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Abstract

There has been a heated debate between connectionist
and symbolic models on the task of learning the past
tense of English verbs. Claims are often made, but not
often justified, that a new model has a superior gen-
eralization ability to the previous ones. In this paper,
we first set up a proper criterion for making comparisons
between models. We point out a crucial issue in compar-
ison which has been largely ignored in the past. Then
we present results on the generalization ability of the
symbolic pattern associator, SPA. We challenge connec-
tionist researchers to design connectionist models with
similar or better generalization ability.

Introduction

Learning the past tense of English verbs, a minor aspect
of language acquisition and processing, has received ex-
tensive study in the last few years. In 1986, Rumelhart
and McClelland (1986) first designed and implemented
a connectionist model of past-tense acquisition. Claims
were made that such connectionist models, while requir-
ing no symbol processing, grammatical rules, or explicit
representation as in the traditional grammatical theo-
ries, are better models for past-tense acquisition and
for language acquisition in general. Over the years, a
number of criticisms of connectionist modeling appeared
Pinker & Prince, 1988; Lachter & Bever, 1988; Prasada

Pinker, 1993; Ling & Marinov, 1993), and there has
been a heated debate over the symbolic and connection-
ist modeling of the task. Several subsequent attempts
at improving the original results with new connectionist
models have been made (Plunkett & Marchman, 1991;
Cottrell & Plunkett, 1991; MacWhinney & Leinbach,
1991; Daugherty & Seidenberg, 1993).  On the other
hand, several symbolic models have been built to demon-
strate their superior generalization abilities on the same
task (Ling & Marinov, 1993; Ling, 1994; Mooney &
Califf, 1995). However, it seems quite possible that a
better connectionist model (or symbolic model) can al-
ways be constructed to outperform the previous coun-
terpart on the generalization accuracy.

In this paper, we attempt to set out some criteria for a
proper comparison between competing models. We will
also discuss a crucial issue which has been largely ignored
in the previous modeling of past tense acquisition.

A Proper Comparison Criterion

A computational model of any learning task consists
of many components: the learning algorithm (and its
parameters), data sampling method, training regime
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(batch or on-line, order of presentation), and represen-
tation format of the data (set of attributes). Each com-
ponent can affect dramatically the learning behavior of
the model. Clearly, to compare two different learning
models on the same task, we must keep all components
which are common to the two models constant. Such
a practice has been used widely in the machine learn-
ing community. Result of comparison based on different
representations, for example, is not very meaningful.

However, one complication in comparing different
learning models is that the components in models may
not be independent. For example, symbolic learning
algorithms can use multiple-valued discrete attributes
directly, while connectionist models normally take dis-
tributed representation. When this occurs, we should
allow model-specific components to be different, and to
be optimized for the learning behavior of the model. For
example, while keeping everything else the same, an op-
timal distributed representation should be used in con-
nectionist models. In addition, algorithm’s parameters
are model specific, and they shou]%l be carefully chosen
to optimize its performance.

The same criterion should be applied to the structure
of different models. The paradigm (or general structure)
of the symbolic and connectionist models in comparison
must match. This issue is further discussed in the fol-
lowing section,

SPA and Corresponding Connectionist
Models

We use SPA (Ling & Marinov, 1993; Ling, 1994) as the
symbolic model for the past tense learning. SPA is a
general-purpose N-to-M (N input attributes to M output
attributes) pattern associator which essentially applies
the N-to-1 decision-tree classifier ID3 (Quinlan, 1986) M
times. Given a set of patterns containing N input at-
tributes and M output attributes, M decision trees are
built by the SPA, one for each output attribute. With
each tree determining one attribute value in the output,
M trees will collectively predict the whole output pat-
tern. For the verb past-tense learning, the input patterns
are phoneme letters in the verb base, with a maximum
of N phoneme letters. Similarly, the output patterns are
phoneme letters in the past tense, with a maximum of
M phoneme letters. For details of SPA, also see (Ling &
Marinov, 1993, pages 248-255).

In general, SPA is similar in structure to layered, feed-
forward connectionist models. However, several vari-
ations exist. Different SPA architectures should be
matched to different connectionist architectures. In com-
parison, a matching architecture must be chosen, other-
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wise the superiority of a model may not be claimed since
it may compare to a “strawman” of another model.

There are three structures (versions) of SPA which
have their correspondences in connectionist models. In
the first version of SPA, the original C4.5 is called in
constructing decision trees for output attributes. This
version of SPA with the original C4.5 is equivalent in
structure to the feedforward, layered connectionist mod-
els, with links connecting between layers of units.

In the original C4.5, however, when classifying a new
example after the decision tree is built, if the new ex-
ample falls into an empty leaf where no training exam-
ples have fallen, C4.5 would use the majority class in
that branch as the class. We call this strategy major-
ity default strategy. This strategy is clearly not ideal for
learning past tense, since the stem of a regular verb is
always “copied” into the past tense, rather than taking
the most popular letter from other regular verbs.

In an improved version of SPA, an adaptive default
strategy is implemented (Ling, 1994). The idea came
from MacWhinney and Leinbach (1991): their connec-
tionist models have “copy” links, which connect directly
from the input units to the output units. This facilitates
the identify copy of verb stem into past tense. How-
ever, the suffix of the past tense should not be copied,
thus, such copy links also compete with links connect-
ing between layers. Similarly in this SPA,| there is also a
competition between the “copy default strategy” and the
“majority default strategy” (thus, we call it the adaptive
default strategy). Basically, if a testing example falls in
a leaf which is empty, SPA decides which default strat-
egy to take. If more examples in this branch use the
copy strategy than the majority strategy, then the copy
strategy is used for this testing example; otherwise, the
majority strategy is employed.

The version of SPA with adaptive default is equivalent
in structure to feedforward connectionist models with
direct connections between input and output units.

In the third version of SPA (which is really a rep-
resentation change), an N-to-N pattern mapping prob-
lem is changed to an N-to-1 classification problem by
using a moving window, as used in NETtalk (Sejnowski
& Rosenberg, 1987). Basically, a window of a certain
width moves from left to right to the N input attributes.
At each time, the output attribute at the center of the
window is learned and predicted, using input attributes
currently in the window. This representation format ef-
fectively makes the specific position of linearly ordered
attributes irrelevant: the regularity is learned according
to the attribute in the center of the window and its left
and right neighbours. For the verb past tense, instead
of learning regular suffixation at different positions (and
thus reducing the training set on each position), regu-
lar suffixation is learned at one position: the center of
the window. In addition, it can deal with verbs of any
length.

This version of SPA with moving window is equivalent
in structure to feedforward connectionist models with
moving window representation, or the recurrent connec-
tionist models (Elman, 1990), which uses recurrent links
and recurrent units to memorize the attributes outside
the input attributes. Recurrent networks have been used
in past tense acquisition previously (Cottrell & Plunkett,
1991).

When comparing to SPA, a connectionist model whose
structure is equivalent to SPA should be chosen. That

is, results from SPA with the majority default strategy
should be matched to the ones from feedforward net-
works, results from SPA with the adaptive default strat-
egy should be matched to the ones from feedforward
networks with direct links from input to output units,
and results from SPA with moving window should be
matched to the ones from recurrent networks or feedfor-
ward networks with moving window.

What to Compare

Most computational models of past tense learning focus
on both their generalization ability (predictive accuracies
on unseen verbs), and on psych-linguistic behaviors of
the models compared to humans. We will discuss the
generalization ability of the models in this paper, and an
important issue of generalization which has been largely
ignored in previous models.

In many previous models on past tense learning, only
a handful verbs were removes (sometimes hand-picked)
from the training set for the testing purpose, and only
one run was made. Such results were not reliable for
several reasons: First, connectionist models (as well as
decision-tree symbolic models) are computationally pow-
erful, With a proper network architecture and enough
training examples, they can represent any arbitrarily
complex mappings. Thus, with a very large training set,
the predictive accuracy of such models tends to be “sat-
urated”, and the difference in predictive accuracies of
different models tends to be minimized. Therefore, to
boost the difference between two models in comparison,
one must use relatively small training sets. It would also
be useful to compare model’s behavior with that of hu-
man on small training sets. Therefore, a learning curve
which reflects testing accuracies for training sets with
very small to large sizes is crucial for comparing models.

The second problem is that when the testing set is too
small, the testing accuracy is not reliable. Multiple runs
should be performed to get averaged results. Finally,
sampling of training and test sets should be done ran-
domly. This eliminates human interference and improves
the reliability of the result.

In this paper, we train SPA on randomly sampled
training sets of different sizes to produce learning curves
under various settings.

SPA Results

We present SPA’s results on the generalization ability
i this section. The datasets used can be downloaded
anonymously from the author’s web site. Together with
SPA programs at the same site, the results reported here
can be replicated easily by other researchers.

Representation Format

Our verb set came from MacWhinney’s original list of
verbs. The set contains about 1400 verb stem and past
tense pairs. Learning is based upon the phonological
UNIBET representation (MacWhinney, 1990), in which
different phonemes are represented by different alpha-
betic and numerical letters. There is a total of 36
phonemes. For example, Table 1 lists several verbs in
spelling form, and in different UNIBET representation
formats (see Section for more details). Pairs of verb
stem and past tense in UNIBET representation are used
in the learning tasks.
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Table 1: Different representation formats of several sample verbs and their past tenses.

Spelling UNIBET || Template Lelt-justified Right-justified with Coda
CCCVvCCcvvcccvvcce | PPPPPPPPPPPPPPP | PPPPPPPPPPPPPFPP VC
abandon 6b&nd6n ___6_b__& nd 6_n__| 6b&nd6bn________ | ________ 6b&ndén
abandoned | 6b&nd6nd || ___6_b__&k_nd_6_nd_ | 6b&ndénd_______ | ________ 6bkndén _d
blend blEnd BL.Bond e 3 1 o757 (e (S — blEnd
blended blEndId bl End I d_______|blEndId________ | __________ blEnd Id
attack 6t&k . 6_t__& k_______|6t&k___________ | ___________ 6t&k
attacked 6t&kt PRI | o ) Jn) SR BEREY o nne] s 6ték _t
arise 6r3z N e I 6riz
arose 6roz B r_o0z_______|6roz_____ | oo __ 6roz __
ecome bIk6m b__I k__6m_______|bIk6bm__________ | o __ bIk6m
became bIkem B B N e . e bIkem __

In the past, several different representation formats
have been used in learning. Here, we have chosen the
three most popular ones.

Template Representation This representation is
suggested by MacWhinney and Leinbach (1991). Both
input and output patterns are fitted in templates in the
format of CCCVVCCCVVCCCVVCCC, where C stands
for consonant and V for vowel space holders. A simi-
lar template, CCCVVCCC, was used in Daugherty and
Hare (1993)’s connectionist model. The idea behind this
representation is to align consonants and vowels so that
the ending letter of regular verbs and similarity patterns
in certain irregular verbs are in more deterministic posi-
tions. See examples in Table 1.

Left-Justified Representation This representation
is straightforward left-justified phoneme letters with a
total length of 15 (no verb or past tense has more than
15 phonemes). We use PPPPPPPPPPPPPPP to denote
such representation, where P is a phoneme. See Table |
for examples of the left-justified representation.

Right-justified Representation with Coda In
(MacWhinney, 1993), a new representation is used. The
input (for the verb stem) is coded by the right-justified
template CCCVVCCCVVCCCVVCCC; the output con-
tains two parts, a right-justified template that is the
same as the one in the input, and a coda in the form
of VC. The right-justified template in the output is used
to represent the past tense without including the suffix
for the regular verbs. The suffix of the regular past tense
occurs in (and only in) the coda. For the irregular past
tense, the coda is left empty. However, as we will see
later, templates really do not help in generalization, so
we simply use non-templated right-justified representa-
tion in the main part. See Table 1 for examples.

It is expected that such data representation facilitates
learning. For the regular verbs, the main output pat-
terns are always identical to the input patterns, and the
verb-ending phoneme letter always appear as the last
letter of the right-justified part. Because irregular past
tenses have an empty coda, it allows learning algorithms
to distinguish regular verbs from irregular verbs in the
training set.

Since SPA can take symbolic attributes directly as
input, SPA is applied to the phoneme letters directly
for all of those representation [ormats. For the tem-

plate representation, 18 decision trees were built for each
phoneme letter in the output templates, taking input
from 18 templated input phoneme letters. For the left-
justified representation, 15 decision trees were built for
each phoneme letter in the output, taking input from
15 left-justified input phoneme letters. For the right-
justified representation, 17 (15+42) decision trees were
built for each phoneme letter in the output, taking input
from 15 right-justified input phoneme letters. For SPA
with moving window, only one decision tree is built, and
this tree is used for predicting each output phoneme in
the past tense.

Learning both Regular and Irregular Verbs

From a whole set of about 1,400 regular and irregular
verbs, we randomly sample training set of various sizes
without replacement, and use the rest of the verbs as
the testing sets. Thus, training and testing sets are dis-
joint, and test sets are maximized for more reliable re-
sults, Three different representation formats (template,
left-justified, right-justified) are used in the experiment.
For each, SPA with three different architectures (major-
ity default strategy, adaptive default strategy, and mov-
ing window) are tested. For each training size, repre-
sentation format, and architecture, 10 random samples
are made, and predictive accuracies are averaged and
recorded in Table 2.

From the table, several interesting conclusions can
be drawn. First, comparing vertically, we see that the
template representation is not particularly beneficial in
learning, since the testing accuracies are comparable to
the left-justified representation. The main reason for this
is that the verbs have various lengths, so the endings of
regular verbs are still distributed in various places in
the templates, and need to be learned separately. How-
ever, the template makes it hard to locate the ending
phoneme in the verb stem: seeing an empty space (with
a non-empty left neighbor) does not imply that the verb
has come to an end, while in the left-justified represen-
tation, it can. This is also why the results of SPA with
moving window on the template representation are very
bad.

Second, the right-justified representation often has the
best testing accuracies. This is expectable, because the
last phoneme of verb stems is located at the fixed lo-
cation. Predictive accuracies for regular verbs are often
much improved.

Third, horizontally, the SPA with the adaptive default
strategy outperforms SPA with (C4.5’s majority default
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Table 2: Testing accuracies of SPA on regular and irregular verbs with various training sizes (50, 100, 500, and 1000).

Testing accuracies ol SPA with majority default strategy
(Equivalent to feedforward networks)

Template Left-justified Right-justified

Dataset || Reg | Trrg | Comb || Reg

Irrg | Comb [[ Reg | Trrg [ Combh

o0 23971 6.5 | 22.1 [ 20.7
100 51.6 | 6.8 | 47.0 |l 48.0
500 79.0 | 145 | 724 || 804
1000 823 ] 235 | 76.3 [ 84.5

4.1 190 |[ 32971 41 | 209
5.5 43.6 || 57.5 | 3.8 52.0
134 | 736 || 82.2 | 13.2| 75.2
185 | 774 | 87.1 | 20.0 | 80.0

Testing accuracies of SPA with adaptive delault strategy
(Equivalent to feedforward networks with direct links from input to output)

Template Lelt-)ustihed Right-justified

Dataset || Reg | Irrg | Comb || Reg

Irrg | Comb || Reg | Irrg | Comb

o0 40.7 [ 94 | 374 | 424
100 63.1| 7.9 | 574 | 65.0
500 81.1 | 14.7 | 74.3 | 83.2
1000 83.1 [ 23.5 | 76.7 | 85.3

0.1 J8.0 || 823 9.8 | 744
64 | 589 (879 44 79.3
134 | 76.2 | 88.4 | 14.1 | 80.9
18.5 | 78.2 || 89.5 | 20.5 | 82.2

Testing accuracies of SPA with moving window
(Equivalent to recurrent networks)

Template Left-justified Right-justified

Dataset || Reg [ Irrg | Comb || Reg | Irrg | Comb || Reg [ Trrg | Comb

o0 2047 7.1 19.0 [ 79.7
100 319 89 | 20.6 |l 86.6
500 615 | 16.0 | 56.4 || 89.0
1000 73.9 1242 | 68.6 | 89.3

6.3 721 || 844 ] 4.6 (6.2
59 | 783 | 883 ] 3.3 79.5
14.1 | 814 || 878 | 11.6 | 80.0
16.3 | 81.6 || 88.8 [ 16.6 | 81.2

strategy. In addition, SPA with moving window pro-
duces the best results (except for the template represen-
tation, for the reason discussed earlier).

Last, it is evident that even with 50 verbs in the train-
ing set, the overall predictive accuracy on unseen regular
and irregular verbs is quite high: with the right-justified,
moving window representation, it reaches 76.2%. We
plot the learning curve of SPA with the right-justified,
moving window representation in Figure 1.

Figure 1: Learning curve of predicting unseen testing
verbs.
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Learning Only Regular Verbs

Predicting the past tense of an unseen verb, which can be
either regular or irregular, is not an easy task. Irregular
verbs are not learned by rote as traditionally thought,

since children and adults occasionally extend irregular
inflection to irregular-sounding regular verbs or pseudo
verbs (such as cleef — cleft) (Prasada & Pinker, 1993).
Pinker (1991) and Prasada and Pinker (1993) argue that
regular past tenses are governed by rules, while irregulars
may be generated by the associated memory, which has
this graded effect of irregular past-tense generalization.
It would be interesting, therefore, to compare SPA and
connectionist models on the past-tense generalization of
regular verbs only. This may not be a psychologically
plausible experiment, but the purpose here is to compare
the generalization ability of the two models.

Note that even if one uses template or left-justified
representations, learning regular past tenses is not as
easy as one might think. Since regular verbs vary in
length, regular inflection requires learning suffixation
rules at different positions. In addition, instead of “just
add ed” (as in the spelling), there are three different suf-
fixes for regular verbs in phonological form. When the
verb stem ends with t or d (UNIBET phonetic represen-
tations), then the suffix is Id. For example, extend —
extended (in spelling form). When the verb stem ends
with an unvoiced consonant, the suffix is t. For example,
talk — talked. When the verb stem ends with a voiced
consonant or vowel, the suffix is d. For example, solve

- solved. More examples can be found in Table 1.

We used the same training sizes, representation for-
mats, and SPA architectures as in the previous section
in testing regular verbs. The testing accuracies averaged
over 10 runs can be found in Table 3.

Clearly, the same conclusions can be drawn for regu-
lar verbs as in the last section. Further, it is clear that
learning regular verbs only is much easier. The predic-
tive accuracies are very high (over 98%), even with 50
regular verbs in training sets, when SPA with moving
window is applied to the right-justified representation.



Table 3: Testing accuracies of SPA on regular verbs with
various training sizes (50, 100, 500, and 1000).
SPA with majority default strategy
(Equivalent to feedforward networks)

Template | L-justified | IR-justified
Dataset Heg Re Reg
Reg 50 33.4 26.% 40.9
Reg 100 60.8 52.1 64.2
Reg 500 88.6 92.1 93.4
Reg 1000 92.8 96.9 97.2

SPA with adaptive default strategy
(Equivalent to feedforward networks
with direct links from input to output)

Template | L-justified | R-justified
Dataset Reg Reg Reg
‘Reg 50 93.9 54.4 95.4
Reg 100 72.4 71.0 97.4
Reg 500 90.7 94.3 99.8
| Reg 1000 93.8 97.7 99.8

S5PA with moving window
(Equivalent to recurrent networks)

Template | L-justified | R-justified
Dataset Reg Reg Reg
Reg 50 222 88.7 98.0
Reg 100 37.3 95.3 99.2
Reg 500 73.3 99.2 99.9
Reg 1000 || 829 99.7 99.8

Again, we plot the learning curve of SPA with the right-
justified, moving window representation in Figure 1.

A Challenge for Better Connectionist
Models

As discussed in earlier, when comparing two learning
models, we should keep the components common to the
two models the same. \We have obtained SPA’s predic-
tive accuracies with various training sizes, representation
formats, as well as structures of the model. Results from
connectionist models should be obtained under the same
setting to make the comparison meaningful. In another
word, results from connectionist models with a very dif-
Eerent setting cannot be compared to the ones reported
ere.

In the previous publication, only few published re-
sults from connectionist models can he compared head-
to-head to the ones in this paper. From Table 2, the av-
erage testing accuracy of SPA, with the majority default
strategy and 500 training examples in the template rep-
resentation, is 72.4%. With the same setting, Ling (1994,
Page 222) reported that the average testing accuracy of
the corresponding connectionist model (his implementa-
tion) is 56.6%. From Table 3, the average testing accu-
racies of SPA, with the majority and adaptive default
strategies and 50 training verbs represented in template,
are 33.4% and 53.9% respectively, while the correspond-
ing connectionist models only 7.3% and 14.6% respec-
tively (Ling, 1994, page 223). The difference is quite
significant.

However, we did not run extensive experiments on
connectionist models in this paper, because there are so
many detailed, model-specific design choices and param-
eters in modeling, that such experiments should be best

performed by experts in the area. Some of these design
choices include the number of hidden layers, the number
of units in each layer, the distributed representation, the
learning algorithm and its parameters, encoding and de-
coding methods, and overfitting controls.

Therefore, we pose a challenge to connectionists to
construct connectionist models with similar or better
generalization accuracies under the same setting com-
mon to both models.

Conclusions

In this paper, we outlined a proper criterion to conduct
a fair and reliable comparison between connectionist and
symbolic models. We also suggest that the learning curve
of predictive accuracies with various training sizes should
be regarded as a crucial issue in model comparison. If a
model is claimed to have a better generalization ability,
its superior predictive accuracy on small training sets is
particularly salient.

We then presented results from SPA under various
commonly used representation formats and structures.
Each structure of SPA corresponds to a certain archi-
tecture of connectionist models. All of the datasets used
and the SPA programs can be accessed on-line. We hope
that connectionist researchers can take the data and de-
sign connectionist networks with better generalization
accuracies under the same setting common to both mod-
els.
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