
UCLA
UCLA Pacific Basin Law Journal

Title
Theoretical Foundations for the Protection of Computer Programs in
Developing Countries

Permalink
https://escholarship.org/uc/item/03c0p9q0

Journal
UCLA Pacific Basin Law Journal, 13(1)

Author
Karjala, Dennis S.

Publication Date
1994

DOI
10.5070/P8131022069

Copyright Information
Copyright 1994 by the author(s). All rights reserved unless otherwise
indicated. Contact the author(s) for any necessary permissions. Learn
more at https://escholarship.org/terms

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03c0p9q0
https://escholarship.org/terms
https://escholarship.org
http://www.cdlib.org/

THEORETICAL FOUNDATIONS FOR
THE PROTECTION OF

COMPUTER PROGRAMS IN
DEVELOPING COUNTRIES

Dennis S. Karjalat

TABLE OF CONTENTS

Introduction ... 179
I. The Policy Basis for Copyright Protection of

Softw are .. 181
A. The Need for Protection Against Piracy 181
B. The Roles of Patent and Trade Secret 184
C. The Proper Role of Copyright in Program

Protection ... 186
II. Does this Approach Work for Developing

Countries? 189
A. Scope of Protection 191
B. Protection of Interfaces 192

1. Nonuser Interfaces 192
2. User Interfaces 193

C. Reverse Analysis of Programs 195
C onclusion .. 198

INTRODUCTION

The basic economic argument for some sort of intellectual
property law protection of computer software in developing
countries has been made elsewhere' and need not be repeated
here. I accept those general arguments and assume further that

t Professor of Law, Arizona State University College of Law. This article was
originally prepared for presentation at the International Conference on Intellectual
Property Rights in Computer Software and their Impact on Developing Countries,
Indian Institute of Science, Bangalore, August 20-21, 1993.

1. Anthony L. Clapes, The Soft Revolution: Economics, Intellectual Property
and Software Creation in Developed and Developing Countries (Aug. 19, 1993) (un-
published manuscript presented at the 1993 International Conference on Intellectual
Property Rights in Computer Software and Their Impact on Developing Countries,
on file with Dennis S. Karjala).

PACIFIC BASIN LAW JOURNAL

software creation is an activity that most developing countries
will want to encourage. As personal computers become more
widely held in these societies, greater demand will arise for a va-
riety of programs that perform the same tasks as those already
available in developed countries, only with user interfaces better
attuned to local languages and customs. These programs may
best be written by local software creators, but few such creators
will be willing to release their programs to the public without, at
a minimum, protection against the piracy of verbatim electronic
copying. Therefore, I address the question not of whether com-
puter programs should be protected, but rather of the degree to
which and the mode in which they should be protected.

Most of the developed countries have already chosen copy-
right as the mode for protecting computer software. The ongoing
judicial and academic debates center on the scope of copyright
protection - what noncode elements, if any, of the program are
protected, whether and to what extent the program copyright or
an independent copyright covers the user interface, and whether
and to what degree reverse analysis of programs should be per-
mitted. I have long argued2 that copyright, notwithstanding its
very long term of protection and its unwillingness to recognize
compulsory licensing, can serve as a useful vehicle for protecting
programs. This is possible if the scope of protection is held ap-
propriately narrow and if programs are considered sui generis
works requiring legal interpretations unique to their characteris-
tics as technological rather than artistic products. 3 In this article
I conclude that copyright protection of programs can equally
meet the needs of developing countries, provided that such limi-
tations are applied to its interpretation.

2. See Dennis S. Karjala, Copyright, Computer Software, and the New Protec-
tionism, 28 JURIMETRIcS J. 33 (1987) [hereinafter New Protectionism]; Dennis S.
Karjala, Copyright Protection of Computer Software in the United States and Japan:
Part 1, 13 EUR. INrELL. PROP. REV. 195 (1991); Dennis S. Karjala, Copyright Protec-
tion of Computer Software in the United States and Japan: Part II, 13 EUR. INTELL.
PROp. REv. 231 (1991).

3. This is not to deny "artistry" in the creation of programs. There is similar
artistry in the creation of many other technological products, however, which have
never been copyright protected. Works designed to achieve some functional pur-
pose other than to inform or entertain (portray an appearance to) human beings
have traditionally been within the realm of patent or trade secret law but not
copyright.

[Vol. 13:179

THEORETICAL FOUNDATIONS

I. THE POLICY BASIS FOR COPYRIGHT PROTECTION
OF SOFTWARE 4

A. THE NEED FOR PROTECTION AGAINST PIRACY

The two primary branches of intellectual property law in the
economically developed countries are patent and copyright. Pat-
ents must be narrowly claimed, must be approved by administra-
tive authorities, require a truly "inventive" and not simply a
normal engineering advance, and remain valid for fifteen to
twenty years. Copyrights, on the other hand, come into existence
automatically, with no requirement that the rightholder specify
which aspects of her work are protected and which are not.
Moreover, the copyright-protected work need only be the intel-
lectual product of its author, with minimal artistic "creativity,"
and copyright protection continues for roughly seventy-five to
one hundred years.

Traditional patent law protected creative functional works,
such as works of technology. Traditional copyright law protected
creative nonfunctional works, such as works of art, literature, and
music. The liberal copyright standards for the protection of crea-
tive authorship implement different policies than the more re-
strictive patent standards for the protection of creative invention
because of the social desirability-indeed necessity-of allowing
later technological creators to build upon and improve the earlier
works of others.5

Technology improves incrementally. The copyright infringe-
ment standard of "substantial similarity" is simply not appropri-
ate for technological works, because nearly every improvement
on such a product is, in the unimproved portions, substantially
similar to the first product. Computer programs, communication
protocols, hardware-to-software and software-to-software inter-
faces,6 as well as many user interfaces, are intrinsically func-
tional. Why, then, did the developed countries turn to copyright
instead of traditional patent law for the protection of computer
programs?

4. Much of the following section is based on Dennis S. Karjala, Recent United
States and International Developments in Software Protection: Part I, 16 EUR.
INMLL. PROP. REv. 13 (1994), and Dennis S. Karjala, Recent United States and
International Developments in Software Protection: Part II, 16 EUR. INTELL. PROP.
REv. 58 (1994).

5. New Protectionism, supra note 2.
6. Because user interfaces may include fanciful, nonfunctional aspects (such as

a video game), it is often important to distinguish them from other interfaces and
communication protocols. However, the term "communication protocols, hardware-
to-software and software-to-software interfaces" is long and clumsy. Henceforth I
refer to them with the equally clumsy but shorter term "nonuser interfaces."

1994]

PACIFIC BASIN LAW JOURNAL

The superficial answer in the United States is that computer
programs fit the formal definition of a "literary work" under the
Copyright Act.7 However, the basis for protecting new techno-
logical creations for the long period of copyright must stand on
more than technicality. This is especially true for a "substantial
similarity" test for infringement that can prohibit building on
earlier advances without the showing of creative invention re-
quired for even a seventeen-year patent. Indeed, United States
courts have traditionally rejected copyright protection for func-
tional works otherwise fitting the copyright definitions.8

The real reason the United States adopted a copyright
scheme for programs is that many programs, including programs
that are costly and time-consuming to develop, are simply the
result of technologically straightforward applications of well-
known programming principles to well-defined problems. These
programs do not meet the requirement of traditional patent law
for a non-obvious advance in the art.9 Yet once these programs

7. "'Literary works' are works... expressed in words, numbers, or other ver-
bal or numerical symbols or indicia " 17 U.S.C.A. § 101 (West Supp. 1994).

8. The basic principle that the copyright reproduction right cannot be used to
control unprotected ideas or utilitarian features of functional works, and the long
copyright tradition underlying this principle, has been most fully developed and ar-
ticulated by Professor J. H. Reichman, the United States' leading authority on the
national and international protection of industrial designs. See J. H. Reichman,
Computer Programs as Applied Scientific Know-How: Implications of Copyright
Protection for Commercialized University Research, 42 VAND. L. REv. 639, 692-93,
693 n.288 (1989) [hereinafter Applied Scientific Know-How]. See also Brief Amicus
Curae of Eleven Copyright Law Professors, Sega Enterprises Ltd. v. Accolade, Inc.,
977 F.2d 1510 (9th Cir. 1992), amended by Order and Amended Opinion, D.C. No.
CV-91-3871-BAC, Jan. 6, 1993 (reprinted as Brief Amicus Curae of Eleven Copyright
Law Professors in Sega Enterprises Ltd. v. Accolade, Inc., 33 JURIMETRICS J. 147
(1992) [hereinafter Amicus Brief]). See generally J. H. Reichman, Goldstein on
Copyright Law: A Realist's Approach to a Technological Age, 43 STAN. L. REv. 943,
970-76 (1991).

The seminal case in the United States is Baker v. Selden, 101 U.S. 99 (1880).
See also Taylor Instrument Companies v. Fawley-Brost Co., 139 F.2d 98 (7th Cir.
1943), cert. denied, 321 U.S. 785 (1944), and Brown Instrument Co. v. Warner, 161
F.2d 910 (D.C. Cir. 1947), cert. denied, 332 U.S. 801 (1947) (graphic works denied
copyright protection when designed to fit with the indicators on a measuring instru-
ment). See generally Pamela Samuelson, Computer Programs, User Interfaces, and
Section 102(b) of the Copyright Act of 1976: A Critique of Lotus v. Paperback, 6
HIGH TEcH. L.J. 209, 226, 226 n.73 (1992).

9. At least one commentator has argued that implementing a well-defined pro-
cess in a programming language is always obvious and therefore nonpatentable.
Gary Dukarich, Patentability of.Dedicated Information Processors and Infringement
Protection of Inventions that Use Them, 29 JURIMETRICS J. 135, 160 (1989). More-
over, computer programs "as such" are barred from patentability under Article 52 of
the European. Patent Convention, although it is not entirely clear just what "com-
puter programs as such" means. Jtlrgen Betten, Patent Protection for Software, Ap-
pendix 1 (Apr. 27, 1993) (unpublished manuscript presented at the Brussels ECIS
Symposium, An Emerging World-Wide Consensus on Software Protection?, on file
with Dennis S. Karjala).

[Vol. 13:179

THEORETICAL FOUNDATIONS

are distributed in object-code form, they can be copied almost
costlessly in large numbers. Without some form of protection,
we should expect that they would be underproduced. Because
the problem was slavish copying (especially slavish electronic
copying) and because copyright protects at least against that,
copyright became a natural candidate for the protection of
programs. 10

Maintenance of perspective is important, however. We must
bear in mind that other nonpatented works of technology may be
freely copied, modified, and improved, no matter how creative
the technology may be. The creators of such technological devel-
opments enjoy only the limited monopoly resulting from the lead
time their products have in the market before they can be suc-
cessfully produced by competitors. Such copying is permitted-
even applauded"-not because society devalues technological
creativity, but rather because technology advances incrementally
and because forbidding such copying would inhibit more creativ-
ity than it would engender. Program code arguably requires a
different kind of protection because to allow verbatim copying of
programs would reduce even their lead time monopoly almost to
zero, and that level of protection seems too little.

The goal of software protection in the developed countries,
therefore, should be protection against piracy and not a whole-
sale revamping of the intellectual property protection scheme for
functional works or for technological creativity. Piracy, in this
sense, refers to methods of copying that too greatly upset the
traditional balances of legal and nonlegal protection available for
works of technology. This, at least, is the conservative approach,
the approach that least disrupts the traditional intellectual prop-
erty protection balances, especially the delicate balance between
copyright and patent. If there are grounds for affording even
broader protection to program technology under copyright, these
grounds do not arise out of traditional copyright itself, notwith-
standing the formal classification of computer programs as liter-
ary works, because traditional copyright did not protect
functionality. Beyond their vulnerability to piracy, I have yet to
hear of any argument that convincingly distinguishes computer

10. See New Protectionism, supra note 2. See also Dennis S. Karjala, Copyright
Protection of Computer Software in the United States and Japan: Part 1, 13 EUR.
INTELL. PROP. REv. 195 (1991); Dennis S. Karjala, Copyright Protection of Com-
puter Software in the United States and Japan: Part II, 13 EUR. INTELL. PROP. REV.
231 (1991). Another advantage of copyright is the immediate international nature of
protection under the copyright treaties. Dennis S. Karjala, Copyright Protection of
Computer Software in the United States and Japan: Part I, 13 EUR. INTELL. PROP.
REv. 195, 196 (1991).

11. Thomas M. S. Hemnes, Three Common Fallacies in the User Interface Copy-
right Debate, COMPUTER LAW., Feb. 1990, at 14.

19941

PACIFIC BASIN LAW JOURNAL

programs from other technological products and leads to a
broader scope of copyright protection for them. Because broad
copyright protection for functional technology is the radical
rather than the conservative deviation from traditional norms,
the burden of providing a convincing policy basis for broad copy-
right protection of functionality should be on those seeking it.

One further point should be made explicit: copyright pro-
tection of source and object code, the set of statements or in-
structions that constitute computer programs, is in itself
significant protection. Protection of code makes direct copying
either for sale or for simultaneous use by others (for example,
within a given business) illegal. Of course, not all instances of
program copying can be detected, any more than all copying of
other types of copyright-protected works can be detected. No
matter what the law says, some people will continue to make
copies of programs borrowed from friends without paying. Sales
of unlawful copies in significant amounts, however, are readily
detectable, because sellers must advertise. Moreover, any em-
ployer who distributes illegally made copies of a program among
employees in the business runs a serious risk that at some point a
disgruntled employee will report the illegal conduct. Therefore,
protection of program code alone is of great importance. It is
simply wrong to say, as did a committee report for the European
Parliament during the debates on the European Software Direc-
tive, that if reverse analysis were permitted, "legal protection for
computer programs would virtually cease to exist.' 12

B. THE ROLES OF PATENT AND TRADE SECRET

Program code will usually, if not always, be ineligible for
patent protection.' 3 However, patents are readily available in
both the United States and Europe for creative advances in so-
called "nonliteral elements" of programs that meet the patent
standards.14 There is no need, on top of this scheme of patent
protection, for copyright to protect allegedly "expressive" nonlit-
eral program elements, notwithstanding that such elements (as
all inventions) are the product of creative human thought. Every
such program element is intended to serve the functional goal of

12. EUR. PARL. Doc. 134.405, DOC EN/PA/74903 (Dec. 1989) (Mr. Karel
Pinxten Rapporteur), quoted in Thomas Vinje, The Legislative History of the EC
Software Directive, in A HANDBOOK TO EUROPEAN SOFTWARE LAW 37 (M. Leh-
mann & C. Tapper eds., 1993). Such a statement not only misses the trees (the
effectiveness of legal prohibition of literal code copying in economically important
situations); it does not even see the forest (general protection against piracy of
code).

13. See supra note 9 and accompanying text.
14. See Betten, supra note 9.

[Vol. 13:179

THEORETICAL FOUNDATIONS

causing a computing machine to operate to achieve a result bet-
ter, faster, more efficiently, or more easily. Such works should
remain within the realm of patent absent a policy basis for more
radical change than that required to protect against simple
piracy. 15

Moreover, trade secret law can protect patent- or copyright-
unprotected elements of programs that are not widely distributed
(i.e., those that are kept secret). Trade secret law is based on the
social advantages of more efficient production resulting from as-
surance to employers that they can share with employees advan-
tageous techniques and information that are not widely known.
There is nothing unique to computer programs that would argue
for a more limited form of trade secret protection for them than
that granted to other trade-secret-protected works. Trade secret
can protect such nonliteral elements as algorithms, methods of
interoperability with other programs or equipment, and informa-
tion stored in program files or in separate databases, in addition
to program code. Relying solely on trade secret law for protec-
tion of nonpatented algorithms, production processes, or valua-
ble data has the advantage that protection extends only so long
as the court determines it should take to legitimately reverse-en-
gineer the product or otherwise independently generate the se-
cret.16 If such program aspects are copyright-protected,
however, the doctrine of "unconscious copying" may result in the
barring of an employee from working for a competitor on

15. None of this is to say that the Patent Office never makes mistakes. Some
argue that patents were issued for algorithms and methods that are obvious and
thereby get in the way of technological advance rather than promote it. E.g., Simson
L. Garfinkel, Richard M. Stallman, Mitchell Kapor, Why Patents are Bad for
Software, IssuEs Sci. & TECH., Fall 1991, at 50-51, 53. Mistakes of this type are
endemic to the patent system, however, especially when new technologies are in-
volved. In the long run, courts and the Patent Office usually, if clumsily, reach a
balance that society can live with. See generally Dennis S. Karjala, Thinking Beyond
Patents for the Protection of DNA-Sequence-Related Inventions (May 25, 1993)
(unpublished manuscript presented at the Workshop on International Cooperation
for the Human Genome Project: Legal Aspects, Bilbao, Spain May 24-26, 1993, on
file with Dennis S. Karjala). The issue, therefore, is not whether mistakes have been
made. Rather, it is whether the current patent system is inherently flawed specifi-
cally with respect to computer programs and whether we can come up with some-
thing better. To deny patent protection to all nonliteral aspects of programs would
likely cause courts to grant broader copyright protection to those aspects, in ad hoc
efforts to prevent what they see as "reaping where someone else has sown." Given
copyright's long period of protection, that result could be even worse than overly
protective mistakes under patent law.

16. E.g., Integrated Cash Management Services, Inc. v. Digital Transactions,
Inc., 732 F.Supp. 370, 378 (S.D.N.Y. 1989) (six month injunction chosen with a view
to how long it took plaintiff to create its computer system and the need to neutralize
the improper "head start" gained by wrongful use of the trade secrets).

1994]

PACIFIC BASIN LAW JOURNAL

projects similar to those in his prior employment for the full term
of the copyright.17

C. TmE PROPER ROLE OF COPYRIGHT IN
PROGRAM PROTECTION

For the United States, Europe, and Japan, I have argued that
a correct scheme of copyright protection for programs and user
interfaces would protect against methods of copying activity that,
if allowed, would undercut incentives to produce socially desira-
ble works. Further, it would not impede standardization or inter-
operability and would allow later creators to build on and
improve the functional (nonpatented) products of others. Fi-
nally, it would avoid legal standards requiring expensive and
time-consuming litigation over vague factual questions, such as
whether a particular block of code is in some sense "efficient."
Rather, the protection scheme should focus judicial attention on
the fundamental question of whether the defendant's activities
afford an unfair competitive advantage. "Unfairness" would be
determined by analogy to traditional means of technological
competition and not by repeated incantation of copyright termi-
nology like "copy" or "substantial similarity." In other words,
copyright protection for programs should really be something of
a misappropriation law. It definitely should not be a law protec-
tive of all "creativity" that a court finds in a program or its inter-
faces. Much of the creativity in a program and its interfaces
enables the program to function better, and intellectual property
protection for those aspects is the traditional job of patent law.

17. In Gates Rubber Co. v. Bando American, Inc., 798 F.Supp. 1499 (D. Colo.
1992), literal copying of code was explicitly not found, and the court defined the
"central issue" as concerning the "calculation methods" involved. Moreover, the
court based its ultimate finding of copyright infringement on "special regard" for the
copying of certain mathematical constants developed by the plaintiff for use in its
formulas. These holdings seem contrary to section 102(b) of the United States
Copyright Act, which denies copyright in any "procedure, process, system, [or]
method of operation" as well as a United State Supreme Court decision stating that
facts-such as numbers-are not objects of copyright protection. Feist Publications,
Inc. v. Rural Tel. Serv. Co., 111 S. Ct. 1282, 1295 (1991). In addition, the finding of
copyright infringement in Gates Rubber was wholly unnecessary, as the author of
defendant's program was a former employee of plaintiff. The court properly con-
cluded that the constants involved were trade secrets that were wrongfully appropri-
ated. Trade secret law is a much more appropriate means of protecting such
valuable information, because the normal remedy is an injunction only for such a
time as it would take to legitimately reverse engineer or otherwise uncover the infor-
mation. If such factual information is copyright protected, however, and someone
has legitimate access to it, independent creation as opposed to "unconscious copy-
ing" can be very difficult to prove. The Tenth Circuit therefore properly reversed
the determination of copyright infringement, while affirming the trade secret viola-
tion. Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823 (10th Cir. 1993).

[Vol. 13:179

THEORETICAL FOUNDATIONS

More importantly, because program code is vulnerable to a
form of piracy (immediate, exact, and almost costless copying) to
which other functional works are not susceptible, the scheme
should prima facie prohibit verbatim or near verbatim copying of
substantial blocks of code. That result is clearly accomplished by
the current protection of programs under copyright. In the early
days of software protection, we might well have, indeed probably
should have, stopped there. This would have left all ideas,
processes, methods, principles, languages, technologically effi-
cient blocks of code, systems (including user interface systems),
and functional aspects of what the program does (like sending
lock and key signals to other programs or making mathematical
calculations) to the realm of patent law. Protection of code
under copyright and protection of other program elements either
as independent copyright-protected works (e.g., the visual ap-
pearance of video games on the screen) or under patent or trade
secret law continues to serve as a sensible first cut at a division of
labor between the various intellectual property regimes. Pro-
gram languages, nonuser interfaces, and functional aspects of
user interfaces (such as those aspects that make them easier to
learn or to use) would not be protected by copyright. 18

18. Because the cases and the commentators often use the term "functional"
without definition but with a wide variety of meanings, it is helpful to set out my
own definition. In my mind the best starting point is the definition of a "useful
article" under the Copyright Act: "A useful article is an article having an intrinsic
utilitarian function that is not merely used to portray the appearance of the article or
to convey information " 17 U.S.C.A. § 101 (West Supp. 1994). Anything quali-
fying as a useful article under this definition should be considered functional. Thus,
a video game as it appears on the screen is not a useful article (even though it may
be "useful" to parents in keeping their children occupied) because its function is
simply to portray its own appearance on the screen. Nor are maps, rule books, or
instruction manuals useful articles-notwithstanding that we all find them "use-
ful"-because their sole function is either to portray an appearance or to convey
information, or both. Fanciful or decorative aspects of user interfaces are not useful
articles because they serve no utilitarian function other than simply to portray them-
selves (for the admiration or amusement of the human viewer). All other aspects of
user interfaces, however, exist for some other purpose-to store numbers in a
spreadsheet cell, to move text, to define macros, and so forth-and therefore would
be functional under this definition. Otherwise arbitrary choices that serve, or could
serve, the utilitarian function (whether or not "intrinsic" to the particular choice) of
standardization across users, whether to permit either easier learning of improved
programs or easier user switching among programs performing the same tasks,
should also be considered functional. Programs generating video games would of
course be functional under this definition, although the fanciful aspects of the audio-
visual work that appears on the screen would not. Literal program code is also
clearly functional under this definition, although it should remain copyright pro-
tected. The protection of code, notwithstanding functionality, is precisely the major
change from tradition when we protect programs under copyright. The remaining
question is whether more functionality should be copyright protected and, if so, why.

19941

PACIFIC BASIN LAW JOURNAL

We should also beware of new electronic methods of non-
value-added reproduction of programs or interfaces that substan-
tially reduce the cost of copying or reverse engineering the work
in comparison with the cost of its original production. The use of
code generators, which generate code to produce a display al-
ready shown on the screen (via the target program), to generate
new programs seems a likely candidate for prohibition under this
reasoning.19 Absent a reason for believing that some nonliteral
element of a program is subject to piracy in this sense or a
ground for copyright protection of the element independent of
the program copyright, we should treat programs as functional
works of technology that may be highly creative but need no spe-
cial form of intellectual property law protection that is not gener-
ally available for other works of technology. In other words, the
goal should be to protect against the evil we have identified-
code piracy-and, otherwise, to make as little change as possible
in the scheme of intellectual property protection that has worked
satisfactorily in the past.

Thus, a fundamental shift of emphasis is required in the
copyright analysis: instead of looking for copying, which has
been the principal concern of traditional copyright, we must look
at the method by which copying is accomplished. 20 Whether the
method results in an unfair competitive advantage and therefore
must be prohibited should be measured by a balance of factors
such as comparative costs, value added, and the availability of
similar copying or reverse-engineering methods for other tech-
nologies. This would make program protection under copyright
in a sense analogous to trade secret protection, which looks to
the methods by which secret information is acquired to deter-
mine liability. Copyright would become, to this extent, a misap-
propriation statute.

The suggested interpretation seeks to maintain the tradi-
tional policy balances of intellectual property law. Because we
have brought under copyright a functional work of technology
for which copyright was never designed, some adjustment of
traditional copyright principles is necessary. The required shift
of emphasis for program protection, however, is not nearly as
radical as that effected by some of the early copyright decisions
and advocated by the protectionist commentators, which would

19. This was the method used in CMAX/Cleveland, Inc. v. UCR, Inc., 804
F.Supp. 337, 355 (M.D. Ga. 1992).

20. For an argument that it would be socially beneficial to look to unfair meth-
ods of copying, rather than copying generally, and to give limited protection to other
currently unprotected works, like complete electronic databases and digitally
formatted public domain texts, see Karjala, Copyright and Misappropriation, 17 U.
DAYTON L. REv. 885 (1992).

[Vol. 13:179

THEORETICAL FOUNDATIONS

bring under copyright protection many functional aspects of
works formerly protected (if at all) only by patent. Moreover,
while copyright has not traditionally looked to misappropriation
as such to determine infringement, it does in fact protect against
many forms of misappropriation through its prohibition against
copying. 21 Finally, because the policy basis of the suggested ap-
proach is grounded on the sui generis nature of computer pro-
grams as copyright-protected works, it runs much less risk of
disrupting the analysis of copyright protection in traditional
works.

II. DOES THIS APPROACH WORK FOR
DEVELOPING COUNTRIES?

I have outlined above a scheme of copyright protection for
software that would protect program code, notwithstanding its
functionality, under copyright. This scheme leaves protection of
other functional aspects of programs or their interfaces to their
traditional patron saints-patent and trade secret-absent an af-
firmative showing that some aspect of the program is vulnerable
to a type of piracy to which other technological products are not
subject. This is a minimalist interpretation of copyright protec-
tion for programs, but it is also the approach that is most closely
aligned with traditional intellectual property law. Protection of
functional products under copyright, with its long term of protec-
tion, is a radical change from the traditional division of labor be-
tween copyright and patent. With the exception of code, I see no
reason for such radical change in the balance between patent and
copyright.

Developing countries clearly have a need and desire for
technology transfer from developed countries. Permitting out-
right theft of computer programs, however, is hardly technology
transfer in any meaningful sense, because most do not learn tech-
nology simply from copying a computer program, especially a
program in object-code form. Moreover, if programs are not
protected from this type of piracy, fewer local people or firms
will have the incentive to develop new programs of their own for
distribution, and the technological lag will grow rather than di-
minish. Consequently, the case for protecting code against literal
copying or non-value-added electronic or mechanical translations
seems to hold as true for the developing countries as for the
developed.

Whether that protection should come from copyright or
some sui generis statute is a question that can be legitimately de-

21. Id. at 886-87.

19941

PACIFIC BASIN LAW JOURNAL

bated.22 Copyright does have the advantage that protection is
immediately international via the copyright treaties. Moreover,
with most of the economically advanced countries having already
joined the copyright camp, it may be a little late for others to try
a new direction. Properly interpreted, copyright protection for
literal code does have the potential to provide the optimal level
of protection.

Consideration should be given in the developing countries to
the drafting of specific limitations on the scope of copyright pro-
tection in programs when and if the copyright statutes are
amended to include them as objects of protection. This would
give more assurance that courts in those lands will not make the
same mistakes found in many early United States decisions that
went well beyond the protection of literal code to protect so-
called "structure, sequence and organization" and even user in-
terfaces under the program copyright.23 Japan is an example of
an economically advanced country that has included explicit limi-
tations on the scope of copyright protection in programs. These
limitations appear well designed to achieve an optimal level of
copyright protection. 24

Assuming that a developing country accepts my fundamen-
tal conclusion that literal code should be protected, three impor-
tant problems should then be addressed: (1) What elements of a
program beyond literal code, if any, should be protected? This is
the scope-of-protection problem. (2) Should the protective
scheme for the program also cover its interfaces, including its
user interfaces, and if so to what extent? (3) To what extent, if
at all, should reverse analysis be permitted? These are basic sub-
stantive problems that must be faced whether or not copyright is
chosen as the protection mode. Presumably even a sui generis
statute for program protection would look something like copy-
right, possibly with a shorter protection term and/or some provi-

22. See Pamela Samuelson, Creating a New Kind of Intellectual Property: Ap-
plying the Lessons of the Chip Law to Computer Programs, 70 MiN. L. REv. 471
(1985).

23. The great offenders are Whelan, Inc. v. Jaslow Dental Lab., Inc., 797 F.2d
1222 (3rd Cir. 1986), cert. denied, 479 U.S. 1031 (1987) (programs), and Lotus Dev.
Corp. v. Paperback Software Int'l, 740 F.Supp. 37 (D. Mass. 1990) (user interfaces).
Some judges apparently thought their mission was to protect all the creativity they
found in programs and user interfaces-creativity whose scope of protection could
only be defined through litigation rather than through a well defined patent claim
and the protection of which would last seventy-five to one hundred years. The year
1992 showed important retreats from these extreme protectionist positions. See
Karjala, supra note 4.

24. See Dennis S. Karjala, Copyright Protection of Computer Software in the
United States and Japan: Part II, 13 EUR. INTELL. PRoP. REv. 231 (1991).

[Vol. 13:179

THEORETICAL FOUNDATIONS

sion for compulsory licensing. 25 If these issues are not faced in
the statute, they will inevitably arise and be decided in individual
cases through the courts. Therefore, I proceed on the assump-
tion that copyright will be the legal mechanism chosen.

A. SCOPE OF PRoTECrION

The scope-of-protection problem has already been discussed
at some length. The goal is the protection of programs against
literal copying and electronic translations of code. Such protec-
tion follows automatically from copyright, because copying is
precisely what copyright is designed to protect against. All other
so-called "nonliteral aspects" of programs, possibly excepting
certain aspects of user interfaces, are purely technological, that
is, they exist solely for functional purposes. Absent a clear dem-
onstration of a policy basis for removing such aspects from the
patent scheme, we should continue to rely on the balances in in-
tellectual property law that have been honed over the ages.

In theory, the idea/expression distinction of copyright can be
applied to achieve this result. All that is needed is judicial recog-
nition that the "abstractions line" between idea and expression
should be drawn somewhere not far above literal code. In prac-
tice, as the United States experience through most of the 1980s
shows, this result will be reached by judges only through years of
backtracking and hand waving. 26 Perhaps explicit statutory limi-

25. Few if any commentators have suggested that the formalities required for
obtaining a patent would solve many of the problems associated with program pro-
tection. Moreover, a higher patent-like threshold for eligibility would defeat the
basic purpose of the entire exercise, which is to protect programs, at a minimum,
from the piracy of literal copying. See supra note 9 and accompanying text.

26. Many of the early scope-of-protection cases, having accepted that programs
are "literary works" under the statute, inappropriately analogized them to novels
and plays, in which the scope of protection is broad and extends to overall plots and
moderately detailed themes. These decisions failed to recognize that, even among
literary works, courts have always varied the scope of protection in accordance with
the nature of particular classes of works. Protection in histories, biographies, rule
books, legal forms, and scientific works is "thin," and only near-verbatim copying
infringes. E.g., Landsberg v. Scrabble Crossword Game Players, Inc., 736 F.2d 485,
488 (9th Cir. 1984); Miller v. Universal Studios, Inc., 650 F.2d 1365 (5th Cir. 1981);
Hoehling v. Universal City Studios, Inc., 618 F.2d 972, 980 (2nd Cir. 1980), cert.
denied, 449 U.S. 841; Continental Casualty Co. v. Beardsley, 253 F.2d 702, 706 (2nd
Cir. 1958), cert. denied, 358 U.S. 816 (1958). While computer programs are not re-
ally analogous to any traditional literary work-they may be literary works in form
but in substance they exist solely to perform a task on a machine-if the analogy to
traditional works is to be made, it would seem that scientific works or rule books
would be more appropriate than novels and plays. Consequently, there is broad
judicial authority for limiting the scope of protection to literal or near-literal code
under traditional law.

1994]

PACIFIC BASIN LAW JOURNAL

tations on the scope of program protection, similar to those in
the Japanese Copyright Law, 27 would be advisable.

B. PROTECrION OF INTERFACES28

1. Nonuser Interfaces

Interfaces are, by definition, the doors and windows through
which a computer program communicates with the outside world,
whether that communication is with machine hardware, another
program, or a human user. Interfaces are admittedly a funda-
mental part of program design, because they affect the ease, effi-
ciency, and accuracy with which the program is used.
Nevertheless, interfaces exist at a very high level of abstraction
above program code. In fact, the interfaces are simply a part of
what the program does-the program executes in such a way
that it presents its interface to the outside world. Under tradi-
tional copyright abstractions analysis, the interfaces should lie
outside the protective scope of the copyright in the program it-
self. This result follows naturally if the above suggestions con-
cerning the scope of protection in programs are accepted.

Given that the copyright in a program does not protect its
interfaces, the question arises whether interfaces are or can be
protected at all under current intellectual property law. It is very
difficult to conjure up an argument that nonuser interfaces would
be copyright protected, because the interface is simply an ab-
stract concept that does not fit into any of the traditional catego-
ries of copyright-protected work. Essentially, the interface is the
method by which a program is used. As such, it is potentially
eligible for patent protection, like the early typewriter keyboard
arrangements. That would mean that interfaces consisting of

27. Copyright protection in Japan does not extend to programming languages,
rules, or algorithms used to create program works. Chosakuken H6 (Copyright
Law), Law No. 48 of 1970, Art. 10(3). For a detailed analysis, see Dennis S. Karjala,
Copyright Protection of Computer Software in the United States and Japan: Part II, 13
EUR. INTEILL. PROP. REv. 231,231-34 (1991). Although Japanese judicial interpreta-
tions remain sparse, the few case authorities that exist indicate that Japan will not go
down the road toward broad copyright protection of so-called "SSO" introduced
into United States law by Whelan, Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222
(3rd Cir. 1986), cerL denied, 479 U.S. 1031 (1987). See Judgment of June 20, 1989
(System Science Corp. v. Japan Technato, Inc.), Toky6 K6sai [Tokyo High Court],
1989, at 502 (Japan) (stating that "processing flow" is excluded from protection as an
algorithm). For an analysis of this decision, see Dennis S. Karjala, Japanese Courts
Interpret the "Algorithm" Limitation on the Copyright Protection of Computer Pro-
grams, 31 JURIMETRICS J. 233 (1991); also published 12 EUR. IrrELL. PROP. REv.

235 (1990).
28. See generally Dennis S. Karjala, Interfaces (Nov. 7-8, 1989) (portion of

proceedings, at page 269, of the 2nd International Symposium on Legal Protection
of Computer Software, Software Information Center (SOFTIC), Tokyo, on file with
Dennis S. Karjala).

[Vol. 13:179

THEORETICAL FOUNDATIONS

straightforward elements composed in a more-or-less standard
arrangement would not be protected outside of trade secret law.
They would be protected only so long as it takes competitors to
reverse engineer the program to learn the secrets of its interface.

Denying copyright protection for nonuser interfaces and af-
fording patent protection only for nonobvious advances in inter-
face design comports with traditional intellectual property law.
Nonuser interfaces are wholly functional: they are the means by
which computer programs are used. Those who would argue for
a monopoly of seventy-five to one hundred years on such meth-
ods of access to the use of computer programs have the burden
of demonstrating a policy basis for deviating from the intellectual
property division of labor that has served tolerably well in the
past. That policy basis must involve more than mere incantation
that a program is a "literary work" under copyright.

2. User Interfaces

Still assuming that the program copyright does not protect
its interfaces, aspects of user interfaces can nevertheless fall
within the realm of copyright. Screen displays, for example, can
be considered audiovisual works, graphic works, or perhaps com-
pilations of textual items. Determining which aspects of user in-
terfaces are copyright protected and which are not will again
require interpretation of the statute, absent specific language
aimed at user interfaces. The fundamental issue is whether func-
tionality at the user level-user lock-in and standardization-is
or should be copyright protected.2 9

Purely fanciful (nonfunctional) aspects of a user interface
can be copyright protected without doing violence either to un-
derlying policy or traditional intellectual property principles.
The fanciful aspects of video game displays, which often consti-

29. It may be helpful in this context to consider the ordinary typewriter key-
board. Does the keyboard arrangement simply inform the typist which keys to
punch, or does it become, with practice, a part of the instinctive way a human actu-
ally uses the machine? Omitting questions of efficiency, the arrangement of the keys
is largely arbitrary. Yet, if a single manufacturer managed somehow to garner the
lion's share of the initial market, users who became used to that arrangement would
be reluctant to change to a different keyboard. They would be even more reluctant
to switch if the first keyboard were efficient for ease and speed of typing, because
competitors could offer no inducement to compensate for the difficulties involved in
learning a new keyboard. A copyright in the keyboard arrangement-the predigital
user interface-would then result in a very long quasi-monopoly in the first popu-
larly used keyboard, resulting in a monopoly on the machines themselves. See New
Protectionism, supra note 2, at 45-46. Although some keyboard arrangements were
patented, traditional copyright would have denied protection on functionality
grounds, and the absence of any reports concerning the assertion of copyright claims
in typewriter keyboard arrangements suggests that there was general understanding
and acceptance of this result.

19941

PACIFIC BASIN LAW JOURNAL

tute the most significant part of the user interface, are a clear
example. If Donald Duck from a comic strip can be copyright
protected, so can Mario. Thus, the real issue is the extent to
which functional aspects, if any, of user interfaces should be
protected.

Arbitrariness in the initial choice of effecting a particular
program operation through the user interface, or the existence of
a wide variety of choices for doing so, should not automatically
lead to the conclusion that copyright is an appropriate mode of
protection. User interfaces, like all useful articles, improve via
incremental advances. Some aspects of a given interface, such as
that for Lotus 1-2-3, may be quite efficient. Competitors who
write independent spreadsheet programs should be permitted to
adopt (nonpatented) aspects that work well and to improve other
aspects. The "substantial similarity" test for copyright infringe-
ment may not permit this type of incremental improvement, be-
cause an improved technological product will often be
substantially similar to what it is an improvement upon.

Moreover, even an initially arbitrary choice like a particular
typewriter keyboard arrangement 30 can become a standard or
partial standard simply because a particular program was the first
to become widely used. We should be reluctant to grant seventy-
five to one hundred year monopolies or partial monopolies for
merely being first, without having shown that the contribution
meets the conditions for a fifteen to twenty year patent.

As noted above, if the scope of protection in the program
itself is limited, through idea/expression analysis, to literal code
and electronic translations (direct or indirect) of code, the pro-
tection of the user interface is relegated to traditional copyright
principles. United States law is well armed to eliminate func-
tional aspects of user interfaces from copyright protection under
the tradition of Baker v. Selden,31 although the two most recent
and articulate authorities on the question are in hopeless con-
flict.32 Developing countries might, therefore, consider express

30. See supra note 29.
31. Baker v. Selden, 101 U.S. 99 (1880).
32. Compare Apple Computer, Inc. v. Microsoft Corp., 799 F.Supp. 1006 (N.D.

Cal. 1992), aff'd No. 93-16867, 1994 U.S. App. LEXIS 25646 (9th Cir. Sept. 19, 1994)
(treating the user interface as an independent work and denying protection to func-
tional features) with Lotus Dev. Corp. v. Borland Int'l, Inc., 799 F.Supp. 203, 222
(D.Mass. 1992) (treating the user interface, including keystroke sequences, as a
"nonliteral aspect" of the copyright-protected program and essentially disregarding
functionality as a limit on protection); see also Engineering Dynamics, Inc. v. Struc-
tural Software, Inc., 26 F.3d 1335 (5th Cir. 1994) (following the district court deci-
sion in Lotus and recognizing at least some protection for interface functionality).
The Lotus decision is on appeal to the First Circuit Court of Appeals. For an analy-
sis of how functionality and the doctrine of Baker v. Selden should be applied in that

[Vol. 13:179

THEORETICAL FOUNDATIONS

language in their statutes defining functionality33 and appropri-
ately limiting the copyright protection of user interfaces to non-
functional aspects.

C. REVERSE ANALYSIS OF PROGRAMS

The copyright in a computer program does not, even under
the most protectionist view, cover everything in the program. In
particular, ideas contained in the program are not protected nor,
under United States law, are systems, processes, concepts, princi-
ples, or methods of operation.34 Yet when a program is available
only in magnetically or electronically encoded object code, these
theoretically unprotected elements of programs are not readily
extractable, because no human being can examine and under-
stand a complex program in this form. 35 Knowledge of these un-
protected elements is often a vital aspect of creating
interoperable programs and systems. Moreover, a fundamental
part of the copyright balance, especially in view of the long term
of protection, is that ideas and other unprotected elements in
copyright-protected works should be free for all to use and build
upon. All other forms of literary work exist in human-intelligible
form, and anyone is free to take the unprotected elements from a
publicly distributed work without the permission of the author.
For this reason, reproduction of the work for the purpose of ex-
tracting unprotected elements was never an issue for traditional
literary works.

Yet, to extract such elements from programs in object code
form almost invariably requires making interim copies of the
program through the process of decompilation of object code
into a version of source code. If such interim copying constitutes
infringement, copyright ends up de facto protecting theoretically
copyright-unprotected elements, such as ideas and interface in-
formation necessary for interoperability. In 1989, a group of ten
United States copyright law professors unanimously agreed that

case to deny copyright protection to the user interface of a spreadsheet program, see
Brief Amicus Curiae of Professor Dennis S. Karjala and Professor Peter S. Menell,
Lotus Devel. Corp. v. Borland Int'l, Inc., No. 93-2214 (1st Cir. 1993).

33. See supra note 18.
34. 17 U.S.C.A. § 102(b) (West Supp. 1994).
35. Even if the electronic representation is written out in O's and 1's-which in

any event would of course constitute a "copy" of the program-it is extremely diffi-
cult if not impossible even for a skilled programmer to make sense of it. See Amicus
Brief, supra note 8. For an excellent description of the entire reverse engineering
process for programs, and the difficulties involved in effecting reverse engineering,
see Andrew Johnson-Laird, Technical Demonstration of "Decompilation", 16 COM-
PUTER L. REP. at 469 (1992). See also Andrew Johnson-Laird, Reverse Engineering
of Software: Separating Legal Mythology from Actual Technology, 5 SOFTWARE L.J.
331 (1992).

1994]

PACIFIC BASIN LAW JOURNAL

making a small number of copies for the purpose of studying a
program for possible use of its unprotected elements should be
considered a fair use and therefore not an infringement.36 This
view has now been confirmed in the United States by two impor-
tant courts.37

This problem is more easily handled under United States
law because of the general fair use provision of the United States
Copyright Act.38 No general fair use provision exists in the copy-
right statutes of most other countries, including Japan and Ger-
many. I have suggested that Japanese judges might consider the
possibility that a technical copy for the purpose of study, as long
as it does not result in a machine-readable version that can be
used in a computer, should not be considered an illegal reproduc-
tion under the copyright statute.39 A similar suggestion had been
made for Germany. °

In Japan, it remains possible to employ an interpretation
that an interim copy, for the sole purpose of study and extraction
of unprotected elements, is not a reproduction that infringes the
copyright. Unfortunately, the European Software Directive pro-
hibits all forms of reverse analysis except those taken for the pur-
pose of creating interoperable programs and makes use of the
term "reproduction" with explicit reference to the rightholder's
exclusive reproduction right.4 1 It no longer seems possible for
Germany, or other members of the Common Market, to make
use of even this technical interpretation aimed at preventing the
long period of copyright protection from attaching to ideas or
other unprotected information contained in programs that are
not related to interoperability. It might even be illegal now in

36. LaST Frontier Conference Report on Copyright Protection of Computer
Software, 30 JURIMETRICS J. 15, 24-25 (1989).

37. Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992),
amended by Order and Amended Opinion, D.C. No. CV-91-3871-BAC, Jan. 6, 1993;
Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832 (D.C. Cir. 1992).

38. 17 U.S.C.A. § 107 (West Supp. 1994).
39. Dennis S. Karjala, The First Case on Protection of Operating Systems and

Reverse Engineering of Programs in Japan, 10 EUR. INTELL. PROP. REV. 172 (1988).
Professor Nakayama of the University of Tokyo has suggested that courts in Japan
can adopt an implied fair use principle to solve the reverse analysis problem.
NOBUHIRO NAKAYAMA, SOFUTOUEA NO HoTEKi HoGo (THE LEGAL PROTEcTION
OF SOFTWARE) 130-31 (1988). See Kariala, supra note 10, at 235.

40. M. Lehmann & T. Dreier, The Legal Protection of Computer Programs:
Certain Aspects of the Proposal for an (EC) Council Directive, 6 COMPUTER L. &
PRAc. 92, 95 (1990) (arguing that the term "reproduction" should be interpreted by
looking at the aim of the reproduction right to assure the author of adequate partici-
pation in the economic exploitation of his work).

41. Directive 91/250/EEC, 1991 O.J. (L 122) 42, arts. 6(1) & 4(a).

[Vol. 13:179

THEORETICAL FOUNDATIONS

Europe to reverse-analyze a program for the purpose of deter-
mining whether it is an infringing copy! 42

It seems clear that developing countries will not want to
adopt software protection legislation that inhibits its own
software creators from producing programs that interoperate
with software and hardware from the developed countries. At a
minimum, they want to leave open what remains possible under
the European Software Directive. Countries that hope to be-
come members of the Common Market may feel compelled to
follow the Directive closely in order to further their economic
development goals.

However, countries that feel free to take an independent
course will probably want to reject the approach of the Directive.
Even if reverse analysis for the purpose of achieving interoper-
ability is the most important aspect of the problem, the Directive
explicitly makes it unlawful to reverse-engineer a program for
the purpose of understanding its technological ideas, its function-
ality, or its organizational principles, except to the extent these
are related to interoperability. Both teachers and students of
computer science in developing countries will almost surely want
to reverse-analyze programs for the purpose of learning how
they work and improving their own techniques. Probably few of
them will be caught when they engage in this activity, and proba-
bly even fewer will find themselves the object of a copyright in-
fringement action if they are. Nevertheless, it breeds disrespect
for law to tell them that they are lawbreakers when they do.
Reading publicly distributed copyright-protected works for the
purpose of extracting ideas and other unprotected elements has
always been allowed under copyright. The technological packag-
ing of this new type of work in human unreadable form should
therefore not be allowed to effect such a basic change in the
traditional balance between protection and free use.

Consequently, a fair use provision applicable to computer
programs that allows reverse-analysis for a legitimate purpose
(such as studying the program, extracting unprotected elements,
or determining whether it infringes the copyright in another pro-
gram) would be a useful feature. Otherwise, those countries
must rely on the courts to imply a fair use principle to resolve the
reverse analysis problem, a legal process that is neither timely
nor reliable.

42. T. Dreier, Verletzung urheberrechtlich geschatzter Software nach der Um-
setzung der EG-Richilinie, Speech at the Annual Meeting of the Deutsche Ver-
einigung ffir Gewerblichen Rechtsschutz und Urheberrecht e.V. (GRUR),
Dtlsseldorf (June 10, 1993).

1994]

PACIFIC BASIN LAW JOURNAL

CONCLUSION

Protection of computer program code from misappropria-
tion made possible by modem digital methods of electronic copy-
ing and translating is a legitimate goal of the intellectual property
scheme in both developed and developing countries. Computer
programs are, however, fundamentally works of technology and
in application bear no resemblance to traditional works of litera-
ture. Copyright law can be effective in achieving the antipiracy
goal of protecting code (1) if the scope of protection is appropri-
ately limited to that goal; (2) if interface protection is separated
from any copyright in the program generating the interface; and
(3) if there exists a fair use principle allowing interim copying of
programs for a legitimate purpose, such as extracting and using
copyright-unprotected ideas and interface information. Copy-
right protection that goes beyond program code to structural ele-
ments of programs or their interfaces, however, represents a
much sharper intrusion of copyright into the traditional realm of
patent to protect works of technology, and it requires a social
policy justification that, heretofore, is wholly lacking in the
software protection debate. These limitations on the copyright
protection of computer software are valid worldwide but are par-
ticularly relevant to the developing countries, where a stronger
scheme of copyright protection for programs would almost surely
impede technology transfer and development.

[Vol. 13:179

