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Abstract

Agricultural production grew dramatically since 1950. While this growth improved food security,

it also introduced harmful tradeoffs. A few of those tradeoffs are environmental externalities and

market power in food and agricultural markets. The sustainability and resilience of the modern

food system require that research and policy carefully weigh the consequences associated with

productivity growth. This dissertation evaluates the environmental and supply chain tradeoffs of

modern agricultural production.

Chapter 1 quantifies costs of nitrate contaminated drinking water, which largely results

from agricultural production. Nitrate contamination of drinking water is a widespread environmen-

tal concern and threatens human health. The magnitude of the environmental health consequences

depend on an individual’s ability to avoid exposure. This paper uses an event-study framework to

uncover the heterogeneity in avoidance behavior following Safe Drinking Water Act nitrate viola-

tions. Using weekly store-level scanner data, I estimate that consumers spend approximately $4.7

million annually on bottled water and soda to avoid nitrate contaminated drinking water. However,

consumers in resource-constrained areas exhibit substantially less protective behavior. This leads

to 143 additional infant deaths per year relative to areas with less-costly access to safe drinking

water. These results underscore substantial costs from nitrate pollution and that these costs are

disproportionately distributed to those with less ability to protect themselves.

Chapter 2 calculates the groundwater impacts of drought and extreme heat in California

agriculture. Adaptation to climate and weather shocks can be costly for producers, but it also

may impose negative externalities on vulnerable populations. We study this in the context of

groundwater in California and evaluate the effects of annual fluctuations in weather and surface

water supplies on agricultural well construction and access to drinking water. Using the population

of geocoded wells, we show that farmers respond to extreme heat and surface water scarcity through

new well construction. This mitigating behavior by agricultural users imposes costs: Extreme heat

and surface water scarcity also lower local groundwater levels and cause domestic well failures.

While groundwater extraction helps producers reduce the damage from environmental shocks, it

also harms access to drinking water supplies in marginalized communities.

Chapter 3 evaluates the efficiency and resilience tradeoffs of different supply chain policies.
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Recent extreme events and the disruptions they caused have made food supply chain resilience a

key topic for researchers and policymakers. This paper provides input into these discussions by

evaluating the efficiency and resilience properties of the leading policy proposals. We develop a

conceptual model of a prototype agricultural supply chain, parameterize the model based on the

empirical literature, and conduct simulations to assess the impacts on resilience and economic welfare

of four key policy proposals: (i) intensified antitrust enforcement to improve market competition,

(ii) subsidization of entry of additional processing capacity, (iii) prevention of price spikes through

anti-price-gouging laws, and (iv) diversification of production and processing across multiple regions.

Results show that some of the policies have the potential to improve supply-chain resilience, but

their impacts depend on the existing market structure, and resilience gains often come at the cost

of reduced efficiency.
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Chapter 1

Introduction to the Essays

Agricultural output grew threefold since the 1960s. This growth reduced global food insecurity by

outpacing the increases in food demand (Alston and Pardey 2014). This trend, in part, stemmed

from input intensification, technological change, and the specialization of food supply chains. While

many substantially benefited from this change, it also introduced harmful tradeoffs. In more recent

years, these tradeoffs have manifested as market failures in the form of environmental externalities

and market power in food and agricultural markets. In response, agricultural and environmental

research and policy priorities have focused more acutely on the sustainability and resilience of

modern agricultural production and food supply chains.

Market failures have emerged from, or were exacerbated by, many of the same factors that

led to agriculture productivity growth. While many examples exist, three of the most urgent are the

focus of this dissertation: i) Global fertilizer consumption increased by over 300% since 1960 (U.S.

Department of Agriculture, Economic Research Service 2022), and consequently, a consensus has

emerged that agricultural nutrients are a primary contributor to water quality degradation. ii) Over

the same period, irrigated acreage doubled in response to new irrigation technologies and increased

water demand due to climate change (Taylor 2023). The over-extraction of groundwater resources

for agriculture has led to aquifer stress in the US and around the world. Furthermore, climate

change threatens water availability in many parts of the world, including water for agricultural

irrigation. iii) Lastly, four-firm concentration ratios (CR4) across food manufacturing increased by

at least 30% since 1960 (Rogers 2001; Sexton and Xia 2018). Market power within food processing

and distribution presents numerous concerns for consumers and farmers, including its impact on

1



the resilience of supply chains when extreme shocks occur. The sustainability and resilience of food

systems depend critically on carefully balancing the costs along with the benefits of these three

characteristics of modern agricultural production.

The urgency of these three topics is exemplified in the fact that recent The State of Food and

Agriculture reports from the United Nation’s Food and Agriculture Organization urge solutions in

these areas: (i) Climate change, agriculture, and food security (United Nations Food and Agriculture

Organization 2016), (ii) Overcoming water challenges in agriculture (United Nations Food and

Agriculture Organization 2020), and (ii) Making agrifood systems more resilient to shocks and

stresses (United Nations Food and Agriculture Organization 2021). Despite this urgency, there

remains considerable opportunity for economic research to fill knowledge gaps and inform policy to

achieve productive, sustainable, and resilient food systems (Fan et al. 2021).

Chapter 2 calculates the social costs of nitrate pollution in US drinking water sources.

Nitrates in water bodies are primarily a non-point source pollutant resulting from input-intensive

agricultural production – both from synthetic nitrogen fertilizer and animal waste (Griffin and

Bromley 1982; Paudel and Crago 2021; Raff and Meyer 2022). I quantify the extent to which

individuals respond to nitrate contamination in their drinking water sources and the related health

impacts. In the United States, the Safe Drinking Water Act (SDWA) regulates water systems to

ensure that individuals are notified when their water quality reaches unsafe levels. Through this

notification, consumers are prompted to avert their behavior to alternative drinking water sources,

like bottled water. Consumers who are unable to access safe alternatives are prone to be exposed

to contamination and experience harmful health impacts. Infants in particular are vulnerable to

nitrate contamination since heightened nitrate levels in drinking water are a known cause of "Blue-

Baby Syndrome" that may lead to infant death. I use the timing of SDWA violations to estimate the

consumer impacts through bottled water purchases and the net health impacts on birth outcomes

and infant mortality. I also uncover how the health impact differs based on characteristics correlated

with levels of protective behavior.

Chapter 3 measures the extent to which California farmers use groundwater as a mitigation

strategy to climate-change-induced shocks and calculates the subsequent costs imposed on other

users of groundwater resources. This project examines how groundwater levels are affected by

annual fluctuations in heat and surface water scarcity. We decompose this effect on groundwater

2



levels into the extensive margin, measured by the construction of new agricultural wells, and the

intensive margin, extracting more water from existing wells. Groundwater has been traditionally

unregulated, and therefore, historically extracted more than the socially optimal level. Residential

users of groundwater bear the burden of these damages through the channel of groundwater scarcity.

We empirically measure these effects by evaluating the changes in the depth of the water table in

response to heat and surface water curtailments. Then, we evaluate the reduced-form relationship

of heat and surface water scarcity on domestic well failures, which restricts households’ ability to

access groundwater. Finally, we offer insight into the behavioral mechanisms of this response by

quantifying the number of new agricultural wells drilled as a response to heat and surface water

scarcity.

We find that extreme heat and reductions in agricultural surface water supply significantly

lower the depth to the groundwater table. A one acre-foot (AF) reduction in the agricultural surface

water allocation to every California cropland acre lowers local groundwater levels by an additional

4 feet. An additional harmful degree day reduces groundwater levels by 0.5 inches. Declining water

tables suggest that the costs of climate change may be larger in the long run if farmers cannot buffer

with groundwater resources.

Reductions in groundwater levels result in domestic well failures, imposing external costs to

households that rely on groundwater for drinking and other residential uses. A one AF per acre

reduction increases the likelihood that domestic wells fail in that region by 5%, and an additional

harmful degree day increases the probability of failure by 0.2%. These well failures are unequally

distributed among rural, minority, and low-income households in California’s Central Valley. This

underscores one significant externality of the over-extraction of groundwater and the inequality with

which those costs are borne.

Farmers respond to heat and surface water scarcity both through the construction of ground-

water wells and by pumping additional water from existing wells. We estimate that for each acre foot

(AF) of reduced surface water allocations for agriculture, 460 new agricultural wells are drilled in the

contemporaneous year. Using an approximated cost of $75,000 to construct an agricultural well,

this translates to a back-of-the-envelope 35 million dollars invested annually in extensive-margin

adaptation behavior by California farmers. Additionally, we calculate that for every lost AF per

acre of surface water, farmers pump an additional 0.44 AF per acre from groundwater. Farmers

3



also respond to extreme heat. For every additional harmful degree day, farmers construct 13 new

agricultural wells and extract 42,000 more AF of groundwater on aggregate. These numbers provide

a lower-bound estimate on the avoided climate damages to California agriculture.

Chapter 4 constructs a framework to analyze the efficiency and resilience implications of four

key policies on agriculture and food supply chains. We utilize the calibrated model and simulation

framework to study four policy proposals that have emerged in the resilience debate. First, we

investigate the role of concentration and market power in the processing/retailing sector on resilience

of supply chains in response to extreme shocks. On January 3, 2022, the Biden Administration

announced plans for stricter enforcement of antitrust laws in the meatpacking industries. In addition,

legislation known as the Meat and Poultry Special Investigator Act of 2022 has been introduced

in the US Congress to give the US Department of Agriculture (USDA) authority to investigate

competition issues in the meat and poultry industries. USDA has announced plans to partner with

the US Department of Justice to enforce antitrust laws vigorously and to step up its own enforcement

of competition under the Packers and Stockyards Act. Market power exercised by intermediaries

is shown to raise prices to consumers and depress prices received by farmers, but its impacts on

supply chain resilience are not well understood.

Overall, we find that, while some of these policies can reduce relative volatility of welfare

outcomes for farmers and consumers, their impacts on resilience and efficiency depend critically

on the structure and competitive conditions in the market. Policies aimed at increasing resilience

must carefully assess the probabilistic nature of extreme events and the related efficiency trade-

offs. This paper facilitates these discussions by providing a quantitative framework that enables the

resilience-efficiency trade-offs of the major policy proposals to be assessed under extreme shocks.
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Chapter 2

Nitrate Pollution in Drinking Water

Nitrate pollution is one of the United States’ most costly and widespread environmental problems

(Environmental Protection Agency 2022). Nitrogen contamination in water systems harms aquatic

life, limits human recreational activity, and threatens human health. Nitrates, when ingested at

excessive levels, affect infant health, causing "blue-baby syndrome" (or methemoglobinemia) that

may be deadly (Walton 1951). Other evidence also suggests that nitrates annually lead to about

1,700 occurrences of pre-term births and 6,500 nitrate-attributable cancer cases (Temkin et al.

2019). Rural areas are especially vulnerable to nitrate pollution since agricultural production is

nitrogen-intensive, and nitrogen fertilizers leach into water systems over time (Paudel and Crago

2021; Metaxoglou and Smith 2022).

The magnitude of the public health damages from pollution largely depends on individuals’

ability to avoid the environmental hazard. Many environmental regulations, like the Safe Drinking

Water Act (SDWA), use information disclosures and public notices to alert consumers of drinking

water quality violations in an effort to mitigate the public health risks. However, consumers respond

to water quality information heterogeneously (Zivin, Neidell, and Schlenker 2011; Allaire et al. 2019;

Marcus 2021). Resource constraints, like income, market access, and other infrastructure gaps,

may limit individuals’ ability to reduce exposure to drinking water pollution. These factors may

be particularly acute in rural areas, where residents disproportionately experience SDWA nitrate

violations (Allaire, Wu, and Lall 2018).

This paper quantifies the willingness to pay to avoid nitrate contamination in drinking water

and how avoidance behavior and the subsequent health impact differs across demographics. I study
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this in the context of SDWA nitrate violations in the United States using an event-study framework.

SDWA violations simultaneously indicate an increase in nitrate contamination to a dangerous level

and serve as information shocks about water quality, where the latter may induce a consumer

response.1 I uncover how this response differs for residents in areas that are income-constrained and

those living in food deserts.2 I use the timing of SDWA violations to estimate the net health impacts

on birth outcomes and infant mortality, and how the health impact differs based on characteristics

correlated with levels of protective behavior.

Building on Harrington and Portney (1987), I propose a theoretical framework to illustrate

that the net effect of worsening water quality on health is ambiguous. Worsening drinking water

quality, which triggers SDWA violations, heightens the health risk of those residents. However,

public notifications that accompany violations likely cause consumers to engage in more protective

action, like relying on bottled water and other beverages, which may improve health outcomes

ceteris peribus. I extend Harrington and Portney (1987) to allow individuals to face differential

implicit prices for protective behavior, where differences arise from geographic or socioeconomic

resource constraints. The analytical results from this model predict that individuals facing higher

implicit prices will engage in less averting behavior, and as a result, there are higher realized human

health costs.

To empirically test for avoidance behavior, I estimate the effect of different water quality

violations and subsequent public notifications on beverage purchases, as measured by bottled water

and soda sales at local retail outlets, using an event-study framework. The staggered timing of

violations in public water systems (PWS) across the United States represent shocks to both water

quality and consumers’ information, which allows the estimation of the response after a violation

occurs relative to the weeks preceding a violation. Two-way fixed effects control for fixed differences

across stores and seasonality in bottled water sales. To account for potential bias in heterogeneous

treatment across time, I use an unbiased estimator proposed by Gardner (2021).3 I also allow for
1Residents typically have imperfect information about local water quality (Keiser and Shapiro 2018) and would

have limited ability to anticipate a SDWA violation. The exception may be for SDWA violations that coincide with
natural disaster events, like hurricanes and bacterial coliform (Beatty, Shimshack, and Volpe 2019). Chemical nitrate
contamination, however, builds gradually as a legacy contaminant and is unlikely to be correlated with extreme
events.

2Importantly, the behavioral response is only a portion of the total economic costs of nitrate violations because it
fails to account for the health consequences imposed on those who remained exposed (Harrington and Portney 1987).

3Goodman-Bacon (2021) and others document the potentially severe treatment effect bias when using two-way
fixed effects when treatment is heterogeneous over time. I expand on these issues in the empirical section.
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heterogeneity in the estimates of avoidance behavior by census tract measures of income, percent of

population in food deserts, SNAP participation, and vehicle access. This analysis highlights factors

that may leave vulnerable populations exposed even after SDWA public notifications. In the second

stage of the analysis, I estimate the effect of nitrate violations and subsequent public notifications

on health. I uncover the average net effect on health, as well as, heterogeneous impacts based on

factors that may limit avoidance behavior.

I use data from the Safe Drinking Water Information System (SDWIS) through the Envi-

ronmental Protection Agency (EPA) on PWS characteristics, violation, and enforcement data from

2010 to 2020. These data report the date of violation and public notification and the subsequent

return to compliance for SDWA contaminant rules. I pair these violation and notification records

with weekly store-level retail scanner data from 2010 to 2019. The weekly panel of beverage sales

allows me to measure the response each week following a violation event and the average treatment

effect of an active violation. This empirical design also investigates anticipatory action or uncovers

other pre-trends. I interact census tract demographics and measures of grocery-store accessibility

to test for heterogeneity in response. Lastly, I use within county variation of proprietary, monthly

infant health statistics to estimate the effects of nitrate exposure in drinking water with varying

levels of protective behavior on health outcomes.

A first central result is that nitrate violations lead to of significant avoidance behavior

through bottled water and soda purchases. Public notifications due to nitrates induce an approx-

imately 17% increase in bottled water sales and 11% in soda sales relative to the weeks preceding

a violation. This translates to $4.7 million annually in averting expenditures in the United States,

which is relatively inexpensive compared to other environmental damages of agricultural fertilizer

pollution (Dodds et al. 2009; Taylor and Heal 2022). Second, food accessibility and income con-

straints significantly limit avoidance behavior through purchasing bottled beverages by 31 and 26

percentage points, respectively, which illustrates the implicit higher barrier these residents face to

avoid contaminated water.

Finally, I find that the public notifications from SDWA nitrate violations improve the rate of

infant mortality by 7.7% in areas that have proximate access to alternative beverage sources. This

is consistent with the model in which informational provisions induce protective behavior among

affected households. However, areas with food-access constraints experience a net 6.3% increase in
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infant mortality relative to pre-violation weeks. This implies that roughly 143 infant deaths each

year, or health costs of $1.5 billion, in the United States are attributable to nitrate violations in

vulnerable populations.

This paper contributes to the social costs of nitrate pollution from agricultural production

by uncovering the substantial health costs associated with nitrogen exposure in drinking water. The

costs of nitrate pollution in surface water, resulting in algal bloom and "dead-zone" (or hypoxic

zones) in the Gulf of Mexico, are estimated to be large, ranging between $2.2 to $7.3 billion annually

(Dodds et al. 2009; Taylor and Heal 2022). Less is known about the extent of economic damages of

nitrate pollution in drinking water sourced from groundwater.4 Zivin, Neidell, and Schlenker (2011)

estimate that consumers spend $1.7 million annually to avoid nitrate contaminated drinking water,

but do not incorporate the health costs. Identifying the health costs in this context is empirically

challenging due to endogenous sorting, and much of the current knowledge about the impact of

nitrates on health relies on case-studies or cross-sectional exposure analyses (Walton 1951; Ward

et al. 2018; Temkin et al. 2019). I give evidence that the human health costs of nitrate pollution

far exceed the avoidance behavior costs and that the health costs are disproportionately realized

despite existing regulation.

Second, I add to the body of work that calculates the health costs of water pollution and the

effectiveness of current regulation. The economic impacts of water pollution remain understudied,

especially relative to air pollution (Keiser and Shapiro 2018). Bennear and Olmstead (2008) and

Bennear, Jessoe, and Olmstead (2009) study the effectiveness of SDWA regulations on monitoring

and water quality. A more recent body of work has uncovered novel significant health impacts of

drinking water pollution for a variety of contaminants (Currie et al. 2013; Marcus 2020, 2021; Hill

and Ma 2022; Christensen, Keiser, and Lade 2023). I contribute to these studies by estimating both

the behavioral and health impacts of nitrate pollution and highlight an area where the SDWA falls

short in mitigating public health externality.

Lastly, the recent environmental justice literature has revealed that low socioeconomic groups

are unequally exposed to pollution (Banzhaf, Ma, and Timmins 2019), especially in the context of

air pollution in urban areas (Currie 2011). These sub-populations also may exhibit a dampened
4Nitrate contamination issues in drinking water are sourced almost exclusively from groundwater. Pennino, Comp-

ton, and Leibowitz (2017) state that about 95% of the SDWA violations occur in groundwater sources.
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behavioral response, exacerbating the inequality of environmental health damages. My results

suggest that geographic constraints – specifically food deserts – also limit individuals’ ability to

protect themselves from the negative health consequences of nitrate pollution. This paper documents

that water pollution raises significant environmental justice concerns in the rural United States.

2.1 Background

2.1.1 Safe Drinking Water Act

The SDWA, initially passed in 1974, regulates drinking water systems that serve at least 25 individ-

uals and aims to protect individuals from drinking water pollution or waterborne illness. It requires

regular monitoring and reporting of drinking water quality by systems and establishes maximum

contaminant levels (MCL) for over 90 contaminants. Some contaminants are short-lived and quickly

treatable in-home, while others are legacy pollutants and are costly to rectify by households or pub-

lic water systems. MCLs are determined by the threshold at which contaminants pose a potential

health threat to certain populations.

Once a violation occurs, the SDWA relies on public notifications to alleviate the public health

risk. The public notification requirements establish 3 tiers. Tier 1 violations pose an immediate

threat to human health and notification must occur within 24 hrs of detecting contaminants above

the MCL. Nitrates and some violations of the Total Coliform Rule are the two contaminants classified

as Tier 1 violations. These notices are required to be hand delivered, published in local news outlets,

and posted in public areas based on these tiers. Tier 2 violations include arsenic, lead, copper, among

others. Tier 3 violations are often due to reporting or monitoring failures. Notification must occur

within 30 days and 365 days, respectively, for tier 2 and 3 violations.

SDWA violations and subsequent notifications have been widely used in economic studies as

treatment in quasi-experimental settings (Bennear and Olmstead 2008; Zivin, Neidell, and Schlenker

2011; Allaire et al. 2019). Most recently, Marcus (2020) utilizes the variation in public notification

tiers to identify health and averting behavior for Total Coliform Rule (TCR) violations in North

Carolina. Similarly, this paper uses SDWA public notification to study the mechanisms through

which notification-based environmental regulation yields limited response in some populations and

the related health costs.
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Figure 2.1 plots the spatial variation in nitrate violations by county in the United States

from 2010 to 2019. Larger numbers of violations happen in the Great Plains and the West.5 This

pattern also loosely follows the spatial variation of farm nitrogen application in the United States,

discussed in the next section.

Figure 2.1: Number of SDWA Nitrate Violations per PWS in the County, 2010-2019

Note: Author’s creation from EPA’s SDWIS database. Figure displays the count of nitrate
SDWA health-based violations from 2010 to 2019.

2.1.2 Nitrate Pollution

While nitrogen pollution is the result of a number of anthropogenic activities, agriculture is the

primary source. In the United States, agricultural fertilization accounted for approximately 93%

of commercial nitrogen use in 2010.6 Figure 2.2 plots 2010 agricultural nitrogen use by county.
5This relationship also coincides with a greater dependency on groundwater as approximately 95% of all nitrate

violations are sourced from groundwater Pennino, Compton, and Leibowitz (2017). A heavy concentration of viola-
tions through Texas, Oklahoma and Kansas closely follow the boundaries of the Ogallala Aquifer. The same is true
in California’s central valley.

6Authors calculations from Brakebill and Gronberg (2017)
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Figure 2.2: Agricultural Nitrogen use by County, 2012

Note: Author’s creation from USGS data Brakebill and Gronberg (2017). Figure displays
estimated county-level agricultural nitrogen use in 2010.

Unsurprisingly, the most heavily concentrated areas span across the Corn Belt and in California’s

Central Valley.

Nitrates in groundwater are an irreversible pollutant and often require households or water

suppliers to identify new sources once detected. Approximately 90% of rural residents in the United

States rely on groundwater for domestic use (Power and Schepers 1989). PWS that source from

groundwater account for 95% the historical SDWA violations (Pennino, Compton, and Leibowitz

2017).7 Nitrates are leached through the soil into groundwater basins over time, so the full ex-

ternality is not realized until many years, even decades, after the polluting activity (Harter et al.

2012). Unlike bacterial contaminants, boiling the water does not eliminate the concentration and

the long-term solutions are costly to the public water system. Once a groundwater source is con-

taminated with nitrates, contamination levels persist – they are unlikely to decline. Thus, public
7This does not include households that rely on private wells for domestic use. Private groundwater wells are

perhaps even greater risk of environmental harm since these wells are outside the jurisdiction of the SDWA and do
not require regular monitoring.
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water systems must identify new sources of water, which are also susceptible to contamination, or

build an expensive water treatment plant.8

Assessing the total environmental costs of nitrogen pollution remains a challenge for eco-

nomic researchers (Keiser, Kling, and Phaneuf 2020). Nitrogen contamination in surface waste and

associated environmental harm manifests primarily through algal blooms (Hendricks et al. 2014).

Algal blooms create dead zones (or hypoxic zones) in bodies of surface water, which are detrimental

to aquatic life and costly to human recreation (Egan et al. 2009). Tracking non-point source nitro-

gen pollution in surface water remains an active field of research (Paudel and Crago 2021; Taylor

and Heal 2022).

2.1.3 Human Health Impacts

While (Temkin et al. 2019) argue that nitrate ingestion is also carcinogenic, and that current EPA

thresholds should be much lower, identifying the health risks to adults is empirically challenging

due to the unobserved exposure risks over the entire lifetime of an adult. For these reasons, infant

health outcomes are typically assessed in the environmental health economics literature (Almond

and Currie 2011). Infants have a relatively short window for which exposure, either in utero or

postnatal, leads to adverse health outcomes.

Furthermore, exposure to nitrates poses the highest health risk for infants and pregnant

mothers. High levels of nitrate exposure is correlated with an increased risk of methemoglobinemia

(or blue-baby syndrome), which limits adequate oxygenation of the blood. The 10 mg/L MCL

threshold set by the EPA is based on a 1951 survey, which identified that 2.3 percent of Methe-

moglobinemia cases were associated with nitrate concentrations above 10 mg/L (Walton 1951). The

World Health Organization shares this same guideline internationally. Once a water system reports

nitrate level in excess of this threshold, pregnant mothers are advised to identify a safe source and

that the tap water should not be used in infant formula.
8Anecdotal evidence suggests industrial water treatment costs upwards of $3 million, and requires additional

year-to-year operational costs.
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2.1.4 Constraints to Averting Response

A number of economic factors may limit an individual’s ability to respond to information about

environmental quality. These factors lead to smaller observed marginal willingness to pay (MWTP)

for environmental improvement. However, estimates of MWTP in the presence of significant con-

straints underestimate the true MWTP. The lack of reliable news outlets in an area, for example,

leads to a dampened local response to public notifications of pollution (Marcus 2021). However, the

same individuals may chose a meaningfully different response in the presence of broadly commu-

nicated information about pollution to a population. Policy aimed at limiting pollution exposure

must also carefully consider constraints that may vary across populations.

This study highlights the interaction between food deserts and SDWA nitrate violation, two

realities that are acute in the rural United States (Bitler and Haider 2010). Generally, food and

beverage items have higher retail prices in food deserts due to higher operating costs. Residents

living in food deserts also face higher travel costs to reach distant supermarkets. Food deserts and

their impacts on inequality and nutrition have long been debated (Allcott et al. 2019).

For this paper, I use USDA’s definition of a food desert (or low access) as a census tract with

at least 500 people, or 33 percent of the population, living more than 1 mile in urban or more than

10 miles in rural areas from the nearest supermarket, supercenter, or large grocery store. Figure

2.3 plots rural food deserts in the United States. Rural food deserts are highly prevalent in the

Western United States. Tables 2.5 and 2.6 in the appendix, respectively, show that consumers in

food deserts and rural areas face higher prices for both bottled water and soda.

2.2 Conceptual Model

I develop a stylized conceptual framework similar to Harrington and Portney (1987), which I extend

to illustrate how resource constraints may limit averting behavior. Consumers derive utility from

health, H, and a composite good, X. H is a dose-response function of health, dependent on

pollution, T , and protective behavior, B. B is consumption of a safe alternative beverage. The dose-

response function for health is a decreasing function of pollution, HT < 0. Alternative beverages

provide a means to lessen exposure to the potential pollutant.
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Figure 2.3: Share of County Population in Food Desert, 2015

Note: Author’s creation from USDA Food Research Atlas data. Figure displays the share
of the county’s population that is over 10 miles away from a grocery store in rural areas
or 1 mile away in urban areas.

U = U(H,X)

H = H(T,B(T )))

(2.1)

Totally differentiating H with respect to T yields equation 2.2, where the first term, HT ,

indicates the direct health effect of exposure to the pollutant. The second term indicates the

behavioral response through which consumers may choose to protect themselves to some extent

through pollution avoidance behavior, indicated by B. Together, dH
dT yields the net effect of an

exogenous change in pollution on health. In observational studies, the net effect, rather than the

direct effect, of pollution on health is observed in practice. Failing to account for this reality will
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undoubtedly lead to inaccurate conclusions about the pollutant’s effect on health.

(2.2)
dH

dT
= HT +HBBT

Consumers maximize utility subject to a budget constraint, Y . I follow Abrahams, Hubbell,

and Jordan (2000) and assume that the price of tap water is equal to zero, and denote the price

of purchasing beverages at retail by piB, which is the unique price faced by each individual. Each

consumer also experiences a unique implicit price, piI ≥ 0, in order to obtain the safe alternative. For

the context of this paper, implicit prices arise due to limited accessibility. The price of the composite

good is normalized to 1 and utility is monotonically increasing in the composite good. Therefore,

the budget constraint holds with equality, and X = Y −(piI+piB)B. The consumer solves the utility

maximization problem with respect to one non-negative variable, B. The Lagrange multiplier for

the non-negativity constraint is represented by µ.

(2.3) max
B≥0 [µ]

U(H(T,B), Y − (piI + piB)B)

The first-order conditions and the solutions to the maximization problem are presented in the

appendix. The solutions to this maximization problem yield a demand function for the protective

behavior that is dependent on the level of pollution, T , and the total price of averting response,

piI + piB. An exogenous change in T will yield a non-negative change in demand for safe beverages,

represented by the partial BT (Y, p
i
I + piB).

In empirical settings, this reduced-form change in demand for an exogenous environmental

quality change captures the average averting response in the sample. The average behavioral re-

sponse, however, fails to express the distribution of avoidance behavior. Implicit costs are one expla-

nation why the behavioral response differs by sub-populations. That is, BT (Y, p
i
B) ≥ BT (Y, p

i
I+piB)

for pI ≥ 0. High implicit costs, piI , may contribute to why the valuation for environmental goods

has been found to be lower in developing country settings.

Bottled water and other beverages for residents in food deserts in rural areas may be rel-
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atively more expensive due to either higher transportation costs or higher baseline retail prices.

Grocery access in food deserts increases the cost for consumers to substitute bottled water for tap

water. Holding all other factors constant, I hypothesize that averting behavior is dampened in

food deserts due to the interaction of costly grocery access in rural areas. I measure this effect by

interacting food access statistics with the public notification information shock.

Consumers in food deserts also may be less likely to consume bottled water due to a higher

retail price in the local retail stores. As the price of bottled water increases in equation (2.10), the

necessary marginal utility of the composite good for a corner solution becomes smaller. Hence, even

in the event of a positive shock to T , the shadow value remains small enough for consumers to stay

at the corner solution.

Importantly, a distribution of BT can also be informative of the direct health impacts of

the pollutant. Consider, again, equation 2.2. For smaller values of BT , the gap between the net

health effect and the direct health effect, dH
dT − HT , lessens. This theoretical model underscores

the distributional relationship to empirically estimate both the behavioral and health response to

nitrate pollution, which may differ by an individual’s context.

2.3 Data

SDWA violations and subsequent notifications provide a quasi-experimental context to study avert-

ing behavior. This research design assumes that consumers cannot predict an impending SDWA

violation and that notification serves as an exogenous shock to perceived water quality. I provide

evidence that consumers only respond in the weeks after a violation occurs, not prior, which is a nec-

essary exogeneity condition for this design. To measure averting response heterogeneity, I assemble

a store-by-week panel from 2010-2019. I exploit weekly within-store variation in SDWA nitrate vi-

olation events to identify average treatment effects and observe cross-sectional heterogeneity across

resource constraints.

2.3.1 Water Quality Violations

Enforcement and Compliance History Online (ECHO) through the EPA contains a record of SDWA

violations and enforcement actions for PWS across the United States. To ensure a precisely identi-
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fied exogenous shock to perceived water quality, I use tier 1 public notifications from SDWA nitrate

violations and notifications as the main sample for my estimation strategy.9 Throughout the re-

mainder of the paper, I use the terms violations and notifications interchangeably since the events

occur on the same day for tier 1 violations.

I define that treatment occurs in the weeks between the date of public notification to the

return to compliance date. Figure 2.7 in the appendix illustrates the timing of these occurrences

throughout the year, showing that some violation types are more seasonal than others.

2.3.2 Beverage Sales

Beverage sales data come from Information Resources Inc (IRI), which provides the most geograph-

ically comprehensive scanner data available. These retail scanner data cover over 48,000 stores

nationally and measure weekly sales by product code (UPC). The widespread coverage of these

data is particularly helpful in measuring the impacts in rural areas, where data availability is typ-

ically sparse. I disaggregate beverage sales into two categories: bottled water and soda. Each

measure is the sum of weekly store revenue from all types of bottled water or soda. Soda sales are

the cumulative of carbonated beverage, sugar- and calorie-reduced beverage (i.e., diet sodas), and

seltzer sales. Bottled water captures non-carbonated, natural or regular water in both small bottles

and multi-gallon, refillable jugs. These data are reported for a variety of store types as exhibited in

Figure 2.6.

2.3.3 Infant Health Outcomes

Nitrate contamination in drinking water poses the most serious health threat to infants and pregnant

mothers. I use proprietary infant health statistics from the CDC’s National Center for Health

Statistics. I aggregate birth statistics in the United States from 2010-2019 to about 190,000 county-

month observations across the United States. Specifically, I use the rate of low-birthweight and

infant mortality to study how SDWA public notification, and how heterogeneous levels of averting

response affect infant health outcomes. Though nitrate ingestion is a known cause of infant deaths

related to "blue-baby syndrome", the CDC does not uniquely categorize these deaths in the data.
9While the public notification date is included in the data, leakages of information or slow dissemination of water

quality information may happen between the violation date and the public notification. This possibility threatens
the experiment design and may lead to an anticipation effect.
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Instead, the primary health outcomes measures total infant mortality in a county measures death

stemming from all causes.

A limitation of this study is the inability to precisely identify the residence of infants and

mothers. Several recent studies use birth-certificate records, latitude and longitude of residence,

and mother fixed effects to control for unobservable characteristics (Currie et al. 2013; Marcus

2021; Hill and Ma 2022). However, at a national level, county-month observations provide the most

geographic and temporal granularity available and provide sufficient power to identify environmental

health effects and are used in a number of settings (Taylor 2022; Hansen-Lewis and Marcus 2022).

2.3.4 Grocery Access & Demographics

The Food Access Research Atlas from the USDA provides cross-sectional census-tract level food

access statistics determined by the distance to the nearest grocery store or source of healthy food.

The Food Access Research Atlas also contains characteristics that may limit food access, like income

and vehicle ownership. This dataset is primarily derived from the 2010 Census, the 2014-2018

American Community Survey, and the 2019 STARS (Store Tracking and Redemption System).

These data provide the primary community characteristics through which I evaluate heterogeneity

in averting behavior.

Given that these data are cross-sectional, they will be unable to capture any variation in

demographics over the course of the sample. For example, water pollution may cause local residents

to move to reduce exposure to the pollutant – a more long-run and extreme form averting behavior.

However, given that this type of out-migration could take years to be fully realized, this possibility

is unlikely to bias the short-run averting response through beverage sales.

2.4 Empirical Model

2.4.1 Averting Behavior and Heterogeneity

The staggered nature of SDWA violations in communities across the United States allows for the

implementation of a dynamic difference-in-difference (DD) empirical specification. A number of

studies have similarly used the exogenous and staggered timing of SDWA violations as a quasi-
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experimental research design. However, a large and growing literature documents the potential

bias in difference-in-difference estimated using two-way fixed effects (TWFE) with variation in

treatment timing (Goodman-Bacon 2021). Generally, TWFE controls time-invariant differences

and macroeconomic shocks. However, the bias arises because TWFE also residualizes the treatment

variable, and already treated units are used as implicit counterfactuals. The magnitude of the TWFE

bias is dependent on the degree of heterogeneity across time and has potentially severe consequences

for the interpretation of TWFE coefficients.

While this potential bias is now well understood, subsequent work has proposed alterna-

tive estimators to TWFE to uncover unbiased estimates in staggered DD settings (Callaway and

Sant’Anna 2019; Gardner 2021). For this setting, Gardner (2021) provides an ideal alternative,

estimating DD in two-stages. Using only pre-treated units, the time and individual fixed effects are

estimated in the first stage. The remaining variation in the outcome variable, after controlling for

fixed effects, is used to identify the unbiased treatment effect in the second stage. I demonstrate

this small bias by comparing the TWFE estimates, which are similar to Allaire et al. (2019), with

the estimator from Gardner (2021).

To estimate the response to tier 1 SDWA public notifications, I estimate equation (2.4),

where Bist are beverage sales in cents at store i and in state s in week-year t. Treatment, V ioist is

equal to 1 during active violation weeks, and 0 otherwise. I multiply treatment by wi, which is the

percentage of the store’s census-tract affected by the violation. Together, V ioist × wi capture the

community treatment intensity. The vector Xist captures time-varying controls (e.g., weather). The

base specification uses week-by-year fixed effects denoted by λt, which absorbs national seasonality

in beverage sales and macroeconomic shocks. I also include store-by-event fixed effects, αi, which

capture time-invariant factors, like store location and size of the consumer population.10 Addition-

ally, state-by-year fixed effects, ϕs, capture state-year specific regulatory differences.11 Standard

errors are multi-clustered at the store and violation level (Cameron, Gelbach, and Miller 2011).

This accounts for potential serial correlation within individual stores over time and between stores

affected by the same violation. Following Gardner (2021), I estimate equation 2.4.
10Population size and demographics of the local population could obviously change over the course of the panel.

This change is a potential omitted variable if it correlated with treatment timing (i.e. out-migration due to poor
water quality). This implies that my point estimates underestimate the full averting behavior taken by consumers,
but estimating the out-migration effect is beyond the scope of this paper.

11State agencies carry out the enforcement and monitoring of SDWA requirements among PWS.
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(2.4)
With not yet treated sample: log(Bist) = ϕ′Xist + λt + αi + ϕs + εist

With full sample: ˆεist = βV ioist ∗ wi + ϕ′Xist + µist

I additionally estimate the dynamic version (or event-study) of equation 2.5 to offer insight

into the evolution of the treatment effect in the weeks following a violation and detect persist-

ing effects beyond a return to compliance. This specification also offers evidence to support the

identifying assumption that, conditional on fixed effects and covariates, beverage purchases would

have not significantly differed in the absence of violation. For the event-study, I use an eight week

window before and after the violation.12 I ensure a balanced panel during the event-study window.

Following Schmidheiny and Siegloch (2023), I bin all other observations outside the event-study

window into the window endpoints. I use the third week prior to violation as the baseline week,

which allows this specification to detect any anticipatory effect in the two prior weeks.

The event-study results are estimated with equation 2.5, where Weekiw indicates if store i’s

observation is w weeks away from the violation. I also interact this event-week dummy with V ioiswt

because PWS return to compliance at different points post-violation. Therefore, a PWS that returns

to compliance seven weeks post-violation may yield a more lasting response than a PWS with only

a week-long violation. This specification tests for the differing effects between post-violation and

compliant versus post-violation with an active violation.

(2.5)

With not yet treated sample: log(Biswt) = ϕ′Xiswt + λt + αi + ϕs + εiswt

With full sample: ˆεiwt =
w=8∑
w=−8

β1wWeekiw +
w=8∑
w=−8

β2wWeekiw ∗ V ioiswt + ϕ′Xiswt + µiswt

An identifying assumption of this event-study framework is that beverage sales would not

have changed in absence of treatment. In equation (2.5), this assumption is supported if β1w for all

w ∈ [−8,−1] are not statistically distinguishable from zero.

To test for heterogeneity by community demographics, I will estimate equation (2.6), which
12Eight weeks is chosen as the window since all nitrate violations in the sample are resolved in 7 weeks or prior of

initial violation.
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interacts the violation and public notification dummy variable with cross-sectional characteristics.

The vector Zi contains time-invariant demographic variables for socio-economic indicators or re-

source access measures. Elements of γ will report the difference relative to β across values of Zi.

Importantly, the heterogeneity analysis should not be interpreted as causal estimates since Zi is

non-randomly distributed. However, γ can still uncover true heterogeneous treatment effects and

this analysis can be suggestive of the causal mechanisms.

(2.6)
With not yet treated sample: log(Bist) = ϕ′Xist + λt + αi + εist

With full sample: ˆεist = βV ioist ∗ wi + γZi ∗ V ioist ∗ wi + ϕ′Xist + µist

2.4.2 Infant Health Impacts

The SDWA public notification primarily serves to protect consumers from contaminated drinking

water and the negative health impacts. Averting behavior through beverage sales protects consumers

from that threat. However, where aversion does not take place, residents may remain exposed to the

potential health consequences. This project will study the health implication of averting behavior,

or lack thereof, using infant health statistics and drinking water violation and quality records.

To estimate the impacts of nitrate violations on infant health, I use the same exogenous

treatment timing of SDWA violations and public notifications used above to estimate the behavioral

response. However, this specification deviates in two primary ways. First, at the national level,

proprietary infant health outcomes are only available at the county-month level.13 Second, SDWA

informational provisions identify infants under 6 months and pregnant mothers as the subset of

population most susceptible to nitrate exposure. Therefore, the harmful health impacts of nitrate

exposure may manifest themselves anytime nine months after the violation. I estimate the average

local infant health impacts for the nine months after violation. I uncover the reduced form health

impacts by estimating equation 2.7.
13Some states provide researchers access to birth-certificate level data. However, county-month is the most granular

available for a national assessment.
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(2.7)
With not yet treated sample: log(Yit) = ϕ′Xist + λt + αi + εist

With full sample: ˆεist = βNotifist + γZi ∗Notifist + ϕ′Xist + µist

Here, Yit are infant health outcomes in county i in month t. Notifist is a dummy equal

to 1 if a public water system in county i in state s experienced a SDWA nitrate violation and

subsequently distributed public notifications to their residents in the prior nine months. Similar to

the behavioral response, I also test for heterogeneous treatment effects across possible geographic

and socioeconomic constraints.

2.5 Results

2.5.1 Bottled Water

For the baseline estimates of averting behavior, I disaggregate beverage sales into bottled water

sales – the traditional measure of averting behavior in averting behavior studies – and soda. For

nitrate violations, bottled water is the recommended alternative source included in public notifica-

tions. Boiling water, for example, does not eliminate nitrates and potentially makes nitrates more

concentrated. One alternative in-home treatment method that removes nitrates from water is a

costly water-treatment system. Purchasing one of these systems reflects a long-run response since it

would protect against all future potential water quality risks. Therefore, bottled water sales capture

the short-run, lower-bound of averting response by consumers.

Figure 2.4 displays the dynamic response of bottled water sales for the weeks around nitrate

violations. The parallel trends assumption is supported since no pre-treatment week (or binned

pre-treatment) is significantly different than the baseline week (i.e. three weeks prior to violation).

Positive averting response occurs for active violation the 2nd through the 7th weeks after the initial

violation. This delayed response is suggestive of slow dissemination of information throughout a

community. There does not appear to be a persistent effect after water systems return to compliance.

Table 2.1 displays the results of the average treatment effect across all active violation weeks.

Columns (1) and (2) report the biased estimates from TWFE. These point estimates are similar to
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Figure 2.4: Event-Study Results: Bottled Water Sales Pre- and Post- SDWA Violation

Note: Presents the two-stage difference in difference event-study coefficients of logged
bottled water sales for the weeks before and after a SDWA violation. The vertical axis
measures the % difference in bottled water sales relative to 3 weeks prior to the violation.
Violation indicates that the observation remained in an active violation, and compliant
indicates the local PWS returned to compliance. The regression includes, event by store,
week-by-year, state-by-year fixed effects, and weather controls. Standard errors are multi-
clustered at the store and violation level.

those of Allaire et al. (2019), suggesting that my sample doesn’t differ in a statistically meaningful

way. Columns (3) and (4) report the two stage DD results from Gardner (2021) and an intention-

to-treat effect of 17.3%. In this context, the TWFE does bias the point estimate to zero, but the

bias is economically small.

2.5.2 Soda

Instead of substituting bottled water, some consumers may substitute contaminated tap water with

other beverage options, like soda. Soda sales are an alternative form of averting behavior and should

not be ignored in calculating the full response from exogenous changes in nitrate contamination in

drinking water. Analysis of soda additionally gives insight into the indirect effects of drinking
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Table 2.1: Bottled Water Sales during SDWA Nitrate Violation

log(Bottled Water Sales)

(1) (2) (3) (4) (5)

Panel A. TWFE

Nitrate Vio x wi 0.170 0.164 0.229* 0.128* 0.124*
(0.103) (0.104) (0.112) (0.055) (0.053)

Num.Obs. 721 897 721 897 721 897 721 897 721 897

Panel B. DiD2s

Nitrate Vio x wi 0.273* 0.303* 0.315* 0.173*** 0.185***
(0.122) (0.124) (0.125) (0.032) (0.033)

Num.Obs. 721 897 718 634 614 478 614 478 614 478

Std.Errors Store & Vio Store & Vio Store & Vio Store & Vio Store & Vio
Event by Store X X X X X
Week X X X X X
Year X X X X X
Week-Year X X X X
State-Year X X X
Weather Controls Linear Quadratic

Note: Dependent variable is logged bottled water sales in cents. Each regression includes store by event, week by
year, and state by year fixed effects and are weighted by the percent of population affected by the violation. Standard
errors are multi-clustered at the store and violation level.

* p < 0.05, ** p < 0.01, *** p < 0.001

water pollution, as consumers may substitute to beverage options that have their own set of health

externalities.

Figure 2.5 presents the event-study results, where the outcome is sales of soda. Again, the

parallel trends assumption prior to a violation holds. Similar to bottled water, soda sales generally

increase as a result of active nitrate violations. These coefficients are dampened relative to bottled

water, but consumers do respond through alternative beverage forms other than just bottled water

– indicating that local drinking water contamination induces a secondary effect on those affected,

which have negative ramifications for health.

Table 2.2 presents the average treatment effect over all active violation weeks. As with the

bottled water sales, there is bias in the TWFE estimates, but the corresponding point estimates are

not significantly different than each other. Therefore, the TWFE bias is small in this setting.
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Figure 2.5: Event-Study Results: Soda Sales Pre- and Post- SDWA Violation

Note: Presents the two-stage difference in difference event-study coefficients of logged soda
sales for the weeks before and after a SDWA violation. The vertical axis measures the %
difference in soda sales relative to 3 weeks prior to the violation. Violation indicates that
the observation remained in an active violation, and compliant indicates the local PWS
returned to compliance. The regression includes, event by store, week-by-year, state-by-
year fixed effects, and weather controls. Standard errors are multi-clustered at the store
and violation level.

2.5.3 Treatment Effect Heterogeneity

A key contribution of this paper studies the mechanisms through which demographics and resource

constraints limit observed averting behavior. To estimate these effects, I estimate equation 2.6. For

ease of interpretation, I convert all continuous demographic variables into discrete indicators, where

Zi = 1 if census-tract i′s proportion of the population for measure Z is above the sample median.

Table 2.3 presents results from selected measures of heterogeneity. Most notably, column

3 shows significant 31.4% lower averting behavior in low access, food deserts relative to non-food

deserts. Additionally, the average treatment effect in non-food deserts is almost twice that reported

in table 2.1. This suggests that the implicitly higher price limits these residents’ ability to access

alternative drinking water in the weeks after a SDWA violation.
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Table 2.2: Averting Behavior Through Soda

log(Soda Sales)

(1) (2) (3) (4) (5)

Panel A. TWFE

Nitrate Vio x wi 0.174** 0.149** 0.142* 0.094* 0.093*
(0.053) (0.050) (0.055) (0.037) (0.037)

Num.Obs. 621 618 621 618 621 618 621 618 621 618

Panel B. DiD2s

Nitrate Vio x wi 0.217*** 0.220*** 0.179*** 0.113** 0.127***
(0.054) (0.057) (0.040) (0.039) (0.033)

Num.Obs. 621 618 618 423 516 315 516 315 516 315

Std.Errors Store & Vio Store & Vio Store & Vio Store & Vio Store & Vio
Event by Store X X X X X
Week X X X X X
Year X X X X X
Week-Year X X X X
State-Year X X X
Weather Controls Linear Quadratic

Note: Dependent variable is logged soda sales in cents. Nitrate Vio equals 1 when the local PWS has an active
violation. wi is the percent of the census tract affected by the violation. Each regression includes store by event,
week by year, and state by year fixed effects and is weighted by wi. Standard Errors are multi-clustered at the store
and violation level.

* p < 0.05, ** p < 0.01, *** p < 0.001

Additionally, other resource constraints are associated with lower averting response, includ-

ing income and a more expensive retail price for bottled water. These results indicate that popu-

lations remain disproportionately exposed to the health impacts of nitrate contaminated drinking

water. Regulation that assumes individuals have the same portfolio of averting responses avail-

able may exacerbate environmental inequality since low-resource communities are unable to protect

themselves in the same manner as areas with higher-resource availability.

Second, table 2.8 displays the results for soda sales. Similarly, food desert census-tracts

display negative, but not significant, averting response relative to non-food deserts. While none of

the heterogeneity coefficients are statistically significant, they are the same direction and similar

relative magnitude to those of bottled water. These patterns are consistent across both bottled

water and soda purchases – suggesting that the resource constraints limit the purchasing ability for

all products, rather than capturing a systematic correlation between consumer preferences between
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Table 2.3: Heterogeneity in Averting Behavior: Bottled Water Sales

log(Bottled Water sales)

(1) (2) (3) (4) (5) (6)

Nitrate Vio×wi 0.173*** 0.463*** 0.249*** 0.407*** 0.180*** 0.161***
(0.032) (0.128) (0.042) (0.078) (0.027) (0.026)

x Food Desert −0.314*
(0.122)

x Low Income −0.264**
(0.089)

x > Price −0.344**
(0.113)

x > SNAP −0.075
(0.149)

x > Low Vehicle Access 0.059
(0.099)

Num.Obs. 614 478 614 478 614 478 614 478 614 478 614 478
Std.Errors Store & Vio. Store & Vio. Store & Vio. Store & Vio. Store & Vio. Store & Vio.
FE: State by Year X X X X X X
FE: Store by Event X X X X X X
FE: Week by Year X X X X X X
Note: Dependent variable is logged bottled water sales in cents. Each column includes violation by store by event,
week by year, and state by year fixed effects and are weighted by wi. ">" indicates above the median demographic.
Standard errors are multi-clustered at the store and violation level.
* p < 0.05, ** p < 0.01, *** p < 0.001

soda and bottled water.14

Infant Health

The public health externality of drinking water pollution depends on the residents’ ability to respond

to the hazard. As I show in the previous section, the responses vary widely across locations. For

sub-populations that exhibit a relatively lower response to nitrate violation notifications, their

health outcomes are expected to be worse than populations that do engage in protective behavior

as predicted by the stylized theoretical model.

I test this hypothesis by estimating equation 2.7. The first outcome of interest is infant

mortality transformed by the inverse hyperbolic sin. Hence, the main coefficients approximately

report the proportional change in infant mortality in the nine months after a SDWA nitrate violation
14One long-standing claim is that consumers use SNAP funds to purchase more soda compared to the non-SNAP

population. This claim is not supported in these findings, at least in the context of averting response, comparing
estimates from comparing column 5 in tables 2.3 and 2.8.
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(i.e. β×100 = % change) (Bellemare and Wichman 2019). Importantly, I also differentiate the health

impacts by low-access and low-income groups, since tables 2.3 and 2.8 report consistently lower

averting behavior after a SDWA nitrate violation. Table 2.4 displays the reduced-form net impact

on infant mortality for the nine-months after a SDWA violation. Panel A tests for heterogeneity in

these estimates based on low access to grocery stores, and panel B does the same for low income

counties.

The results in column 1 indicate that, on average across all locations, potential exposure to

dangerous levels of nitrates in drinking water does not significantly change infant health outcomes.

However, columns 2 through 5 show that infant mortality significantly increases in populations with

lower access to grocery stores and lower incomes. The preferred specification in column 5 implies

that infant morality increases by 6.3% in low-access counties and 4.4% in low-income counties where

pregnant mothers or infants were potentially exposed to heightened levels of nitrates.15

Conversely, infant mortality rates actually improve in counties with greater access to grocery

stores by 7.7% and in higher-income counties by 5.3%. In these populations, these results are

suggestive that the SDWA public notifications sufficiently inform the at-risk crowd of the potential

health impacts, and residents take the advised action to prevent nitrate exposure. These results are

both consistent with the theoretical model that individuals engage in averting action and consistent

with the empirical behavioral results.

Second, table 2.10 in the appendix reports the results of the impact of nitrate exposure on the

occurrence of low birthweight. Similar to infant morality, the rate of low birthweight is transformed

by the inverse hyperbolic sin. The results for the rate of very low birthweight are reported in table

2.11 in the appendix, and are very similar to low birthweight. On average, counties exposed to

heightened levels of nitrates in their drinking water actually see an improvement in the rate of low

birthweight in the nine-months following a violation. Low-access and low-income areas experience

only a negligible, and insignificant difference, contrary to the infant mortality results.
15The total effects for these populations are the sum of rows 1-2 and 3-4, since "x Low-Access" captures the relative

effect.
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Table 2.4: Nitrate exposure’s impact on infant mortality

asin(IMR)

(1) (2) (3) (4) (5)

Panel A. Low Access

Notified −0.015 −0.059*** −0.070*** −0.073*** −0.077***
(0.011) (0.015) (0.015) (0.014) (0.013)

x Low Access 0.115*** 0.119*** 0.129*** 0.140***
(0.024) (0.024) (0.023) (0.022)

Panel B. Low Income

Notified −0.038** −0.048*** −0.046*** −0.053***
(0.013) (0.013) (0.013) (0.012)

x Low Income 0.082*** 0.086*** 0.085*** 0.097***
(0.024) (0.024) (0.024) (0.024)

Num.Obs. 192 397 192 570 192 570 192 397 192 397
Vio by County X X X X X
Month X X X X X
Year X X X X X
Month-Year X X X X
County-Month X X X
Temp. Contrls X X
Note: Dependent variable is the inverse hyperbolic sin of infant mortality per 1,000 births.
Each regression is weighted by the total birth, and includes multiple specifications of fixed
effects. Standard errors are clustered at the violation level.
* p < 0.05, ** p < 0.01, *** p < 0.001

2.5.4 Welfare and Policy Implications

The behavioral costs associated with avoiding contaminated tap water due to nitrate violations can

be estimated by equation 2.8. Since all SDWA nitrate violations are not included in my primary

estimating sample, I use data from Pennino et al. (2020) on the total number of individuals impacted

each year and the average length of violation. This assumes that the behavioral response in my

sample is representative of all nitrate violations in the United States and the IRI retail data is

representative of all retails.16 The United States’ generates approximately $19.4 billion in annual

bottled water sales and $29.4 billion in soda sales (International Bottled Water Association 2019;
16There is no way to prove that these assumptions are accurate, but Zivin, Neidell, and Schlenker (2011) make the

same assumptions about a smaller subset of retail stores in only Nevada and California.
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Beverage Industry 2020). Distributing each of these figures uniformly across the population of the

United States and the weeks of the year, BWpw and sodapw capture the average expenditure per

person per week on bottled water and soda respectively.

(2.8) Behavioral Costs =
∑
p

∑
w

(β̂BW ×BWpw + β̂soda × sodapw)

This exercise indicates that consumers spend approximately $2.5 million on bottled water

purchases and $2.2 million annually on soda annually in the United States as a result of nitrate

violations.17 This figure more than twice exceeds that of Zivin, Neidell, and Schlenker (2011) due to

the downward TWFE bias and not accounting for substitution to other beverages. Yet, considering

Dodds et al. (2009) estimates nitrogen pollution accounts for $2.2 billion in damages annually in

surface water, the expenses paid by the affected residents is relatively small.

However, this number understates the full behavioral costs of nitrate violations due to a

number of other, long-term protective actions, like water filtration systems. Bottled beverages cap-

ture only a portion of the short-term response, but they provide a relatively inexpensive alternative

for protection against the potentially harmful health effect. Furthermore, the PWS themselves and

the local taxpayers they serve must undergo expenses to return to SDWA compliance. Jensen et al.

(2012) report that these expenses could range from anywhere between $200,000 to $40 million per

system, depending on the size of the system and technology.

Furthermore, the economic damages to human health to those who remain exposed are likely

higher than the behavioral impact. Over the 10-year panel of this study, about 4.5 million children

were born in areas classified at low-access and in the nine months window following a drinking

water nitrate violation. Given the estimate in table 2.4 that infant mortality was 6.3% higher in

such counties and an average infant mortality rate of approximately 4.9 deaths per 1,000 births in

these counties, this equates to roughly 143 additional infant deaths per year associated with nitrate

violations in low access areas. Using EPA’s value of statistical life measure of $11.17 million (in
17A large literature studies the effects of soda consumption and the impacts of obesity (Bleich and Vercammen

2018). An indirect effect of drinking water contamination may lead to worsened health, like increased obesity rates,
if consumers opt to substitute water consumption with sodas. These indirect health impacts are not accounted for
in this analysis.
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2022 dollars), the back-of-the-envelope health costs of nitrate violations per year in food deserts

exceeds $1.5 billion.18

It should be noted, again, that the heterogeneous treatment estimates should not be inter-

preted as causal estimates, but demonstrate that nitrate contamination poses severe health risk to

those who do not exhibit avoidance behavior, whether food deserts are the causal mechanism or other

confounding factors. The environmental health costs in exposed populations far exceeds the behav-

ioral costs, accentuating the disparity in environmental health outcomes in resource-constrained

populations.

2.6 Discussion

Nitrate-contaminated drinking water poses serious health threats to infants, and possibly others.

The impacts of this pollution depend on individuals’ abilities to adapt to the potential health

threat. However, communities affected by nitrate-contaminated drinking water also often exist in

resource-constrained areas. These resource constraints may prevent individuals from protecting

against the environmental hazard and exposed to the negative health consequences. In this paper,

I show that consumers respond, on average, by purchasing 17.3% more bottled water and 11.3%

more soda as a response to nitrate violations. These are relatively cheap forms of protection, which

translates to roughly $4.7 million in annual averting expenditures. This amount is likely far less the

counterfactual health damages if all individuals remained exposed to heightened levels of nitrates.

However, individuals in food deserts and low-income populations exhibit a significantly dampened

response.

In reduced-form evidence, I also show that the same constraints which limit averting re-

sponse are associated with detrimental infant health impacts. In the nine-months following a nitrate

SDWA violation, low-access counties experience a 6.3% increase in the infant mortality rate and

4.3% increase in low-income counties. Whereas, counties with fewer constraints actually see an im-

provement in infant health outcomes. These findings are consistent with the theoretical framework

that avoidance behavior protects against the harmful health impacts of nitrate pollution in drinking

water. Regulations that induce avoidance behavior through informational provisions do appear to
18See link for details on EPA’s mortality risk valuation.
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protect some from these effects. However, populations where the response is limited experience net

negative impacts on infant health.

The results of this paper quantify the externality of nitrate pollution in drinking water both

through the channels of behavioral response and net health impacts. While there are no federal

policies considering the regulation of nitrogen use in agriculture in the United States, I provide

further evidence that the costs of nitrate pollution are large and far-reaching. I also show that

the SDWA sufficiently protects some residents from the health costs associated with drinking water

pollution, but others remain exposed and experience these health impacts, potentially worsening

environmental health inequality.
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2.7 Appendix

2.7.1 Theoretical Solutions

This utility maximization problem yields the following set of first-order conditions:

UHHB(T )− UX(piI + pB) + µ = 0

B ≥ 0

(2.9)

Case 1: (B = 0)

Under this scenario, consumers utilize only tap water for their residential and drinking needs.

For a corner solution to exist for other beverage consumption the inequality in equation (2.10) must

hold, where the right-hand side represents the shadow value of avoiding health damages from tap

water consumption. The corner solution emerges when the marginal rate of substitution between the

composite good and health is greater than the shadow price of perceived health damages. Equation

(2.10) implies that either (i) the perceived damages from drinking tap water are sufficiently small

and (ii) that the price of alternative beverages is sufficiently high relative to the marginal utility of

the composite good, X, so that the consumer chooses to not purchase other beverages.

(2.10)
UX

UH
>

−HT

piI + pB

Case 2: (B > 0)

In case 2, the consumer purchases a positive amount of the alternative source. Demand for

B will satisfy equation (2.11) and will be a function of the exogenous water quality (T ), income

(Y ), the retail price (pB), and the unique implicit price faced by each consumer, (piI). This equation

represents the tradeoff between investing in additional units of a clean source of drinking water and

the composite good.

(2.11)
UX

UH
=

−HT

piI + pB
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2.7.2 Additional Tables and Figures

Table 2.5: Price of Bottled Water by Store and Location Characteristics

log(Bottled Water Price)

1 2 3 4

(Intercept) 0.525*** 0.092*** 0.677*** 0.648***
(0.002) (0.001) (0.002) (0.001)

Food Deserts 0.092***
(0.002)

Convenience 1.081***
(0.001)

Dollar 0.180***
(0.001)

Drug 0.262***
(0.001)

Mass Merchandiser 0.254***
(0.002)

Urban −0.081***
(0.002)

Low Income −0.111***
(0.001)

Num.Obs. 747 449 747 449 747 449 747 449

Note: Dependent variable is the logged price of bottled wa-
ter in cents. Coefficients on store types are relative to the
price at grocery stores.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2.6: Price of Soda by Store and Location Characteristics

log(Soda Price)

1 2 3 4

(Intercept) 1.248*** 1.016*** 1.345*** 1.337***
(0.001) (0.001) (0.001) (0.000)

Food Deserts 0.054***
(0.001)

Convenience 0.542***
(0.001)

Dollar 0.042***
(0.001)

Drug 0.237***
(0.001)

Mass Merchandiser 0.088***
(0.001)

Urban −0.056***
(0.001)

Low Income −0.105***
(0.001)

Num.Obs. 644 361 644 361 644 361 644 361

Note: Dependent variable is the logged price of soda in
cents. Coefficients on store types are relative to the price at
grocery stores.
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 2.7: Heterogeneity in Averting Behavior: Bottled Water Sales

log(Bottled Water)

1 2 3

Nitrate Vio 0.173*** 0.266** 0.131***
(0.032) (0.087) (0.035)

x> Non-White −0.264**
(0.085)

x Rural 0.164*
(0.068)

Num.Obs. 614 478 614 478 614 478
Std.Errors Store & Vio. Store & Vio. Store & Vio.
FE: State by Year X X X
FE: Store by Event X X X
FE: Week by Year X X X
Note: Dependent variable is logged bottled water sales in cents. Each column includes violation by
store by event, week by year, and state by year fixed effects and are weighted by wi. ">" indicates
above the median demographic. Standard errors are multi-clustered at the store and violation level.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Figure 2.6: Raw Bottled Water Sales by Store Type

Note: Figure displays the logged sum of bottled water sales in cents in each week between 2010 and
2019 by store type. Author’s creation from IRI Retail Scanner Data
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Figure 2.7: Sum of SDWA Violations by Month and Type, 2010-2019

NOTE: LCR = Lead/Copper Rule, Rads= Radionucleotides, RTCR= Revised Total Coliform Rule, VOC= Volatile
Organic Compounds.
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Figure 2.8: Public Notification Example and Requirements
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Figure 2.9: Identifying Variation After Conditioning on Fixed Effects
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Table 2.8: Heterogeneity in Averting Behavior: Soda Sales

log(Soda sales)

(1) (2) (3) (4) (5) (6)

Nitrate Vio*wi 0.113** 0.275** 0.123** 0.303*** 0.117** 0.101*
(0.039) (0.105) (0.039) (0.080) (0.042) (0.045)

x Low Access −0.175
(0.124)

x Low Income −0.033
(0.048)

x > Price −0.267
(0.153)

x > SNAP −0.038
(0.085)

x > Low Vehicle Access 0.063
(0.065)

Num.Obs. 516 315 516 315 516 315 516 315 516 315 516 315
Std.Errors Store & Vio. Store & Vio. Store & Vio. Store & Vio. Store & Vio. Store & Vio.
FE: State by Year X X X X X X
FE: Store by Event X X X X X X
FE: Week by Year X X X X X X
Note: Dependent variable is logged soda sales in cents. Each column includes violation by store by event, week by year,
and state by year fixed effects and is weighted by wi. ">" indicates above the median demographic. Standard errors
are multi-clustered at the store and violation level.
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 2.9: Heterogeneity in Averting Behavior: Soda Sales

1 2 3

Nitrate Vio 0.113** 0.093** 0.084*
(0.039) (0.033) (0.039)

x> Non-White −0.084*
(0.042)

x Rural 0.116*
(0.051)

Num.Obs. 516 315 621 618 516 315
Std.Errors Store & Vio. Store & Vio. Store & Vio.
FE: State by Year X X X
FE: Store by Event X X X
FE: Week by Year X X X
Note: Dependant variable is logged soda sales in cents. Each column includes violation by store by
event, week by year, and state by year fixed effects and are weighted by wi. ">" indicates above
the median demographic. Standard errors are multi-clustered at the store and violation level.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2.10: Nitrate exposure’s impact on low birthweight occurrences.

asin(Low Birthweight)

(1) (2) (3) (4) (5)

Panel A. Low Access

Notified −0.028*** −0.026*** −0.029*** −0.030*** −0.027***
(0.004) (0.005) (0.005) (0.005) (0.005)

x Low Access 0.003 0.003 0.001 −0.002
(0.007) (0.007) (0.008) (0.007)

Panel B. Low Income

Notified −0.028*** −0.022*** −0.025*** −0.025*** −0.024***
(0.004) (0.005) (0.005) (0.005) (0.004)

x Low Income −0.006 −0.006 −0.009 −0.009
(0.008) (0.008) (0.008) (0.007)

Num.Obs. 192 397 192 570 192 570 192 397 192 397
Vio by County X X X X X
Month X X X X X
Year X X X X X
Month-Year X X X X
County-Month X X X
Temp. Contrls X X
Note: Dependent variable is the inverse hyperbolic sin of low birthweight rate per 1,000 births. Each
regression is weighted by the total birth, and includes multiple specifications of fixed effects. Standard
errors are clustered at the violation level.

* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2.11: Nitrate exposure’s impact on the rate of very low birthweight occuraces.

asin(Very Low Birthweight)

Panel A. Low Access

Notified −0.032*** −0.034*** −0.035*** −0.035*** −0.032***
(0.007) (0.010) (0.010) (0.010) (0.010)

x Low Access 0.005 0.006 0.001 −0.001
(0.015) (0.015) (0.015) (0.014)

Panel B. Low Income

Notified −0.032*** −0.037*** −0.037*** −0.039*** −0.038***
(0.007) (0.009) (0.009) (0.010) (0.009)

x Low Income 0.013 0.013 0.012 0.013
(0.016) (0.016) (0.016) (0.016)

Num.Obs. 192 397 192 570 192 570 192 397 192 397
Vio by County X X X X X
Month X X X X X
Year X X X X X
Month-Year X X X X
County-Month X X X
Temp. Contrls X X
Note: Dependent variable is the inverse hyperbolic sin of very low birthweight rate per 1,000 births.
Each regression is weighted by the total birth, and includes multiple specifications of fixed effects.
Standard errors are clustered at the violation level.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Chapter 3

Groundwater and Climate Adaptation

The costs of climate change are expected to be broad in reach and disproportionately borne by

the poor (Hsiang, Oliva, and Walker 2019). The latter occurs in part because the magnitude of

damages depends on the ability to adapt, and poorer households are less likely to have the means

to respond (Dell, Jones, and Olken 2012, 2014; Burke and Emerick 2016; Jessoe, Manning, and

Taylor 2018; Rode et al. 2021). Averting actions taken by some to mitigate climate damages may

also impose externalities that are disproportionately realized. However, little is known about the

extent to which avoidance behaviors taken to reduce climate damages impose costs on others.

I study this in the context of groundwater in California by evaluating the extent to which

mitigating behaviors taken in response to heat and surface water scarcity lead to groundwater

depletion and drinking water well failures. Historically, the agricultural costs of heat and drought

in California have been moderate, partly because precipitation is an inaccurate measure of total

water availability for irrigated agriculture (Schlenker, Hanemann, and Fisher 2005, 2007; Edwards

and Smith 2018). In California, farmers instead rely on surface water supplies conveyed via canals

and water projects and groundwater pumped from wells. This latter resource has operated as a

critical mitigation strategy to dampen the agricultural costs of surface water reductions and heat,

and may explain why some forecast that the costs of climate change in California will be minimal

(Mendelsohn, Nordhaus, and Shaw 1994; Lund et al. 2018).1 However, this groundwater extraction
1Climate change is expected to increase the frequency and severity of extreme heat and drought, make precipitation

more variable, and reduce soil moisture (Swain et al. 2018). Collectively, these factors will increase agricultural
demand for water and introduce large uncertainty into surface water availability for agricultural irrigation. To buffer
against surface water curtailments and increased demand, agricultural users have often drawn from groundwater
reserves.
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also imposes costs on current users and future users. A declining water table may impose a pumping

externality which makes groundwater irrigation costlier for neighboring farms and a stock externality

which makes it unavailable to farmers in the future (Provencher and Burt 1993; Roseta-Palma 2002;

Brozović, Sunding, and Zilberman 2010; Pfeiffer and Lin 2012; Edwards 2016; Merrill and Guilfoos

2017).

Less well understood is the acute and contemporaneous costs that groundwater pumping

may exact on drinking water supplies in surrounding communities. Many households rely on private

domestic wells for drinking water purposes. These users are concentrated in California’s San Joaquin

Valley, and are disproportionately low income and people of color.2 Access to drinking water supplies

among disadvantaged communities is a growing concern, with recent forecasts projecting that 10,500

domestic wells in the San Joaquin Valley are expected to run dry by 2040 (Pauloo et al. 2020).

This paper examines the extent to which new groundwater well construction by farmers, in

response to annual fluctuations in heat and surface water scarcity, impacts depth to the water table

and access to domestic wells. Myconceptual framework posits that surface water curtailments and

heat will induce agricultural users to respond on the intensive and extensive margins, extracting

more water from existing wells and building new and deeper groundwater wells. These responses

will impact access to drinking water supplies through the channel of groundwater scarcity. I empir-

ically test these hypotheses by first capturing the gross effect on agricultural groundwater demand

by evaluating how the depth to the water table changes in response to heat and surface water

curtailments. Then, I evaluate the reduced-form relationship of heat and surface water scarcity on

domestic well failures, assuming this operates through the channel of groundwater table depletion.

Finally, I estimate the effects of extreme heat and surface water curtailments on the response of

agricultural producers through the drilling of new groundwater wells.

To empirically measure these impacts, I constructed a panel spanning 30 years on drinking

and groundwater access for all agricultural water districts in California. I combined the universe

of groundwater wells constructed, data on domestic well failures, groundwater depth data from

groundwater monitoring stations, gridded weather data, and annual data on district-level surface

water supplies. Information on groundwater well construction and well failures includes the location
2California’s San Joaquin Valley, a region that is over 50% Latina/o and contains some of the highest rates of

poverty and food insecurity in the state.
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and date of construction, well depth, and well type for over a million wells. Schlenker and Roberts

(2009) provide measures of temperature and precipitation derived from PRISM monthly data and

daily weather station observations, and data from Hagerty (2021) measures the universe of surface

water allocations in California by area and year from 1993 to 2020. These detailed data allow

me to deploy an instrumental variables panel data approach that exploits annual fluctuations in

temperature and surface water shocks, and controls for a number of factors, such as fixed differences,

and annual shocks, such as recessions, that likely impact water access and agricultural producer’s

decision making in these local areas.

A first set of results indicates that extreme heat and reductions in agricultural surface

water supplies lower the depth to the groundwater table. A one acre-foot (AF) reduction in the

agricultural surface water allocation to every California cropland acre lowers local groundwater

levels by an additional 4 feet. An additional harmful degree day reduces groundwater levels by 0.5

inches. Declining water tables suggest that the costs of climate change may be larger in the long-

run if farmers cannot buffer with groundwater resources (Hornbeck and Keskin 2014; Auffhammer

2018).

A second central result indicates that farmers are responding to heat and surface water

scarcity through the construction of groundwater wells. I estimate that for each acre foot (AF) of

reduced surface water allocations for agriculture, the annual rate of agricultural well construction

increases by 46%. Using an approximated cost of $75,000 to construct an agricultural well (Central

Valley Flood Protection Board 2020), this translates to a back-of-the-envelope $37 million dollars

invested annually in extensive-margin adaptation behavior by California farmers. This number also

provides a lower-bound estimate on the avoided climate damages to California agriculture.

Myfinding that extreme heat will increase groundwater demand brings a new data point to

the understanding of how climate change will influence water resources. While climate projections

indicate increased year-to-year variation in rainfall, projections on the amount of precipitation are

less clear (Jessoe, Mérel, and Ortiz-Bobea 2018). Myresults highlight that even if water supplies

remain unchanged, warmer temperatures will increase demand for groundwater, with an additional

harmful degree day increasing well construction by 1.2%. They also offer empirical evidence of

historical agricultural adaptation to heat, with groundwater extraction serving as a critical buffer

to mitigate the costs of extreme heat in California (Burke and Emerick 2016; Hornbeck and Keskin
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2014; Barreca et al. 2016; Auffhammer and Schlenker 2014).

Extreme heat and surface water scarcity also lead to domestic well failures, with a 1 AF

decrease in surface water supplies and an extra HDD increasing failures by 5 and 0.2 percentage

points, respectively. These results are consistent with a theoretical framework and computational

hydrology model in which increased groundwater consumption among agricultural users comes at the

cost of drinking water supplies through the channel of a declining water table (Pauloo et al. 2020).

More broadly, this work adds a new dimension to the understanding about inequities in exposure to

environmental costs (Banzhaf, Ma, and Timmins 2019). A recent literature documents the unequal

rate at which disadvantaged communities are exposed to pollution and the relative health costs,

as well as the distributional implications of environmental regulations intended to reduce exposure

(Currie 2011; Hernandez-Cortes and Meng 2020; Bento, Freedman, and Lang 2015). This work

implies that inequities arise from the absence of regulation, specifically that mitigating behaviors

by those with access to capital will impose costs on disadvantaged groups. When implementing

proactive policy aimed at easing the burden of climate change, policymakers must ensure they are

not unintentionally burdening the most vulnerable individuals.

This finding is also informative for the design of drinking water regulations in the United

States. Drinking water quality issues impose severe costs in less advantaged communities, and

are a growing concern in rural communities in the Southwest (Allaire, Wu, and Lall 2018; Marcus

2021; Christensen, Keiser, and Lade 2023). Drinking water is also becoming increasingly expensive,

making affordability a growing concern (Cardoso and Wichman 2022). I find that access to drinking

water supplies as measured by domestic well failures and depth to the water table will be exacerbated

under climate change, and disproportionately affect disadvantaged communities.

3.1 Agriculture and Rural Communities in California

California agriculture plays a significant role in the global food value chain. The agricultural industry

in California employs over 400,000 people and generates over $50 billion in agricultural sales, the

most of any state in the United States. California also contributes the entire U.S. supply of some

fruits and nuts, like almonds, pistachios, and plums (California Department of Food and Agriculture

2020).
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Figure 3.1: Poverty Rate of California Counties

Note: The figure graphs the percent of the population in poverty
by California county. Data come from USDA Economic Research
Service.

California’s Central Valley and other productive agricultural land in the Western U.S. re-

ceives insufficient rainfall for agricultural production. Irrigation infrastructure and technology has

played a significant role in the development of the agricultural economy in these states (Hornbeck

and Keskin 2014; Edwards and Smith 2018). In contrast, agriculture east of the 98th meridian pri-

marily relies on periodic rainfall for crop production. Agricultural irrigation in California consumes

over 80% the state’s water and occurs via surface water and groundwater, with the latter accounting

for roughly 40% of water supplies (Hrozencik and Aillery 2022).

Agricultural production in California is heavily concentrated in the San Joaquin Valley (SJV)

in central California. The counties that comprise the SJV are largely rural and experience some of

the highest poverty rates in the country as shown in figure 3.1. (A secondary center of agriculture

is the Imperial Valley, which appears on the map as the high-poverty county in the southeastern

corner of the state.) Many households in rural areas utilize private domestic wells and depend

on groundwater wells for residential use and drinking water supply. The geographic intersection of

agricultural groundwater use and groundwater-dependent households makes these areas particularly

vulnerable to climate change damages.
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3.1.1 Surface Water Irrigation

Summertime surface water availability in California is largely determined by the previous winter’s

snowfall. As the Sierra Nevada snowpack melts, it is captured in reservoirs and later delivered to

farmers and irrigation districts through a network of canals. Swings between dry and wet winters

in California translate to significant variation in surface water supplies from year-to-year.

Surface water is allocated through a complex first-in-time, first-in-right scheme that has

persisted since the early 1900s. A water user or entity will either hold a right to divert water

directly from a nearby river or possess a long-term contract to water deliveries through canals

operated by the State Water Project or the federal Central Valley Project. Most water rights and

contracts are held by irrigation districts – local government agencies – which then supply water to

farms within their jurisdiction. Water is typically rationed by quantity rather than price, and by

custom or law supplied equally to producers on a per-acre basis.

Rights and contracts do not guarantee water supplies in any given year. Water rights are

satisfied in order of seniority, though enforcement is largely informal. In practice most agricultural

water rights are senior to the federal and state water projects, which bear the brunt of water short-

ages in dry years. Contracts with the federal and state water projects constitute a maximum annual

volume and a contract category. Each year, the U.S. Bureau of Reclamation and the California De-

partment of Water Resources (DWR) announce a set of allocation percentages, which determine

how much of their maximum volume contractors in each category will receive. In recent years, it is

common for allocation percentages to be set as low as 0% during droughts. Thus, the impacts of

drought manifest through changes in surface water.

Year-to-year fluctuations in surface water allocations are determined by the government

agencies through bureaucratic processes that depend on reservoir levels, environmental conditions,

and weather forecasts. Allocations are announced prior to the growing season, before producers

make input decisions. Actual surface water deliveries can differ from allocations in a few ways.

Irrigation districts can purchase additional water mid-season on the spot market, pump water from

groundwater banks, or reserve water for up to a year in response to environmental conditions.

Hence, actual surface water deliveries are potentially endogenous to drought.
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3.1.2 Groundwater Irrigation

Groundwater has traditionally acted as a buffer to fluctuations in surface water supply. Groundwater

accounts for 80% of water supplies during times of drought. Changes in surface water deliveries are

thus correlated with groundwater pumping which affects the water table. Historically, this sector

has been largely unregulated. Owners of land have the right to drill wells and pump groundwater

with few restrictions. The open-access nature of groundwater has led to declining groundwater

levels, higher costs to pump, and other negative consequences. As a result, a historic groundwater

regulation was passed in 2014 – the Sustainable Groundwater Management Act (SGMA) – with the

aim to sustainably use and manage groundwater in California by 2042.3

The cost of groundwater well construction varies widely based on the completed drilled depth

and intended use. Residential domestic wells are typically between 100 and 300 ft deep and cost

approximately $10,000. Agricultural wells are drilled between 300 and 500 ft deep on average and

cost between $50,000 and $100,000. They are drilled with a wider diameter than residential wells

to allow for higher flow rates. New wells are required to be reported to the DWR and are typically

constructed in under a week (Central Valley Flood Protection Board 2020).

3.1.3 Drinking Water in Rural Communities

Most individuals in California receive residential and drinking water from community water sys-

tems regulated by the Safe Drinking Water Act (SDWA)4. However, many individuals outside of

community water system boundaries, like households in rural areas, rely on private groundwater

wells for their domestic water supply. Figure 3.2 shows the number of domestic groundwater wells

constructed from 1993 to 2020 across the state. Deteriorating drinking water quality is pervasive for

many of these users, especially since these water sources are outside the jurisdiction of the SDWA.

Declining groundwater tables also threaten safe and affordable access to residential water for this

subset of the population.

Counties in California’s San Joaquin Valley experience some of the highest poverty rates in

the country and are a large percent Latino/a (Huang and London 2012). Many of these individuals
3Most SGMA sustainability plans were developed and will be enforced by local groundwater sustainability agencies

(GSA) starting in 2022, after the sample of study. There remains no direct restrictions on the drilling of groundwater
wells in these plans.

4Community water systems are public water systems with over 15 connections and serve greater than 25 people.
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Figure 3.2: Total Domestic Wells Constructed from 1993-2020

Note: The figure shows a count of the number of domestic
groundwater wells constructed from 1993 to 2020 by Detailed
Analysis Unit by County, the smallest water management plan-
ning unit defined by the California DWR. Data are from DWR.

are also employed by the local agriculture industry (Martin and Taylor 1998). Table 3.1 reports

the proportion of reported well failures as a fraction of the total number of domestic wells by local

demographics, agricultural intensity, and well characteristics. Wells in census tracts with above

median poverty rates and above median percent non-white populations report well failures at a

higher rate than populations below the median. Additionally, areas where land is cultivated at a

higher percent for agricultural use also experience well failures at a higher rate.

3.2 Conceptual Model

I develop a conceptual model of changes in the depth to the groundwater table as a function of

properties of the aquifer and groundwater demand from agricultural pumpers. I decompose the

gross effect by changes in new wells constructed (extensive margin) and changes in the intensity of

pumping at each well (intensive margin) in the style of Hendricks and Peterson (2012). I model

agricultural groundwater use as a function of surface water availability, s, and a measure of extreme
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Table 3.1: Probability of Well Failure by Local Demographics and Well Characteristics

(1) (2) (3) (4)
Below Median Above Median Difference p-value

Poverty Rate 0.0089 0.0346 0.0258 0.0000
% Cropland 0.0091 0.0426 0.0335 0.0000
% Non-White 0.0085 0.0348 0.0263 0.0000
Population 0.0166 0.0305 0.0139 0.0000
Well Depth 0.0249 0.0264 0.0015 0.1793
Note: Columns 1 and 2 display the probability of domestic well failure for all domestic
wells in California by socioeconomic, agricultural, and well characteristics. Demographic
data come from the USDA Food Research Atlas and are assigned at the census tract lev-
els. Poverty rate is the percent of households living below the Federal income thresholds
by family size. Column 3 calculates the difference between the above median probability
and below, and Column 4 reports the p-value for a two-sample t-test of the well failure
probabilities.

heat, h. In the context of California, approximately 60% of agricultural irrigation is supplied from

surface water. Additionally, warmer growing seasons will likely impact irrigation for crop acres (Rosa

et al. 2020). Let w(s, h) then be the number of wells used for agricultural irrigation. Similarly, let

q(s, h) determine the average amount of groundwater pumped per well. Together, the total volume

of groundwater extracted is equal to w(s, h) × q(s, h). I multiply this by a constant hydrologic

aquifer storage coefficient, κ, to translate the volume of water extracted to a unit decline in the

water table per acre in that aquifer.5 Then, adding the extracted groundwater for irrigation to

the baseline groundwater level, DTW0, I recover the new depth to the water table based on the

behavior response by farmers.

Depth to the water table, DTW , is therefore given by:

(3.1) DTW (s, h) = DTW0 + κ× w(s, h)× q(s, h)

Differentiating with respect to either surface water or heat yields:

(3.2) DTW ′(s, h) = κ
[
w′(s, h)× q(s, h) + q′(s, h)× w(s, h)

]
5κ is defined as the inverse of hydrologic storativity of an aquifer. Storativity measures the hydrologic yield of an

aquifer, which is the proportion of space that water can occupy within an aquifer. For example, a storativity value
of 0.12, which is typical in California’s Central Valley (Department of Water Resources 2020), means that 12% of an
aquifer’s space can hold water. The other 88% is composed of porous rock and sediment.
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where w′(s, h) reflects changes in the number of groundwater irrigation wells used due to surface

water or heat shocks – the extensive-margin response. Likewise, q′(s, h) reflects the intensive-margin

change in storage, or the change in the average volume of groundwater pumped per well net recharge

due to changes in surface water or heat. 6

In the empirical analysis, I am able to estimate both the gross change in groundwater levels

by climate-induced changes in groundwater demand and the extensive-margin effect of farmers

adapting to surface water scarcity and heat through new well construction. With a value of the

aquifer’s storativity used to estimate κ, I can then back out the intensive-margin effect.

Groundwater extraction to buffer against the costs of heat and surface water scarcity may

impose external damages on others by increasing the scarcity of groundwater supplies through a low-

ering of the water table. I assume that these damages are proportional changes to the groundwater

level.

That is, the external damages, D, are increasing linearly in the decline of the depth to

the groundwater. Equation 3.3 outlines this relationship, where c is the marginal external damage

associated with a foot reduction in the water table.

(3.3) D(s, h) = c×DTW ′(s, h)

In the empirical setting, I shed light on the magnitude of these externalities by showing the extent

to which changes in surface water scarcity and heat lead to a lowering of the groundwater table,

and ultimately household well failures.

3.3 Data

Panel data on surface water deliveries and allocations, groundwater levels, and well construction

and failures form the primary dataset for this analysis. I supplement these data with additional

information on local weather. Table 3.2 provides summary statistics.
6I do not attempt to model recharge in this decomposition. The intensive-margin response by the farmers to heat

and surface water scarcity is actually greater than captured in q′(s, h). I discuss this point further in the empirical
conclusions.
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Unit of Observation

Due to the nature of the data, it is necessary to define a geographic unit of aggregation for several

variables. When necessary, I aggregate to the Detailed Analysis Unit by County (DAU by Co or

DAUCO) boundaries. DAUs divide California’s hydrologic regions and planning areas into smaller

geographic areas for agricultural land use and water balance analysis by California Department

of Water Resources. Historically, DAUs followed the United States Geological Service’s watershed

boundaries (HUC-8). As additional water infrastructure was added to California, DAU boundaries

were updated to account for water district boundaries so that water accounting could be completed

more accurately. At present, DAUs are a combination of watershed and water district boundaries,

which often overlap counties. In these cases, I further disaggregate the unit into DAU by County –

the smallest geographic unit of aggregation used by DWR. I use these boundaries to define the count

of new agricultural wells annually and the agricultural surface water delivered. Because DAUCOs

are definitions of convenience without any special economic significance, I weight the regressions by

crop area so that the estimates are representative for the average acre of cropland in California.

Table 3.2: Summary Statistics

Unit Count Mean SD Min Max
Outcomes:
New Ag Wells DAUCO 10,416 11.1 19.4 0 316
Depth to Groundwater (ft) Monitoring Well 575,410 62.9 80.4 0 2714.1
∆DTW Monitoring Well 575,399 0.3 6.1 -58.7 56.3
Probability of Domestic Well Failures Domestic Well 473,940 0.03 0.16 0 1
Independent Variables:
Ag SW Allocation (AF/crop acre) DAUCO 9,660 2.3 2.01 0 10
Ag SW Deliveries (AF/crop acre) DAUCO 10,416 2.2 1.9 0 10
Harmful Degree Days DAUCO 9,996 97.2 86.8 0 622.3
Growing Degree Days DAUCO 9,996 3,535.3 659.9 632.5 5,813.04
Annual Precipitation (mm) DAUCO 9,996 350.3 233.4 11.4 4,668.9
Crop Acres DAUCO 10,416 169,741.5 131,332.9 .2 502,692.3
Note: The table reports the number of observations, units of and measurement, mean, standard deviations (SD), minimum and maximum
for each outcome and explanatory variable. Mean and SD statistics are weighted by crop acres. Water is measured in acre feet (AF).

Depth to the Water Table

I use groundwater monitoring wells from groundwater basins across the state to measure depth

to the groundwater table (DTW). I compile these measures from two sources: 1) The State Wa-

ter Resources Control Board (SWRCB) Groundwater Information System and 2) DWR’s Periodic
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Groundwater Level data. I append these two datasets and select a single annual measurement for

each monitoring well prior to the start of the following year’s growing season. For example, I assign

the final groundwater depth of 2015 as the observed groundwater depth nearest to March 15, 2016.

This ensures that the cumulative effects of groundwater pumping and recharge are realized through-

out the current year and prior to the water intensive months of next year. I take the first difference

of DTW as the final outcome variable to estimate the year-to-year changes in the groundwater table

as a result of surface water scarcity.

To remove outlier observations of DTW, I exclude observations that are more than 1.5 times

the inner decile range of all other changes in groundwater levels reported from monitoring wells

in the DAUCO over the sample. This rule removes observations that observe drastically different

changes in groundwater levels than other local groundwater measures.7 I study the outcome of

changes in DTW at the monitoring well level, where all monitoring wells in a DAUCO are assigned

the same volume of surface water allocation and delivery in a given year. Therefore, I cluster the

standard errors at the DAUCO level.

Well Construction

One outcome variable of interest measures the extensive-margin adaptation to surface water scarcity

and extreme heat through the metric of new agricultural well construction. I use the universe of Well

Completion Reports from DWR, which reports each well’s location, the drilled depth of the well,

intended use, and other characteristics. To measure adaptive response, I count the total number

of new agricultural irrigation wells per DAUCO per year. Figure 3.3 maps new agricultural well

construction for the years 1994, 2006, and 2015. The Central Valley of California experiences the

most severe shocks to agricultural surface water curtailment, and these areas appear to respond the

most in scarce water years by constructing new agricultural wells.

Well Failures

Beginning in 2014, DWR created a system for households to report domestic well failures. These

data are now publicly available and regularly updated. These data contain the coordinates for the
7Some of these outlier observations are the result of a misplaced decimal, while other errors could occur from

monitor errors. I cannot easily identify the source of measurement error in these data in order to assign accurate
values, and therefore, remove these observations to reduce measurement error in the coefficient estimates.
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Figure 3.3: New Agricultural Well Construction

Note: The figure plots the count of new agricultural wells constructed at the DAUCO
level for three snapshots in time: 1994, 2006, and 2015. New agricultural well drilling is
predominant in the San Joaquin Valley.
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reported dry well, the date the issue started, and if the issue was resolved. I create a panel of all

domestic wells in California from the Well Completion Reports. I geographically match the reported

failures to the domestic wells from the Well Completion Reports. The final dataset for the analysis

on well failures spans from 2014-2021, where failure=1 for a domestic well in a given year if it is

reported in the well failure database. For all other years, I assume failure=0. Hence, the primary

analysis of the externality created from agricultural adaptation is the linear probability of domestic

well failure as a function of surface water and extreme heat. While this may be an undercount of the

true number of domestic well failures, since household reporting is voluntary, it is an improvement

on past approaches that have had to estimate if a well has gone dry based on assumptions about

the relationship between well depth and groundwater table height.

Surface Water Allocations and Deliveries

As measures of water scarcity, I use spatial and temporal variation in agricultural surface water

allocations and deliveries throughout California from Hagerty (2021). These annual data provide

volumes of water allocations and water deliveries from the Central Valley Project (CVP), State

Water Project (SWP), the Lower Colorado Project, and surface water rights from 1993-2020.8 I

spatially aggregate these volumes to the DAUCO level. Because the place of use may differ from the

point of delivery, this variable is subject to a greater degree of measurement error as the geographic

unit of analysis becomes smaller. I transform total water allocations and deliveries by dividing by

cropland acres in each DAUCO. The final measure of surface water supplies captures the volume

of surface water delivered in acre feet (AF) per cropland acre in the DAUCO. Because there are a

number of extreme values, likely due to measurement error, I Winsorize this variable at 10 AF per

acre. Figure 3.4 displays the variation across DAUCO areas within a given year and the locations

most impacted by curtailments in drought years, 1994 and 2015. In the wet year of 2006, all areas

received high allocation percentages.
8All months of 2021 were not yet reported at the time analysis was performed. The partial-year data for 2021

is included in the dataset, but I exclude 2021 in the estimation. Including partial 2021 data does not change point
estimates, but standard errors do increase because of this discrepancy.
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Figure 3.4: Agricultural Surface Water Allocation Percentages

Note: The figure graphs the fraction of agricultural water entitlements to be received by
irrigation districts at the DAUCO level for three years: 1994, 2006, and 2015. Allocation
percentages, which are announced by the state prior to the growing season based on
environmental conditions, vary over space and time.
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Weather

I measure extreme heat and precipitation using weather observations from Schlenker and Roberts

(2009) and PRISM climate data. Schlenker and Roberts (2009) provides the data in a 2.5 km by 2.5

km grid and PRISM is available at 4 km by 4 km resolution across the U.S. Schlenker and Roberts

(2009) data, which are derived from PRISM weather station observations, ends in 2019. Therefore,

I supplement weather observations from the raw PRISM data for 2020 and 2021. I also control

for local annual precipitation reported in millimeters. I aggregate these data by taking the average

temperature and precipitation of each of these grid centroids within a DAUCO. I measure extreme

heat through “harmful degree days” (degree days over 32 degrees Celsius) and “growing degree days”

(degree days over 8 and below 32 degrees Celsius). I compute growing degree days and harmful

degree day measures from daily average, T , the following definitions:

GDD(T ) =


0 if T ≤ 8C

T − 8 if 8C < T ≤ 32C

24 if T ≥ 32C

(3.4)

HDD(T ) =


0 if T ≤ 32C

T − 32 if T > 32C

(3.5)

3.4 Empirical Model

California presents a rich context to study climate change adaptation strategies and their subsequent

external costs. The empirical framework uses annual fluctuations in weather, surface water supplies,

agricultural well construction, depth to the groundwater, and domestic well failures from 1993-2020

to measure three reduced-form effects. First, I attempt to causally identify the effects of extreme

heat and surface water scarcity on year-to-year changes in the depth to the groundwater table. The

lowering of groundwater levels leads to well failures of shallow household drinking water wells, the

main external cost of concern. Next, I estimate the reduced-form effect of surface water scarcity
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Figure 3.5: Causal Empirical Chain

SW Allocations

SW Deliveries
Well Construction

GW Pumping

GW Levels Well Failures

Observed:

Note: The figure charts a conceptual framework for the empirical relationships from
water scarcity to domestic well failures. Groundwater pumping is unobserved.

and heat on domestic well-failure.

Changes in water table depth in response to heat and surface water scarcity are likely driven

by additional groundwater pumping, via both new well construction (extensive margin) and through

increased intensity at existing wells (intensive margin). Since groundwater pumping is unobserved,

I estimate the effect of drought on new agricultural well construction, an observable measure of

adaptation behavior by California farmers. A decomposition of the gross effect on the water table

allows me to determine how much of gross adaptation effect on the groundwater levels is due to

extensive and intensive margin effects.

3.4.1 Causal Empirical Chain

Figure 3.5 illustrates the empirical link between observable and unobservable variables in this con-

text. A chain for extreme heat and its impacts on groundwater outcomes is analgous by replacing

surface water allocations and deliveries by observed harmful degree days.9 Because groundwater

pumping is likely correlated with new well construction, surface water deliveries, and groundwater

levels, yet is unobserved, I am limited to the identification of the three reduced-form effects just

mentioned. I cannot credibly estimate the effect of agricultural well construction on well failures

because the potential instrument for well construction – allocations – would violate the exclusion

restriction through its correlation with unobservable pumping.
9Extreme heat is unlikely to be endogenous to groundwater pumping in the same way as surface water deliveries

since deliveries can be adjusted conditional on the amount of groundwater pumped. Therefore, I expect extreme heat
to impact groundwater pumping, while the reverse is not true, which would be depicted by an arrow moving in a
single direction from extreme heat to groundwater pumping in the analogous figure.
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3.4.2 Estimation and Identification

Outcome 1: Changes in Depth to the Water Table

To estimate the effect of drought on year-to-year changes in groundwater levels, I use annual panel

data and begin by estimating a two-way fixed effects model using OLS:

(3.6) ∆DTWit = β1SWDit + β2HDDit +B′Xit + λt + αi + εit.

The dependent variable, ∆DTWit is the year-to-year change in the depth to the water table for

well i in year t. Annual observations of the depth to the water table (DTW) measure the stock of

groundwater availability, which represent the cumulative outcome of annual groundwater pumping

and recharge. I instead take the first difference of depth to the groundwater, ∆DTWit, so that the

outcome measures the annual flow to the underlying stock. The coefficients of interest, β1 and β2,

measure the annual marginal change in ∆DTW for a unit change in surface water and harmful

degrees days, respectively. Fixed effects αi absorb well-level differential trends over time, allowing

for each well to have different linear temporal trends all else equal, as illustrated in Figure 3.6. Year

fixed effects are captured by λt and control for aggregate annual shocks like changes in statewide

policies. The vector Xit captures other localized weather shocks, including precipitation and grow-

ing degree days. The motivation for conditioning on other weather shocks is that precipitation may

be correlated with surface water deliveries or heat and groundwater extraction and thus changes in

the depth to the water table.

Of concern is the potential endogeneity between drought and surface water deliveries. In

low surface water years, irrigation districts can influence their total delivery amount by purchasing

water on the spot market or drawing from water banks. I exploit California’s water allocation

system, where allocations are set ahead of the season based on plausibly exogenous environmen-

tal conditions, as an instrument for surface water deliveries in a two-stage instrumental variables

approach, following Hagerty (2021):

(3.7)
∆DTWit = β1 ˆSWDit + β2HDDit +B′Xit + λt + αi + εit

SWDit = γ1SDAit + γ2HDDit + Γ′Xit + λt + αi + µit.
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Figure 3.6: Difference-in-Differential Trends Framework
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Note: The figure shows a stylized illustration of two wells in two time periods. Panel (a) shows the
depth to groundwater trajectory for two wells in the face of a weather shock. By taking the change
in the depth to the water table in panel (b), I can measure the annual flow to the underlying stock.
Panel (c) illustrates the average treatment effect (ATE) being measured with the inclusion of well
fixed effects.

All variables are defined as before but now I instrument for surface water deliveries with surface

water allocations, SDAit.

Identification of the effect of surface water scarcity hinges on two assumptions related to

the instrument. The first is that allocations affect changes in the groundwater table only through

the margin of surface water deliveries. While I cannot directly test this assumption, I believe it is

plausibly true since allocations, to my knowledge, are not used for anything other than determination

of surface water deliveries. The second assumption relates to the relevance of the instrument. Results

from the first-stage are presented in table 3.3 and show that allocations are a strong instrument for

deliveries. I present both the reduced-form (outcome regressed on allocations) and the instrumental

variable results for each set of results.

Other threats to identification stem from regional time-varying unobservables that correlate

with both changes in water allocations and changes in the depth to the groundwater table. The

inclusion of local precipitation as a control is motivated by this concern. I assume that, conditional

on a rich set of fixed effects and controls for localized weather shocks, time-varying unobservables

that impact changes in the groundwater table are not correlated with surface water allocations.

Given that annual allocation percentages are determined by an algorithm based on environmental

conditions and reservoir levels, this is plausible to assume. Insensitivity of the treatment effect to
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Table 3.3: Agricultural SW Deliveries: First-Stage Results

(1) (2)
Ag SW Allocation (AF/ crop acre) 0.588*** 0.531***

(0.0460) (0.0540)

Harmful Degree Days -0.000353
(0.00172)

Growing Degree Days 0.000184***
(0.0000432)

Annual Precipitation -0.000461*
(0.000202)

Observations 9,660 9,240
N Cluster 345 330
F Stat 163.6 79.07
Weights Crop Acres Crop Acres
Cluster DAUCO DAUCO
Time FE ✓ ✓
Unit FE ✓ ✓

Note: The table presents the first-stage effect of surface water allocations on surface water supplies. The dependent
variable is agricultural surface water deliveries per crop acre in levels from 1993-2021. All regressions are weighted
by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are clustered at the DAUCO
level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

the inclusion and exclusion of time-varying local weather shocks included in Xit lends support for

this assumption.

Outcome 2: Domestic Well Failures

Changes in the depth to the groundwater table lead to domestic wells running dry. To estimate the

effect of heat and surface water scarcity on domestic well failures, I use well-level panel data and

again estimate an instrumental variable approach with two-way fixed effects using OLS,

(3.8)
Yit = β1 ˆSWDit + β2HDDit +B′Xit + λt + αi + εit

SWDit = γ1SDAit ++γ2HDDit + Γ′Xit + λt + αi + µit

where Yit is now a binary outcome indicating a reported well failure. The coefficient estimates of

interest from this equation, β1 and β2, represent the the change in likelihood that a domestic well
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fails in a given year when surface water availability and extreme heat change, respectively. The

independent variables, SWDit and SWAit, represent surface water deliveries and allocations in AF

per acre, respectively. HDDit reports the number of harmful degree days at well i in year t. The

vector Xit controls for other localized weather shocks. Annual fixed effects, λt, control for statewide

dynamic shocks, like statewide policy or state-level drought.

Identification of β1 and β2 as the causal impacts of surface water scarcity and heat on the

likelihood of domestic well failure rests on a similar set of three assumptions. Regional time-varying

factors that correlate with both domestic well failures and surface water allocations remain a threat

to identification. To alleviate this concern, I again control for local weather shocks in Xit. The

other identifying assumptions concern the instrument for surface water deliveries. Like before, I

assume allocations affect domestic well failures only through the margin of surface water deliveries

and that allocations are a strong predictor of surface water deliveries.

Outcome 3: Agricultural Well Construction

The final outcome of interest is new agricultural well construction. I focus on well construction

because it is the one observable mechanism that contributes to the reduction in groundwater tables.

New agricultural wells represent the observable extensive-margin response that complements the

unobservable intensive-margin response of increased pumping. To estimate the effects of drought and

surface water curtailment on agricultural well construction, I estimate two different specifications

using the panel that is constructed at the Detailed Analysis Unit by County (DAUCO) and annual

level. First, using an instrumental variables approach with two-way fixed effects, I estimate equation

3.9:

(3.9)
Yit = β1 ˆSWDit + β2HDDit +B′Xit + λt + αi + εit

SWDit = γ1SDAit ++γ2HDDit + Γ′Xit + αi + λt + µit.

All variables are defined as before except now the variable Yit measures the count of new agricultural

wells where i signifies the DAUCO and t denotes the year between 1993 and 2020, and αi represents

unit fixed effects, which control for DAUCO-level time-invariant factors like area size and location.

All regressions are weighted by crop acres, which identifies the weighted average treatment effect

68



across California crop acres.

Because Yit reports the non-negative count of new agricultural wells and suffers from overdis-

persion, I supplement this by deploying a control function approach with fixed effects estimated with

Psuedo-Poisson Maximum Likelihood (PPML) (Wooldridge 2015). I estimate the Poisson model

with equation 3.10, the preferred specification:

(3.10)
E[Yit|SWDit,Xit, αi, λt] = exp{β1 ˆSWDit + β2HDDit +B′Xit + αi + λt + ϕµ̂it}

SWDit = γ1SDAit + γ2HDDit + Γ′Xit + αi + λt + µit.

This method also allows me to test for endogeneity of the regressor by including µ̂it in the

second-stage. The coefficient on ˆSWDit indicates that for every one AF decrease in surface water

deliveries, the number of new agricultural wells will change by eβ1 − 1 percent. Similarly, for every

additional harmful degree day, eβ2 − 1 percent more agricultural wells will be constructed.

3.5 Results

Results from the estimation of equation 3.7 are reported in Table 3.4. Columns (1) and (2) report

results from the reduced-form effect of per-acre allocations on the change in groundwater depth with

and without controls for local weather. Columns (3) and (4) present IV results where allocations

are used as an instrument for surface water deliveries. All specifications include time and well fixed

effects. In the preferred specification in column (4), I further condition on local weather variables

contained in Xit.

The reduced-form results, which represent an estimate of the intent to treat, show that

surface water allocations have a negative and significant impact on changes in the depth to the

water table. The table shows that allocations are relevant to agricultural groundwater pumpers

and affect the underlying groundwater table through changes in surface water deliveries. However,

reduced-form results are attenuated because allocations are not perfectly correlated with surface

water deliveries.

IV results in columns (3) and (4) demonstrate that allocation-induced changes in surface

water deliveries and extreme heat have a negative and significant effect on the groundwater table.

The preferred estimates in column (4) of Table 3.4 imply that a one AF reduction in SW deliveries
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leads to 3.75 ft decline in the groundwater levels. Results are stable to the inclusion of additional

weather controls. I see that groundwater depth is also responsive to extreme heat, with groundwater

levels declining by 0.04 ft for every additional harmful degree day. Even holding constant changes

in surface water supplies, additional heat is leading to a reduction in the groundwater table. This

is likely due to increased groundwater extraction through both intensive and extensive margin

adjustments.

Table 3.4: Changes in Depth to the Groundwater (DTW)

Reduced Form IV

(1) (2) (3) (4)

Ag SW Allocation (AF/ crop acre) -2.263** -1.627*
(0.807) (0.750)

Ag SW Deliveries (AF/ crop acre) -4.953** -3.753*
(1.609) (1.618)

Harmful Degree Days 0.0482* 0.0373*
(0.0219) (0.0169)

Observations 575,478 575,324 561,170 561,016
N Groups 98,097 98,077 83,789 83,769
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the change in the depth to the groundwater from the surface (ft) from 1994-2021 at the
monitoring well level. Columns (1) and (2) report results from the reduced-form OLS model. Columns (3) and (4)
report the second-stage IV results, where Ag surface water allocations are used as an instrument. All regressions are
weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are clustered at the
DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

This degradation of the groundwater stock, which manifests through changes in the depth to

the water table, creates externalities for other users of that resource. In this context, the external

costs imposed by groundwater pumpers who are adapting to changes in heat and surface water

scarcity are borne by all neighboring users and future users of the groundwater. This externality

disproportionately puts household users of groundwater at risk since domestic wells are generally

drilled shallower on average and are more susceptible to well failure.

To explore this, I estimate a panel linear probability model, where failure is a {0, 1} outcome

variable in a given year for all domestic wells in California. Table 3.5 displays the results from the
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estimation of equation 3.8. Column (1) presents the reduced-form effect of per-acre allocations

and heat on probability of a well failure with time and well fixed effects using data from 2015 to

2020. Column (2) includes local weather controls and includes 2014 in the sample.10 Columns (3)

and (4) show the same specification but now instrument for per-acre surface water deliveries with

allocations, with column (4) showing the results from using the full sample of years 2014-2020.

Across all specifications, extreme heat significantly increases the likelihood that domestic wells fail.

The preferred specification in column (4) implies that an additional harmful degree day increases

the probability that a well fails by 0.2%. That specification also displays that a 1 AF reduction

in surface water per crop acre increases the likelihood of local domestic well failure by 5%. These

estimates are large marginal effects relative to the weighted mean probability of well failure displayed

in Table 3.2.

Table 3.5: Linear Probability of Reported Well Failure

Reduced Form IV

(1) (2) (3) (4)
Ag SW Allocation (AF/ crop acre) -0.0156* -0.0280

(0.00705) (0.0156)

Ag SW Deliveries (AF/ crop acre) -0.0296** -0.0557**
(0.00986) (0.0192)

Harmful Degree Days 0.00212* 0.00208*
(0.000950) (0.000908)

Observations 468,333 468,075 468,313 468,055
N Groups 78,084 78,041 78,064 78,021
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is a {0,1} outcome if a domestic groundwater reported a failure that year. The panel
spans from 2015-2020 and is composed of all domestic groundwater wells with unique coordinates in California. All
regressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are
clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

The final set of results explores one mechanism by which agricultural groundwater users

are responding to heat and surface water scarcity: the construction of new wells. I start again
10Columns (1) and (3) use data from 2015 through 2020. The voluntary household system was introduced early in

2014 and may have not been a widely known reporting tool for households across the state. This could explain why
the point estimates for surface water are smaller in magnitude and less precise when including 2014.
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by showing the reduced-form effect of surface water allocations on new well construction in Table

3.6, using both OLS and PPML to account for the fact that the outcome of interest is a count

variable. Columns (1) and (2) show the simple two-way fixed effect OLS results with and without

local weather controls, respectively. Columns (3) and (4) show results from the PPML estimation,

where the final specification conditions on local precipitation and growing degree days. Results

in column (4) imply that a one AF decline per crop acre in California, all else equal, leads to

approximately 24.2% increase in the annual number of new agricultural wells drilled. While every

additional harmful degree day causes an approximate 0.9% annual increase in new agricultural wells.

Table 3.6: Construction of New Agricultural Wells: Reduced-Form

OLS PPML

(1) (2) (3) (4)
Ag SW Allocation (AF/ crop acre) -7.180** -6.581* -0.333* -0.278*

(2.665) (2.596) (0.131) (0.124)

Harmful Degree Days 0.115** 0.00897***
(0.0390) (0.00202)

Observations 9,660 9,240 8,568 8,400
N Cluster 345 330 306 300
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. Columns (1) and (2)
report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson maximum
likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects.
Standard errors are clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

While Table 3.6 displays the response to an exogenous surface water allocation shock, surface

water allocations may not represent actual scarcity. Producers and irrigation district may choose

to receive more or less surface water throughout the year, complementing their allocations with

additional deliveries from purchases from the spot market for example. The endogenous choice to

adjust deliveries during a drought year may attenuate the reduced-form estimates in Table 3.6.

Table 3.7 reports the estimates of new agricultural well construction on surface water de-

liveries, where surface water deliveries are instrumented by allocations. Columns (3) and (4) are

estimated using a control function approach with a linear first stage and PPML in the second stage.
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As expected, the estimate on surface water deliveries is larger than the corresponding reduced-form

estimate in Table 3.6 and implies that the extensive-adaptation response is approximately 46.2%

increase in new agricultural wells.

Table 3.7: Construction of New Agricultural Wells: IV and Control Function

IV CF/PPML

(1) (2) (3) (4)
Ag SW Deliveries (AF/ crop acre) -13.06** -12.38** -0.690** -0.620*

(4.584) (4.750) (0.262) (0.262)

Harmful Degree Days 0.111*** 0.0128***
(0.0329) (0.00261)

µ̂ 0.732* 0.767*
(0.346) (0.347)

Observations 9,660 9,240 8,568 8,400
N Groups 345 330 306 300
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. All regressions are
weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are clustered at
the DAUCO level and are reported in parentheses. Columns (3) and (4) standard errors are calculated using 500
bootstrap simulations, clustered at the DAUCO level.
* p < 0.05, ** p < 0.01, *** p < 0.001

One concern is that farmers are simply moving their well drilling forward in time instead of

increasing the total number of wells drilled. A concern with this kind of inter-temporal substitution

is that this specification, which focuses only on the contemporaneous effect, would be overestimating

the treatment effect. Tables 3.9 and 3.10 in the Appendix consider the dynamics of agricultural well

drilling and provides evidence to suggest that the contemporaneous effect is capturing the bulk of

the response, but the contemporaneous effect alone may err on the conservative side relative to the

true cumulative effect.

In addition to drilling more wells, it could be that farmers are responding by drilling deeper

wells. Table 3.13 in the Appendix considers the effect of surface water and temperature shocks on

the drilled depth of newly constructed wells, both agricultural and domestic. Results suggest some

evidence of this although estimates are imprecise.
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Extensive and Intensive Margin Adaptation

Following equation 3.2, I use the point estimates from the empirical results to decompose the gross

effect on depth to the groundwater into an extensive-margin response (more agricultural wells) and

an intensive-margin response (more water per well). This exercise relates changes in groundwater

levels (i.e., changes in water-occupied space) within an aquifer (DTW ) to behavioral changes in

the volume of groundwater pumped for agricultural use. I impose hydrologic aquifer characteristics

unique to the Central Valley Aquifer as described in Table 3.8. Together, these values allow me to

calculate the intensive-margin response by farmers, which is traditionally unobserved in this setting

and characterize the relative contributions of these two margins.

I report the calculations from this exercise on an AF per crop acre basis such that they are

consistent units as the primary measure of surface water in the empirical models. A one AF/acre re-

duction in surface water results in a 3.72 ft (DTW ′(s)) decline in groundwater levels, or equivalently,

0.45 AF/acre additional groundwater extractions extractions (DTW ′(s)/κ). Given the estimates of

new agricultural wells drilled in table 3.7, I calculate that approximately 0.01 AF/acre of that effect

results from new wells pumping the average amount, or 81,750 AF statewide. While 0.44 AF/acre

of the gross effect is due to the intensification of existing wells, or 4,410,000 AF statewide.

In percentage terms, extensive margin adaptation by farmers accounts for about 1.8% (5.1%)

of the effect on groundwater levels results from surface water curtailments (harmful degree days),

while the majority of the gross effects results from intensifying the average amount of water pumped

per well. The large difference, in percentage terms, between extensive and intensive margins is

likely due to the high fixed costs associated with drilling new agricultural wells. New agricultural

wells, however, likely increases the groundwater demand in years beyond the contemporaneous year.

Whereas, intensive margin adjustments are isolated decisions in the contemporaneous year. Over

the life of a groundwater well, the cumulative extensive margin effect may outweigh large single-year,

intensive margin adjustment.

Understanding these mechanisms through which agricultural producers respond to weather

shocks and the subsequent impacts can better inform policy aimed at conserving water resources. I

show that farmers substitute at least 45% of the lost surface water with groundwater supplies when

surface water curtailments are imposed. This helps mitigate the yield effects of the weather shocks,
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Table 3.8: Parameter Values for Decomposition

Parameter Value Units Description Source
DTW ′(s) -3.72 ft Gross change in DTW caused

by a one AF/acre change in
surface water

Table 3 Column 4

DTW ′(h) 0.0373 ft Gross change in DTW caused
by one additional HDD

Table 3 Column 4

κ 8.33 unitless Inverse aquifer yield coeffi-
cient

Department of Water
Resources (2020)

w′(s) -459 # of wells Change in the number of new
agricultural wells drilled due
to a one AF/acre change in
surface water

Table 6 Column 4 multi-
plied by the total annual
average of new agricul-
tural wells

w′(h) 12.8 # of wells Change in the average num-
ber of new agricultural wells
drilled due to one additional
HDD

Table 6 Column 4 multi-
plied by the total annual
average of new agricul-
tural wells

q 178 AF/well Average AF of groundwater
pumped per well

Authors’ calculation
from Department of
Water Resources (2020)
and w

w 85,937 # of wells Number of wells drilled in Cal-
ifornia

Well Completion Re-
ports (see Data)

acres 9,989,648 # of acres Total irrigated crop acres in
California

2015 USDA Cropland
Data Layer & Hagerty
(2021)

Note: The table reports estimated and calculated values for parameters in the decomposition of intensive
and extensive margin effects presented in equation 3.2.

but strains historically unregulated groundwater resources. I also show that farmers adapt through

both the extensive and intensive margin to these shocks, implying that groundwater regulation must

target both mechanisms of behavior – reducing excess pumping at the well-level and restricting the

drilling of new wells–in order to be effective.

3.6 Discussion

The impacts of climate change depend on the extent to which individuals adapt. While climate

adaptation by some may limit their own potential damages from extreme heat and precipitation

variability, these adaptive measures may unintentionally impose costs on others. In this paper,

I show that agricultural producers in California significantly adapt to added heat and reduced
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surface water through the channel of constructing new agricultural wells. I also show that local

groundwater levels are responsive to these annual fluctuations in weather. These climate-induced

changes deplete local groundwater resources, imposing externalities on other users of groundwater.

Negative externalities arise for rural communities through the channel of domestic well failures and

subsequent reductions in drinking water access.

These findings contribute to the knowledge of the impact of climate change in three ways.

First, I show that producers in California spend approximately $37 million annually for every AF

per crop acre reduction of surface water availability. While irrigation may mitigate agricultural yield

and revenue damages, climate change still imposes a significant annual cost to irrigated agriculture.

Second, adaptation strategies contribute additional burden on those less able to engage in adaptive

behavior. These externalities of adaptation have traditionally been ignored in calculating the eco-

nomic costs of climate change but should be taken into account for a more complete accounting of

climate change damages. Importantly, in the context of California groundwater, these costs, mea-

sured by domestic well failures, disproportionately affect low socioeconomic communities. Results

are relevant for policymakers seeking to implement environmental regulation.
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3.7 Appendix

This appendix discusses the dynamics of well construction and the robustness of the main findings

to alternative modelling choices and falsification tests.

3.7.1 Dynamics of Well Construction

Tables 3.9 and 3.10 consider the dynamics of agricultural well drilling. In Table 3.9, I report the

results from equation 3.9 but now supplemented with up to three lagged years of agricultural surface

water deliveries. Columns (2) through (4) each add an additional lag. In these specifications, de-

liveries are instrumented with surface water allocations. Table 3.10 similarly considers the dynamic

effects on new agricultural well construction but instead focuses on the reduced-form effect of surface

water allocations with the Poisson transformation. This is because the control function approach

outlined in equation 3.10 is incompatible with lagged variables that enter nonlinearly. A look at the

coefficients on lagged surface water supplies across all specifications reveals no consistent pattern.

The sum of the coefficients, which captures the effect of a single supply shock over time, are not

statistically different from each other across specifications. This suggests that the contemporaneous

effect is characterizing the most meaningful impact of year-to-year changes in water supplies on new

agricultural well construction.

These results can be explained by the presence of two opposing forces at play. On the

one hand, heat and surface water shocks may alter farmers’ expectations about future climate

conditions and water availability, causing them to drill more wells today and over the lifetime of

their operations. Realizations of drought increase the incentive to drill by increasing the cost of

delaying.

On the other hand, it may be the case that farmers are simply shifting forward in time

the decision to drill a new well. A behavioral response that only consists of inter-temporal sub-

stitution would suggest that coefficients on lagged variables should take the opposite sign of the

contemporaneous effect, because drilling a well today reduces the need to drill in the future. This

in turn would cause the sum of the coefficients to attenuate as I add more lagged variables. Since I

see no observable trend from the inclusion of the lagged variables, it suggests that neither of these

forces are dominating. These two effects are working in opposite directions and cannot be teased
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out. Taken together, this pattern of results on lagged variables support the main results reported

in Table 3.6. The vast majority of the effects of drought on well construction are concentrated in

the first year. I proceed by focusing on the more parsimonious specification of equation 3.10 and

retaining power with more observations.

Table 3.9: Lagged Agricultural Well Construction

(1) (2) (3) (4)
New Ag Wells per DAUCO

Ag SW Deliveries (AF/ crop acre) -12.38** -11.51** -11.53* -11.45*
(4.750) (4.450) (4.582) (4.537)

L.Ag SW Deliveries (AF/ crop acre) -3.512 -2.999 -3.602
(2.858) (2.779) (3.207)

L2.Ag SW Deliveries (AF/ crop acre) 1.377 3.089
(2.355) (2.505)

L3.Ag SW Deliveries (AF/ crop acre) -4.109
(2.853)∑

βdelieveries -12.38 -15.02 -13.15 -16.07
pdeliveries 0.00913 0.00877 0.0277 0.0355
Harmful Degree Days 0.111*** 0.0981** 0.0971** 0.0897**

(0.0329) (0.0349) (0.0318) (0.0327)

L.Harmful Degree Days 0.0809* 0.0848* 0.0548
(0.0397) (0.0426) (0.0390)

L2.Harmful Degree Days 0.0551* 0.0643**
(0.0247) (0.0239)

L3.Harmful Degree Days 0.0174
(0.0237)∑

βhdd 0.111 0.179 0.237 0.226
phdd 0.000760 0.00484 0.00171 0.00302
Observations 9,240 8,910 8,580 8,250
N Cluster 330 330 330 330
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Other Weather ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓

Note: Table reports regression results from the estimation of equation 3.9. The dependent variable is the count of new
agricultural wells per DAUCO from 1993-2020. All regressions are weighted by the DAUCO crop acres and include
year and DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

3.7.2 Dynamics of Other Groundwater Outcomes

The effects of surface water reductions and heat could conceivably impact groundwater outcomes in

future years as well. If more agricultural wells are drilled in the contemporaneous year, this extensive

margin change may also result in additional groundwater extraction – and thus, a lower groundwater

81



table – in future years as well. If dynamics are present, it may imply that the contemporaneous

effect alone is a lower bound of the cumulative effect of surface water and heat shocks. Table 3.11

reports estimates of changes in groundwater depth (∆DTW ) regressed on lagged weather shocks.

In general, there appears to be no significant nor consistent pattern among the coefficients

from previous years. On the one hand, the coefficients on previous year’s surface water deliveries

tend to be positive, meaning they somewhat offset the contemporaneous effect. On the other hand,

the previous year’s HDDs report a positive coefficient, meaning that the current year’s heat alone

underestimates the true impact. However, the standard errors on the lagged effects tend to be large,

and therefore, I conclude that the effects of weather shocks on changes in groundwater depth tend

to be isolated to the contemporaneous year.

Similarly, I explore the impacts of prior weather shocks on reported well failures in table

3.12. Columns 2 and 3 indicate that the effects of a one AF per acre surface water reduction may

result in as much as a 32% increase in the probability of well failure. However, this is the opposite

direction of the lagged effects of harmful degree days. I am hesitant to draw definitive conclusions

from this table, however, since the panel only consists of five total years of well failure data.

3.7.3 New Well Depth

In addition to drilling more wells, it could be that farmers are responding by drilling deeper wells.

Table 3.13 considers the effect of drought on the drilled depth of newly constructed wells, both

agricultural and domestic. Columns (1) to (3) present results of the effect of surface water allocations

and harmful degree days on well depth, conditional on time and unit fixed effects and weather

variables. Columns (2) and (3) isolate agricultural and domestic wells, respectively. Columns (4)

through (5) present the IV results where allocations are used as an instrument for deliveries. While

noisy, the sign of the effects suggest that as surface water supplies decrease and heat increases, wells

are drilled to a greater depth.

3.7.4 Falsification Tests

Lastly, I conduct two falsification tests of my primary model. First, table 3.14 reports the results

of regression of new domestic well construction on agricultural surface water deliveries and harmful

degree days. Since agricultural surface water allocations are solely related to the agricultural sector,
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I expect shocks to this variable to be unrelated to domestic well construction. Indeed, none of the

coefficients report a significant effect on the new domestic well construction. Furthermore, additional

HDDs do induce more domestic wells to be drilled, but the response is smaller in magnitude than for

agricultural well construction. This supports that agricultural well drilling is due to reduced surface

water for agriculture, and not some correlated factor with all types of well drilling more broadly.

Further, this also shows that domestic households do not respond to heat to the same magnitude as

agricultural groundwater users. Thus, this muted adaptation by domestic users suggests that they

are more vulnerable than agricultural users to groundwater scarcity and are prone to well failures

in the future.

I explore whether shocks in surface water supplies to other sectors, municipal and industrial,

impact agricultural well drilling in table 3.15. These results indicate that municipal and industrial

water supplies are actually positively correlated with agricultural well construction, which is opposite

of the effect of agricultural surface water. None of these coefficients are significant, and again,

supports that the results in table 3.6 and 3.7 are due to agricultural surface water and not another

factor that is correlated with all sectors’ water supplies.
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Table 3.10: Lagged Agricultural Well Construction

(1) (2) (3) (4)
New Ag Wells per DAUCO

Ag SW Allocation (AF/crop acre) -0.278* -0.284* -0.306* -0.281*
(0.124) (0.130) (0.126) (0.137)

L.Ag SW Allocation (AF/crop acre) 0.0184 -0.0150 -0.0370
(0.0500) (0.0436) (0.0495)

L2.Ag SW Allocation (AF/crop acre) 0.157 0.184*
(0.0835) (0.0814)

L3.Ag SW Allocation (AF/crop acre) -0.0202
(0.0715)∑

βdeliveries -0.278 -0.266 -0.164 -0.154
pdeliveries 0.0249 0.0481 0.235 0.338
Harmful Degree Days 0.00897*** 0.00958*** 0.00915** 0.00972**

(0.00202) (0.00261) (0.00287) (0.00323)

L.Harmful Degree Days 0.00331 0.00435 0.00190
(0.00266) (0.00250) (0.00251)

L2.Harmful Degree Days 0.00447 0.00383
(0.00254) (0.00266)

L3.Harmful Degree Days 0.00521*
(0.00240)∑

βhdd 0.00897 0.0129 0.0180 0.0207
phdd 0.00000911 0.000326 0.000125 0.000110
Observations 8,400 8,073 7,722 7,400
N Cluster 300 299 297 296
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. All regressions are
weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are clustered at the
DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 3.11: Lagged Changes in Groundwater Depth

(1) (2) (3) (4)
∆DTW

Ag SW Deliveries (AF/ crop acre) -3.754* -3.807* -4.785** -4.650**
(1.619) (1.525) (1.580) (1.743)

L.Ag SW Deliveries (AF/ crop acre) 1.668 1.456 1.569
(1.009) (0.958) (0.900)

L2.Ag SW Deliveries (AF/ crop acre) 0.141 -0.265
(0.999) (1.030)

L3.Ag SW Deliveries (AF/ crop acre) -0.233
(0.464)∑

βdeliveries -3.754 -2.139 -3.187 -3.579
pdeliveries 0.0204 0.118 0.0205 0.0346
Harmful Degree Days 0.0373* 0.0376* 0.0388* 0.0345*

(0.0169) (0.0168) (0.0162) (0.0152)

L.Harmful Degree Days 0.0109 0.0215 0.0301*
(0.0106) (0.0112) (0.0146)

L2.Harmful Degree Days -0.0129 -0.0230
(0.0131) (0.0131)

L3.Harmful Degree Days -0.00683
(0.0290)∑

βhdd 0.0373 0.0486 0.0474 0.0348
phdd 0.0273 0.0152 0.0279 0.214
Observations 560,931 421,251 321,384 246,159
N Cluster 282 277 269 260
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓

Note: Dependent variable is the change in the depth to the groundwater from the surface (ft) from 1994-2020 at the
monitoring well level. All regressions are weighted by the DAUCO crop acres and include year and DAUCO fixed
effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 3.12: Lagged Probability of Well Failure

(1) (2) (3) (4)
Well Failure Reported

Ag SW Deliveries (AF/ crop acre) -0.0548** -0.0397** -0.178** 0.000778
(0.0191) (0.0131) (0.0597) (0.0277)

L.Ag SW Deliveries (AF/ crop acre) -0.0677* -0.177* -0.0296
(0.0265) (0.0691) (0.0278)

L2.Ag SW Deliveries (AF/ crop acre) 0.0257 -0.0216
(0.0168) (0.0122)

L3.Ag SW Deliveries (AF/ crop acre) 0.00908
(0.00649)∑

β_deliveries -0.0548 -0.107 -0.329 -0.0414
pdeliveries 0.00415 0.000413 0.00529 0.453
Harmful Degree Days 0.00205* 0.00157* 0.00142* 0.0000432

(0.000899) (0.000759) (0.000634) (0.0000781)

L.Harmful Degree Days -0.00333* -0.00187 0.000179
(0.00166) (0.00116) (0.000168)

L2.Harmful Degree Days -0.000906 -0.000166
(0.000612) (0.000161)

L3.Harmful Degree Days 0.0000875
(0.000150)∑

βhdd 0.00205 -0.00176 -0.00135 0.000144
phdd 0.0228 0.106 0.364 0.745
Observations 476,748 476,748 397,290 317,832
N Cluster 342 342 342 342
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. Columns (1) and (2)
report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson maximum
likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects.
Standard errors are clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 3.13: New Constructed Well Depth

Reduced Form IV

(1) (2) (3) (4) (5) (6)
Both Ag Domestic Both Ag Domestic

Ag SW Allocation (AF/ crop acre) -22.90 -23.14 -8.170
(18.16) (21.67) (7.699)

Ag SW Deliveries (AF/ crop acre) -37.03 -34.48 -14.14
(29.10) (32.23) (14.34)

Harmful Degree Days 1.431* 2.592* 0.346 1.340* 2.449* 0.319
(0.624) (1.108) (0.244) (0.563) (1.019) (0.237)

Observations 144,917 31,042 114,034 144,890 30,955 113,863
N Groups 337 310 334 328 295 322
Weights Crop Acres Crop Acres Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓ ✓ ✓
DAUCO x Type FE ✓ ✓ ✓ ✓ ✓ ✓
Other Weather ✓ ✓ ✓ ✓ ✓ ✓

Note: Dependent variable is the depth (ft) of newly constructed wells from 1993-2020 at the well level. Columns (1) and (4) reports results for
both agricultural and domestic wells, (2) and (3) for just agricultural wells, and (3) and (6) for just domestic wells. All regressions are weighted
by the DAUCO crop acres and include year and DAUCO by well type fixed effects. Standard errors are clustered at the DAUCO level and are
reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 3.14: Construction of New Domestic Wells

OLS PPML

(1) (2) (3) (4)
Ag SW Allocation (AF/ crop acre) -1.534 -1.021 -0.0657 -0.0128

(1.582) (1.535) (0.0783) (0.0641)

Harmful Degree Days 0.0774 0.00950*
(0.0477) (0.00445)

Growing Degree Days -0.00782
(0.00473)

Annual Precipitation 0.00734** 0.000417**
(0.00280) (0.000139)

Observations 9,660 9,240 9,072 8,876
N Cluster 345 330 324 317
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the count of new domestic wells per DAUCO from 1993-2020. Columns (1) and (2)
report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson maximum
likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects.
Standard errors are clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 3.15: Construction of New Agricultural Wells: Municipal and Industrial Surface Water

OLS PPML

(1) (2) (3) (4)
M&I SW Allocation per Acre 19.71 23.36 1.407 1.459

(28.88) (28.91) (1.300) (1.257)

Harmful Degree Days 0.115** 0.0143***
(0.0422) (0.00287)

Growing Degree Days 0.000191 0.000472
(0.00839) (0.000636)

Observations 8,874 8,400 7,540 7,224
N Cluster 306 300 260 258
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. Independent variable is
surface water allocated (AF per crop acre) for municipal and industrial use, as opposed to agricultural use. Columns
(1) and (2) report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson
maximum likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO
fixed effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Chapter 4

Supply Chain Resilience and Extreme

Events

Food supply chains have experienced severe disruptions in recent years, first due to the COVID-

19 pandemic and then due to the conflict between Russia and Ukraine. These disruptions have

motivated researchers and policymakers to assess the resiliency of food supply chains to extreme

shocks and to search for policies to make them more robust to such events in the future (United

Nations Food and Agriculture Organization 2021; U.S. Department of Agriculture 2022).

Extreme shocks to food systems can emanate from a variety of sources, including pandemics,

geopolitical conflicts, and natural disasters. A key element linking possible extreme events is that

they are likely to simultaneously impact food supply chains at successive stages. The COVID-

19 pandemic, for example, caused short-run retail demand shocks for key staples, as consumers

attempted to stockpile goods amidst fears of looming shortages, while the upstream production and

processing stages experienced bottlenecks and reduced production due to processing plant shutdowns

and inability to harvest some crops due to labor shortages (Martinez, Maples, and Benavidez 2020;

Lusk and Chandra 2021).

The recent experiences have made building more resilient food supply chains that adapt

quickly in the presence of extreme events a clear policy goal for much of the world. US policymak-

ers have already introduced several measures intended to enhance the resilience of US food supply

chains. They include intensified enforcement of competition laws, subsidizing entry of new process-
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ing firms, outlawing profiteering or “price-gouging” in response to severe market disruptions, and

supporting geographic diversification of food systems. This paper seeks to evaluate the impacts of

each of these policy interventions. Although substantial recent work has indicated the qualitative

value of more resilient food supply chains, considerable debate remains regarding the optimal policy

responses (Tukamuhabwa et al. 2015; Jiang, Rigobon, and Rigobon 2021) and the implications for

stakeholders along the supply chain (Davis, Downs, and Gephart 2021).

Food supply chains have evolved through the quest for production efficiency and cost sav-

ings, but the common perception is that the most efficient supply chain structures may be the

least resilient (Viswanadham and Kameshwaran 2013; Hobbs 2021; U.S. Department of Agriculture

2022),1 and, thus, strategies to enhance resilience may reduce efficiency of supply chain operations

during normal times. To date, this possible resilience-efficiency trade-off has been discussed (Hobbs

2021; Lusk, Tonsor, and Schulz 2021), but has not been subjected to rigorous analysis nor quanti-

fied. Providing this input to policymakers is a key focus of this paper. Although I study policies

that have been adopted or discussed in the US and calibrate the model to US data, I expect that

the results will have relevance for other economies grappling with supply chain resilience issues.

I develop a flexible model of a prototype food supply chain, which allows me to express

key trade-offs between efficiency and resilience under a broad set of extreme shocks and forms

of market competition. Ability to depict alternative competition scenarios is a key consideration

because market concentration and intermediaries’ market power have been cited repeatedly by

policymakers as factors that inhibit supply chain resilience (The White House 2022; U.S. Department

of Agriculture 2022).

A key innovation of the model relative to others is that I incorporate explicitly that extreme

shocks will generally impact supply chains simultaneously at multiple stages, as was true with the

onset of the COVID-19 pandemic. I simulate the correlated nature of market shocks by drawing

shock variables for the vertical stages of the supply chain—farm production, processing and retailing,

and consumption—from a multi-variate joint distribution. I show that shocks to farm supply,

consumer demand, and processing capacity are more disruptive the greater their correlation.

I calibrate the model based on contemporary data and recent empirical research for the
1U.S. Department of Agriculture (2022) begins its report on agricultural competition by asserting “the pandemic

exposed the risks and dangers created by many of today’s production systems, which value hyper-efficiency over
competition and resiliency” (p.2).
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US to represent prototype supply chains for key staples. I then utilize Monte-Carlo simulations

to examine the welfare impacts for supply chain participants of different extreme events under

alternative supply chain structures and policy responses. Market efficiency of alternative supply

chain structures is measured in terms of the mean economic surplus they generate across simulated

market outcomes, while market resilience is measured in terms of the relative variance (coefficient

of variation) under a large number of simulated shocks.

I utilize the calibrated model and simulation framework to study four policy proposals that

have emerged in the resilience debate. First, I investigate the role of concentration and market power

in the processing/retailing sector on resilience of supply chains in response to extreme shocks. On

January 3, 2022, the Biden Administration announced plans for stricter enforcement of antitrust

laws in the meatpacking industries. In addition, legislation known as the Meat and Poultry Special

Investigator Act of 2022 has been introduced in the US Congress to give the US Department of

Agriculture (USDA) authority to investigate competition issues in the meat and poultry industries.

USDA has announced plans to partner with the US Department of Justice to enforce antitrust laws

vigorously and to step up its own enforcement of competition under the Packers and Stockyards

Act (U.S. Department of Agriculture 2022). Market power exercised by intermediaries is shown to

raise prices to consumers and depress prices received by farmers (Crespi and MacDonald 2022), but

its impacts on supply chain resilience are not well understood.

Second, given a baseline level of market power for market intermediaries, I study the impact

of entry into the processing sector on market efficiency and resilience in the event of extreme shocks.

As noted, subsidization of entry into meat processing is a key policy response being implemented

in the US, with the USDA’s Meat and Poultry Processing Expansion Program representing a key

element of this overall commitment. Entry of processors spreads the shutdown risk across a greater

number of plants and may reduce intermediaries’ market power, but more processing facilities imply

lower throughput per plant, generating higher costs in the presence of size economies.

Third, I study the ramifications of price controls imposed along the supply chain in response

to significant market shocks. These policies take the form of anti-price-gouging laws, or ad hoc price

controls imposed by politicians under emergency authority. While price limits impede intermediaries

from exercising market power and prevent extreme price shocks to consumers, they may exacerbate

shortages of products and limit market participants’ abilities to adapt through a price mechanism
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to changing market conditions. I show that the impact of price controls depends importantly on

the competitive conditions of markets. In settings where intermediaries’ exercise significant market

power, price caps lead to cause higher output and economic surplus compared to the flexible-price

case.

Fourth, I study whether more geographically dispersed production enhances resilience. Pro-

duction of many agricultural commodities in the US has become highly specialized geographically,

which has undoubtedly caused efficiency gains as regions produce according to their comparative

advantages. Proponents of more diverse and localized food production systems argue that spatial

concentration leaves the food supply chain vulnerable to devastating shocks that impact an entire

production region and that local food systems are more nimble and resilient (Thilmany et al. 2021;

Raj, Brinkley, and Ulimwengu 2022). The simulations illustrate the trade-off between reduced

volatility due to more dispersed production risk, and reduced production efficiency and market

surplus associated with geographically dispersed production systems.

Overall, I find that, while some of these policies can reduce relative volatility of welfare

outcomes for farmers and consumers, their impacts on resilience and efficiency depend critically

on the structure and competitive conditions in the market. Policies aimed at increasing resilience

must carefully assess the probabilistic nature of extreme events and the related efficiency trade-

offs. This paper facilitates these discussions by providing a quantitative framework that enables the

resilience-efficiency trade-offs of the major policy proposals to be assessed under extreme shocks.

4.1 Extreme Events

The COVID-19 pandemic and the Russia-Ukraine conflict in close succession and the disruptions

they have caused have brought heightened awareness to the potential vulnerability of food supply

chains to extreme events (Bellemare, Bloem, and Lim 2022). The urgency of investigating food

supply chain resilience to such events is magnified by a general recognition that, moving forward,

macro forces are likely to make countries increasingly vulnerable to such shocks (Marani et al. 2021).

For example, the majority of emerging infectious diseases originate in wildlife animals and trans-

mit through interactions among wildlife, domestic animals, and humans within rapidly changing

environments and expanding contacts between humans and wildlife, accelerating the potential for
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Event Farm Supply Consumer Demand Processing Capacity
Pandemics Negative: Shock to la-

bor and other farm in-
puts

Positive: Stockpiling
behavior in short-run
Negative: Recession
and mortality in long-
run

Negative: Health-
related plant shutdowns

Natural Disasters &
Extreme Weather

Negative: reduced
yields and livestock
fatality

Positive: Stockpiling No likely impact unless
facilities are destroyed
or damaged

Geopolitical Conflict Negative: Reduced
planting and harvesting

Positive: Stockpiling
Negative: Recession
and mortality in long-
run

Negative: Potential de-
struction of facilities.
Blocked transportation
networks

Range of Impact -[5%,15%]2 +[40%, 75%]3 -[20%, 40%]4

Table 4.1: Shocks to the Food Supply Chain Under Extreme Events

pandemic events (Wolfe, Dunavan, and Diamond 2007; Jones et al. 2013; Allen et al. 2017). A

consensus has also emerged that climate change is associated with increasing incidence and inten-

sity of severe weather events, including extreme temperatures, extreme precipitation, and drought

(Wuebbles et al. 2014; Cornwall 2016). Finally, the destructive capacity of geopolitical conflicts

is exacerbated by modern conventional weaponry, as well as the risk of introduction of biological

weapons onto the battlefield.

Table 4.1 outlines three categories of extreme events and their potential impacts on stages

of the food supply chain. The magnitude of shocks will vary widely depending on specific contexts,

and table 4.1 is meant to be illustrative, not exhaustive. I make no attempt to study the most

extreme “extinction” events that could occur, such as nuclear conflict or asteroid or comet impact

on the Earth. Such events are predicted to have long-lasting impacts such that coping with them

would require massive stockpiling of food reserves, which is not considered in this model.

4.2 Model

Resilient food supply chains for the US and many other economies mean an ability to sustain food

production and consumption without undue reliance on international trade because catastrophic

events are likely to curtail trade due to disruptions in transportation networks and/or country bans

imposed on exports and imports (Raj, Brinkley, and Ulimwengu 2022).5 We, thus, consider a
5The Russia-Ukraine conflict provides ample examples of both trade effects. Ukrainian grain and oilseed exports

are mainly transported by ocean vessel emanating from the Port of Odessa and were curtailed due to a blockade by
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closed-economy model of a supply chain containing farm production, processing and retailing, and

consumption.6

Given the concerns about the impact of competitive conditions within a supply chain on its

resilience, it is important to work with a model that has flexibility to incorporate alternative forms

of competition. I adapt and extend the flexible oligopoly/oligopsony market (FOOM) model to in-

corporate correlated shocks within the supply chain, economies of size in food processing/marketing,

and production emanating from multiple regions.7

The model assumes fixed proportions in production throughout the supply chain in the sense

that a given volume of the farm product is required to produce a unit of the consumer good. Given

fixed proportions, the output produced at each stage of the supply chain can be equalized given

appropriate measurement units and is denoted by Q.

To simplify exposition of the base model, I assume the food product is produced and pro-

cessed in a single region (R = 1). The model is later extended to incorporate multiple production

regions as a resilience-enhancing strategy. The inverse supply function of farmers in the production

region is:

(4.1) P f (Q) = S(Q|X,µ),

where X denotes supply shifters, and µ is a parameter to depict a supply shock.

Consistent with past supply-chain models, e.g., Gardner (1975), Schroeter (1988), Wohlgenant

(1989), Holloway (1991), Sexton (2000), I assume an integrated processing-retailing sector.8 A num-

Russian forces. Many countries curtailed trade with Russia under sanctions. Meanwhile, other countries imposed
export restrictions due to rapidly rising prices for key commodities. Another contemporaneous example of export
bans exacerbating food shortages and raising food prices is the escalation of world grain prices in 2007-2008 that led
to restrictions or bans on grain exports in Argentina, India, Kazakhstan, Pakistan, Ukraine, Russia, and Vietnam
(Mitchell 2008).

6In addition to the fact that catastrophic events are likely to disrupt international trade, a closed-economy speci-
fication also makes sense given the focus on the US and calibration to US data. Over 87% of food consumed in the
US is produced domestically according to the USDA.

7This model framework emerged from the so-called “new empirical industrial organization” or NEIO, with key
early contributions to the study of oligopoly power by Appelbaum (1982) and Bresnahan (1982). The framework was
extended to an agricultural-markets context and to include intermediaries’ oligopsony power by Schroeter (1988).
Sheldon (2017) provides a recent review of contributions to food-market analysis based on the NEIO/FOOM model
framework.

8An analytically equivalent approach is to assume a separate, competitive food retailing sector, which operates
with constant unit costs.
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ber of n homogeneous processors exist in the region. They may exercise buyer power over farmers

and seller power over consumers. Consistent with the norm for most industries, processors may

operate multiple plants, so total plants, denoted by N , equals or exceeds the number of processors:

N ≥ n.

Processors collectively face a national demand for the retail product.9 Consumer demand

for the processed product is:

(4.2) P r(Q) = D(Q|Y, σ),

where Y contains demand shifters, and σ is a parameter to depict shocks to demand.

Suppressing notation for shifters and shock variables, the objective function for a vertically

integrated, profit-maximizing processor j choosing the output qj is:

(4.3) max
qj

πj = (P r(Q)− P f (Q))qj − cwqj ,

where cwqj is the total variable cost for processor j. Fixed costs are irrelevant to the production

decision and are omitted. I assume that all processors have access to the same technologies and,

thus, this cost function is common among them. Further, consistent with prior research (Gardner

1975; Holloway 1991; Sexton 2000), I assume constant marginal costs, cw, but allow cw to be shifted

up or down based on the plant number, N , to allow for possible economies of size, as I explain in

the next subsection.10

Given that processors are homogeneous, optimization yields symmetric behavior in equilib-

rium (i.e., qj = qk = q). Taking the first-order condition and converting derivatives to elasticities, I
9This formulation is consistent with the idea that, although regional markets may exist for bulky and perishable

farm products, final products are less bulky and perishable and easier to transport and, thus, have a broader geographic
market than for procurement of the farm product.

10Each processor j that operates multiple plants, Nj > 1, must allocate its optimal farm-product purchases and
processed product output, q∗j , across its processing facilities. I do not model this allocation process explicitly, but
assume plants are located optimally within the producing region. Hence, each plant operates with the same marginal
costs, cw, and produces an equal share, q∗j /Nj , of the total firm output.
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obtain the market equilibrium condition (see Appendix 4.5.1 for derivation):

(4.4) P r(1− ξ

η
)− cw = P f (1 +

θ

ϵ
),

where 0 ≤ θ ≤ 1 is the processor’s buyer power parameter, 0 ≤ ξ ≤ 1 is the processor’s seller power

parameter, η > 0 is the absolute demand elasticity evaluated at the market equilibrium, and ϵ > 0

is the farm supply elasticity evaluated at the market equilibrium. The left-hand side represents

the processor’s perceived net marginal revenue (PMR) from selling an additional unit of the final

product, while the right-hand side is its perceived marginal cost (PMC) of acquiring an additional

unit of the farm product.

The model parameterizes both buyer and seller market power on the unit interval, with

ξ, θ = 0 denoting perfect competition, ξ, θ = 1 denoting pure monopoly/monopsony, and ξ, θ ∈

(0, 1) denoting different degrees of oligopoly/oligopsony power. The model does not presuppose a

particular form of market competition, but seeks to measure the implications of specific departures

from perfect competition, which may arise due to unilateral power of the intermediaries, such as

under Cournot-Nash competition, or from tacit or overt collusion.

4.2.1 Analytical Solutions

To obtain analytical solutions and enable simulation, I assign linear functions to the model. Sup-

pressing the shock parameters in the functions, I let the farm supply and market demand functions

be:

(4.5) P f (Q) = b+ βQ,

(4.6) P r(Q) = a− αQ,

where a and b capture the effects of the shifter variables for consumer demand and farm supply,

respectively.

To capture potential economies of size in processing, I specify the marginal processing cost
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function as:

(4.7) cw = cw(N).

I allow the marginal cost to be locally constant for small changes in firm-level output, but to be a

function of the total number, N , of processing plants operating in the market. This specification is

a convenient way to study processing efficiency because policy proposals involving processor entry

or expanding production into multiple regions involve increasing N . Equilibrium output of each

processing plant changes discretely as a function of N , given the farm supply function. Thus,

∂cw

∂N > 0 reflects economies of size (i.e., more active plants imply reduced output per plant and

higher unit costs), and ∂cw

∂N = 0 represents constant returns to size. Diseconomies of size is not

considered due to lack of empirical support.

In the risk-free and competitive world, the equilibrium condition is:

(4.8) (a− αQ)− cw = b+ βQ,

which yields the competitive equilibrium output of the industry:

(4.9) Qc =
a− b− cw

α+ β
.

The equilibrium retail and farm prices are obtained by plugging Qc into the consumer demand and

farm supply functions, respectively.

Similarly, I find equilibrium output and prices under imperfect competition. For the linear

model the first-order condition, equation 4.4 becomes:

(4.10) (a− αQ)(1− ξ

η
)− cw = (b+ βQ)(1 +

θ

ϵ
).

I can derive the market’s risk-free oligopoly-oligopsony equilibrium output, farm price, and retail

price by solving the system consisting of equations 4.5, 4.6, and 4.10:
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(4.11) Qoo =
a(1− ξ

η )− b(1 + θ
ϵ )− cw

α(1− ξ
η ) + β(1 + θ

ϵ )
,

where Qc > Qoo for all positive ξ and θ, and Qoo decreases in ξ and θ. The output per processing

firm is qoo = Qoo

n . The equilibrium retail price is P r,oo = a− αQoo, and the equilibrium farm price

is P f,oo = b+ βQoo.

Given the parameterized model and equilibrium prices and output, the economic surplus

measures for consumers, farmers, and processors are straightforward to derive. Consumer surplus

(CS) equals 1
2(a− P r,oo)Qoo, producer surplus (PS) equals 1

2(P
f,oo − b)Qoo, and processor variable

profits equals (P r,oo −P f,oo − cw)Qoo. The dead-weight-loss (DWL) from market power is given by

1
2(P

r,oo − P f,oo)(Qc −Qoo)− cw(Qc −Qoo).

4.2.2 Measure of Resilience

Researchers have used the variance or standard deviation of a variable or welfare measure of interest,

like industry-level output or CS, to measure volatility under a given shock (e.g., Ma and Lusk

(2021)). However, to compare the volatility of several random variables with different mean values,

the coefficient of variation (CV), the standard deviation of a variable divided by its mean, is the

most appropriate measure of relative dispersion (Curto and Pinto 2009).

CV provides a dimensionless measure of relative volatility that is widely used in economic

risk assessments, like financial stability (Pinches and Kinney 1971; Ozkok 2015), socioeconomic

inequality (Houthakker 1959; Braun 1988), and agronomic yield variability (Kravchenko et al. 2005).

In the context of supply chain resilience, CV measures the relative dispersion of CS, PS, and

intermediary profits under a set of extreme shocks to the system. It allows me to compare the

volatility of welfare for supply-chain participants (producers, intermediaries, consumers), who have

different average surplus measures, across different policy proposals and supply-chain structures.

4.2.3 Parameterization

To parameterize the model, I normalize the risk-free, competitive equilibrium industry-level output

to 1.0. The corresponding equilibrium retail price on the national market is a − αQc and also
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normalized to 1.0. The corresponding demand elasticity at this equilibrium, η, hence equals 1
α , and

a = 1 + α = 1 + 1
η .

On the supply side, the competitive farm equilibrium price is f = 1 − cw, where cw is a

function of the number of processors, N , and characterizes the economies of size that a processing

plant is able to obtain. This farm price is the farm share of the normalized retail value of a unit of

the product under perfect competition. Total farm output is also 1.0. Thus, β = f
ϵ and b = f(1− 1

ϵ ),

where ϵ is the farm price elasticity of supply at the competitive equilibrium.

As noted, allowing for the presence of economies of size in processing is critical in the

model. Economies of size in food processing have been studied most extensively for the meatpacking

industries, wherein size economies have been found to exist and to be substantial. Morrison Paul

(2001a) shows that the cost function for US beef processing can be expressed approximately as

C(q) = mqg where m is a multiplier, q is the output of a processor, marginal cost is c(q) = gmqg−1,

and g = ∂ ln(C)
∂ ln(q) is the cost elasticity of output with 0 < g < 1 denoting size economies. Morrison Paul

(2001a) reports estimates of g ≈ 0.95 for US beef processing based on industry-level data.

Based on a plant-specific analysis of US beef processing, Morrison Paul (2001b) finds an

almost identical estimate for g wherein cattle input and other variable inputs are allowed to change,

but physical plant is fixed, an environment she terms the “intermediate run” case and nearly identical

to the setting I simulate. MacDonald and Ollinger (2000) also report a nearly identical cost elasticity

estimate for US hog processing. Ollinger, MacDonald, and Madison (2005) found greater size

economies for US poultry, with the cost elasticity estimates for chicken ranging from 0.88 to 0.93.

Even greater size economies were found for turkey processing.

To adapt these size economy estimates to the model structure, I express marginal processing

costs as cw(N) = cNγ , where γ ≥ 0. I equate this expression to marginal cost in Morrison Paul

(2001a) to solve for γ. Here γ = 0 denotes constant returns to size, while γ > 0 indicates the

presence of economies of size – the marginal cost increases as the number of active plants rises, or

as the per plant equilibrium output falls. Given that the equilibrium output per homogeneous plant

is qj =
1
N , which falls in N , the cost function is defined as:

(4.12) mg(
1

N
)g−1 = cNγ .
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Parameter Description Value Source
η |Demand elasticity| 0.7 (Okrent and Alston 2011)

ϵ Supply elasticity 1 (Chavas and Cox 1995)

f Farm share 0.3 (USDA-ERS)

g Cost elasticity of output 0.95 (Morrison Paul 2001a,b; MacDonald and Ollinger 2000)

γ Economies of size parameter 1− g Authors’ calculation

ξ,θ market power parameters 0, 0.15, 0.3 (Sexton and Xia 2018)

N Total number of processing plants 40 Garrido et al. (2021)

Table 4.2: Baseline Parameter Values for Simulation

Letting c = mg, the equation for γ simplifies to (see online Appendix 4.5.1 for derivation):

(4.13) γ = 1− g.

Equilibrium solutions to the model then depend on six parameters (η, ϵ, f , g or γ, ξ, and θ)

that are all pure numbers and describe the market structure, and three exogenous shock variables

to the supply chain. I assigned base values for these parameters by drawing upon the empirical

literature for US meat supply chains. These base values and sources are displayed in table 4.2.

4.2.4 Correlated Shocks

Destructive events such as a natural disaster, war, or a pandemic that impact labor supplies may

negatively impact both farm supplies and available processing capacity (Wahdat and Lusk 2022).

These events also simultaneously and positively shock demand due to consumers attempting to

stockpile goods.11 However, to date the literature on food supply chain resilience has not incorpo-

rated the correlated nature of shocks due to extreme events (Davis, Downs, and Gephart 2021).

To illustrate how extreme events introduce correlated shocks between retail and processing

stages, figure 4.1 displays weekly percentage changes from average in beef slaughter and retail sales

in 2020 following onset of the COVID-19 pandemic in the US. The shaded area reflects the initial
11As table 4.1 notes, extreme events may eventually manifest as negative demand shocks if they result in a significant

increase in mortality and/or cause economic recession. The analysis focuses on the shorter-term impacts, wherein
positive demand shocks due to consumer stockpiling are likely. The framework can readily be adapted to studying
the impacts of correlated negative demand shocks, along with negative supply shocks and processing plant shutdown
risk.
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Figure 4.1: Weekly beef slaughter and retail sales relative to average.
Source: Retail beef sales are from USDA Economic Research Service. Slaughter data are originally from
USDA Agricultural Marketing Service and USDA National Agricultural Statistics Service and provided
by Livestock Marketing Information Center.
Note: Authors’ calculation. The shaded region shows the large deviations from the average in the weeks
immediately after the first COVID-19 cases in the US in March 2020.

weeks of the COVID-19 outbreak in the US, mid-March through the end of June. The initial weeks

of the pandemic induced panic buying and hoarding of available supplies up to 45% beyond normal

retail sales. At the same time, slaughter dropped as much as 32% below average because processing

plants were forced to stop operations due to employee illnesses or local ordinances.

Multi-variate joint distributions (or copula) allow for random variables drawn from differing

distributions with dependant structures. Copulas are commonly used in quantitative finance for

portfolio risk-management, where the volatility of individual investments that compose a portfolio

are correlated with each other (Fan and Patton 2014). For supply chain analysis of extreme events,

copulas allow for random draws from a positive half-normal parallel demand shock (σ), negative

half-normal parallel supply shock (µ), and binomial processor shutdown shock (N ′).

Table 4.1 informs the parameterization of these distributions according to the possible magni-

tudes of extreme events in percentage terms. The mean and variance of the half-normal distributions

are specified by a single scale parameter, θiH for i = {D,S}, in the set of expressions below. Here,

the half-normal parameter θDH corresponds to a mean 20% shift in demand (i.e., mean of σ = 0.5
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is 20% of a = 1 + η = 2.43), and θSH implies a 30% shift in farm supply (i.e., mean of µ = 0.1 is

a third of f). After parallel shifts, demand and supply curves have new intercepts a′ = a + σ and

b′ = b+ µ, respectively. The binomial shutdown shock determines the number of processing plants

that remain active, N ′, from a total number of plants, N . On average, 75% of the plants remain in

operation after an extreme event in the simulation model.

(4.14)

σ ∼ H(θDH = 2)

µ ∼ H(θSH = 10)

N ′ ∼ B(N, 0.75)

The magnitude of shocks vary across extreme events, but the values chosen here are emblematic of

recent experiential evidence.12 The densities of each shock for the baseline simulations are presented

in figure 4.2.

Given distributions of shocks, I then draw 100,000 sets of shocks from a multi-variate joint

distribution, in essence creating 100,000 extreme events. The dependant nature of these shocks

are defined by a 3 by 3 covariance matrix, where the off-diagonal elements specify the degree of

correlation, ρ, between each stage’s shock.

To illustrate the role of correlation between shocks, I simulate over the off-diagonal elements

of the covariance matrix for ρ ∈ [0, 0.5]. Figure 4.3 displays simulation outcomes for a supply chain

with moderate market power (ξ = θ = 0.15) for alternate values of ρ. For this illustrative simulation,

all off-diagonal elements are simply equal to ρ, but these elements are fixed at differing baseline

values for the policy simulations. The vertical axis measures percentage changes in CV relative to

the independent-shocks setting. Increasing the correlation among shocks increases CV of all welfare

measures. Intuitively, a stronger correlation between a and b increases the variance of CS and PS,

but has little effect on their means.13 In the baseline, I allow cor(σ, µ) = 0.25, cor(σ,N ′) = −0.50,
12The choice of shock distributions, by construction, influences the baseline level of volatility in market outcomes.

Importantly, however, the simulations hold constant the distribution of shocks across simulations and measure the
final outcomes as percentage changes relative to a baseline. While a separate choice of shock parameters may lead
to different baseline levels of volatility, they do not meaningfully alter the simulated percentage change effects of
marginal changes in market structure.

13The mean values of CS and PS increase slightly in ρ because the positive demand shift tends to dominate the
correlated negative shift in farm supply.
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Figure 4.2: Density of shocks from a multi-variate joint distribution.
Note: Left panel displays the density of 100,000 draws from half-normal distributions for the supply and
demand shocks. Right panel displays the density across 100,000 draws from a binomial distribution, where
25% of plants shut down on average.

and cor(µ,N ′) = 0.10.14

4.2.5 Post-Shock Equilibrium

When processing plants experience a shutdown shock (i.e., N falls to N ′), I assume that the market

power parameters stay unchanged in the short run, i.e., market power is related to n, not N . At the

same time, consumer demand and farm supply curves shift. I assume that operational plants can

adjust farm-product acquisitions and processed product outputs to respond to the new consumer

demand (a′ − αQ) and farm supply (b′ + β N
N ′Q = b′ + β′Q) functions after shocks occur.15

Given the new demand and supply function intercepts and supply function slope, the new
14These values are informed by weekly data from the beef supply chain from 2019-2020 and reflect that shutdowns

and stockpiling are likely to be highly correlated, supply shifts and demand shifts moderately correlated, and supply
shifts and processor shutdowns slightly correlated. The results are not sensitive to the choices of these correlation
values.

15For example, additional farm supplies can be called forth by bringing product from storage or accelerating
harvesting. Processing throughput can be expanded by operating a Saturday shift, as occurred in beef processing
during the COVID-19 pandemic.
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Figure 4.3: Correlation between shocks at different supply chain stages.
Note: Authors’ creation from numerical simulation. Figure displays the implications of increasingly
correlated shocks at different supply chain stages. The vertical axis measures percentage changes in CV
of producer, consumer, and processor surplus under correlated shocks relative to independent shocks.
Welfare outcomes are calculated using the post-shock equilibrium defined in equation 4.15.

industry output is:

(4.15) Qoo′ =
a′(1− ξ

η )− b′(1 + θ
ϵ )− cw

α(1− ξ
η ) + β′(1 + θ

ϵ )
.

Per plant output is Qoo′

N ′ . Equilibrium prices and welfare measures are computed accordingly.

4.3 Simulations

I study four widely discussed policy responses intended to protect consumers and farmers by reducing

supply chain volatility in response to market shocks: 1) reducing intermediary market power, 2)

subsidizing the entry of processors, 3) limiting retail price increases through anti-price-gouging laws,

and 4) creating regional diversification of production capacity.

I simulate each policy proposal and report its impact on mean economic surplus and the

relative volatility of surplus (i.e., CV) for farmers, consumers, and market intermediaries. I present

the results for the latter three policy interventions for three alternative levels of processor market

power: perfect competition (ξ = θ = 0), moderate market power (ξ = θ = 0.15), and high market
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power (ξ = θ = 0.3) to reflect different market structures in key agricultural industries.16

The simulation outcomes are summarized in the following figures. In each figure, the vertical

axis tracks percentage changes in the mean welfare measures and their CV as market parameters

(e.g., market power parameters ξ and θ) change. The percentage changes along the vertical axis are

computed relative to the baseline scenario that is depicted as the leftmost parameter value for each

simulation. Online Appendix 4.5.2 explains mathematically why the mean surplus and CV curves

follow particular patterns and why the curves for CS and PS tend to follow the same pattern. Though

the mathematics determining the patterns may be somewhat complicated, numerical simulations

and outcomes depict the market resilience and efficiency impacts as I explain below.

4.3.1 Reducing Intermediary Market Power

The economic welfare implications of market power in the food and agriculture sector have long been

a focus for agricultural economists (Sexton and Xia 2018; Crespi and MacDonald 2022). However,

little is known about the resiliency impacts of intermediary market power. Figure 4.4 shows the

impacts of market power in the range ξ = θ ∈ [0, 0.3] on resilience measured in terms of CV (left

panel) and mean economic surplus (right panel) based on 100,000 simulations for each value of

ξ = θ.

The right panel displays the well-understood result that, as intermediary market power

decreases, consumers and producers gain economic surplus and processors lose profits. Less under-

stood, however, is that CV for consumers’ and farmers’ surplus also decreases as the intermediary

market power falls, as does CV of processors’ profits. Both the standard deviation of surplus and

its mean value for farmers and consumers rise as the level of processor market power drops, but

mean surplus rises faster than the standard deviation, causing CV to fall.17

These results are the first demonstration that, in the presence of correlated economic shocks,
16Although the market power parameters are not tied to a particular form of competition, it is useful to relate

them to non-cooperative Cournot competition, where ξ = θ = 0.15 corresponds approximately to the market power
generated by 6–7 symmetric Cournot competitors and to a Hirschman–Herfindahl (HHI) index of approximately
1,500, a value that the US Department of Justice regards as moderately concentrated in its Merger Guidelines.
ξ = θ = 0.3 corresponds to Cournot competition involving 3 or 4 symmetric firms, and an HHI index in the range of
2,500 to 3,300, which would be considered as highly concentrated by the DOJ under the Merger Guidelines. Notably
four-firm oligopoly-oligopsony corresponds roughly to the market structure for the US beef and pork industries (U.S.
Department of Agriculture 2022).

17Intermediaries with market power rationally pass on less of a demand or supply shock to farmers and consumers
than would occur in a perfectly competitive market because they internalize a portion of the impact their output
decision has on the farm price and consumer price. Conversely, perfect competitors treat these prices as given.
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Figure 4.4: Impacts of decreasing intermediary market power on market surplus and
resilience.
Note: Authors’ creation from numerical simulations. The vertical axis measures the percentage changes
in CV (left panel) and mean surplus (right panel) relative to the high market power setting (ξ = θ = 0.3).
The left panel displays the reliance gains from competition, and the right panel shows that producer and
consumer surplus increase, and processor profit declines as market power decreases.

consumers and farmers benefit from both higher average economic surplus and reduced variability

of surplus from policies that induce more competitive supply chains. Thus, policies designed to

increase competition among market intermediaries may represent “win-win” outcomes for consumers

and farmers.

4.3.2 Entry of Processors

One of the primary policy responses in the US to the COVID-19 pandemic and disruptions caused

in the meat supply chains is a USDA initiative which provides $500 million to support entry of new

firms into meat and poultry processing (U.S. Department of Agriculture 2021).18 The objectives of

this policy are to increase competition in local regions and to reduce bottlenecks in meat processing
18While meat processing has received the most intense scrutiny due to allegations of anti-competitive behavior,

other segments of food supply chains have received similar critiques. In early 2022, for example, USDA launched an
investigation into the fertilizer, seed, and food retail markets as a result of heightened prices (U.S. Department of
Agriculture 2022).
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under shutdown risks.

The potential resiliency improvements from processor entry in the model are twofold. First,

additional processing plants disperse shutdown risks over a larger number of operations, thus di-

versifying the risk of losing processing capacity and reducing variance in industry output. Sec-

ond, additional processors potentially increase competition among processors, which, as figure 4.4

demonstrates, increases average surpluses to farmers and consumers and decreases the CV of those

surpluses.

The main focus of the US policy is to support entry of small-scale processors. Given the

model framework, I simulate entry by processors that are symmetric with the incumbent processors.

A limitation of this approach is that it cannot capture the aspects of small-scale processing and

local/regional food systems that remained resilient amidst the COVID-19 pandemic.19 On the

other hand, this approach tends to errs in favor of a policy to stimulate entry because entrants in

the model have the same marginal cost as incumbent processors, whereas small-scale entrants will

have higher unit costs in the presence of economies of scale. Symmetric entrants also expand market

competition in the model in ways that small-scale entrants may be unable to accomplish in reality.20

Counterbalancing the enhanced resiliency and reduced market power from adding processors is that

per plant throughput declines for all plants as more plants are added for a given farm supply

function, meaning that processing plants are less able to exploit the available economies of size.

I simulate adding processors for each of the three market competition scenarios and assume

that market power parameters are dependent on n, reflecting symmetric, non-cooperative Cournot

competition among processors, such that ξ = θ = 1
n . Each processor operates N

n plants, where N is

equal to 40 in the baseline in accordance with table 4.2. Therefore, as n increases, the total number

of processing plants simultaneously increases, dispersing the risk of plant shutdown.

The nearly competitive scenario begins with n = 10 processors and sequentially introduces

entering processors to reach n = 13. Processor market power is less consequential in these settings,

ranging from ξ = θ = 0.08 for n = 13 to ξ = θ = 0.10 for n = 10. Similarly, moderate market
19Thilmany et al. (2021) argue that such systems involve shorter supply chains, with greater connectivity among

supply-chain participants. These factors, they argue, enable participants in these supply chains to respond nimbly
and flexibly to supply-chain disruptions.

20For example, small food processors may only serve local or regional markets, leaving national concentration
largely unaffected. Online Appendix 4.5.3 depicts simulations for the case where processor entry does not affect
processor market power, isolating the impacts of entry on plant shutdown risk and plant economies of scale.
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(a) Nearly Competitive (b) Moderate Market Power

(c) High Market Power

Figure 4.5: Impacts of processor entry on average market surplus and resilience.
Note: Authors’ creation from numerical simulations. Vertical axis measures the percentage changes in
CV (left panels) and mean surplus (right panels) relative to the baseline number of processors for each
scenario.

power is reflected by n = 6 (ξ = θ = 0.17) to n = 9 (ξ = θ = 0.11) and high market power by n = 3

(ξ = θ = 0.33) to n = 5 (ξ = θ = 0.20). For each value of n, I simulate 100,000 correlated shocks

to demand, supply, and processing capacity.

Figure 4.5 reports simulation outcomes, with panels (a), (b), and (c) depicting the results for

near perfect competition, moderate market power, and high market power, respectively. Similar to

figure 4.4, lower levels of market power (larger n) are associated with smaller CV of market surplus.

Additionally, mean CS and mean PS overlap and rise as market power diminishes. The resilience

and efficiency improvements are greater for small values of n. That is, there are decreasing returns

from adding n. Thus, stimulating entry is most effective in enhancing resilience, when it is done

in markets with low n or high market power ex ante. Online Figure 4.10 further shows that these

resilience and efficiency improvements are mostly attributed to the reduced market power effect.

When market power is held constant, the economies of size penalty from reduced throughput per
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plant unequivocally reduces average welfare outcomes for all agents. Thus, the efficacy of policies

to induce processing plant entry hinge importantly on whether such entry reduces processor market

power.

4.3.3 Anti-Price-Gouging Laws

About two-thirds of US states have price-gouging laws that engage during natural disasters or

declared emergencies and that limit increases in retail prices during such episodes (Morton 2022).

These laws were triggered in a number of jurisdictions in response to the COVID-19 pandemic.

Price caps may also be imposed on an ad hoc basis under emergency powers that political leaders

often have.

A key unanswered question, however, is how such anti-price-gouging laws impact supply

chain resilience. When price is not allowed to signal market conditions and equilibrate the available

supply with demand, shortages may ensue, and available products may not be allocated to the

highest-valued consumer. Counterbalancing this effect is the fact that price ceilings do eliminate

sellers’ ability to exercise market power over a range of prices and, thus, may lead to increased

industry output and higher CS and PS.

To illustrate the impact of anti-price-gouging laws, consider the case where retail prices are

fixed at the risk-free (pre-shock) level: P r,oo = a− αQoo as specified in equation (4.2).21 Allowing

for flexible prices, the new equilibrium quantity produced post-shock, Qoo′ , is given by equation

(4.15) and yields the flexible retail price P r(Qoo′) = P r,oo
flex. The impact of capping the retail price

at the pre-shock level, P r,oo = P r,oo
fix , is illustrated by two cases described in figure 4.6.

In Case 1 (left panel), the price ceiling, P r,oo
fix , intersects the new demand curve, D′, at Qoo′

fix,

before it intersects the post-shock PMC curve, PMC ′. For all Q ≤ Qoo′
fix, PMR(Q) = P r,oo

fix >

PMC ′. For any output larger than Qoo′
fix, PMR(Q) < PMC ′. Therefore, the processors produce

Qoo′
fix > Qoo′ and charge the ceiling price, P r,oo

fix . No shortage is created by the price ceiling. Both CS

and PS increase relative to the flexible-price case, with the gain to consumers (producers) indicated

by the pink (gray) shaded areas.

In Case 2, P r,oo
fix intersects (PMC

′
), at point B, before it intersects D′. Processors maximize

21Anti-price-gouging laws may also be applied to farm prices. Online Appendix 4.5.4 studies the case of price fixed
at the farm level.
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Case 1 Case 2

Figure 4.6: Fixing the post-shock retail price at the pre-shock level.
Note: Authors’ creation. Case 1 illustrates a market setting wherein a price-ceiling eliminates seller power
and does not cause a market shortage. Case 2 illustrates a post-shock equilibrium where the price ceiling
does create a market shortage, with quantity demanded exceeding quantity supplied at the fixed price.

profits by producing quantity Qs,oo′

fix , while consumers demand Qd,oo′

fix , resulting in a market shortage

equal to Qd,oo′

fix −Qs,oo′

fix .22

Given a shortage, the market could clear in various ways. For example, product could

be allocated based on queues, and secondary markets could possibly reallocate product from low-

to high-demand consumers. However, secondary resale markets for foods subject to shortage did

not occur with any frequency in the US during the COVID pandemic, nor were consumer queues

common. Rather, available products were allocated seemingly at random based on when shelves

were restocked and consumers happened to arrive at stores.

We, thus, assume that the quantity supplied, Qs,oo′

fix , is randomly allocated among all con-

sumers who are willing to purchase at P r,oo
fix . Consumer surplus is then computed by:

(4.16)
Qs,oo′

fix

Qd,oo′

fix

∫ Qd,oo′
fix

0
(D′(Q)− P r,oo) dQ.

Failure of product to be allocated to the consumers who value it most represents a welfare loss from
22Both cases depicted in figure 4.6 show post-shock output increases relative to the pre-shock equilibrium. Output

may decrease depending on the magnitude of shocks and extent of processor market power. Online Appendix 4.5.4
discusses it.
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fixed prices that offsets the benefit in reducing processor oligopoly power.

Anti-price-gouging laws typically allow some flexibility in prices post-shock.23 We, hence,

incorporate a continuum of price flexibility in the simulations from the pre-shock level, P r,oo by

setting price P̄ r,oo = P r,oo(1 + ω) for ω ≥ 0. Smaller values of ω denote a tighter price ceiling. For

sufficiently large values of ω, the price ceiling will not bind. I present simulation results in figure

4.7 for ω ∈ [0, 0.60], where ω = 0.60 allows sufficient price flexibility that the ceiling does not bind

in the model, while ω = 0 represents no flexibility and price is fixed at the pre-shock level.

The three panels reflect both of the two possible cases of price ceilings illustrated in figure

4.6. Panel (a) depicts a perfectly competitive market, so P̄ r,oo represents Case 2 across all values

of ω. Mean CS and PS are increasing in ω, while processor profits are zero for all ω under perfect

competition.24 Larger values of ω are associated with reduced volatility of welfare. More stringent

price ceilings (i.e., ω < 15%) however, increase CV for both consumers and producers, reducing

resilience. CS and PS also fall due to the induced shortages they create, resulting in a “lose-lose”

scenario.

Panel (b) illustrates a supply chain with moderate market power. Here, Case 1 emerges and

yields higher values for CS and PS for all but the most stringent price ceilings. These benefits are

maximized when ω ≈ 15%. As the price ceiling becomes stricter, a mix of Cases 1 and 2 holds

across the 100,000 simulations. CV of CS and PS also have a nonlinear relationships with ω. The

resilience improvement is maximized at ω = 0 with the CV reduced by 30% from the flexible-price

level. For ω > 20%, the relative volatility for CS and PS is higher than the flexible-price level. A

“win-wiń’ outcome can be achieved for ω ranging from about 0.05 to 0.15.

Panel (c) depicts a higher level of processor market power and the predominance of Case 1.

Price ceilings increase CS and PS the most in these settings because of the market-power-reducing

effect. The increase in CS and PS is greatest for the most stringent price ceilings. However, the

CV of CS and PS is larger over most of the range of ω. For example, at ω = 20%, CV of CS and

PS is greater by upwards of 40% compared to the market with no price restriction. Thus, under
23California’s Penal Code Section 396, for example, prohibits price increases by more than 10% after an emergency

declaration or 50% above the seller’s cost to produce the good or service.
24Under perfect competition, a binding price ceiling leads to welfare losses for both producers and consumers due

to the shortage that necessarily occurs in the competitive case and restricting both farm production and consumption
below the surplus-maximizing levels. See more discussion in online Appendix 4.5.4. For example, allowing prices to
increase by no more than 10% lowers average CS and PS by about 35%.
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(a) ξ = θ = 0 (b) ξ = θ = 0.15

(c) ξ = θ = 0.3

Figure 4.7: Impacts of anti-price-gouging laws on market surplus and resilience.
Note: Authors’ creation from numerical simulations. Vertical axis measures the percentage changes in
CV (left panels) and mean surplus (right panels) relative to a fully flexible price. The impacts of price
ceilings are highly non-linear and depend critically on market structure. Processor profit is omitted from
panel (a) because it is zero in each instance.

higher intermediary market power, anti-price-gouging laws benefit producers and consumers most

by transferring surplus to them from intermediaries, but they do not improve the resilience of supply

chains. A win-win outcome for producers and consumers can, however, be achieved as ω approaches

zero.

Figure 4.8 illustrates the effects of binding price ceilings on market shortages under different

market competition scenarios. The vertical axis measures shortage as the difference between the

normalized quantity demanded and the quantity supplied at the fixed price. Despite the fact that

price is more stable and seller power is essentially eliminated with a strict anti-price-gouging law,

such a law does not necessarily improve farmer and consumer welfare or reduce the volatility of

CS and PS. Market shortages created by these laws are more severe, the more competitive the

underlying market structure. Anti-price-gouging laws are most likely to increase CS and PS the less

competitive is the market, but in these cases, as figure 4.7 demonstrates, the laws often increase the
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Figure 4.8: Market shortage with a price ceiling with different levels of market power.
Note: Authors’ creation from numerical simulations. The vertical axis measures the difference between
normalized quantity demanded and quantity supplied under the level of price ceiling. The horizontal
axis indicates the tightness of the price ceiling; smaller ω is, tighter the ceiling. The curves show that a
price ceiling introduced in a competitive market induces a greater shortage compared to the same ceiling
implemented in an imperfectly competitive market.

volatility of producer and consumer returns as measured by CV.

Although I have simulated an anti-price-gouging law for a single supply chain, in reality

they paint with a “broad brush.” They generally apply to all food and drink products, as well as a

variety of other products deemed as necessities, regardless of the competitive structure. The efficacy

of these laws, thus, depends importantly on overall competitive conditions of food markets within

the implementing jurisdiction and the stringency with which price increases are restricted.

4.3.4 Regional Diversity of Farm Production

Agricultural production in the US has become increasingly geographically concentrated as regions

produce according to their comparative advantages. Distributing agricultural production and pro-

cessing across geographically diverse regions and emphasizing localized food systems has been pro-

posed as a resilience strategy (Raj, Brinkley, and Ulimwengu 2022) because supply shocks in one

region may not impact other regions and geographically diversified food systems may be able to

adapt more nimbly to extreme shocks than concentrated systems (Thilmany et al. 2021; U.S. De-
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partment of Agriculture 2022).25

Although diversifying production of key commodities across multiple regions may enhance

the supply chain’s resilience to some shocks, it will likely come at a cost of reduced production

efficiency (Sexton 2009). To explicate this trade-off in the simplest way, I examine the marginal

change of expanding from a single production and processing region to two regions. To ensure

analytical solutions, I assume that each region has the same number of plants, and the plants

belong to the same group of symmetric processors. It follows that the two regions have the same

buyer power and seller power. Marginal processing costs are thus cw = c × (RN)γ , where R > 1

denotes the number of production regions.

The retail market remains national as in the baseline case, with demand as specified in

equation (4.2). I assume that no farm product is transferred between production regions, thereby

allowing local plants in different regions to face different supply functions:

(4.17)
P f
1 (Q1|X1, µ1) = b1 + 2βQ1

P f
2 (Q2|X2, µ2) = b2 + 2βQ2,

where subscript 1 refers to the base region of farm production and 2 refers to the new region.26

Solving the two-region system, I obtain the equilibrium total output (see online Appendix

4.5.1 for details):

(4.18) Q̃oo =
a(1− ξ

η )− b̄(1 + θ
ϵ )− cw

α(1− ξ
η ) + β(1 + θ

ϵ )
,

where b̄ = b1+b2
2 . Plugging Q̃oo into the first-order-conditions, I obtain the pre-shock regional

equilibrium output:

(4.19) Q̃oo
i =

a(1− ξ
η )− b̄(1 + θ

ϵ )− cw +
α(1− ξ

η
)

β (b̄− bi)

2α(1− ξ
η ) + 2β(1 + θ

ϵ )
,

25A specific contemporary U.S. example is the Local Food Purchase Assistance Cooperative Agreement Program,
authorized through the American Rescue Plan, which invests $400 million for government purchases of locally pro-
duced and processed foods.

26When b1 = b2 = b (here b is the supply function’s intercept in the baseline setup) and if cw is the same as in the
baseline, each region produces exactly one half of the equilibrium output in the one-region scenario, Qc, and regions
have the same supply elasticity under perfect competition.
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where i = 1, 2. The term,
α(1− ξ

η
)

β (b̄− bi), in the numerator is the deviation from half of the industry

output or Qoo
i
2 . Intuitively, the larger bi or the more costly it is to produce farm outputs in region

i, the less the region produces in equilibrium. If b2 > b1, the new region produces less than the

incumbent region due to higher production costs.

The two regions face independent supply shocks (µ1, µ2) and the same demand shock at the

national level in the simulations. The supply function of region 2 has an intercept equal to b + k

where k = f × 0.23 = 0.069, reflecting production costs that are 23% higher than the first region

due to the cost inefficiencies of local production found by Sexton (2009). Each region also faces

independent shutdown risks among its plants, so that N ′
i plants remain active in region i. As a

result, PS differs across regions and equals P f
i Q̃oo

i
2 = β′

iQ̃
oo
i

2
. When b2 > b1, PS2 < PS1.

The post-shock equilibrium output equals:

(4.20) Q̃oo′ =
a′(β′

1 + β′
2)(1−

ξ
η )−B(1 + θ

ϵ )− (β′
1 + β′

2)c
w

α(β′
1 + β′

2)(1−
ξ
η ) + 2β′

1β
′
2(1 +

θ
ϵ )

,

where β′
i = β N

N ′
i

and B = b′1β
′
2 + b′2β

′
1. Region i’s output is found from the first-order-condition of

the region given Qoo′ :

(4.21) (a′ − αQoo′)(1− ξ

η
)− cw = (b′i + 2β′

iQ
oo′
i )(1 +

θ

ϵ
).

The simulation results are presented in figure 4.9. Surpluses decline for all agents and market

power values. There are resilience benefits for producers, but consumers’ CV rises. When market

power is high, for example, the decrease in mean CS is as much as 15% and that of PS is close to

10%, while the decrease in CV for PS is about 10% and CV for CS rises by 5%. Consumers suffer

from higher relative volatility because mean CS falls faster than the variation of CS. The divergent

trends in the CV for CS and PS imply additional trade-offs among stakeholders associated with this

policy. In general, regional diversification of production does not represent a favorable policy option

if production efficiency in the new region declines as indicated here. The only benefit is reduced

CV of PS from spreading the production risk across multiple regions. Consumers do not benefit

because less efficient production implies higher prices and more volatility in CS.
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Figure 4.9: Impacts of adding a production region to market surplus and resilience.
Note: Authors’ creation from numerical simulations. The vertical axis measures the percentage changes
in CV (left panel) and mean surplus (right panel) due to moving from a single production region to two.
The results show resilience benefits to producers, but not consumers. Mean surplus declines for all agents.
Processor profit is omitted from the competitive case because it is zero in each instance.

4.4 Conclusion

Experiences of coping with food supply chain disruptions due to COVID-19 and the Russia-Ukraine

conflict, as well as the recognition that extreme events are likely to become more common moving

forward, have spurred interest in food supply chains and policies to improve supply-chain resilience.

This paper has studied the efficiency and resilience impacts of four of the most prominent strategies

being discussed or implemented in the US.

The supply-chain model allows for any representation of market competition ranging from

perfect competition to pure monopoly/monopsony in the processing stage. This model flexibility

is important in studying market resilience because market power of intermediaries has often been

blamed for supply chains’ lack of resilience, and strategies to enhance food markets’ competitiveness

have been at the forefront of policy discussions. A key innovation of the model framework is its

recognition that extreme events are likely to introduce correlated shocks within a supply chain. I

show that market disruptions from extreme events are more severe the greater the correlation of

positive shocks to consumer demand and negative shocks to farm supply and processing capacity.

116



An essential contribution of this work is the quantification of the impacts of proposed policies

on resilience under extreme shocks, as measured by the coefficient of variation of market surplus

earned by each group of supply-chain participants, and market efficiency, as measured by the average

market surplus achieved under the policy for each participant. The efficiency-resilience trade-off is

crucial to policy evaluation because the popular belief is that the quest for efficiency has caused

supply chains to become less resilient.

Results of the simulation analysis yield key insights regarding the proposed policies. Policies

designed to stimulate competition among market intermediaries have the potential to yield win-

win outcomes for farmers and consumers by transferring market surplus to them and reducing the

variability of returns under extreme shocks.

Stimulating entry of processors is most effective in supply chains with high market power.

Farmers and consumers benefit from significantly higher market surplus and lower variability of

surplus in these settings. Benefits of entry are much more limited in settings that are already

highly competitive or if entrants are unable to reduce the exercise of market power by incumbent

processors.

The impacts of anti-price-gouging laws also depend critically on the competitive conditions

of impacted supply chains. In competitive markets, restrictive price caps can be highly damaging,

reducing consumer and producer surplus due to restricted production, creating shortages at the

restricted price, and increasing the relative variability of surplus. The laws can be effective when

imposed in less competitive markets, where they can increase market output instead of causing

shortages. However, these laws generally reduce resilience to consumers and producers under ex-

treme shocks, creating a trade-off between efficiency and resilience. Because anti-price-gouging laws

apply widely in emergency situations, their overall efficacy in food markets hinges on competitive

conditions across the full spectrum of markets where the laws would apply.

Diversifying production into multiple regions is unlikely to be beneficial regardless of market

competition conditions if production in new regions is less efficient than in the incumbent regions.

In all competitive settings considered, regional diversification reduced market surplus for all par-

ticipants due to inefficiencies created in shifting production to less efficient regions and raising

processing costs due to reduced exploitation of size economies. Regional diversification produced

generally small and mixed effects on relative variability of returns, reducing variability for producers
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and increasing it for consumers.

A key finding is that widely discussed resilience policies in the US are most effective in

supply chains with high levels of processor market power. They are generally less effective, or even

harmful, in competitive or nearly competitive supply chains. Despite popular belief that important

US food supply chains such as meats exhibit high processor market power, empirical research, much

of it now somewhat dated and subject to methodological critiques, has generally found small values

for θ and ξ (Sexton and Xia 2018). New studies of competitive conditions in key food supply chains

represent a critical research need.

Though I focus on welfare impacts of policies under extreme shocks, three out of the four

policies studied impact supply chains during normal times, while anti-price-gouging laws only ac-

tivate during emergencies. Impacts of the three policies on normal-time surplus for producers,

consumers, and processors follow the same patterns indicated by the simulations with supply-chain

shocks. Specifically, more competitive supply chains, whether due to stricter enforcement of anti-

trust laws or subsidization of entry by new processing firms, also increase surplus for farmers and

consumers during normal periods and provide the added benefit of being more resilient to extreme

events. However, diversifying production into new, less-efficient regions reduces market surplus for

all supply-chain participants in normal periods, while producing mixed results for resilience under

extreme events.
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4.5 Appendix

4.5.1 Equation Derivations

In this appendix, I derive the first order conditions (FOC) and the marginal cost function in the

Model section. Given the objective function and assuming that plants are of the same size in

equilibrium:

(4.22) max
q

π ≡ (P r(Q)− P f (Q))q − cwq.

To solve the function, I take the FOC with respect to q, obtaining:

(4.23) P r − P f +
∂P r

∂q
q − ∂P f

∂q
q − cw = 0.

Rearranging the terms produces:

(4.24) P r(1 +
∂P r

∂q

1

P r
q)− cw = P f (1 +

∂P f

∂q

1

P f
q).

Further rearranging the terms generates:

(4.25) P r(1 +
∂P r

∂Q

Q

P r

∂Q

∂q

q

Q
)− cw = P f (1 +

∂P f

∂Q

Q

P f

∂Q

∂q

q

Q
).

Denote the inverse of absolute demand elasticity, |∂P r

∂Q
Q
P r |, by η > 0, and the inverse of

supply elasticity, ∂P f

∂Q
Q
P f , by ϵ > 0. The term, ∂Q

∂q
q
Q , is denoted by 0 ≤ ξ ≤ 1 (0 ≤ θ ≤ 1) and is the

seller (buyer) power parameter.

Similarly, I rewrite the equation:

(4.26) P r(1− ξ

η
)− cw = P f (1 +

θ

ϵ
).

Plugging in the linear demand and supply function, I find equation 4.10 in the main text.

To solve the two-region problem, I conduct a similar procedure with two FOCs that resemble
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equation 4.10:

(4.27)
(a− αQ)(1− ξ

η
)− cw = (b1 + βQ1)(1 +

θ

ϵ
)

(a− αQ)(1− ξ

η
)− cw = (b2 + βQ2)(1 +

θ

ϵ
),

where the subscript indices the region and Q1 +Q2 = Q. Solving the system of equations simulta-

neously, I find the equilibrium total regional outputs Q̃oo as in equation 4.18. Plugging Q̃oo to the

system of equations above, I find regional equilibrium outputs as specified in equation 4.19.

The derivation of the marginal cost function, cw(N) = cNγ , is worth some illustration, too.

Given equation 4.12 that mg( 1
N )g−1 = cNγ , the general expression for γ is:

(4.28) γ = (1− g) +
ln mg

c

lnN
.

In Morrison Paul (2001a), the total cost is a function of the plant-level output, q, and ex-

pressed as C(q) = mqg with g ∈ (0, 1]. The cost elasticity of plant-level output per se is independent

from the output.

Similarly in this setup, γ captures the cost elasticity with respect to the number of plants,

N . The number of plants determines the equilibrium plant-level output under perfect competition.

Thus, γ captures the cost elasticity of plant output and should not be a function of N . To make γ

independent from N , I let ln mg
c = 0 or mg

c = 1. Thus, I obtain equation 4.13 in the main text.
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4.5.2 Coefficient of Variation and Mean Welfare Measures

This appendix develops the mathematics for the CV and mean values of PS and CS. I start with

the mean CS. Recall from the Model section that the pre-shock CS equals (a−P r,oo)Qoo

2 = α
2 (Q

oo)2

where

(4.29) Qoo =
a(1− ξ

η )− b(1 + θ
ϵ )− cw

α(1− ξ
η ) + β(1 + θ

ϵ )
.

Shocks change a, b, β, and N and result in a new industry equilibrium output Qoo′ :

(4.30) Qoo′ =
a′(1− ξ

η )− b′(1 + θ
ϵ )− cw

α(1− ξ
η ) + β′(1 + θ

ϵ )
,

where β
′
= N

N ′β. The corresponding CS, CS’, can be computed as α
2 (Q

oo′)2.

Under shocks, the percentage change in the mean CS is determined by the percentage change

in the industry output as a particular parameter changes (e.g., as market power increases in figure

4.4). For the same reason, changes in the mean post-shock PS are also determined by changes in

the industry output. Thus, in most figures, the curves of changes in the mean post-shock CS and

mean post-shock PS overlap.

The two curves deviate slightly in figure 4.5 because of a rounding issue for integers in

computing β′ = N
N ′β that enters Qoo′ . Given different values of N , the simulated N

N ′ differ. In

general, N
N ′ declines in N .

The curves of changes in the mean post-shock CS and mean post-shock PS curves in figure

4.9 also deviate because PS is not computed using the total industry output as CS is; PS is computed

using two regional outputs, respectively, and then adding up the two regional PS values.

CV equals the standard deviation divided by the mean of CS under shocks. Formally, CV

of CS equals:
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(4.31)

√∑I
i=1(CS′

i − C̄S′)2δi

C̄S′ =

√√√√ I∑
i=1

(
CS′

i

C̄S′ − 1)2δi,

where I is the number of simulation iterations, δi is the probability of each CS′
i, and the δi add up

to one. The mean of post-shock CS, C̄S′, equals
∑I

i=1CS′
iδi.

Intuitively, the larger the deviation of CS′
i relative to pre-shock CS, the larger is CS′

i
¯CS′ . There-

fore, CV increases in the relative magnitude of the CS pre and post the shocks. Given the parameter

values, CV for CS increases in CS′

CS , which is proportional to Qoo′

Qoo , if CS′

CS > 1. If CS′

CS < 1, CV de-

creases in CS′

CS .

In the baseline simulations, CS′

CS > 1 and Qoo′

Qoo > 1 is the typical case where CV increases in
Qoo′

Qoo and hence increases in the ratio of:

(4.32) R =
a′(1− ξ

η )− b′(1 + θ
ϵ )− cw

a(1− ξ
η )− b(1 + θ

ϵ )− cw

α(1− ξ
η ) + β(1 + θ

ϵ )

α(1− ξ
η ) + β′(1 + θ

ϵ )
.

Taking first derivatives and given baseline parameter values, one can show, with complex

mathematics, that R rises in ξ if a′ > a (i.e., a positive demand shock) and β′ > β which echoes

figure 4.4. The complexity of analytical expressions supports the use of simulations as employed in

the main body of this study.

Similarly, given that the post-shock PS equals β
2 (Q

oo′)2, one can show that CV of PS is

determined by β′PS′

βPS . Because β
′
= N

N ′β, β′PS′

βPS moves with
√

N
N ′

Qoo′

Qoo . The relative resilience of

post-shock CS and post-shock PS follow the same pattern as long as
√

N
N ′

Qoo′

Qoo > 1 and Qoo′

Qoo > 1. If√
N
N ′

Qoo′

Qoo < 1 and Qoo′

Qoo > 1, the patterns of CV for CS and PS differ.
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4.5.3 Processor Entry with No Market Power Effect

In the main text, I study processor entry for a setting where entry reduces processor buyer and

seller power. Another possibility is that entry, especially by small-scale processors, does not impact

the market power of incumbent firms. Figure 4.10 depicts impacts on CV and mean surplus for this

case.

When market power is held constant, the economies of size penalty from entry unequivocally

reduces average welfare outcomes for all agents. There is a small resilience gain for producers when

the market power is low (i.e., N is large). The CV for PS decreases, when N is large because

the variance of PS falls faster than the mean PS. The variance of PS decreases due to spreading

production shocks over a larger number of plants. These results show that the resilience and

efficiency improvements in figure 4.5 largely depend on the reduced market power effect of processor

entry.
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(a) Competitive (b) Moderate Market Power

(c) High Market Power

Figure 4.10: Impacts of adding processors with constant market power on market surplus and
resilience.
Note: Authors’ creation from numerical simulations. Vertical axis measures the percentage changes in CV (left
panels) and mean surplus (right panels) relative to the baseline number of processors for each scenario.

4.5.4 Anti-Price-Gouging Laws: Additional Cases

For both cases in figure 4.6 in the main text, the output supplied under a fixed price is larger than

the pre-shock equilibrium output, Qoo. I now illustrate a different case in figure 4.11 where output

at the price cap is smaller than the pre-shock equilibrium output. Here, sellers have limited market

power, and the fixed price, P r,oo, intersects the new PMC curve (PMC
′) at output Qs,oo′

fix < Qoo.

The market shortage is Qd,oo′

fix −Qs,oo′

fix . The welfare impacts of the shortage under random allocation

of limited supply are the same as those discussed in Price-Gouging section.

Second, I discuss the impact of a price ceiling imposed on the farm price instead of on the

retail price. Figure 4.12 depicts this case. Absent an anti-price-gouging law, equilibrium output

occurs where PMR
′ intersects PMC

′ at output Qoo′ , with farm price P f,oo′ . However, under

anti-price-gouging, the farm price ceiling is set at the pre-shock level, P f,oo.
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Figure 4.11: Fixing the retail price under limited seller power

Portions of the post-shock supply curve, S
′ , above P f,oo are no longer attainable. The

price ceiling, P f,oo, thus, represents the processors’ PMC for purchasing farm outputs. Processors

demand Qd,oo′

fix at this price, but suppliers only provide Qs,oo′

fix . The market shortage is Qd,oo′

fix −Qs,oo′

fix .

Finally, the effect of retail price stickiness under no seller or buyer power is illustrated in

figure 4.13. Though it shares much similarity with the cases under imperfect competition, there is

no incentive for the processor to reduce the output for higher prices to begin with. As a result,

imposing the fixed retail price would unambiguously result in a smaller equilibrium output and a

shortage of supply. The processor produces Q prior to the shocks and charges P . Post the shocks,

the price is fixed at Pfix = P . This price meets the new supply curve, S′, at Qs
fix which is strictly
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smaller than Qflex. The shortage of supply is Qd
fix −Qs

fix. Note that this case applies even if there

is buyer power in the market because the key driver for a shortage is the lack of seller power.
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Figure 4.12: Fixing the farm price under imperfect competition
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Figure 4.13: Fixing the retail price under perfect competition
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