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Abstract

Throughout life, we might seek a calling, companions, skills, entertainment, truth, self-knowledge, 

beauty, and edification. The practice of curiosity can be viewed as an extended and open-ended 

search for valuable information with hidden identity and location in a complex space of 

interconnected information. Despite its importance, curiosity has been challenging to 

computationally model because the practice of curiosity often flourishes without specific goals, 

external reward, or immediate feedback. Here, we show how network science, statistical physics, 

and philosophy can be integrated into an approach that coheres with and expands the 

psychological taxonomies of specific-diversive and perceptual-epistemic curiosity. Using this 

interdisciplinary approach, we distill functional modes of curious information seeking as searching 
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movements in information space. The kinesthetic model of curiosity offers a vibrant counterpart to 

the deliberative predictions of model-based reinforcement learning. In doing so, this model 

unearths new computational opportunities for identifying what makes curiosity curious.

Seeking information with the potential value to learn diverse skills, understand the world, 

form social relations, and promote individual well-being is essential to flourishing 

throughout life [1, 2, 3, 4, 5, 6, 7]. Humans encounter information in an ever-expanding and 

shape-shifting search space of knowledge that is vast and complex [8, 9]. The stream of 

encounters can bring about averse states of uncertainty, pleasurable states of interest, or 

expectations of usefulness for learning and action, thereby guiding future exploratory 

strategies [1, 4]. However, inferring the hedonic or utilitarian value of information to guide 

behavior is costly and time-consuming in complex spaces [10, 11, 3]. Curiosity may have 

evolved to overcome these costs, promoting efficient search strategies to encounter 

potentially valuable information without prior knowledge of the information’s identity and 

location [12, 13, 3].

We propose to understand the kinesthetic modes of search strategies associated with 

curiosity using network science, statistical physics, and philosophy [14, 15, 16, 17]. Since 

antiquity, investigations of curiosity have contemplated its essential components [15]. 

However, we argue that curiosity is best characterized by its searching function [15]. In a 

model called kinesthetic curiosity, we distill three major modes of potentially many 

functions described by movement embedded within information landscapes: the busybody 
scouts for loose threads of novelty, the hunter pursues specific answers in a projectile path, 

and the dancer leaps in creative breaks with tradition [15]. Each mode of function is linked 

with a distinct signature of searching movement (Figure 1). The paths of movement from 

one piece of information to another are threads creating webs of interlinked information, 

which we call knowledge networks. As the byproduct of searching movement, knowledge 

network structures may support learning, creativity, and social behavior, without the need for 

task-specific goals, utility, and feedback [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

In this review, we first describe the kinesthetic curiosity model of efficient search (Section 

1). We then explain how kinesthetic curiosity integrates existing theories of curiosity and 

reinforcement learning (Section 2). Next, we consider the evolutionary origins of kinesthetic 

curiosity and hypothesize neural mechanisms (Section 3). Last, we propose that analyses of 

knowledge network structure and growth quantify previously qualitative descriptions of 

curiosity and test contemporary theories of information seeking (Section 4). Broadly, we 

offer a perspective that expands our understanding of the practice of curiosity beyond states 

and traits by positing a computational model of kinesthetic curiosity.

1 Knowledge network growth principles

The kinesthetic curiosity model posits open-ended and intrinsically motivated movements in 

an information space (Figure 1). What is the elementary rule of such movements? To answer 

this question, we observe that humans often behave quickly and automatically when they 

must consider many options in complex and changing environments [11]. Thus, a natural 

rule to consider is that of a random walk. Mathematically, the probability of walking across 

Zhou et al. Page 2

Curr Opin Behav Sci. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a path in a network is directly related to the weighted strength of that path. As a 

computational process, random walk models of behavior can explain several intelligent 

behaviors including navigation, memory recall, and creativity [18, 13, 19, 24]. As a 

movement principle, random walks explain patterns of exploration and foraging [13]. When 

applied to human information seeking, random exploration is economical in that it requires 

little computational capacity, but can oversample the environment and thus be inefficient 

[37, 38, 10].

The random walk model therefore requires additional principles that account for the 

kinesthetic signatures of discovery and search [39, 40, 41, 42]. Two parsimonious movement 

principles generate the kinesthetic signatures of the busybody, hunter, and dancer, as well as 

the diverse spectra in between [15, 16]. First, movements to discover new information can be 

biased by memory of the familiar; second, search patterns can be biased to efficiently 

explore a space. The principle of memory for the familiar can be formalized by the notion of 

edge reinforcement, and that of efficient search can be formalized by the notion of a Lévy 
flight. In isolating these principles of discovery and search, it becomes possible to model 

curious behavior that shifts continuously between the archetypal modes of the busybody, 

hunter, and dancer, as well as individual differences in preferences for exhibiting each mode 

[16].

1.1 Principle 1: Edge reinforcement

How do humans discover knowledge [41]? Put simply, people learn and innovate by 

revisiting remnants of the past with a fresh perspective. New flickering patterns emerge from 

well-trodden hubs that shape the flow of information seeking into new directions, expanding 

the known unknown to explore newly adjacent possibilities [40, 41].

In the kinesthetic curiosity model, random walkers individually vary in their preference for 

either new or familiar information by the mechanism of edge reinforcement [41]. Edge 

reinforcement is a memory of familiarity that increases the probability of taking previously 

traversed paths. Mathematically, random walks across a path will increase the weighted 

value of that path, thereby increasing its future transition probability. As a computational 

process, edge reinforcement is supported by accurate and rapid learning for a vast visual and 

social memory of familiarity [43, 44]. As a movement principle, edge reinforcement 

resembles the recurrent dynamics of many other existing models for exploration and 

foraging [45, 19, 46, 47]. When applied to human information seeking, edge reinforcement 

is associated with the personality trait of deprivation sensitivity, a dimension of curiosity 

associated with aversion to uncertainty and gaps of knowledge [4, 1, 16].

Seeking information until a chosen knowledge gap is filled characterizes a persistent and 

effortful form of specific exploration that resolves an unknown by incorporating new 

information into existing knowledge [1, 48, 49]. Hunter-like individuals have high 

deprivation curiosity, creating tighter knowledge networks with greater edge reinforcement 

as they encounter new information, recognize gaps in their knowledge, and revisit concepts 

in an iterative cycle of filling in knowledge gaps [50, 51, 16].
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1.2 Principle 2: Lévy flight

A pervasive scarcity of resources induces organisms to efficiently search for value despite 

lacking prior knowledge of the search space, location of targets, and identity of targets [42, 

52, 53, 45, 54]. Yet, potential value may be unpredictable across the lifespan, between 

unique individuals, and in high-dimensional environments [55, 56]. Therefore, we assume 

that potentially valuable information is sparsely and randomly (unpredictably) distributed in 

a complex, unknown environment.

In these environmental conditions, long-term search efficiency across the lifespan and 

evolution is often modeled with respect to energetic cost [57]. Efficiency is the ratio of 

resource encounters to energy expenditure, operationalized by the number of steps taken in 

both spatial and abstract landscapes and the total distance traversed [42, 58, 59, 60]. 

Consequently, efficiency depends upon the distribution of step distances. The optimal 

distribution of step distances is thought to be a power-law [42], which Lévy flights produce 

in their fractal movement patterns characterized by many small steps and a few large steps 

[42, 52, 53, 45]. While Lévy flights have been frequently studied in environments where 

reward is sparse and randomly distributed, the dynamics are theoretically optimal in random 

search across a variety of environmental conditions [42, 45]. However, especially in smaller 

spaces or shorter timescales, other qualities of search, such as speed, reliability, and 

robustness, may prove more relevant for diverse individuals and walks of life [57, 61, 62]. 

With respect to other search qualities, the least costly paths are not necessarily the most 

worthwhile [57, 49, 63]. Therefore, long-term inefficiency does not imply individual 

deficiency.

In the kinesthetic curiosity model, a sequence of steps in the random walk weaves a thread 

through the underlying network. The distance is defined as the number of edges traversed 

between semantic units [64]. Semantically dissimilar units are connected by paths of greater 

distance. Mathematically, to assess the existence and extent of Lévy flight dynamics, we 

consider the manner in which the probability of a step decays as a function of distance. The 

steepness of decay is directly related to the exponent defining the function’s form. 

Particularly, we measure the exponent of the decaying probability distribution by the step 

distance of the empirically observed behavior. As a computational process, Lévy flight is 

supported by widespread observations of its movement signatures across organisms, though 

its scope and prevalence remain actively debated [62, 54]. As a movement principle, 

optimally efficient Lévy flight dynamics exist if this exponent is approximately 2 [42]. 

When applied to human information seeking, recent work shows that humans indeed exhibit 

an average exponent of 2.11±0.15 suggestive of Lévy-like dynamics in curiosity-driven 

information seeking [16]. Efficiently searching space could explain how individuals acquire 

a large repertoire of diverse information with limited resources, while avoiding information 

that is too difficult or too easy to learn [39, 10, 21, 3].

2 Integrating models of curiosity and learning

In this section, we posit that the movement principles of kinesthetic curiosity grow 

knowledge networks that naturally become cognitive maps. Cognitive maps are internal 

models learned from the relational structure of a stream of experience [69]. Hierarchically 
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abstracting the structure of cognitive maps at coarser to finer levels can help people to plan, 

act, and generalize experiences to novel situations [58, 70, 71]. By using information theory 

to assess the cost of constructing cognitive maps and of abstracting hierarchies, we propose 

an integration of curiosity and reinforcement learning.

2.1 Map-taking and map-making

The predictive processing approaches, including intrinsically motivated reinforcement 

learning, propose learning predictive models of the world to flexibly guide optimal actions 

and further learning [10, 72, 3, 70, 71]. The predictive models are cognitive maps 

incorporating prior knowledge of relevant environmental properties [73, 74, 3, 6]. However, 

advance knowledge of the environment, including the identity of relevant properties, is often 

inaccessible.

In unknown environments, inferring the value of potential actions becomes computationally 

prohibitive due to inefficient scaling with the number of explorable units [66, 71]. This 

limitation prompts us to consider curiosity’s function of efficient search [39, 52, 53, 45, 54, 

3]. As the search unfolds, information seekers build knowledge networks that naturally 

become maps due to the emergence of structure from the myriad relationships inherent to 

sets of semantic units [59, 60] (Figure 2).

2.2 Efficient search enhances the learnability of cognitive maps

The cognitive maps arising from kinesthetic curiosity might improve their learnability, 

conveying information efficiently by omitting unnecessary detail [65, 26, 75, 76]. Recent 

work reported that to efficiently convey information, network representations of that 

information should be characterized by highly connected hubs and tightly linked modules 

[26, 77]. Hubs and modules are features of hierarchical organization exhibited by diverse 

signatures of kinesthetic curiosity (Figure 2). Despite individual differences in edge 

reinforcement and Lévy flight dynamics, modularity is a core feature of knowledge 

networks [16].

People who experience a random sequence of sensory units from a network can learn the 

network’s emergent structure [78, 79, 59, 80, 81, 82, 26, 83]. Similarly, current models of 

learning and decision-making, such as the successor representation and model-based 

reinforcement learning, propose to predict, plan, and generalize by hierarchically abstracting 

structure from sequences of experience [84, 66, 70, 71]. A sequence of experiences can be 

direct, such as in information seeking; or it can be indirect, as in the memory replay of 

recollected experiences [71]. To flexibly abstract hierarchical structure from a direct or 

indirect sequence of experiences, individuals would benefit from cognitive maps that are 

diversely yet economically organized with hubs and modules [84, 70, 58].

2.3 Compression progress theory integrates curiosity and learning

Let us now consider how to operationalize the learnability of cognitive map structure. We 

begin by noting that kinesthetic curiosity is consistent with the compression progress theory 
of curiosity but differs from the learning progress hypothesis [85, 3]. Compression progress 

theory posits that individuals practice curiosity to seek information that improves 
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compression of their mental model of the world or a sector thereof. Information compression 

balances the compactness and accuracy of representations, possibly by exploiting 

redundancy of knowledge network connections in hubs and modules [65, 86, 26]. Whereas 

compression progress prioritizes compactness, learning progress prioritizes accuracy [85, 3]. 

The compression or abstraction of information in many models of learning, memory, and 

decision-making is achieved by discounting potentially irrelevant information that is more 

distant in space or time [87, 74, 66, 72, 26].

We hypothesize that kinesthetic curiosity increases learnability by producing knowledge 

network growth with increasing compressibility. Compressibility is operationalized as the 

information theoretic codelength (bits per step) required to minimally encode random walks 

in the knowledge network [65]. Recalling that humans and reinforcement learning 

algorithms abstract structure from random sequences of experience, the codelength of a 

random walk in the knowledge network can be used to measure the cost, or learnability [65]. 

A decrease in codelength corresponds to a compression gain. Note, however, that coarser 

abstractions do not always entail compression gains, because inaccurate coarseness demands 

overly frequent usage of fewer abstracted components in the encoding.

We propose using the operationalization of compressibility as reduced codelength to make 

three predictions testing the link between curiosity and learning. First, if kinesthetic 

curiosity is linked with compression progress theory, then random walks biased by the two 

movement principles of edge reinforcement and Lévy flight will grow knowledge networks 

with increasing compressibility. Second, if kinesthetic curiosity is linked with the 

learnability of cognitive maps, then the strength of hubs and modules in knowledge networks 

will be linked to compressibility. Third, if kinesthetic curiosity is linked with hierarchical 

abstraction, then the integrated compressibility that corresponds to finer and coarser 

abstractions of the same knowledge network will explain how the cost of information 

motivates discounts according to distance and time. Together, the frameworks of kinesthetic 

curiosity and predictive processing can be bridged by examining whether knowledge 

networks are built to be increasingly compressible [65, 66, 72, 27, 28, 26, 88].

3 Neural implementation and evolutionary origins

Here, we consider kinesthetic curiosity at the levels of evolution, as well as the micro-, 

meso-, and macro-scale brain network. We begin by noting that the intrinsic motivation of 

curiosity purportedly evolved for longterm learning despite rapidly growing complexity in 

the surrounding habitat [10, 2]. It is therefore critical to assess how models of curiosity can 

contend with ecologically relevant complexity. For animals and organisms with extensive 

limitations on computational capacity, it is challenging to trace the evolutionary history of 

uncertainty monitoring [11, 89]. In contrast, the dynamics of kinesthetic curiosity have been 

observed in the foraging movements of organisms and animals, perhaps evolving for a need 

to navigate habitats with increasing complexity [42, 12, 90, 13, 52, 53, 45, 91, 54].

To modulate foraging behaviors at the micro-scale, the neural mechanisms of kinesthetic 

curiosity likely involve dopaminergic function [13, 92]. Consistent with this proposition, 

prior curiosity research has reported the involvement of dopaminergic brain areas associated 
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with reward anticipation and subjective value, as well as dopaminergic plasticity of the 

hippocampus in reward-driven associative learning [93, 7]. Dopaminergic function for 

foraging predates function linked to reward anticipation and learning, suggestive of a 

potential dual role of dopamine in reinforcement learning and kinesthetic curiosity [13, 94, 

6].

At the meso-scale, and in contrast to prior curiosity research, we hypothesize a central and 

concerted role of the hippocampal-entorhinal circuit in curiosity due to the mechanisms that 

underpin foraging-oriented locomotion, cognitive maps of space, structure learning, and 

navigation [69, 79, 72, 59, 95, 96, 58, 97, 98, 6]. Recent neural and behavioral work has 

reexamined errors and noise due to limited computational capacity as advantageous features 

of exploration and learning [57, 99, 26, 37, 38, 98]. Similarly, we posit that the limited 

capacity to optimally choose from potential movement plans for foraging during the 

hippocampal replay of model-based reinforcement learning results in random movement 

[99, 38, 98]. Lévy flight dynamics may emerge from the interaction between individuals 

with limited cognitive capacity and complex environments [57, 12, 90, 72, 91, 54].

Last, we predict that macro-scale brain network structure and function moderate individual 

differences in learning related to the compressibility of knowledge networks [85, 26, 27, 28]. 

We hypothesize the involvement of network hubs in the frontoparietal circuit, which are 

thought to support executive function, learning, and information compression, as well as the 

default-mode network associated with mind wandering and hierarchical abstraction [66, 100, 

101, 102, 88]. A set of brain regions across both networks are associated with the 

reinforcement learning of implicit and explicit representations of experience [103, 98]. 

Together, the neural circuitry shared by model-based reinforcement learning and kinesthetic 

curiosity suggests that the models are functional counterparts, enacting more learnable 

experiences for predicting value.

4 Expanding current taxonomies of curiosity

An influential psychological taxonomy of curiosity describes the personality trait along the 

two axes of specific-diversive and perceptual-epistemic [39, 1, 2, 4]. The kinesthetic 

curiosity framework accommodates traditional state and trait approaches to modeling 

individual differences by characterizing behavior using a computational model. The 

computational model can capture tendencies to prefer one mode over another (trait), shifts 

between modes (state), and shifts between tendencies to prefer one mode over another 

(between state and trait) [16]. Here we show how the movement principles and modes of 

kinesthetic curiosity can quantify and expand these current qualitative frameworks.

In kinesthetic curiosity, interdigitations of the specific-diversive and perceptual-epistemic 

axes can be quantified according to movement dynamics producing tight or loose knowledge 

networks [16]. Specific curiosity is the desire for particular relevant pieces of information, 

while diversive curiosity is a general drive to explore different information. These qualitative 

descriptions underscore the fact that novelty, diversity, and unexpectedness are functions of 

the sequence or dynamics of information seeking, rather than properties of each element of 

information [40, 41]. In contrast, the second classical axis of curiosity describes the contents 
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of each element of information with perceptual to epistemic properties [39]. Perceptual 

curiosity is a drive to seek novel sensory information, whereas epistemic curiosity is the 

drive to learn conceptual knowledge and regulate uncertainty [2]. Recent work applied 

kinesthetic curiosity to quantify the specific-diversive axis of epistemic curiosity [16]. 

People who sought specific information during Wikipedia browsing constructed knowledge 

networks that were tighter than those who sought diverse information. Future tests of 

perceptual curiosity could apply kinesthetic curiosity to assess how people seek images and 

videos [104, 47].

Contemporary theories of epistemic curiosity state that information seeking is governed by a 

desire to close an information gap between current uncertainty and preferred baseline 

uncertainty [50]. However, it remains unclear how to define an individual’s preference for 

uncertainty [2, 10]. The information gap theory addresses the question of what one needs to 

know, whereas kinesthetic curiosity addresses the question of how one comes to know. The 

latter allows researchers to investigate the growth dynamics that arise from extended 

preferences. Prior work has reported that individuals with a stronger personality trait of 

deprivation sensitivity, a preference for certainty, produced tighter knowledge networks with 

closed cycles and greater edge-reinforcement [4, 16]. Therefore, the preferred uncertainty is 

linked to the deprivation sensitivity dimension of trait curiosity. A future test of the 

information gap theory could assess how modes of movement fill topological gaps in the 

knowledge network, as children fill gaps in semantic networks when learning language or 

explore when information is incomplete [48, 105].

5 Conclusion

The kinesthetic curiosity model can formalize, assess, and expand the classical 

psychological taxonomy of curiosity. We present a computational model of curiosity that 

hues close to its ecological function in naturalistic environments and to its need to efficiently 

contend with complexity. The implicit construction of learnable knowledge networks 

accompanies the explicit learning of structure, as random search may arise from the neural 

capacity limits for learning. The costs of abstracting hierarchical structure from cognitive 

maps could link curiosity, creativity, social behavior, and learning under the framework of 

compression progress theory. In our view, the practice of curiosity includes distinct modes of 

information seeking dynamics that package information into knowledge networks with 

unique structural signatures. Considering the philosophical archetypes of curiosity embodied 

in the hunter, busybody, and dancer will help us to understand curiosity throughout history, 

across cultures, and at the scales of individuals and societies.
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Box 1.

Outstanding questions

How does knowledge network structure and information compression influence learning, 

creativity, and social interactions?

How could the brain implement kinesthetic curiosity with the mechanisms of foraging, 

spatial navigation, cognitive maps, and information compression?

How does kinesthetic curiosity differ with individual variation of attention, mood, 

motivation, learning, and social behavior, and in psychiatric disorders?

How should institutions of science, education, media, and markets create incentives for 

differing modes of kinesthetic curiosity?
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Figure 1: The kinesthetic curiosity model: the concept, associated network representations, and 
an operationalization in an ecological experiment.
(A) The kinesthetic curiosity model posits that curiosity is best explained by movement 

through information space. Three such movements are conceptually operationalized by the 

historical archetypes of the busybody, the hunter, and the dancer [15]. Selected quotes from 

the 1st to 20th centuries describe each of the modes [29, 30, 31, 32, 33, 34, 35]. (B) The 

information-seeking movements of the kinesthetic curiosity model can be formalized in the 

abstract. Each movement is a walk on an underlying collective (or otherwise a priori 
existing) knowledge network. As each person takes this walk, they build their own 

individualized knowledge network composed of informational units (nodes) and 

informational relations (edges) [14, 17]. Busybodies construct loose networks, hunters build 

tight networks, and dancers bridge seemingly disparate modules [14, 15]. By adjusting two 

parsimonious model parameters distilling movement principles of discovery and search, a 

person may shift continuously between these three modes. Here we show simulated 

knowledge networks that we generated using a computational model of network growth (see 

main text) [16]. Modules are colored according to the WalkTrap algorithm [36]. (C) To 

make the kinesthetic curiosity model concrete to the reader, we consider the example 

information network of Wikipedia, whose 5.8 million nodes are articles and whose edges are 

article-to-article hyperlinks. As humans browse, they walk from article to article by 

hyperlinks, the search bar, or the random page generator; the distance traversed by the walk 

reflects the similarity of word usage between documents. The sequence of steps can be used 

to test and validate the kinesthetic curiosity model of knowledge network growth [16]. 

Individual differences in the sequence reflect a unique architectural style of information 

seeking [16]: knowledge networks with more hunter-like dynamics (versus busybody-like) 

were associated with higher sensitivity to uncertainty, lower enjoyment of exploration, and 

lower sensation seeking.
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Figure 2: Knowledge network growth, form, and individual variation.
A few simple principles generate diverse kinesthetic signatures of curiosity. Here we show 

knowledge networks that were randomly generated using the kinesthetic curiosity model 

encoded as a random walk biased by principles of edge reinforcement and Lévy flight. 

Modules are colored by the WalkTrap algorithm [36], and edges connecting modules are 

colored red. Varying two parameters modeling these principles can characterize the 

archetypal modes of curious practice and the continuous patterns of behavior in between. 

The variation evident in these graphs emphasizes the flexibility of the model to fit individual 

differences. Differing kinesthetic modes may produce dynamics that grow knowledge 

networks to be efficiently compressible by exploiting the network structure of hubs and 

modules [65, 66, 26, 16]. Kinesthetic curiosity emphasizes ecological modes of function. 
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Ecologically relevant behaviors are those that individuals are expected to perform in 

interaction with their daily environments or with similar complexity [67]. Greater ecological 

relevance instills confidence that theories derived from the carefully designed self-report 

measures and laboratory tasks generalize to some scope of real-world contexts. It equips 

researchers to study the evolving practice of curiosity in differing contexts throughout 

recorded history [13, 68, 15, 9]. Future work can address the cross-cultural limitations of 

psychological assessments and models which over-sample homogeneous demographics [67]. 

In practice, the ability to study uncontrived tasks may prove useful for studies in pediatric or 

clinical study samples, where tasks that are too difficult or unengaging can introduce 

statistical biases.
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