cvgd	T
cp(cp − cv)T2

r

ω̂

k̂
ρ̂

−1/(2n)
0

=
√

gd
cpTr

√
cv

cp − cv

√
	T
Tr

ω̂

k̂
ρ̂

−1/(2n)
0 =

√
εD

γ − 1
ω̂

k̂
ρ̂

−1/(2n)
0 . (C.3)

Exploiting ρ̂
top
0 = exp

(−Nρ

)
and equation (B.4) yields the phaseMach number at the top boundary,

Mtop
phase =

√
εD

γ − 1
ω̂

k̂
exp

(
Nρ

2n

)
= Mtop ω̂

k̂
, (C.4)

where the sound speed is the lowest and thusMphase has a maximum.

Appendix D. Rotational Mach number
The rotational Mach number Mrot will be defined as the ratio of the velocity corresponding to the
domain depth d and the angular frequency Ω , where

vrot = 2Ωd , (D.1)
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to the sound speed at the bottom

vbotsound =
√
cp(cp − cv)Tr

cv
(D.2)

resulting in

Mrot = vrot
vbotsound

=
√

4cvΩ2d2

cp(cp − cv)Tr
= 1

Ek

√
εDPr

(γ − 1)Ra
. (D.3)

This is equivalent to defining the rotational Mach number as the ratio of the sound-crossing time of
the domain to a rotation time scale,

Mrot = tbotsound
trot

= 2Ωd
vbotsound

, (D.4)

based on the sound speed vbotsound at the bottom boundary. Note that the value of tbotsound is similar to
the one of the real sound-crossing time tsound = ∫ d

0 dz/vsound.

Appendix E. Numerically solved linear equations
This section summarises the equations as they are solved numerically in the linear convection code,
which is based on a NRK method. As it only deals with non-dimensional quantities, the hat ˆ is left
out for clarity. Equations (18a–e)

can be simplified by expressing ρ1 and s1 in terms of T1 and p1, which reduces the number of
equations from five to three,

α
εD

γ − 1
1
T0

∂tp1 + β

(
εD

ρ0

p0
∂tp1 − ε

ρ0

T0
∂tT1

)
= −∇· (

ρ0v
)
, (E.1a)

ρ0∂tv = −∇p1 +
(

ρ0

T0
T1 − γ

γ − 1
D

ρ0

p0
p1

)
z +

√
Pr
Ra

∇·Π − 1
Ek

√
Pr
Ra

ρ0z × v, (E.1b)

ρ0∂tT1 − D∂tp1 = ρ0vz + 1√
PrRa

∇ (
kt∇T1

)
. (E.1c)

The parameters α and β have been introduced in order to account for the three different approaches
under investigation. While in the anelastic approximation the perturbational density term is ne-
glected in the continuity equation (i.e. α = β = 0), the pseudo-incompressible approximation just
neglects the perturbational pressure term resulting in α = 0 and β = 1. The fully compressible
equations do not contain any simplifications, thus α = β = 1. We further define P1 = √

Ra/Pr p1
in order to simplify the numerical method, compare equation (E.1b) with (E.4f), (E.5f).

For the constant dynamic viscosity μ and thermal conductivity kt case we assume

μ(z) = 1 , μ′(z) = 0 , (E.2a,b)
kt(z) = 1 , k′

t(z) = 0 , (E.2c,d)

whereas for constant diffusivities ν and κ the corresponding dynamic viscosity and thermal con-
ductivity vary with depth (see (1a,b) and (17b)):

μ(z) = Tn
0 (z) , μ′(z) = − (

D + ε
)
nTn−1

0 (z) , (E.3a,b)
kt(z) = Tn

0 (z) , k′
t(z) = − (

D + ε
)
nTn−1

0 (z) . (E.3c,d)
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Note that the ′ sign denotes first derivatives with respect to z, i.e. the numerically independent
variable μ′(z) is the analytical derivative of μ(z).

When using the typical normal mode ansatz, e.g. T1 = T(z) exp
[
rt + i

(
ωt + kxx + kyy

)]
, with

the wavenumber kx and ky not to be confused with the thermal conductivity kt , equations (E.1a–c)
can be solved separately for the real part (index re),

d
dz

vx,re = v′
x,re , (E.4a)

μ
d
dz

v′
x,re =

√
Ra
Pr

rTn
0 vx,re −

√
Ra
Pr

ωTn
0 vx,im − kxPim + μ

(
4
3k

2
x + k2y

)
vx,re

+ 1
3μkxkyvy,re + 1

3μkxv
′
z,im − μ′v′

x,re + μ′kxvz,im − 1
Ek

Tn
0 vy,re ,

(E.4b)
d
dz

vy,re = v′
y,re , (E.4c)

μ
d
dz

v′
y,re =

√
Ra
Pr

rTn
0 vy,re −

√
Ra
Pr

ωTn
0 vy,im − kyPim + μ

(
k2x + 4

3k
2
y

)
vy,re

+ 1
3μkxkyvx,re + 1

3μkyv
′
z,im − μ′v′

y,re + μ′kyvz,im + 1
Ek

Tn
0 vx,re , (E.4d)

d
dz

vz,re = v′
z,re , (E.4e)

4
3μ

d
dz

v′
z,re − d

dz
Pre =

√
Ra
Pr

rTn
0 vz,re −

√
Ra
Pr

ωTn
0 vz,im + D(nad + 1)

1
T0

Pre

−
√
Ra
Pr

Tn−1
0 Tre + μ

(
k2x + k2y

)
vz,re

+ 1
3μkxv

′
x,im + 1

3μkyv
′
y,im − 4

3μ
′v′
z,re − 2

3μ
′kxvx,im − 2

3μ
′kyvy,im ,

(E.4f )
d
dz

Tre = T ′
re , (E.4g)

kt
d
dz

T ′
re = √

PrRa rTn
0Tre − √

PrRaωTn
0Tim − DPr rPre + DPr ωPim

+ kt
(
k2x + k2y

)
Tre − k′

tT
′
re − √

PrRa Tn
0 vz,re , (E.4h)

0 = (
αnad + β

)
εD

√
Pr r

1
Tn+1
0

Pre − (
αnad + β

)
εD

√
Pr ω

1
Tn+1
0

Pim

− βε
√
Ra r

1
T0

Tre + βε
√
Raω

1
T0

Tim − n
(
D + ε

) √
Ra

1
T0

vz,re

+ √
Ra v′

z,re − √
Ra kxvx,im − √

Ra kyvy,im , (E.4i)

and the imaginary part (index im)

d
dz

vx,im = v′
x,im , (E.5a)

μ
d
dz

v′
x,im =

√
Ra
Pr

rTn
0 vx,im +

√
Ra
Pr

ωTn
0 vx,re + kxPre + μ

(
4
3k

2
x + k2y

)
vx,im

+ 1
3μkxkyvy,im − 1

3μkxv
′
z,re − μ′v′

x,im − μ′kxvz,re − 1
Ek

Tn
0 vy,im ,

(E.5b)
d
dz

vy,im = v′
y,im , (E.5c)
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μ
d
dz

v′
y,im =

√
Ra
Pr

rTn
0 vy,im +

√
Ra
Pr

ωTn
0 vy,re + kyPre + μ

(
k2x + 4

3k
2
y

)
vy,im

+ 1
3μkxkyvx,im − 1

3μkyv
′
z,re − μ′v′

y,im − μ′kyvz,re + 1
Ek

Tn
0 vx,im , (E.5d)

d
dz

vz,im = v′
z,im , (E.5e)

4
3μ

d
dz

v′
z,im − d

dz
Pim =

√
Ra
Pr

rTn
0 vz,im +

√
Ra
Pr

ωTn
0 vz,re + D

(
nad + 1

) 1
T0

Pim

−
√
Ra
Pr

Tn−1
0 Tim + μ

(
k2x + k2y

)
vz,im

− 1
3μkxv

′
x,re − 1

3μkyv
′
y,re − 4

3μ
′v′
z,im + 2

3μ
′kxvx,re + 2

3μ
′kyvy,re , (E.5f )

d
dz

Tim = T ′
im , (E.5g)

kt
d
dz

T ′
im = √

PrRa rTn
0Tim + √

PrRaωTn
0Tre − DPr rPim − DPr ωPre

+ kt
(
k2x + k2y

)
Tim − k′

tT
′
im − √

PrRa Tn
0 vz,im , (E.5h)

0 = (
αnad + β

)
εD

√
Prr

1
Tn+1
0

Pim + (
αnad + β

)
εD

√
Pr ω

1
Tn+1
0

Pre

− βε
√
Ra r

1
T0

Tim − βε
√
Raω

1
T0

Tre − n
(
D + ε

)√
Ra

1
T0

vz,im

+ √
Ra v′

z,im + √
Ra kxvx,re + √

Ra kyvy,re . (E.5i)

The equations for the eigenvalues

d
dz

√
Ra = 0 ,

d
dz

r = 0 ,
d
dz

ω = 0 (E.6a-c)

guarantee that they are constants, independent of z.
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