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Abstract

Optical Coherence Tomography (OCT) is a widely used non-invasive high resolution 3D imaging 

technique for biological tissues and plays an important role in ophthalmology. OCT retinal 

layer segmentation is a fundamental image processing step for OCT-Angiography projection, 

and disease analysis. A major problem in retinal imaging is the motion artifacts introduced by 

involuntary eye movements. In this paper, we propose neural networks that jointly correct eye 

motion and retinal layer segmentation utilizing 3D OCT information, so that the segmentation 

among neighboring B-scans would be consistent. The experimental results show both visual and 

quantitative improvements by combining motion correction and 3D OCT layer segmentation 

comparing to conventional and deep-learning based 2D OCT layer segmentation.

Index Terms—

Optical coherence tomography; deep learning; image segmentation; motion correction; retinal 
imaging

1. INTRODUCTION

Optical Coherence Tomography (OCT) is one of the most important imaging techniques in 

ophthalmology, which can image the cross-sections of the retina at μm-resolution [1]. OCT 

has been widely used for diagnosing and monitoring most retinal diseases [2], including 

age-related macular degeneration (AMD), diabetic macular edema (DME), glaucoma, and 

so on. Segmentation of retinal layers plays an important role in detecting changes in layer 

thickness and assessment of both retinal and systematic diseases [3]. In particular, the 

thickness of the retinal nerve fiber layer (RNFL) is frequently used for assessment of 

glaucoma, while the thickness of the entire retina is often used for assessment of DME, 

choroidal neovascularization (CNV), and macular hole [2].

Many works on OCT layer segmentation are based on the level set or graph methods [4, 

5, 6, 7], yet segmentation error is prevalent with conventional segmentation approaches 

[8]. The use of deep learning is gradually popular in OCT segmentation, and convolutional 

neural networks have significantly improved the accuracy of layer segmentation [9, 10, 11, 

12, 13]. In particular, the fully convolutional U-net [14], which enables image-to-image 

translation and includes multiscale analysis, has shown great success in many biomedical 
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image segmentation tasks. However, most deep learning methods are based on 2D images, 

which ignore 3D contextual information.

One major reason that prevents most methods from fully utilizing 3D contextual information 

is that involuntary eye motion causes misalignment artifacts between neighboring 2D 

raster B-scans in OCT imaging. In this paper, we propose neural networks that jointly 

correct eye motion and retinal layer segmentation utilizing 3D information, so that the 

segmentation among neighboring B-scans would be consistent. The performance of the 

proposed method is compared with several state-of-the-art methods. Experimental results 

show that motion correction and 3D contextual information enhance the accuracy of the 

OCT layer segmentation.

2. RELATED WORKS

Most earlier methods for OCT layer segmentation are based on 2D image, where 

segmentation labels or boundaries are computed using a single B-scan [4, 5, 6, 7, 15]. 

Level set-based methods were adopted to ensure topologically correct (i.e. in the correct 

order) layer boundaries [4, 5], but these methods were very computationally expensive with 

run-time up to hours per OCT volume. Another widely studied category of methods is based 

on graph theory [6, 16, 15], and can be combined with machine learning classifiers [7, 9]. 

However, as these methods work on 2D images, 3D contextual information is not utilized for 

segmentation.

A major problem that impedes the development of 3D segmentation approaches is that 

involuntary motion causes misalignment artifacts between neighboring B-scans in 3D OCT 

imaging. Therefore, motion correction is required as a pre-processing step to recover the 

motion-free 3D OCT volume. The first segmentation approach to utilize 3D information 

was proposed by Garvin et al. [17, 18], which could segment 7 boundaries for macular 

centered OCT scans. The approach first flattens the bottom surface of the retina to remove 

motion artifacts (along with retinal curvature) and then enhances 2D graph-based methods 

by additional 3D “feasibility” constraints. The feasibility constraints take advantage of 3D 

contextual information and enforce smoothness in neighboring surfaces and surface distance 

constraints. They demonstrate that their proposed method with 3D information could reduce 

segmentation failure compared to the 2D graph-based approach.

However, segmentation error was still prevalent in these conventional methods. Moreover, 

since they required manually selected features and extensive parameter tuning, it was 

difficult to generalize to different imaging instruments with various resolutions and 

appearances, or patient groups with different diseases. Recent deep learning-based methods 

led to a major improvement in segmentation accuracy [9, 10, 11, 12, 13]. RelayNet [19] is a 

deep learning approach for retinal layer segmentation, which is based on U-Net architecture 

and utilized weighted cross-entropy loss. Some works combined deep learning classifiers 

with conventional post-processing to obtain layer boundaries from pixel-wise prediction. 

Fang et al. [9] proposed a neural network and graph search in post-processing to segment 9 

layer boundaries. Pekala et al. [13] proposed a dense U-net with Gaussian process regression 

as post-processing to segment 5 layer boundaries. Recent attempts have been made to 
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directly learn the boundaries using regression. He et al. [11] proposed a cascaded U-Net 

to segment layers with the topological constraints, which learns the thickness map of each 

layer. The network was later improved [12] by including two extra input channels containing 

X and Y coordinate information. MGU-Net [20] is the latest state-of-the-art method that 

combines U-Net with graph-convolution inspired global reasoning blocks, which achieves 

improved Dice coefficient and visual quality.

However, these neural networks only learn from 2D images without fully utilizing 3D 

information. Google DeepMind [10] proposed a 3D segmentation network taking 9 

consecutive B-scans that could segment 15 classes of features to aid disease classification. 

The major limitation is that only two retinal layers can be identified by the segmentation 

network, namely the neurosensory retina and the RPE. Nevertheless, the network 

demonstrated that including 3D information would lead to improvement in OCT layer 

segmentation quality compared to 2D networks.

3. PROPOSED METHOD

In this paper, we proposed to combine an OCT motion correction network with a 

segmentation network using 3D B-scans. The proposed pipeline is shown in Fig. 1. In 

the first stage, motion artifacts in the input OCT volume V are corrected using the motion 

correction network proposed in [21] based on the 3D input volume and a rough 3-class 

segmentation of the entire retina using a 2D segmentation method. In the second stage, the 

detailed retinal layers Spred are classified using a segmentation network with 3D input based 

on the motion-corrected OCT volume.

The motion correction network [21] is designed to predict a 2D displacement map D to 

remove axial motion artifacts from 3D OCT volume, and the top (inner limiting membrane, 

ILM) and bottom (Bruch’s membrane, BM) segmentation boundaries of the retina where 

BM and ILM layers improve correction performance. The motion correction network 

is based on a modified U-Net with residual blocks, which can be applied to different 

resolutions. More information can be found in [21]. The OCT volume is then warped based 

on the predicted the 2D displacement map.

Next, the proposed network inputs N neighboring B-scans in the motion corrected OCT 

volume, and outputs the segmentation in K classes for the central B-scan as shown in 

Fig. 2. The architecture of the segmentation network features 4 down-sampling blocks, 4 

up-sampling blocks, and a graph pyramid at the lowest resolution, inspired by the U-net 

[14] and MGU-Net [20]. The graph pyramid is comprised of 4 resolutions with graph 

reasoning units (GRU) [22]. The graph reasoning units include three branches for projection 

to node space, re-projection to feature space, and fusion of global features, where the two 

graph convolution blocks (GCB) are used after projection to the node space. The proposed 

architecture includes 1.909 M trainable parameters, which is reduced by 8% compared 

with MGU-Net which has 2.094M parameters, yet the graph pyramid structure effectively 

improves segmentation performance as demonstrated in the experimental result.
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The loss function is a hybrid loss that combines the cross-entropy loss and a soft Dice 

loss. We denote the last convolution layer output as x, the ground truth with integer class 

label as y ∈ 0, K , and the one-hot ground truth label as SGT. Note that we also include a 

valid mask M, which is 1 for pixels with annotation and 0 for without annotation, so that 

regions without annotation are ignored in the loss calculation. The cross-entropy loss can be 

described as

ℒCE x, y = −1
∑n Mn

∑
n

log exp xyn, n

∑k = 0
K − 1 exp xk, n

⋅ Mn . (1)

where n spans the batch and spatial dimensions. Note that the cross-entropy loss integrates 

the Sigmoid activation for the last convolution layer output x using the “log-sum-exp” trick, 

which has better numeric stability.

The soft Dice loss is derived based on the Dice coefficient, which measures the overlapping 

ratio between predicted label and ground truth. The soft Dice coefficient is defined as

SoftDicek x, SGT = 2∑n σ xk, n Sk, n
GTMn

∑n σ xk, n Mn + ∑n Sk, n
GTMn

, (2)

where σ ⋅  denotes the Sigmoid function. Then the Dice loss is defined as one minus the 

soft Dice coefficient averaged for the retinal layers in class k = 1 to K − 2 after excluding the 

top k = 0  and bottom k = K − 1  regions (non-retinal regions),

ℒDice x, SGT = 1 − mean
k = 1:K − 2

SoftDicek x, SGT . (3)

Finally, the total loss is combined with weights λCE = λDice = 1,

ℒtotal  = λCEℒCE + λDice ℒDice  . (4)

Besides the standard data augmentation techniques such as random cropping and horizontal 

flipping, we also include simulated shearing along the X axis to add another degree of 

freedom. The method to generate simulated shearing is described in [21].

4. EXPERIMENTAL RESULTS

In the experiment, we compare the segmentation performance of our proposed joint motion 

correction and 3D segmentation neural network with several state-of-the-art methods.

We test the performance of the proposed method on two public datasets: DME dataset [7] 

and the AMD and control dataset [23]. The DME dataset [7] is one of the most widely used 

public dataset in literature [19, 12, 20], which is comprised of 10 macular centered OCT 

volume for patients with DME. The dataset is captured by Heidelberg Spectralis system, and 

the OCT volumes have been motioncorrected. The resolution for each volume is 512 × 768 

× 61, and 11 selected B-scans in each volume (total 110 B-scans) have manually annotated 

8 segmentation boundaries (K = 9 classes). We follow the training and test division in other 
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papers [19, 12], with the first 55 images from subject 1 to 5 is used for training, and the 

last 55 images from subject 6 to 10 are used for testing. The AMD and control dataset [23] 

is a public dataset with 384 macular centered OCT volumes from 269 AMD patients and 

115 normal control subjects, captured by the Bioptigen system. The resolution of each OCT 

volume is 512 × 1000 × 100, and annotations for 3 layer boundaries (K = 4 classes) are 

provided in a center circular region. Due to the different definition of the RPE-DC layer in 

AMD group [23], we only utilized normal control group for evaluation of the segmentation 

methods. The first 55 OCT volumes are used for training, and next 5 volumes are used 

for validation, and the last 55 volumes are used for testing. Since the DME dataset [7] has 

been motion corrected, we include simulated motion on the input OCT volumes to test the 

performance of our proposed motion correction approach as described in [21].

The pixel-wise error and the Dice loss are used to evaluate the performance of each 

segmentation algorithm. Specifically, we present the overall error, the error of retinal layers 

(Layer Error), the averaged Dice loss for all layers, and the Dice loss for each layer. 

Denoting the predicted binary segmentation map as Spred and element-wise product with ⊙, 

the Dice loss can be obtained by one minus the Dice coefficient for the kth layer

ℒDice k Spred , SGT = 1 − 2∑   Sk
pred  ⊙ Sk

GT ⊙ M
∑   Sk

pred  ⊙ M + ∑   Sk
GT ⊙ M . (5)

The pixel-wise error is calculated on the valid region given by M, and non-retinal regions 

(k = 0 or K − 1) are merged into one class. The layer error is calculated based on retinal 

layers corresponding to class 1 to K − 2 in the ground truth label.

In the experiment, we compare the performance of our proposed segmentation with 

5 B-scans input (5 channels, center ±2 neighboring B-scans) versus a single B-scan 

input (1 channel) with or without our motion correction network. We compare with 

several conventional methods by Chiu et al. [7] and Rathke et al. [15], as well as deep 

learning method RelayNet [19] and MGU-Net [20]. Our proposed motion correction and 

segmentation networks are implemented in PyTorch. The motion correction network utilizes 

the pre-trained model in [21]. On the DME dataset, the segmentation networks are trained 

using batch size 1 for 150 epochs with an initial learning rate of 10−3) and decayed to 

10−4 after 100 epochs, using Adam optimizer with weight decay of 10−3. On the AMD and 

control dataset, the segmentation networks are trained using batch size 4 for 15 epochs with 

an initial learning rate of 10−3 and decayed to 10−4 after 10 epochs. The method by Chiu 

et al. [7] uses the predicted layer boundaries provided in their dataset, and the method by 

Rathke et al. [15] uses the original implementation in Matlab. The RelayNet [19] uses the 

pre-trained PyTorch model provided by the original authors. The MGU-Net is trained with 

the original implementation in PyTorch using similar hyper parameters as our segmentation 

network.

The qualitative results of segmentation on the original motion-corrected DME dataset are 

shown in Fig. 3, where sub-figure (a) shows the input B-scan cropped in the labeled 

retinal region, sub-figure (b) shows the ground truth segmentation label, and sub-figures 

Wang et al. Page 5

Proc Int Conf Image Proc. Author manuscript; available in PMC 2023 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(c) to (h) show the segmentation result of different segmentation methods. The results 

demonstrate that the conventional method by Rathke et al. [15] could not accurately segment 

the retinal layers for the B-scan with DME. The method by Chiu et al. [7] produces more 

accurate segmentation, while the RNFL (in blue) is thinner than the ground truth, and the 

OPL (in yellow) does not follow the shape of lesions in the B-scan. For deep learning 

methods, the boundaries between each class of the RelayNet [19] prediction is much noisier 

compared with the MGU-Net [20] and our proposed networks. While MGU-Net [20] yields 

discontinuity at the OPL denoted by yellow arrows, segmentation of our proposed networks 

with 2D or 3D input are both continuous at the yellow arrow. We also compare the 3D 

consistency of the MGU-Net and our proposed networks with simulated motion and our 

motion correction network by showing the central cross-sectional B-scans in Fig. 4. It 

can be observed that the simulated motion in sub-figure (1a) is effectively corrected in 

sub-figure (2a). Overall, our proposed 3D network after motion correction achieves the 

best consistency, compare to our 2D network at the location denoted by yellow arrow. In 

sub-figures (2c) and (2e), the 3D version of both MGU-Net and our proposed network after 

motion correction generate smoother segmentation compared to the 2D versions in (2b) and 

(2d). When the input is motion corrupted in row (1), the 3D networks are not improved 

compared with the 2D versions. It demonstrates the motion correction can improve the 

performance of 3D segmentation.

Quantitative evaluation on the DME dataset [7] is shown in Table 1. The best performance in 

each column for original or simulated motion input is denoted by bold text, and the second 

best is denoted by blue text. On the original input, our proposed 3D segmentation network 

achieves the lowest error of 1.92%, layer error of 10.11%, and average Dice loss of 0.1218, 

which is reduced by 10% compared to the previous best method MGU-Net [20] at 0.1359. 

The Dice loss of our 3D network is also the lowest in the each retinal layer, except for 

the ISE and OS-RPE layer where it ranks as the second and third lowest respectively. For 

input with simulated motion, our proposed 3D segmentation network with motion correction 

also achieves the lowest error and average Dice loss overall. Note that the error of both 3D 

networks increase with simulated motion and no motion correction method compared with 

the 2D versions. The performance of several methods on the AMD and control dataset [23] 

are shown in Table 2, where our proposed network with 5 input channels achieves the lowest 

error and Dice loss after motion correction. It can also be observed that the performance 

of our 3D network degrades without the motion correction network, demonstrating the 

importance of motion correction on dataset with real motion artifacts.

5. CONCLUSION

In this paper, we proposed to combine motion correction and 3D OCT layer segmentation, 

which led to promising improvement upon existing 2D segmentation methods with or 

without motion correction. Experimental results demonstrated that the motion correction is 

required to apply 3D segmentation, and combining motion correction with 3D segmentation 

achieved the highest performance. In future work, the segmentation network can be 

regularized to perform topology-guaranteed segmentation, and can be extended to support 

retinal fluid segmentation. The proposed method will enable more accurate analysis of layer 
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thickness and vessel density, which is beneficial for diagnosing and monitoring retinal and 

systemic diseases.
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Fig. 1: 
Proposed OCT motion correction and segmentation pipeline.
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Fig. 2: 
(a) Architecture of the proposed OCT segmentation network, (b) the graph pyramid, (c) the 

graph reasoning unit. Here “IN” operation denotes Instance Normalization, “T” in black 

circle denotes transpose, and “×” in black circle denotes matrix multiplication.
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Fig. 3: 
Qualitative results on the DME dataset [7]. (a) Input B-scan, (b) ground truth segmentation, 

(c) Chiu et al. [7], (d) Rathke et al. [15], (e) RelayNet [19], (f) MGU-Net [20], (g) our 

proposed 2D network, (h) our proposed 3D network.
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Fig. 4: 
Qualitative comparison of 3D consistency on the DME dataset [7]. (1a) Cross-sectional 

B-scan for OCT volume with simulate motion, (b) ground truth segmentation, (b)-(e) 

segmentation result of MGU-Net [20] and our proposed network with 2D or 3D input.
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Table 2:

Quantitative result of different methods on the last 55 volumes from AMD and control dataset [23], where the 

best and the second best are denoted by bold and blue text, respectively.

Dice Loss per Layer

Data Method Error Layer Error RNFL-OS RPE

Original MGU-Net [20] 0.56% 2.03% 0.0111 0.1061

Ours (2D) 0.49% 1.82% 0.0093 0.1022

Ours (3D) 0.53% 1.88% 0.0099 0.1083

Motion Corrected MGU-Net [20] 0.45% 1.79% 0.0087 0.0976

Ours (2D) 0.44% 1.61% 0.0082 0.0947

Ours (3D) 0.43% 1.60% 0.0082 0.0938
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