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Abstract *

We review the logic of neuropsychological inference,
focusing on double dissociation, and present the results
of an investigation into the dissociations observed
when small artificial neural networks trained to
perform two tasks are damaged. We then consider
how the dissociations discovered might scale up for
more biologically and psychologically realistic
networks. Finally, we examine the methodological
implications of this work for the cornerstone of
cognitive neuropsychology: the inference from double
dissociation to modularity of function.

1. Introduction

Cognitive neuropsychology aims to inform theories of
normal cognitive function by looking at how the
cognitive system breaks down in patients with brain
damage. The inference from patterns of breakdown to
normal function is, however, notoriously difficult and
such inferences depend on the theories of normal
function under consideration (Gregory, 1961; Shallice,
1988; Caramazza, 1984). The methodology of
cognitive neuropsychology is rooted in "box and
arrow” cognitive models, in which the architecture of
the cognitive system is specified in very broad terms.
Patterns of breakdown are assumed to correspond to
selective damage to specific boxes and arrows.
Conversely, observed patterns of deficit are used to
constrain how such box and arrow models should look.
The augmentation of the "box and arrow" models with
artificial neural network models (ANNs) of a wide
range of the cognitive processes that neuropsychology
has studied thus poses the question: how, if at all,
should neuropsychological methodology respond to
the introduction of connectionist modelling
techniques? It is this issue that this paper addresses.
We begin by considering the logic of cognitive
neuropsychological inference in quite abstract terms,
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and then concentrate on a specific methodological
principle, the inference from double dissociation (DD)
to modularity of function. DD has been of central
importance because it promises to allow the
neuropsychologist to map out the structure of the
cognitive system. We review past work on the
reliability of this inference for box and arrow models
and in ANN models, We then present a range of
simulations which show DDs between rule and sub-
rule performance in small feedforward ANNs. The
generality of this work is considered and we suggest
that some types of damage can be extrapolated more
confidently than others from lesion studies on small
scale ANNs to patterns of breakdown that can be
expected in the brain. Finally, we examine the
methodological implications of ANN models for
cognitive neuropsychology.

2. The logic of neuropsychological
inference

To elucidate the nature of neuropsychological
inference, we first consider the ideal conditions for
such inference, and then consider what simplifying
assumptions must be made in practice, when such
conditions do not generally hold.

In the ideal case, predictions concerning likely
cognitive deficit can be derived if the cognitive system
is understood (i) in terms of the computations being
performed, (ii) how those computations are
implemented in the brain, and (iii) if the damage
suffered is known in detail (see Caramazza, 1986;
Shallice, 1988 for other discussions of the logic of
neuropsychological inference). Given these
prerequisites, it is possible to predict the cognitive
deficits associated with each pattern of damage,
compare these predictions with observed cognitive
deficits, and revise conjectures about (i), (ii) and (iii)
accordingly. In cognitive neuropsychology, interest
focuses on the revision of (i), the computational theory
of the cognitive system.

In practice, however, knowledge of (i), (ii) and
(iii) is conjectural, and specified only in the broadest
terms. Regarding (i), the cognitive system is often
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specified only at the level of large scale architectural
organization, typically in the standard "box and arrow"
notation. Recently, rather more detailed ANN models
have also been considered. Regarding (ii) the neural
implementation of cognitive processes is generally not
explicitly considered at all, apart from some
considerations of cerebral localization, largely because
detailed information is not available. Regarding (iii),
lesions can only be identified at a gross level, and
damage is often diffuse. Since (i), (ii) and (iii) are
known in such little detail, direct predictions of likely
patterns of cognitive deficit cannot be derived and
compared with known neuropsychological deficits.
How, then, can neuropsychological data constrain
cognitive theory?

A bold, but perilous, path is to make strong
simplifying assumptions concerning (i)-(iii) in order to
obtain predictions concerning likely patterns of
damage. For "box and arrow" models, the key
assumption is that brain damage selectively affects
particular "boxes" and "arrows"; furthermore, it is
assumed that impaired performance directly reflects
the operation of this damaged system, and is not
complicated by compensatory cognitive strategies. A
potential problem is that even given this assumption it
may not be clear what predictions can be made, unless
the boxes and arrows account is specified in detail
(Seidenberg, 1988). In ANN models, the crucial
simplifying assumption is that brain damage can be
modelled as involving the removal of, or disturbance
to, particular units and/or weights. Given this
assumption, it is possible to derive detailed,
quantitative predictions (e.g. Patterson, Seidenberg &
McClelland, 1989; Hinton & Shallice, 1989; Plaut &
Shallice, 1991).

It is now clear how neuropsychological data can
help decide between alternative cognitive level
accounts T, T,... T: their respective predictions P,
P,... P, concerning expected patterns of damage are
derived, given the necessary simplifying assumptions,
and compared with neuropsychological data D. The
degree to which one theory T, is favoured over the rest
depends on: (1) how well P, matches D; (2) how well
the other theories predict D.

Below, we concentrate on an aspect of patient
data which has been viewed as central to cognitive
neuropsychology: double dissociation.

3. The double dissociation inference

The comerstone of cognitive neuropsychology is the
inference from DD (Teuber, 1955) to modularity of
function. Two tasks A and B doubly dissociate across
a patient population if there are some patients who
have normal or near normal performance on A, but
impaired performance on B, and others with the
reverse deficit. The DD inference takes this pattern of
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deficits to imply that A and B cannot be subserved by
the same cognitive machinery.  More strictly,
although tasks A and B may to some extent draw on
the same aspects of the cognitive system, there must
be parts specific to A and others specific to B; in "box
and arrow" terms, at least some box or arrow must be
specific to each of A and B.

In terms of the earlier discussion, the validity of
the inference from DD to a particular theory T, of the
modular organization of the cognitive system under
study depends on (1) how well T, predicts the DD; (2)
how well the other theories predict a DD. The validity
of (1) and (2), and hence how well DDs can
distinguish between rival accounts of the functional
organization of the cognitive system, depends on the
class of theories T under consideration. Let us start
by assuming that T includes "box and arrow" models,
and then consider the case where T also includes
ANNS.

3.1 Boxes and arrows.

Any "box and arrow” model in which some
component is selectively used for A and another which
is selectively used for B can predict a DD given the
standard assumption that brain damage can cause
selective damage to a particular box or arrow. Thus
point (1) is straightforward.

Point (2), however, is less clear cut. Firstly,
many different modular architectures can lead to the
same DD. All that is required is that there is some
specific component for each task. That there is such a
component says nothing about its function, nor how it
fits into the rest of cognitive system. For example, it
is prima facie consistent with the DD between long
and short term memory that memory consists of a very
large and complex array of modules, all shared
between short and long term memory, except for two,
one of which has some function specific to
remembering information over long periods and one
which has some function specific to remembering
information over short periods. Secondly, DDs
between two tasks can occur even when there is no
specific dedicated module for either task (Dunn &
Kirsner, 1998; Shallice, 1988; see Chater & Ganis,
1991 for a very simple illustrative example).

Claims concerning what can be learnt from DDs
are often put much more strongly than this. For
example, Marin et al. (1976) state that: "At the very
least... [observed double dissociations] ... should yield
a taxonomy of functional subsystems. It may not tell
us how these subsystems interact - but it should
identify and describe what distinct capacities are
available..." (pp 869-870). That is, they argue that
DDs should specify the components of a "box and
arrow" model of a cognitive system. As we have seen,
such claims are not justified, even if consideration is
limited to modular systems.



3.2 Neural networks.

Since the DD inference is intended to map out, or at
least constrain, the architecture of the cognitive systcm
in terms of "boxes and arrows" it might seem that
ANN models are necessarily irrelevant to this aspect
of neuropsychological methodology. ANN models,
the argument might go, are at a level of detail below
that of the box and arrow diagram which DDs are not
used to uncover. This suggests that cognitive
neuropsychology can proceed without concern for
ANN models of cognition. The reason that this line of
argument is not convincing is that it does not consider
the possibility that a single ANN, without any obvious
"box and arrow" structure, might be able to produce
DDs. This could mislead the cognitive
neuropsychologist into postulating a modular structure
where none was present.

So, for example, ANN approaches have
frequently aimed to model rule-governed and rule-
exceptional behaviour in using a single network,
where an obvious "box and arrow" model treats these
as separate (see Rumelhart & McClelland, 1986;
Pinker & Prince, 1988; for discussion of the past tense;
Seidenberg & McClelland 1989; Coltheart et al., 1992;
for discussion of reading). Hence, in terms of the
above discussion ANN models can amount to new
theories T concerning normal function. From the
point of view of neuropsychological inference, the
crucial question is what predictions P do such models
make about patterns of breakdown. Specifically, can a
"single route” model of rule-governed and rule-
exceptional behaviour give rise to DDs? If so, the
inference from DD to modularity of function is
threatened; if not, the traditional inference is not
challenged by ANN accounts. We discuss this
question and examine a relevant case study below.

Wood (1978) and Sartori (1988) give simple
demonstration simulations which show dissociation-
like effects on simple pattern association tasks.
Shallice (1988: 254), however, argues that these cases
are not persuasive, since mere associations rather than
independent tasks are dissociated and because the
experiments are very small scale. Furthermore, he
argues that the small scale of these experiments means
that individual units and connections play an important
role in the functioning of the whole system and notes
that this is unlikely to be true in more realistic ANNSs.
He concludes that “there is as yet no suggestion that a
strong DD can take place from two lesions within a
properly distributed network”.

In the light of these complexities it is clear that
the reliability of inferences from DD to a particular
functional modularity cannot be assessed purely in the
abstract. We therefore consider a case study in which
small ANNs are trained on a pair of tasks,
systematically lesioned and examined for evidence of
dissociation between the tasks.
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4. Neural Network Simulations

We begin by outlining some of the problems
encountered in ANN simulations in general. We then
describe our models and present some typical results.
Finally, we consider the important problem of scaling
up to more realistic networks.

4.1 General Remarks.

ANN models are vastly oversimplified with respect to
real brains, both at the level of the operation of single
cells, and the patterns of connectivity between cells.
The relevance of ANN simulations for
neuropsychology depends on the assumption that these
simplifications are not crucial with respect to the
effects of damage; the effects are assumed to be the
similar for any network-like system. It is not,
however, currently clear even that different kinds of
ANN produce similar patterns of damage. This ties in
with the general problem of the parameter dependence
of ANN simulations, and sensitivity to the precise
weight start values. Furthermore, very different
networks may be produced by different learning
algorithms; one might, for example, expect that
modular structures are more likely to arise from
constructive algorithms (e.g. cascade correlation) than
gradient descent algorithms. This issue is particularly
important since no current ANN learning algorithms
are biologically plausible.

A further important design question is whether
the ANN is minimal, i.e. whether it has the minimum
number of units and connections required to solve the
problem. Minimality tends to speed up the training,
improve generalization and make it easier to
understand the hidden unit representations. However,
minimal networks will not be fully distributed - the
influence of each unit or connection will not be small.
Presumably the brain has many spare hidden units,
which raises the concern that imposing minimality
may force the network to find solutions very unlike
those found in more natural, non-minimal conditions.

There is also a dependence on the representation
of training data. Many systems use complicated
representations and there is much scope for ‘cheating’.
Often we have to encode frequency effects into the
training data (e.g. word frequencies in reading models)
and it is not clear how to do this effectively. We often
have to present the exceptions more frequently in
order for the network to learn them and we have to ask
whether this should this be considered “cheating’.

Once a particular network has been chosen and
trained, the many possible types of damage must be
considered. The most obvious is the removal of
subsets of units and connections. Other possibilities
include changing the weights and activations: adding
noise, random rescaling, global rescaling, clipping
weights or activation functions, and so on.



Neuropsychological patients often (but not
always) show rapid improvement in performance after
a lesion occurs (Geschwind, 1985). When working
with minimal networks, we can easily lesion them so
that they become sub-minimal. In these cases, one has
the option of allowing relearning after damage. This
can further confuse the results: relearning can create,
destroy or even reverse the sense of dissociations. For
non-minimal networks, we do not have this problem:
the relearning invariably totally compensates for the
damage and we get no dissociations at all. In
summary then, there are a number of reasons why
interpretation of ANN simulations of lesion damage is
very difficult.

4.2 Simulation Results.

We trained a range of small feed-forward ANNs, with
one hidden layer, on semi-regular mappings (involving
a rule and a less frequent sub-rule). The networks
were then lesioned in a variety of ways. The
frequencies of errors on each pattern were counted,
and compared with the numbers of rule and sub-rule
errors expected by chance. The statistical significance
of the difference was measured using chi-square tests.
We found that dissociations were surprisingly common
in populations of nets and that DDs could also be
found within a single network. This appears to
reinforce doubts regarding DD (e.g. Dunn & Kirsner,
1988; Chater & Ganis, 1991), but a more detailed
investigation suggests otherwise.

The following table shows the strongest
dissociations found for a typical network, with 8
inputs, 16 hidden units and 8 outputs, trained using a
conjugate gradient algorithm. The training data
consisted of the identity map except that when the first
four input bits are 1111 or 0000 the last three bits are
flipped. The full set of 256 training patterns was used,
giving 224 ‘rules’ and 32 ‘sub-rules’; each sub-rule
pattern was presented twice per epoch (Table 1).

Form of damage Rule Sub-rul¢ p value
errors | errors

Scaling weights - globally 0.0%| 96.9% <10°
Scaling weights - randomly | 37.1%| 100094 < 10°
Shifting weights - noise 21.4%| 84.4% <10°
Removing hidden unit 1 0.9%| 50.0%] <10°
Removing hidden unit 2 50.0%| 25.0% < 0.00
Removing I-H link 1-3 04%| 500%| <10°
Removing [-H link 24 41.5%| 0.0% <107

Table 1. Damaging a backprop rule/subrule net

Similar results were obtained when the same problem
was solved using a constructive algorithm, a variant of
Cascade Correlation (Fahlman & Lebiere, 1988),
(Table 2).

Notice that although DDs are found, they are quite
weak, especially the dissociations where the rules are
lost (i.e. these are more likely to occur by chance).
Also although there are twice as many hidden units as
in a minimal network for this problem, there are still
some hidden units and connections that on their own
have such an influence on the outputs that their
removal gives rise to a dissociation. Hence, according
to Shallice's criterion, noted above, these networks are
not fully distributed. This has important implications
for networks damaged by the removal of random
subsets of units and connections. With many units and
connections having very little effect on the outputs it
will be quite common to find dissociations that arise
due (o a very small number of crucial units which have
a significant effect on the output, but do not perform
any identifiable function on their own. In particular,
they are not performing a function revealed by the
observation of a DD.

Form of damage [ Rule Sub-rule
errors | errors | p value
Scaling weights - globally 0.9%| 100.0 <10°
Removing hidden unit 1 | 8.0%]| 50.0%] <10°
Removing hidden unit2 | 50.0%| 18.8% <10~
Removing I-H link 1-3 2.2%| 53.1%] <10°
Removing I-H link 2-4 39.7% 0.0%| <10
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Table 2. Rule/subrule cascade correlation net

An unexpected feature of the results is that errors
on a pattern do not necessarily occur where expected.
For example, errors on sub-rule patterns sometimes
occur on parts of the input string where the mapping is
completely regular.

There was also evidence that the pattern of
dissociations is very task-dependent. With the above
training data we can find dissociations in the number
of bit errors with completely random weights (where
we expect 50% errors for both rules and sub-rules)
much more frequently than we would expect by
chance (calculated by chi-squared), (Table 3). The
pattern of effects remains much the same if very much
sparser training data is used - just 1.5% of possible
patterns.

Full data 1.5% of
set data set
Instances <=1 10000 10000
occurring <10-! 2491 1897
with <10-2 806 432
expected <10-3 293 95
probability <104 85 21

Table 3 Expected and actual number of dissociations
between rule/subrule performance



On the other hand, if we use a training set that has rules
and sub-rules specified by a different procedure
(namely a parity rule) we can find far fewer
dissociations than expected by chance (Table 4).

% training data used
all | 25%| 25%( 6.5%] 6.5%
Instances | <= 1] 10°] 10°] 10°] 10°] 10°
occurring <10-1] 12 | 1262 237 | 1717| 458
with <109 O | 1B8[ 2 [307] 18
expected | <103 O | 1 51| 3
probability | < 104 © 0 0 1 1

Table 4 Lesioning a parity network

Thus the number of dissociations appears to depend
crucially on the task used.

4.3 Scaling up.

We have found DDs in ANNs but it is not clear
whether DDs can occur in larger and more distributed
networks. Unfortunately scaling up presents a number
of difficulties, and exacerbates many of the problems
mentioned in section 4.1 For example, is the number
of hidden units and layers sufficient to allow the
networks to solve the problem in a natural modular
manner, or are they forced to operate in an unnatural
manner? Do we have enough training pattemns to
prevent the network from operating by table lookup?
Suppose we had succeeded in training a network to
perform basic arithmetic. It would have to be quite
large and large networks are very difficult to analyse in
detail. It is quite likely that it would do single digit
additions and multiplications by table lookup, it might
have module-like components to do long
additions/subtractions making use of these tables, and
so on. How, then, could we decide if it had developed
separate "modules” for long multiplication and long
division. Using the DD methodology, we would look
for forms of damage such that long division was lost
but not long multiplication, and vice versa. For
concreteness, suppose that the two modules each
consisted of 100 units and the rest of the system was
another 200 units. For very small amounts of artificial
lesion damage, it is possible that one system would be
selectively damaged and the other preserved; but for
larger amounts of damage, this would become almost
infinitesimally unlikely; and a combinatorialy
explosive number of possible lesions would have to be
performed to uncover such dissociations. So, even if
there is modular structure present in ANNS, large scale
models with large scale damage, are unlikely to give
rise to dissociations. Furthermore, the ANNs would be
almost as difficult to analyse as brains.

Notice, though, that if biological learning
algorithms tend to organize neurons with common
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function into local brain regions, or such localisation is
enforced by innate constraints, then the chances of
lesion damage affecting one task selectively, resulting
in a dissociation, increases significantly. This is one
reason why current ANNs may provide unreliable
models of neuropsychological breakdown.

ANNs may model more global kinds of damage
more successfully. For example, neurotransmitter
imbalances can be crudely modelled by globally
rescaling weights, which can easily be tested on ANNs
however large. We have found no evidence that this
kind of damage can give rise to DDs; in the tasks
reported above, the subrules/exceptions are generally
lost and the rules spared.

5. Implications for neuropsychology

In this section, we consider the implications of these
results for cognitive neuropsychology.

5.1 Do double dissociations specify modularity?

We have shown that DDs can arise in simple ANNs in
a rule/sub-rule learning task. How useful such results
are depends on whether we are concerned to show that:
(1) ANN models are consistent with what goes on in
real brains; (2) DDs are possible in fully distributed
systems and consequently cannot be used to infer
modularity; or (3) modular structures can arise
spontaneously by learning in a fully distributed
system,

If one is just interested in (1) then the question of
modularity is irrelevant: the workings of our models
can simply be as mysterious as those of real brains.
Cases (2) and (3) are more subtle. As noted in Section
4.3, in any ANN system large enough to be considered
fully distributed, it will be difficult (if not impossible)
to uncover modularity without looking for DDs
anyway, so even if a DD in a large scale ANN were
found, it would be difficult to argue for (2) against (3).
We know that a certain amount of modularity occurs in
real brains, but most is clearly innate. Thus if we
assume case (3), we end up simply trying to show how
non-innate modular structures could arise in the brain.
Moreover, the possibility of innate structures in real
brains means that results from ANNs can’t really tell
us anything for certain. If we do find DDs, then we
don’t know what it implies. If we don’t find DDs we
don’t know if it is because DDs in real brains arise
solely due to innate structures that haven’t been built
into ANNs or because ANN learning algorithms are
too dissimilar to those in real brains for the same
modular structures to arise. Furthermore, as noted in
Section 3.1, even if DDs could be shown to imply
some modularity of function, there will still be all
manner of modular and quasi-modular systems which
are consistent with DD.



5.2 Methodological implications.

Despite finding DDs in ANNS, given the problems of
extrapolating from small artificial simulations to real
brains, one cannot really justify the suggestion that
DDs are not, after all, useful data for constraining
cognitive theory. Indeed, any particular DD will pose
an important challenge for any non-modular ANN
account; whether or not such a challenge can be met
must be determined on a case by case basis. For
example, single route ANN models of reading have
been proposed (e.g. Seidenberg & McClelland, 1989),
but cannot account for the DD between non-word and
exception word reading (e.g. Coltheart et al., 1992)
and this poses an important challenge for such models.
Notice, however, that DD is on a par with any other
aspect of neuropsychological or experimental data - it
has no specially decisive importance.

The morals concerning the impact of ANN models
on cognitive neuropsychology can now be drawn.
First, whether a particular ANN account is consistent
with a DD cannot be determined for certain a priori,
but, like other experimental or neuropsychological
data, must be tested by computational experiments.
Second, the focus on very gross patterns of data, such
as DDs, has been partly due to the fact that "box and
arrow" cognitive models are not detailed enough to
give more detailed predictions. The rich, quantitative
predictions of fully explicit computational models,
such as ANNS, give rise to a wide range of predictions
(e.g. the correlation between "visual" and "semantic”
reading errors, and effects of concreteness/abstractness
on reading in deep dyslexia (Plaut & Shallice, 1992)),
among which DDs have no special status. The
connectionist neuropsychologist will be able to use
more fine-grained evidence to constrain cognitive
theory, thus reducing the emphasis on double
dissociations.
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