
UCSF
UC San Francisco Previously Published Works

Title
Distinct Reproductive Risk Profiles for Intrinsic-Like Breast Cancer Subtypes: Pooled 
Analysis of Population-Based Studies

Permalink
https://escholarship.org/uc/item/0375x309

Journal
Journal of the National Cancer Institute, 114(12)

ISSN
0027-8874

Authors
Jung, Audrey Y
Ahearn, Thomas U
Behrens, Sabine
et al.

Publication Date
2022-12-08

DOI
10.1093/jnci/djac117
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0375x309
https://escholarship.org/uc/item/0375x309#author
https://escholarship.org
http://www.cdlib.org/


Distinct Reproductive Risk Profiles for Intrinsic-Like Breast Cancer

Subtypes: Pooled Analysis of Population-Based Studies

Audrey Y. Jung, PhD ,1,2 Thomas U. Ahearn, PhD ,3 Sabine Behrens, PhD ,1 Pooja Middha, PhD ,1

Manjeet K. Bolla, MSc,4 Qin Wang, MSc ,4 Volker Arndt, MD ,5 Kristan J. Aronson, PhD ,6

Annelie Augustinsson, PhD,7 Laura E. Beane Freeman, PhD,3 Heiko Becher, PhD ,8

Hermann Brenner, MD ,5,9,10 Federico Canzian, PhD ,11 Lisa A. Carey, MD,12 CTS Consortium,13,14 Kamila

Czene, PhD ,15 A. Heather Eliassen, ScD ,16,17,18 Mikael Eriksson, PhD,15 D. Gareth Evans, MD,19,20 Jonine D.

Figueroa, PhD ,3,21,22 Lin Fritschi, MBBS ,23 Marike Gabrielson, PhD ,15

Graham G. Giles, PhD ,24,25,26 Pascal Gu�enel, PhD ,27 Andreas Hadjisavvas, PhD ,28,29
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Abstract

Background: Reproductive factors have been shown to be differentially associated with risk of estrogen receptor (ER)-positive
and ER-negative breast cancer. However, their associations with intrinsic-like subtypes are less clear. Methods: Analyses
included up to 23 353 cases and 71 072 controls pooled from 31 population-based case-control or cohort studies in the Breast
Cancer Association Consortium across 16 countries on 4 continents. Polytomous logistic regression was used to estimate the
association between reproductive factors and risk of breast cancer by intrinsic-like subtypes (luminal A-like, luminal B-like,
luminal B-HER2–like, HER2-enriched–like, and triple-negative breast cancer) and by invasiveness. All statistical tests were 2-
sided. Results: Compared with nulliparous women, parous women had a lower risk of luminal A-like, luminal B-like, luminal
B-HER2–like, and HER2-enriched–like disease. This association was apparent only after approximately 10 years since last
birth and became stronger with increasing time (odds ratio [OR] ¼ 0.59, 95% confidence interval [CI] ¼ 0.49 to 0.71; and
OR¼0.36, 95% CI¼0.28 to 0.46 for multiparous women with luminal A-like tumors 20 to less than 25 years after last birth and
45 to less than 50 years after last birth, respectively). In contrast, parous women had a higher risk of triple-negative breast
cancer right after their last birth (for multiparous women: OR¼3.12, 95% CI¼2.02 to 4.83) that was attenuated with time but
persisted for decades (OR¼1.03, 95% CI¼0.79 to 1.34, for multiparous women 25 to less than 30 years after last birth). Older
age at first birth (Pheterogeneity < .001 for triple-negative compared with luminal A-like breast cancer) and breastfeeding
(Pheterogeneity < .001 for triple-negative compared with luminal A-like breast cancer) were associated with lower risk of triple-
negative breast cancer but not with other disease subtypes. Younger age at menarche was associated with higher risk of all
subtypes; older age at menopause was associated with higher risk of luminal A-like but not triple-negative breast cancer.
Associations for in situ tumors were similar to luminal A-like. Conclusions: This large and comprehensive study
demonstrates a distinct reproductive risk factor profile for triple-negative breast cancer compared with other subtypes, with
implications for the understanding of disease etiology and risk prediction.

Reproductive factors such as parity, age at first birth, and
breastfeeding are established breast cancer risk factors (1).
Although there is strong evidence for differential associations
by estrogen receptor (ER) status of the tumor (2,3), associations
with risk of intrinsic-like breast cancer subtypes defined by the
cross-classification of ER, progesterone receptor (PR), HER2 sta-
tus, and grade are unclear (4,5).

Parity and younger age at first birth are associated with lower
risk for developing ER-positive or luminal tumors (2,4-9), but this
protection does not seem to extend to ER-negative or triple-
negative tumors (2,4-7,10). Studies investigating time since last
birth have shown a transient increase in breast cancer risk asso-
ciated with childbirth followed by long-term protection (11-14).
More recent studies evaluating subtypes suggest the transient in-
creased risk to last less than 10 years for ER-positive tumors (15)
but persist 25 or more years after last birth for ER-negative
tumors (8,16). Breastfeeding seems to be most often associated

with a decreased risk of breast cancer, although this is not en-
tirely consistent, especially for ER-negative or triple-negative
tumors (4,5,9,10,17). A lower breast cancer risk associated with
older age at menarche and younger age at menopause is most
consistent for ER-positive or luminal tumors (2,4,6,7,10,18). Effect
modification by age of associations between reproductive risk
factors and risk of breast cancer subtypes has been reported with
conflicting results (6,8,19,20).

Elucidating these relationships between reproductive risk
factors and breast cancer subtypes as well as invasiveness helps
delineate the etiologic heterogeneity of breast cancer as well as
informs the development of subtype-specific risk prediction. To
this end, we pooled data from 31 population-based studies to
evaluate primarily risk of invasive intrinsic-like subtypes and
secondarily risk of invasiveness (ER-positive, ER-negative) and in
situ tumors associated with reproductive history. We also aimed
to assess whether associations differ by age.
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Methods

Study Sample

Thirty-seven population-based case-control or cohort studies
from the Breast Cancer Association Consortium were eligible for
inclusion in the analysis. Following exclusions shown in
Supplementary Figure 1 (available online), the final study sam-
ple included 47 350 cases with known invasiveness (including
23 353 with known intrinsic-like subtype), and 71 072 controls
from 13 prospective cohort studies and 18 case-control studies.
Studies included (21-50) are described in Supplementary Table 1
(available online). All individual studies were approved by their
institutional review boards and/or medical ethical committees.
Written informed consent was obtained from all study
participants.

Information about breast cancer risk factors and breast can-
cer tumor markers is described in the Supplementary Methods
(available online).

Statistical Analyses

Polytomous logistic regression was used to fit multivariable
models to estimate case-control odds ratios (ORs) and 95% con-
fidence intervals (CIs) for associations with breast cancer sub-
types for time since last birth (in twelve 5-year categories) in
women with different numbers of births (nulliparous [reference
(ref.)], 1, 2, �3 births), and the following additional variables: age
at first birth (<20 years [ref.], 20 to <25 years, 25 to <30 years,
�30 years), breastfeeding duration (0 months [ref.], >0-6
months, >6-12 months, >12-24 months, >24 months), age at
menarche (�15 years [ref.], 14 years, 13 years, �12 years), and
age at menopause (<50 years [ref.], 50-54 years, �54 years, pre-
menopausal). We fit 2 models with all the covariates: one for
intrinsic-like subtypes and the other for ER-positive, ER-nega-
tive, or in situ subtypes as the outcome variables. All analyses
were further adjusted for age at reference date (date of diagno-
sis for cases, date of interview for controls) and study. A cate-
gory for missing values was included for covariates as well as
intrinsic-like subtypes.

Heterogeneity in breast cancer risk factor associations be-
tween subtypes was evaluated using polytomous logistic regres-
sion for case-case comparisons with luminal A-like as reference
for intrinsic-like subtypes and ER-positive as reference for ER-
positive, ER-negative, or in situ subtypes, including the same
variables as the case-control models. Categorical variables were
modelled as ordinal variables using the median value for each
category. Both case-control and case-case models included the
same covariates as described above and the same number of
cases. Case-case analyses excluded controls and used luminal
A-like or ER-positive as the comparison group.

As secondary analyses and for comparison with previous
reports evaluating reproductive factors by subtypes, we also fit
a series of multivariable polytomous logistic regression models
similar to those described above excluding time since last birth.
These simpler models were also used to evaluate potential ef-
fect modification by age on these associations between risk fac-
tors and intrinsic-like subtypes. Multivariable associations were
stratified by 5-year age categories based on reference age.
Heterogeneity in estimates across 5-year age categories was
tested using the likelihood-ratio test comparing models with
and without an interaction term between age and each repro-
ductive risk factor of interest as ordinal variables using the

median value for each category (Pinteraction). Each subtype was
tested separately in a case-control comparison in models fit ex-
cluding cases of the other subtypes.

We performed analyses to assess heterogeneity of risk esti-
mates by study design using a likelihood-ratio test comparing
models with and without an interaction term between study de-
sign and each reproductive risk factor of interest as ordinal vari-
ables using the median value for each category (Pinteraction). To
further test for heterogeneity by study, analyses were addition-
ally performed by study and the results meta-analyzed using a
random-effects model. To explore the robustness of our results,
risk associations were assessed excluding studies with missing
data in more than 90% of cases or controls on time since last
birth or breastfeeding duration.

All statistical tests were 2-sided; statistical significance was
considered with P values less than .05. Statistical analyses were
performed using SAS, version 9.4 (SAS Institute). All figures
were created using Wolfram Mathematica, version 12.1
(Wolfram Research).

Results

The distributions of risk factors according to intrinsic-like sub-
type are shown in Table 1.

Associations Between Reproductive Risk Factors and
Invasive Intrinsic-Like Subtypes: Case-Control Analyses

Compared with nulliparous women, uniparous women were at
decreased risk of breast cancer approximately 30 years after
birth (Figure 1; Table 2 for odds ratios with 95% confidence inter-
vals). Biparous and multiparous women had a higher risk of lu-
minal A-like than nulliparous women within approximately
10 years since their last birth before crossing over to having
lower risk. There was evidence of a stronger risk decrease for
multiparous (OR¼ 0.59, 95% CI ¼ 0.49 to 0.71; and OR ¼ 0.36, 95%
CI ¼ 0.28 to 0.46 for 20 to <25 and 45 to <50 years after last birth,
respectively) than biparous women. For triple-negative disease,
parous women were at higher risk than nulliparous women,
particularly within 5 years after last birth (OR¼ 3.12, 95%
CI¼ 2.02 to 4.83) for multiparous women, with this relative in-
crease in risk attenuating over time but persisting until 25 to
less than 30 years after last birth (OR¼ 1.03, 95% CI¼ 0.79 to
1.34), with no crossover in risk.

Heterogeneity of Associations Between Reproductive
Risk Factors and Invasive Intrinsic-Like Subtypes: Case-
Case Analyses

Tests for odds ratio heterogeneity by subtypes based on case-
case comparisons showed statistically significant differences in
the odds ratios for time since last birth for triple-negative com-
pared with luminal A-like breast cancer among uniparous
(Pheterogeneity < .001), biparous (Pheterogeneity < .001), and multipa-
rous women (Pheterogeneity ¼ .01). Odds ratios for all the other
subtypes were not statistically significantly different from that
for luminal A-like tumors (Supplementary Figure 2 and
Supplementary Table 3, available online). Increasing age at first
birth was associated with decreasing risk of triple-negative
breast cancer, but not other intrinsic-like subtypes (Pheterogeneity

< .001 for triple-negative compared with luminal A-like).
Breastfeeding for more than 6 months was associated with
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lower risk of triple-negative breast cancer compared with no
breastfeeding in parous women, but not other disease subtypes
(Pheterogeneity < .001 for triple-negative compared with luminal
A-like). Older age at menarche was inversely associated with
risk of all subtypes, with strongest associations for luminal A-
like (Pheterogeneity > .17). Older age at menopause was statistically

significantly associated with a modest increase in risk of lumi-
nal A-like, luminal B-HER2–like, and HER2-enriched–like breast
cancer, but not luminal B-like or triple-negative breast cancer.
However, the test for odds ratio heterogeneity by subtype was
not statistically significant (Pheterogeneity > .24). These case-case
analyses further demonstrate that evidence for etiological

Table 1. Characteristics of risk factors among 23 353 breast cancer patients by intrinsic-like subtype and 71 072 controls from 31 population-
based studies

Characteristics
Controlsa Luminal A-likeb Luminal B-like Luminal B-HER2–like HER2-enriched–like Triple-negative

No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)

Total 71 072 (100) 12 405 (53.1) 2832 (12.1) 3088 (13.2) 1498 (6.4) 3530 (15.1)
Age at diagnosis,

median (IQR)
58.0 (15.0) 62.0 (15.0) 60.0 (17.0) 59.0 (16.0) 57.0 (16.0) 56.0 (18.0)

Parity
Nulliparous 8630 (12.1) 1750 (14.1) 429 (15.2) 479 (15.5) 212 (14.2) 394 (11.2)
1 11 246 (15.8) 2153 (17.4) 504 (17.8) 622 (20.1) 367 (24.5) 703 (19.9)
2 26 564 (37.4) 4464 (36.0) 1003 (35.4) 1063 (34.4) 495 (33.0) 1288 (36.5)
�3 23 966 (33.7) 3933 (31.7) 867 (30.6) 890 (28.8) 408 (27.2) 1122 (31.8)
Missing 666 (0.9) 105 (0.9) 29 (1.0) 34 (1.1) 16 (1.1) 23 (0.7)

Time since last birth
0 to <5 y 888 (1.3) 92 (0.7) 41 (1.5) 68 (2.2) 42 (2.8) 104 (3.0)
5 to <10 y 1279 (1.8) 228 (1.8) 71 (2.5) 94 (3.0) 45 (3.0) 133 (3.8)
10 to <15 y 2022 (2.9) 409 (3.3) 121 (4.2) 129 (4.2) 70 (4.7) 175 (5.0)
15 to <20 y 2987 (4.2) 591 (4.8) 134 (4.7) 169 (5.5) 91 (6.1) 269 (7.6)
20 to <25 y 4042 (5.7) 723 (5.8) 160 (5.7) 199 (6.4) 137 (9.2) 329 (9.3)
25 to <30 y 4441 (6.3) 865 (7.0) 183 (6.5) 238 (7.7) 138 (9.2) 303 (8.6)
30 to <35 y 4795 (6.8) 1119 (9.0) 231 (8.2) 292 (9.5) 142 (9.5) 314 (8.9)
35 to <40 y 4892 (6.9) 1135 (9.2) 250 (8.8) 244 (7.9) 114 (7.6) 264 (7.5)
40 to <45 y 2937 (4.1) 793 (6.4) 165 (5.8) 158 (5.1) 82 (5.5) 189 (5.4)
45 to <50 y 1361 (1.9) 418 (3.4) 83 (2.9) 75 (2.4) 33 (2.2) 77 (2.2)
50 to <55 y 408 (0.6) 149 (1.2) 34 (1.2) 29 (0.9) 10 (0.7) 33 (0.9)
�55 y 87 (0.1) 65 (0.5) 16 (0.6) 8 (0.3) 7 (0.5) 8 (0.2)
Missing 32 303 (45.5) 4068 (32.8) 915 (32.3) 906 (29.3) 375 (25.0) 938 (26.6)

Age at first full-term
birth
<20 y 6508 (9.2) 1295 (10.4) 311 (11.0) 299 (9.7) 178 (11.9) 578 (16.4)
20 to <25 y 23 178 (32.6) 4124 (33.2) 910 (32.1) 946 (30.6) 469 (31.3) 1231 (34.9)
25 to <30 y 18 563 (26.1) 3144 (25.3) 677 (23.9) 806 (26.1) 387 (25.8) 816 (23.1)
�30 y 9609 (13.5) 1678 (13.5) 394 (13.9) 409 (13.2) 199 (13.3) 361 (10.2)
Missing 4584 (6.5) 414 (3.3) 111 (3.9) 149 (4.8) 53 (3.5) 150 (4.3)

Breastfeeding
duration
0 mo 7031 (9.9) 1826 (14.7) 469 (16.6) 469 (15.2) 252 (16.8) 839 (23.8)
>0 to 6 m 10 954 (15.4) 2528 (20.4) 559 (19.7) 702 (22.7) 311 (20.8) 739 (20.9)
>6 to 12 m 5625 (7.9) 1150 (9.3) 259 (9.2) 274 (8.9) 142 (9.5) 291 (8.2)
>12 to 24 m 4280 (6.0) 1013 (8.2) 219 (7.7) 224 (7.3) 91 (6.1) 232 (6.6)
>24 m 2374 (3.3) 500 (4.0) 101 (3.6) 102 (3.3) 46 (3.1) 129 (3.7)
Missing 32 178 (45.3) 3638 (29.3) 796 (28.1) 838 (27.1) 444 (29.6) 906 (25.7)

Age at menarche
�12 y 23 572 (33.2) 4469 (36.0) 1075 (38.0) 1106 (35.8) 510 (34.1) 1427 (40.4)
13 y 18 005 (25.3) 3406 (27.5) 742 (26.2) 799 (25.9) 385 (25.7) 880 (24.9)
14 y 13 151 (18.5) 2093 (16.9) 475 (16.8) 518 (16.8) 265 (17.7) 549 (15.6)
�15 y 12 041 (16.9) 1971 (15.9) 431 (15.2) 504 (16.3) 288 (19.2) 548 (15.5)
Missing 4303 (6.1) 466 (3.8) 109 (3.9) 161 (5.2) 50 (3.3) 126 (3.8)

Age at menopause
<50 19 399 (27.3) 4157 (33.5) 941 (33.2) 998 (32.3) 491 (32.8) 1144 (32.4)
50 to <54 y 13 647 (19.2) 3179 (25.6) 617 (21.8) 638 (20.7) 342 (22.8) 656 (18.6)
�54 y 5863 (8.3) 1490 (12.0) 276 (9.8) 337 (10.9) 147 (9.8) 281 (8.0)
Missing 10 496 (14.8) 989 (8.0) 245 (8.65) 219 (7.1) 80 (5.3) 256 (7.3)

aControl patients in population-based studies were randomly selected from the same source population as the case patients and recruited during the same period of

time. ER ¼ estrogen receptor; IQR ¼ interquartile range; PR ¼ progesterone receptor.
bIntrinsic-like subtype definitions: luminal A-like (ER-positive or PR-positive, HER2-negative, grade 1 and 2), luminal B-like (ER-positive or PR-positive, HER2-negative,

grade 3), luminal B-HER2–like (ER-positive or PR-positive, HER2-positive, any grade), HER2-enriched–like (ER-negative, PR-negative, HER2-positive, any grade), and tri-

ple-negative (ER-negative, PR-negative, HER2-negative, any grade).
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heterogeneity was strongest for luminal A-like vs triple-
negative tumors.

Associations Between Reproductive Risk Factors and
Intrinsic-Like Subtypes Stratified by Age

Age modified the associations of number of births (Pinteraction ¼
.009) (Figure 2; Supplementary Table 4, available online), age at
first birth (Pinteraction < .001) (Supplementary Figure 3 and
Supplementary Table 5, available online), and breastfeeding dura-
tion (Pinteraction¼ .01) (Supplementary Figure 4 and Supplementary
Table 6, available online) with risk of luminal A-like disease. Risk
associations were strongest for younger women in their 40s and
attenuated with increasing age. In contrast, younger age at men-
arche was associated with higher risk of triple-negative breast
cancer, particularly for younger women (Pinteraction ¼ .002)
(Supplementary Figure 5 and Supplementary Table 7, available
online). There was no evidence that other associations between
reproductive risk factors, including age at menopause
(Supplementary Figure 6 and Supplementary Table 8, available
online) and intrinsic-like subtypes, were modified by age.

Associations Between Reproductive Risk Factors and
Invasiveness (ER Status and in Situ)

For comparability with previous reports, we also evaluated
associations by ER status and in situ disease (for case-control
comparisons: Figure 3, Supplementary Table 9, available online;
for case-case comparisons: Supplementary Figure 7 and
Supplementary Table 10, available online). Overall, reproductive
risk factor associations with risk of in situ and invasive ER-

positive breast cancer were like those observed for luminal-like
subtypes. Associations for invasive ER-negative tumors were
like those we reported for triple-negative tumors, whereas asso-
ciations for invasive ER-positive were more similar to those for
luminal-like tumors. A notable finding was that breastfeeding
for more than 6 months was associated with a decreased risk
for ER-negative disease, but a longer breastfeeding duration of
more than 24 months was necessary for a similar decrease in
risk for ER-positive and in situ disease.

Associations Between Reproductive Risk Factors
Excluding Time Since Last Birth and Invasive Intrinsic-
Like Subtypes as Well as Invasiveness

Parity was associated with decreased risk of all intrinsic sub-
types except triple-negative breast cancer, for which there was
an increased risk becoming weaker with additional births
(Supplementary Figure 8 and Supplementary Table 11, available
online). Increasing age at first birth also showed differential
associations, with increasing risk of luminal A-like but decreas-
ing risk of triple-negative breast cancer. Associations between
other risk factors and intrinsic-like subtypes were like those
from the model fit with time since last birth. Likewise, tests for
odds ratio heterogeneity by subtypes based on case-case com-
parisons were like those from the model that included time
since last birth (Supplementary Figure 9 and Supplementary
Table 12, available online).

In case-control comparisons, associations between risk fac-
tors and risk of ER-positive, ER-negative, or in situ tumors were
in line with those from the model fit with time since last birth
(Supplementary Figure 10 and Supplementary Table 13,
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Figure 1. Odds ratios (ORs) and 95% confidence intervals (CIs) for case-control analyses of associations between reproductive factors (time since last birth by number of

births, age at first birth, breastfeeding duration, age at menarche, and age at menopause) and intrinsic-like subtypes. The multivariable model was also adjusted for

reference age (age at diagnosis for cases, age at interview for controls) and study. The error bars in the bottom panel represent the 95% confidence intervals.
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available online). Tests for odds ratio heterogeneity by invasive-
ness and in situ based on case-case comparisons
(Supplementary Figure 11 and Supplementary Table 14, avail-
able online) were similar to those from the model fit with time
since last birth in that there were differences in the odds ratios
for number of births (Pheterogeneity < .001), age at first birth
(Pheterogeneity ¼ .009), and breastfeeding duration (Pheterogeneity <

.001) for ER-negative compared with ER-positive disease. Odds
ratios for age at menarche for in situ disease were also different
from those for ER-positive disease (Pheterogeneity ¼ .002).

Sensitivity Analyses

There was no evidence for heterogeneity by study design for
associations between reproductive risk factors and intrinsic-like
subtypes (Pheterogeneity > .08) except for age at menopause
(Pheterogeneity ¼ .001) (Supplementary Figures 12-19, available on-
line). Excluding studies that had missing data on time since last
birth or breastfeeding duration in more than 90% of cases or
controls yielded substantially unchanged results
(Supplementary Figure 20, available online).

Discussion

This report provides the strongest evidence to date for differen-
tial associations between reproductive risk factors and breast

cancer subtypes as well as precise relative risk estimates for
subtype-specific associations. Risk factor associations for triple-
negative tumors were most distinct from other tumor subtypes.
A key strength of this report is the large sample size, approxi-
mately 3-5 times larger than previously published reports
(8,15,16), and wide range of exposures that allowed us to consid-
erably expand on previous reports. Most notably, we investi-
gated associations of time since last birth for women with
different numbers of births on risk of breast cancer subtypes
while accounting for other reproductive risk factors.

We provide confirmatory evidence and additional insights
for several subtype-specific risk factor associations. Earlier age
at first birth and increasing number of births have been consis-
tently associated with a lower risk for ER-positive disease
(5,6,8,18,51,52). The association with ER-negative disease has
been less clear, with studies suggesting no association
(5,18,51,52) or a higher risk (6,8,51). Additionally, reports have
shown a transient increase in breast cancer risk after a recent
childbirth that reverts to a long-term protection (8,11,13-16). A
pooled analysis of premenopausal women of European descent
showed that this transient increase was limited to ER-positive
tumors, whereas the increased risk persisted for ER-negative
tumors up to 35 years after birth (16). We confirmed these pat-
terns of risk associations with data that spanned beyond
55 years after last birth. Compared with nulliparous women,
parous women are at transient increased risk of all intrinsic-like
subtypes, peaking between 5 and 15 years after last birth for
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Figure 2. Odds ratios (ORs) and 95% confidence intervals (CIs) for case-control analyses of association between number of births and luminal A-like and triple-negative

tumors according to reference age in 5-year categories (age at diagnosis for cases, age at interview for controls). The multivariable model was also adjusted for study.

The error bars represent the 95% confidence intervals.
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luminal-like tumors and lasting approximately 10 years for
biparous and multiparous women and 20 years for uniparous
women before risk decrease. Risk of triple-negative breast can-
cer after childbirth peaked immediately until less than 5 years
after birth and lasted approximately 30-35 years for uniparous
and biparous women and 10-15 years for multiparous women,
with no decrease in risk even 55 years and longer after most re-
cent birth. We confirm that there is little protection from ER-
negative tumors even decades after most recent birth (8,16).
Together with 2 case-case analyses (53,54), these studies pro-
vide evidence of heterogeneous associations between time
since last birth and hormone receptor subtypes. Our results fur-
ther reveal that it is primarily triple-negative and not HER2-
enriched–like tumors that differ in these risk factor associations
from other breast cancer subtypes. Additional studies in diverse
populations are needed to clarify possible differences of these
associations by race or ethnicity.

Associations of breastfeeding and risk of ER-positive breast
cancer have not been consistent, and some studies suggest dif-
ferences by race or ethnic groups (3,8,9,17,18). Our study of
women mostly of European descent showed no protection of
ER-positive disease from breastfeeding, with a possible inverse
association only for women with long breastfeeding duration

(�24 months). In contrast, breastfeeding for at least 6 months
was associated with a lower risk of triple-negative disease.
These findings are generally consistent with studies across race
or ethnicity groups (3,8,9,17,18) and further support promotion
of breastfeeding for at least 6 months to reduce breast cancer
risk, particularly triple-negative tumors that disproportionally
affect women of African ancestry (55). Given that breastfeeding
initiation and duration is lower for African American women
compared with other races or ethnicities in the United States
(56), promotion of breastfeeding could help address breast can-
cer health disparities.

Younger age at menarche was associated with increased risk
of all subtypes in the current analysis, corroborating results
from previous reports (2,4,6,7,10,18). Our results further indicate
that older age at menopause was associated with increased risk
of ER-positive, ER-negative, luminal-like, and HER2-enriched–
like but not triple-negative tumors. Older age at menopause has
been previously reported to increase luminal-like (4,6) and hor-
mone receptor–positive tumors (7,18).

Older age at first birth has been shown to increase risk of lu-
minal A-like, luminal B-like, ER-positive, and hormone recep-
tor–positive tumors and not to be associated with triple-
negative, ER-negative, or hormone receptor–negative tumors

No. of births
Reference: Nulliparous

1
2

≥3

0-
<5

5-
<1

0
10

-<
15

15
-<

20
20

-<
25

25
-<

30
30

-<
35

35
-<

40
40

-<
45

45
-<

50
50

-<
55 ≥5
5

0.25

1.00

2.00

4.00

T

ER+

0-
< 5

5-
< 10

10
-<

15
15

-<
20

20
-<

25
25

-<
30

30
-<

35
35

-<
40

40
-<

45
45

-<
50

50
-<

55 ≥5
5

Time since last birth (y)

ER-

0-
< 5

5-
< 1

0
10

-<
15

15
-<

20
20

-<
25

25
-<

30
30

-<
35

35
-<

40
40

-<
45

45
-<

50
50

-<
55 ≥5
5

T

in situ

20-<25
25-<30

≥30

>0-6
>6-12

>12-24
>24

14
13

≤12

50-<54
≥54

Age at first birth
(y)

Reference: <20 y

Breastfeeding duration
(mo)

Reference: 0 mo.

Age at menarche
(y)

Reference: ≥15 y

Age at menopause
(y)

Reference: <50 y

ER+ ER- in situ

0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00

OR (95% CI)

OR
 (9

5%
 C

I)

Figure 3. Odds ratios (ORs) and 95% confidence intervals (CIs) for case-control analyses of associations between reproductive factors (time since last birth by number of

births, age at first full-term birth, breastfeeding duration, age at menarche, and age at menopause) and estrogen receptor subtypes and in situ tumors. The multivari-

able model was also adjusted for reference age (age at diagnosis for cases, age at interview for controls) and study. The error bars in the bottom panel represent the

95% confidence intervals.
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(2,4-7,9). However, none of these previous studies accounted for
time since last childbirth. Our data add to the literature by pro-
viding clear evidence that older age at first birth is associated
with decreased risk of triple-negative disease and ER-negative
tumors after additionally accounting for time since last birth.
The inclusion of time since last birth to the model attenuates
the associations between age at first birth and luminal-like and
ER-positive tumors while strengthening the inverse association
with triple-negative disease and ER-negative tumors.

The possible biological mechanisms underpinning associa-
tions between reproductive history and breast cancer subtypes
are unclear. Long-term protection of breast cells from carcino-
genic transformation is partly hypothesized to be from terminal
differentiation of the terminal ductal lobular unit in the final tri-
mester of pregnancy, as proposed (57). That we do not see long-
term protection from childbirth even decades after the last birth
in women who develop triple-negative breast cancer mirrors
the results of a pooled analysis, where there was no protection
from ER-negative breast cancers even 25 years and longer after
the last birth (8). The authors then postulated that the mecha-
nisms behind this long-term effect may differ from mecha-
nisms operating for pregnancy-associated breast cancers.

The potential biological mechanisms underlying the etiology
of ER-negative breast cancer were recently described in a narra-
tive review. These mechanisms include effects on progenitor
cells in the mammary gland, involution following pregnancy,
epigenetic reprogramming in the mammary gland following
pregnancy hormone-induced differentiation and tissue remod-
eling, and aberrant DNA methylation of luminal progenitor
genes (58).

We are unaware of other studies evaluating associations be-
tween time since last birth and risk of in situ breast cancer.
Overall, we found evidence that patterns of association between
other reproductive factors and in situ disease are similar to
those for invasive ER-positive tumors; increasing parity and in-
creasing breastfeeding duration were observed to be associated
with a decreased risk of in situ, in line with some studies (59-62)
but not others (62,63). Our observations that increasing age at
first birth and younger age at menarche were associated with
increased risk of in situ tumors likewise corroborate results
from some studies (59-61,64) but not others (63-65) that were
likely limited by small sample sizes. Age at menopause was not
associated with in situ breast cancer risk in our much larger
study sample, whereas younger menopausal age has been pre-
viously reported to decrease in situ breast cancer risk (59-61,64).

Our results further demonstrate that relationships between
some reproductive risk factors and breast cancer subtype risk
are modified by age. At younger ages, parity, age at first birth,
and breastfeeding duration were more strongly associated with
luminal A-like tumors, with associations weakening with in-
creasing age, whereas age at menarche was more likely to be
strongly associated with triple-negative disease. That age modi-
fies the association between parity and hormone receptor
status-based and intrinsic-like subtypes has been previously
suggested (8,19), although not confirmed when using a less
granular parameterization for age (6). Age at first birth has been
reported to be more strongly associated with ER-positive dis-
ease for younger women (aged <50 years) than older women
(20). Unlike our results, studies in African women and African
American women reported that in those 50 years of age and
older, breastfeeding duration was more strongly related to a de-
creased ER-positive risk (66) as well as decreased ER-negative
risk (8) and older age at menarche to a decreased risk of ER-
positive tumors (66).

From sensitivity analyses, associations between reproduc-
tive risk factors and intrinsic-like subtypes were similar across
the 2 study designs except for age at menopause.

Our study is limited by the categorization of tumor subtypes
based on ER, PR, HER2, and grade. Up to 20% of immunohisto-
chemistry determinations of ER and PR may be inaccurate due
to varying thresholds for positivity and interpretation criteria
(67). Another limitation is that we did not examine breastfeed-
ing duration specific for each birth. There were also missing
data on the reproductive factors (time since last birth ¼ 42.2%;
parity ¼ 1.5%; age at first birth ¼ 7.0%; breastfeeding duration ¼
41.5%; age at menarche ¼ 6.2%; age at menopause ¼ 13.5%), al-
though a sensitivity analysis demonstrated that the effects of
missing data on these associations was likely to be minimal.
Our study sample predominantly included women of European
ancestry (African ¼ 4.5%; Asian subcontinent ¼ 0.1%; European
¼ 83.6%; Hispanic American ¼ 0.3%; Other ¼ 3.8%; Southeast
Asian ¼ 5.4%; Unknown ¼ 2.2%), so generalizing our findings to
women of other ethnicities should be done with prudence.

In conclusion, this large and comprehensive analysis using
population-based data demonstrates marked differences in
associations of reproductive history with triple-negative breast
cancer compared with the other intrinsic-like subtypes or in
situ disease. These results are valuable in providing further evi-
dence for the understanding of etiologic heterogeneity in breast
carcinogenesis and could inform risk prediction and prevention
strategies.
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