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Abstract: The key to current Alzheimer’s disease (AD) therapy is the early diagnosis for prompt
intervention, since available treatments only slow the disease progression. Therefore, this lack of
promising therapies has called for diagnostic screening tests to identify those likely to develop
full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria,
including amyloid-p (Ap), total-tau (T-tau), and phosphorylated tau (P-tau). Though effective, the
accessibility of screening tests involving conventional cerebrospinal fluid (CSF)- and blood-based
analyses is often hindered by the invasiveness and high cost. In an attempt to overcome these
shortcomings, biomarker profiling research using non-invasive body fluid has shown the potential
to capture the pathological changes in the patients” bodies. These novel non-invasive body fluid
biomarkers for AD have emerged as diagnostic and pathological targets. Here, we review the
potential peripheral biomarkers, including non-invasive peripheral body fluids of nasal discharge,
tear, saliva, and urine for AD.

Keywords: Alzheimer’s disease; nasal discharge fluid; body fluid; biomarker; diagnosis;

non-invasive; peripheral

1. Introduction

Alzheimer’s disease (AD) is an irreversibly progressive neurodegenerative disease
afflicting the elderly, accompanied by devastating cognitive and memory impairment
caused by characteristic neuronal and synaptic loss and cortical and hippocampal atrophy.
It is hallmarked by the accumulation of extracellular amyloid plaques and intracellular
neurofibrillary tangles. The underlying mechanisms contributing to the development of
the disease remain elusive and controversial. Despite the advancement in understanding
the mechanism of pathogenesis, clinical trials have been unsuccessful and provided no
relief from disease progression, only slowing the progression [1]. Recent FDA-approved
anti-amyloid therapy aducanumab highlights that it is effective for patients with very mild,
biomarker-proven AD [2,3]. Therefore, there is an urgent need to develop a more accessible
biomarker screening test using less invasive and cost-effective body fluid biomarkers.
These diagnostics will serve as the first line of effective AD therapies before extensive
pathophysiological brain devastation occurs.

Currently, AD diagnosis involves a combination of neuroimaging techniques, detailed
clinical review of family history, neuropsychological test results, and laboratory assay
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results [4-7]. In the field of early AD diagnosis, the biomarkers using cerebrospinal fluid
(CSF), blood or neuroimaging, using magnetic resonance imaging (MRI) or positron emis-
sion tomography (PET), are being rapidly developed. However, the high cost of test pro-
cedures, potential complications, need for a specialist, requirement for high-performance
equipment, lack of standardized cross-institution protocols, and inconsistencies in test result
interpretation hinder the accessibility of these screening tests to individuals in economically
disadvantaged areas or remote geographical regions [8]. These factors hinder easy accessibility
to routinely approaching these diagnostic tests, and therefore, patients at risk may miss the
opportunity for a timely and accurate diagnosis and pharmacological intervention.

In an attempt to overcome these shortcomings, a rising number of biomarker profiling
research using non-invasive peripheral body fluids such as nasal discharge, saliva, urine,
and tear has shown the potential to capture the pathological changes in the patients’ bodies.
Of 15,445 AD biomarker-related articles published in the last 10 years, 355 articles related
to peripheral body fluid biomarker were retrieved when searched in PubMed, and 71%
of them were published in the last five years, showing that there is a growing awareness
about the importance of peripheral body fluid biomarkers in AD research. In view of
this, this review aims to provide an overview of recent contributions in the field of non-
invasive body fluid biomarkers and to shed new light on the potential of non-invasive
bodily fluid biomarkers. Few previous studies have provided standardized guidelines
for interpreting diagnosis criteria or biomarker source origins regarding AD biomarker
research papers. Taken together, we will address this issue and formulate guidelines for
reading AD biomarker research papers.

2. Clinical Diagnosis of AD

The standard diagnostic criteria for AD were first established in 1984. First, the di-
agnosis of Alzheimer’s disease was initiated by the National Institute of Neurological
Disorders and Stroke (NINDS) and the Alzheimer’s Disease and Related Disorders As-
sociation (ADRDA) [9]. The criteria were compatible with the Diagnostic and Statistical
Manual of Mental Disorders (DSM-III) [10]. The NINCDS-ADRDA and DSM-III evalu-
ated the cognitive impairment by AD and dementia syndrome, which are summarized
in Table 1. Clinical diagnostic criteria of possible and probable AD were made based on
neuropsychological tests. The criteria for diagnosing definite AD involved clinicopatho-
logic investigations, meaning histopathological evidence from microscopic examination
obtained from autopsy or biopsy.

Table 1. Clinical Alzheimer’s disease stages-I.

NINDS-ADRDA+DSM-III @

. Dementia
Disease Stage
Diagnostic Subgroups None Unlikely Possible AD P Probable AD Definite AD
Absence of other
diseases capable
Other comments - = of producing a
dementia
syndrome
Onset age — Sudden Atypical 40~90 years 40~90 years
Neuro- MMSE ¢, Blessed B » v/ + +
psychologicaltest dementia scale, etc. ’
Neuroimage CcTd — ? /= + ;
. M@oscgplc Confirmed by
Histology examination of - - - — .
brain tissue autopsy or biopsy
Cognitive Cognitive
Focal neurologic impairments have  impairments have
Others Other signs — signs, seizures, or — to be present in to be present in

gait disturbance

two or more areas
of cognition

two or more areas
of cognition

2 NINDS-ADRDA+DSM: Alzheimer s Criteria; the National Institute of Neurological Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Association + Diagnostic and Statistical Manual of Mental Disorders;
b AD: Alzheimer’s Disease; * MMSE: Mini-Mental State Examination; ¢ CT: Computed Tomography.
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Next, the National Institute on Aging-Alzheimer’s Association (NIA-AA) workgroups
updated the diagnostic guideline for AD [11,12]. Revised diagnostic criteria provide earlier
identification of AD progression, including preclinical and mild cognitive impairment
(MCI) stages. Including the NIA-AA guideline, revised DSM-V is also incorporated into the
classification of disease progression [13]. The criteria involve neuropsychological tests such
as Mini-Mental State Examination (MMSE), Clinical Dementia Rate (CDR), and Global De-
terioration Scale (GDS), and the postmortem examination confirms AD pathology, amyloid
plaques, and neurofibrillary tangles. These provide an initiative research framework un-
derlying pathologic processes that can be reported by postmortem examination. However,
AD diagnosis’s significance shifted to observing the disease progression in living people
rather than defining the consequences because the current treatment is ineffective after
severe neurodegeneration.

Recent AD research has led to the biomarker analysis in vivo for timely and appro-
priate intervention before a severe brain injury. As a result, the research framework was
updated to examine the AD pathologic processes [14]. In 2016, Jack et al. proposed the
A/T/N classification as a means of evidencing the biological state of AD [15]. This clas-
sification is divided into binary categories, either positive or negative, and this system
provides an improved understanding of the sequence of events in the AD continuum [14].
This framework includes A, the status of amyloid-{3 (A) PET or CSF Af4; T, tau PET or
CSF phosphorylated-tau (P-tau); N, neurodegeneration or neuronal injury measured by
neuroimaging or CSF total-tau (T-tau). The presence of each A/T/N biomarker profiles the
pathologic change with or without AD. Table 2 summarizes clinical AD stages based on the
NIA-AA guideline and the results of neuropsychological batteries.

Table 2. Clinical Alzheimer’s disease stages-II.

NIA_.AA+DSM_V ) Preclinical MCI P AD € Dementia Non-A]?
Disease Stage Dementia
Diagnostic Subgroups None Prec:]l)ucal POZSSJ le 1\:1]1; Mo:\:l]e)r ate Severe AD OND ¢
MMSE © (30~0) 30~25 24~20 19~13 12~
CDR f v1-1993 05 ya
(0~3) 0 questionable 1 2 <
Neuro-psychological CDR v2-1997 0.5 2 3
test (0~3) questionable moderate CI severe CI
GDS# 2 3 4 oo 6,7
1~7) very mildCI mildCI moderateCI moderatery very severe CI
severe CI
amyloid-PET ' — + o i T T —
. . tau-PET = = = + + + +/—
Neuro-imaging FDGJ-PET - = /= /= +/- /- /=
Structural MRI ~ — = +/— +/— /= +/— +/—
CSF ARy — + + + + + n/a
CSF k-biomarker CSEF P-tau = = = + 3 + n/a
CSF T-tau — — +/— +/— +/— +/— n/a

a NIA-AA+DSM: Alzheimer’s Criteria; ® MCI: Alzheimer’s Disease; ¢ AD: Alzheimer’s Disease; ¢ OND: Other
Neurodegenerative Disease; ¢ MMSE: Mini-Mental State Examination; f CDR: Clinical Dementia Rate; & GDS:
Global Deterioration Scale; I CI: Cognitive Impairment; ! PET: Positron emission tomography; ] FDG: Fluo-
rodeoxyglucose; ¥ CSF: Cerebrospinal Fluid.

3. Conventional AD Body Fluid Biomarkers

A biomarker indicates the change of cells and tissues, which illustrates altered body
conditions [16]. In the clinics, biomarkers represent the pathological status and monitor the
disease progression. Appropriate methods to detect disease biomarkers in living patients
are important for establishing early intervention times and evaluating clinical therapeutic
efficacy. The characteristics of an ideal biomarker are outlined in Table 3.
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Table 3. Characteristics of ideal body fluid biomarker.

Type Characteristics Goals
Disease specificity High

Detectability Biomarker sensitivity High
Accuracy High

Repeatability High

Accessibility Invasiveness Low
Expense Low

Stability Reproducibility High

o Early detection
Reliability

Containing pathological correlation

Given that AD is progressive and incurable, an ideal method to detect AD biomarkers
is required for AD-specific early detection, economic accessibility, and non-invasive sample
collection [17]. The neuropsychological test is a worldwide and classic method to identify
cognitive impairment, but multiple profiling is demanded to confirm AD from other
neurodegenerative diseases. Although brain imaging (e.g., fMRI, FDG-, amyloid-, and tau-
PET) observes disease-specific pathophysiology, the patients may find it difficult to perform
neuroimaging tests due to their repeatedly high costs. Recently, observing amyloid-3 and
tau as biomarkers in CSF and plasma are approved by NIA-AA [14]. In addition to CSF
and blood, body fluids that can closely reflect the patient’s pathological condition have
been studied. Figure 1 illustrates body fluids that have the potential to be matrices of
biomarker detection.

Cerebrospinal fluid
- Brain, Spinal cor
- Lumbar puncture

(& ocular fluid
' _Eye
- Schimer strip test, Capillary tubes

% Nasal fluid
i - Nose
- Irrigation, Sinus pack, Swab

Saliva
- Salivary glands
- Salivary collection aid

rFlds d / 9CI'u
- Blood vessel

- Venipuncture

- Urinary bladder
- Urine collection

Figure 1. Body fluids for the identification of potential biomarkers for AD. Sample type, organ,
sampling method (from above).
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3.1. CSF

CSF is a clear and colorless body fluid in the subarachnoid space and circulates within
the ventricular system of the brain and spinal cord to supply nutrients and chemicals,
remove waste products, and provide the brain immunological protection and mechanical
support [18,19]. CSF is produced in the choroid plexus of the brain’s ventricles and
reabsorbed into venous sinus blood via the arachnoid granulations. The total volume of
CSF is approximately 125-160 mL. CSF is replaced four to five times and regenerates about
500 mL every day [20]. Since CSF reflects biochemical and environmental changes within
the central nervous system, CSF is an ideal and useful candidate for detecting potential
neuropathology biomarkers [21,22]. CSF is usually obtained by a procedure called a lumbar
puncture. The standardized collection protocol of lumbar puncture is carried out under
sterile conditions by inserting a needle into the subarachnoid space between the third and
fifth lumbar vertebrae [23]. The collection protocol is summarized in Table 4.

NIA-AA and International Working Group (IWG) 2 have recognized the significance of
CSF biomarkers, including Af4,, T-tau, and P-tau, and incorporated them into diagnostic
criteria for AD and MCI [24-26]. In AD, AP4 concentration and A4 /ARy ratio are
reduced, and T-tau and P-tau concentrations increase in CSF [18,27-29]. CSF-related core
AD biomarker changes are summarized in Table 5.

Although lumbar puncture is the most common and recommended method for CSF
collection, there are some issues: lumbar puncture results in discomfort and pain due
to the larger and longer needle and the possibility of CSF contamination by anesthesia.
In addition, it is very difficult and expensive to perform the procedure on the subjects
repeatedly [23].

3.2. Blood (Plasma and Serum)

Blood plasma is the liquid component in which blood cells are suspended [30]. It
delivers nutrients and oxygen to the cells and transports cellular metabolic products. It
amounts to about 55% of the total blood volume and is mostly water. Blood plasma is
circulated through the body via blood vessels by the pumping of the heart. Functions of
blood plasma are maintenance of the blood pressure, pH, immunity, and transportation of
electrolytes, nutrients, clotting factors, carbon dioxide, oxygen, other waste products, and
excretory proteins.

Blood serum is blood plasma without clotting factors such as fibrinogens [30]. Blood
serum includes all electrolytes, antibodies, antigens, hormones, and other substances,
except white blood cells, red blood cells, platelets, and clotting factors [31,32]. Blood serum
is obtained by coagulation, which allows for clotting of the blood. Both plasma and serum
are commonly used for proteomic analysis.

Blood samples are collected by venipuncture, and the protocol commonly used is based
on the Human Plasma Proteome Project (HPPP) by the Human Proteome Organization
(HUPO) and the National Institute of Health [33,34]. Table 4 summarizes acquisition
procedures for blood plasma and serum.

The conventional biomarkers of AD, such as A4, AR4y, T-tau, and P-tau, are com-
monly utilized as potential candidate screening molecules in blood samples because they
can pass the blood-brain barrier (BBB) [35-37]. However, the BBB breaks down in AD
patients, which leads to an accumulation of blood-derived neurotoxic proteins in the
brain [38]. Blood-related core AD biomarker changes are summarized in Table 5.
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Table 4. Summary of CSF and blood acquisition procedures.

Body Fluid

Acquisition Procedure Reference

CSF

1. The subject lies on their side and bends knees
toward the chest and chin.
Lumbar puncture 2. An atraumatic spinal needle is injected into the [23]
vertebral body L3-L5.
3. CSF is collected in polypropylene tubes about 1-2 mL.

Blood

Plasma

1. Clean the venipuncture site and insert the needle.
2. The blood is collected in blood collection tubes,
including anticoagulant (EDTA or heparin).

3. Within 1-2 h, collecting tubes are centrifuged, and
then supernatant is transferred into new tubes,
including protease inhibitor cocktail.

Venipuncture

[33,34]

Serum

1. Clean the venipuncture site and insert the needle.
2. The blood is collected in blood collection tubes,
including a silica clot activator.

3. After clotting for 30 min, samples are centrifuged,
and then supernatant is transferred into new tubes,
including a protease inhibitor cocktail.

Venipuncture

Biomarkers for neuropathology from blood samples have been controversial because
blood communicates with the brain through the BBB, lymphatic vessel, and lymphatic
system, which indirectly interchange the materials and substances from the brain into
blood, resulting in lower sensitivity and specificity than CSF [35,39-41].

3.3. Limitations of Current CSF and Blood AD Biomarkers

Although the core CSF and blood AD biomarkers reflect central pathological changes
of the disease, current analyses have drawbacks: invasive procedure, high cost of test
procedures, potential complications, between-institution differences in cut-off values, and
inconsistencies in test result interpretation [42—44]. Furthermore, a plethora of studies have
characterized the multifaceted nature of AD, highlighting the complexity of understanding
the biochemical changes in the disease progression [45]. Due to these limitations, the
accessibility of diagnosis assays is hindered, making the diagnosis belated, which adds
cost to health care systems. Therefore, the development of novel biomarker detection in
non-invasive body fluid is essential.

Table 5. Summary of core AD fluid biomarkers in CSF and blood.

. X CSF Blood
AD Pathology Mechanism  Core Biomarkers Change Reference Change Reference
ARy Reduced [29,46,47] Reduced  [48-50]
AB pathology ABn/ABxn Reduced  [51-53]  Reduced [48,50,54]
Tau patholo P-tau Increased  [55-57] Increased  [58-60]
4 8y T-tau Increased [61-63] Increased [60,64,65]

4. Novel Peripheral Body Fluid Biomarkers

Recent research has shown that other peripheral body fluids, such as nasal discharge,
tear, saliva, and urine, may represent a potential source of biomarkers for neurodegenerative
diseases. These peripheral body fluids have advantages over CSF or blood since the
collection methods are less invasive and enable low-cost biomonitoring. Table 6 summarizes
acquisition methods for peripheral body fluids.
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Table 6. Summary of acquisition procedures for nasal discharge, tear, saliva, and urine.

Body Fluid Acquisition

Procedure

Reference

Nasal irrigation

1. Subjects are comfortably seated, and sterile normal saline
(0.9% NaCl) is administered into each nostril.

2. Subjects must close one nostril and then spray or insert
sterile normal saline several times into the other nostril.

3. After raising their head slightly back, let the solution stay
as if washing the nasal cavities.4. After inserting sterile
normal saline, subjects gently blow the nasal discharge fluids
into a cup or tube.5. After a few minutes of rest, do the same
for the other nostril.6. Samples are stored at —20 °C until use.

[66-68]

Sinus packs

Nasal discharge

1. Sinus packs or sponges are placed in nasal cavities between
the septum and inferior turbinate along the floor.

2. After 1-10 min, the sinus packs or sponges are removed
and placed in tubes. In order to retrieve the secretions from
sinus packs or sponges, sterile normal saline (0.9% NaCl)
solution is added to the tube and stored at 4 °C for about 2 h.
3. The sinus packs or sponges are then placed into a syringe.
Mechanical pressure is applied to them by moving the piston
action to squeeze the nasal discharge fluid.

4. After the first pressure, the syringe is replaced with a tube
and centrifugation is performed to recover all nasal discharge
fluids from the sinus packs or sponges.

5. The nasal discharge fluids are then stored at —80 °C for
further analysis.

[69]

Nasal swab

1. Subjects are seated in a comfortable bed, placed in a high
fowler’s position in bed, supporting the back of the head.

2. Enter a flexible cotton swab several centimeters with a slow
and steady motion along the nose floor. Nasal smears are
taken from the inferior concha, middle nasal meatus, olfactory
cleft, and common nasal meatus.

3. After resistance is met, rotate the cotton swab several times
and withdraw the swab.

4. All cotton swabs are placed in a microtube containing
sterile normal saline (0.9% NaCl) for a few minutes, and
swabs are removed from the microtube.

5. The solutions are then filtered by centrifugation, and then
the filtered solutions are stored at —80 °C until

further analysis.

[70,71]

Capillary tube

1. Subjects are seated with their head raised and stimulated by
a direct light source or airflow.
2. The reflex tears of the subject are collected with tubes.

Tear

Schirmer strip

1. A local anesthetic is needed to collect basal tears, not
reflex tears.

2. The bent end of the test strip is placed in the lower eyelid
and allowed to absorb the tears for several minutes.

[72-74]

Whole saliva Spitting

1. Subjects rinse their mouth and then spit the whole saliva
into a sterile tube.

Submandibular

q Draining
saliva

1. To block the opening of parotid ducts and sublingual
glands, use cotton gauzes, and to dry up, the floor of the
mouse is left.

2. Subjects raise the tongue to open the submandibular gland,
and saliva is collected using a disposable pipette.

Saliva

Sublingual saliva Draining

1. To block the opening of parotid ducts and submandibular
glands, use cotton gauzes, and to dry up, the floor of the
mouse is left.

2. Subjects raise the tongue to open the sublingual gland, and
saliva is collected using a disposable pipette.

Parotid saliva Draining

1. To collect parotid saliva, parotid cups or collectors are
placed, actively stimulating salivary collection.

[75-77]

Urine Collecting

1. First morning and random collection are not preferred
because of increasing variabilities.

2. The mid-stream and second-morning urine is collected in a
urine container.

[78-81]

4.1. Nasal Discharge

The occurrence of olfactory deficits, named anosmia or hyposmia, in AD has been
characterized for decades, and often these deficits precede the cognitive decline [82-85]. Ol-
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factory neuropathology is the cause of olfactory dysfunction, and structural and functional evi-
dence supports this view, including abnormal APP processing and neuroinflammation [86-90].
The central olfactory processing regions, such as entorhinal and transentorhinal areas, olfac-
tory bulb, and other medial temporal lobes, anatomically overlap with the regions involved
in early AD pathology [82,91,92]. AD postmortem and antemortem studies revealed that
the olfactory system shows classic AD hallmarks such as intracellular neurofibrillary tau
tangles and amyloid plaques [93-97]. In particular, nasal discharge surrounds the olfactory
system and captures the neuropathology occurring in the system, emerging as a potential
matrix of fluid biomarkers.

Nasal discharge is a slippery and gelatinous fluid produced by mucous membranes in
the olfactory mucosa. Nasal discharge is 95% water, glycoproteins, proteoglycans, lipids,
proteins, and DNA. The purpose of nasal discharge is to protect the olfactory epithelium
(OE) and the respiratory system by blocking the infections of pathogenic antigens. Nasal
discharge fluids serve to humidify and clean inhale air and provide proteins of the innate
immune system. Additionally, nasal discharge fluids trap and dissolve odorants for the
olfactory receptor neurons.

Since the olfactory system is exposed to the external environment, the collection of
nasal discharge fluid is easily accessible and non-invasive. In Table 6, we described several
protocols for collecting samples [66,69,71]. Saline buffers that have a similar composition
to human body fluids are used for nasal irrigation. Various techniques and devices have
been developed to deliver saline to the nasal cavity, such as douche, spray, and nebulizer.
Nasal irrigation can effectively relieve sinusitis caused by respiratory tract infections [98]
and symptoms involved in allergic responses [99]. Additionally, to analyze proteomic
studies of nasal discharge fluids for biomarkers, nasal discharge fluid obtained through
nasal irrigation can provide valuable information. The second method of nasal discharge
fluid collection is to use sinus packs. The method is non-invasive and reproducible. Several
techniques, such as nasal lavage, brush, and scraping, have been known as collection
methods that may influence the results [100]. Watelet et al. proposed a new technique
to obtain nasal discharge fluids using sinus packs [69]. The authors confirmed the fluid
quantity and protein concentration from the sinus packs and evaluated the feasibility and
reproductivity of this technique. Thirdly, a nasal swab (or nasopharyngeal swab) is a
method for collecting a sample of nasal discharge fluid from the back of the nose or throat.
This method is commonly used to analyze the presence of markers of disease, organisms,
and viral infection. Recently, a nasal swab has been used to diagnose COVID-19 [101].

Early studies identified the presence of amyloid-3 peptide and amyloid precursor
proteins (APP) in postmortem AD patients’ olfactory mucosa samples [94,102]. Aggregation
of amyloid-p expression was detected in 71% of AD cases, 22% in normal cases, and 14% in
other neurodegenerative disease cases [103]. Biopsy examination identified A3 expression
from the normal, MCI, and AD subjects [104]. Sampling human olfactory environment
for AD-related research advanced from taking autopsy or biopsy samples to collecting
human nasal discharge. A study collected nasal smears by swabbing from multiple nasal
areas, such as the common nasal meatus, inferior concha, middle nasal meatus, and
olfactory cleft [71]. Subsequent studies analyzed A3 expression in nasal discharge fluid by
immunoassay and proved that the level of oligomeric A in nasal discharge was higher
in AD than normal [67,105]. A 3-year longitudinal study by Yoo et al. confirmed that the
presence of oligomeric A could predict the cognitive decline progression [67].

Similarly, early studies used the histopathological method to detect T-tau in post-
mortem and antemortem samples of AD patients’ olfactory systems [95,106]. Later, immuno-
histochemical studies demonstrated that tau pathology in the olfactory system correlated
with AD pathology progression [93,107]. ELISA-analysis of nasal smear swabs indicated
that P-tau/T-tau ratios were more significant in AD than control [71,108].

Non-core AD hallmark biomarkers have also been identified in the olfactory system.
Expression of a-synuclein was identified in postmortem OE of AD sample [103]. A study
showed increased microRNA-206 in AD patients” OE through qRT-PCR [109]. Proteome
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analysis was done on nasal discharge samples from young, healthy groups and elderly
groups, and identified a list of associated proteins with age variability [110]. However, little
is known about the molecular machinery responsible for mucus proteome and its changes
in neurodegenerative diseases. Table 7 summarizes the results of core AD biomarker
studies from the olfactory system.

Table 7. Summary of core AD biomarkers in the olfactory system.

AD Patho}ogy Specimen Biomarkers Analytical Method Results Reference
Mechanism
Interdigitated . .
. . . Increased in AD than in -
Nasal discharge fluid AB116 mlcr.oelectrode OND and CU 2 [105]
biosensor
Nasal discharge fluid A oligomer Immunoblot Increased in AD than CU [67]
Nasal mucosa by No differences in median
AB pathology nasal swab ARy, APy Immunoassay Value:sa };)lztv(\:/[ejen AD [71]
Postmortem
. Increased AP aggregates
olifact(.)ry ApB Histopathology in AD patient [103]
epithelium
Postmortem . Increased A load in
olfactory bulb AB Histopathology AD patients (90,1111
. . Positive T- and P-tau in
Nasal discharge fluid T-tau, P-tau Immunoassay anosmic AD patients [108]
Nasal mucosa by Positive T- and P-tau in
nasal swab T-tau, P-tau Immunoassay AD patients [71]
T thol Postmortem
au pathotogy olfactory P-tau Histopathology Evident PHF-tau ® in AD [103]
epithelium
Postmortem P-tau deposits in the
olfactory bulb P-tau Histopathology olfactory bulb of [112]

AD patients

2 CU: cognitively Unimpaired; b PHF-tau: Paired Helical Filament-tau.

4.2. Tears

Tears have a high protein content and have been widely investigated for biomarker
studies for ocular diseases and diabetes [113,114]. Major tear proteins, lipocalin-1 and lacto-
transferrin, are involved in the inflammatory and immune processes [113,115]. Researchers
studying neurodegenerative diseases have also hypothesized that neuroinflammation could
be reflected in tear proteins due to the extension of the central nervous system. Recent AD
studies conducted tear analyses and discovered the potential of tear biomarkers in AD.

The techniques of collecting tears were established in 1981 [72] and 1984 [73], and the
protocols described in Table 6 are the most commonly used in tear proteomic investigations [74].
For proteomic analysis, tears can be collected using Schirmer’s tear strips and capillaries.
The Schirmer strip is placed in the lower eyelid and allowed to absorb the tear for several
minutes. The capillary tear is collected using sterile capillary tubes under the same condi-
tions. However, to obtain aqueous humor samples, surgical treatment is required to use a
fine needle [116], and vitreous humor samples are obtained by surgery vitrectomy [117].

Gijs et al. measured A4 in tears using multiplex immunoassays and found the
Ay levels changed with increasing AD stage with an area under the curve (AUC) of
0.725 [118]. Other AP peptides, AP3g and AR4g, were also detected in their subsequent
study [119]. Recently, Wang et al. developed a biosensor and detected variable A4, levels
in different age groups of healthy participants [120]. Gijs et al. also analyzed T-tau, and
its levels were also able to discriminate between AD patients and healthy controls with an
AUC of 0.81 [118,119]. Quantitative proteomic results profiled that lipocalin-1, dermcidin,
lysozyme-C, and lacritin can serve AD biomarkers [121]. One LC/MS evaluation identified
elongation initiation factor 4E (elF4E) uniquely in AD tear samples, and a PCR-based
analysis showed elevated total microRNA abundance in AD patients’ tears and especially
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higher microRNA-200b-5p levels in tears of AD patients compared to healthy controls [122].
Table 8 summarizes the results of core AD biomarker studies using tears.

Table 8. Summary of core AD biomarkers in tears.

AD Patho'logy Biomarker Analytical Method Results Reference
Mechanism
Ap pathology APy Immunoassay Increaiieg sa[ifeznlfsvels mn [118]
Tau pathology T-tau Immunoassay Increaze]gl ;:;:nl;vels m [118]
4.3. Saliva

Saliva is an easily accessible, non-invasive body fluid containing 98% water containing
electrolytes, proteins, peptides, hormones, sugar, epithelial cells, white blood cells, enzymes,
and lysozymes [123]. The functions of saliva are the protection and maintenance of oral
mucosa, digestion, the perception of taste, and the control of microorganisms [124,125].
Saliva is secreted from three major salivary glands, named the sublingual, submandibular,
and parotid, and they are innervated by the cranial and facial nerves [126]. The direct
innervation of the glossopharyngeal nerve through the otic ganglion suggests that saliva
can be a promising candidate of biomarker source for assessing pathological physiologies
of the nervous system [127].

Several various methods for collecting saliva have been described in the past years.
In 2007, the World Health Organization and International Agency for Research on Can-
cer described the protocol for saliva proteomics [77]. The protocols for saliva collection
depend on the specific categories of the saliva of interest, and these different methods are
summarized in Table 6.

In the last few years, various studies have detected increased APy, in AD patients’
saliva using sandwich and nanobead ELISAs. Bermejo-Pareja et al. analyzed saliva samples
by immunoassays and identified a statistically significant increase in saliva A4 levels in
mild AD patients than normal control [128]. Subsequent studies similarly showed elevated
Ay levels in AD saliva samples [129-131]. In contrast to these findings, other results
showed no detection of AP, or AP, in saliva with immunoassays [127,128,132]. On the
other hand, a recent study demonstrated decreased Af34; level in AD patients’ saliva [133].
Some preliminary tau investigation was carried out in the 2010s, and Shi et al. reported
an increased P-tau/T-tau ratio in patients with AD compared to healthy controls [127]. A
subsequent study also confirmed this increased P-tau/T-tau ratio in AD versus healthy
controls [134]. In contradiction with these findings, results demonstrated no significant differ-
ence in salivary T-tau between AD and mild cognitive impairment or healthy controls [135].

A growing number of studies have examined possible biomarker candidates other than
Ap and tau peptides. Lactoferrin, for instance, is a pleiotropic protein with several immuno-
logical properties, including antibacterial, antiviral, antioxidant, and anti-inflammatory
functions [136,137]. The first investigations on salivary lactoferrin found a decreased
lactoferrin level in AD patients’ saliva compared to healthy controls [138]. A more recent
study supported this finding by comparing salivary lactoferrin levels with amyloid-PET
neuroimaging data [139]. Acetylcholinesterase degrades acetylcholine neurotransmitters
released into the synaptic cleft and terminates acetylcholine neurotransmission, and PET
study results demonstrated decreased acetylcholinesterase catalytic activity in AD patients’
brain regions [140-142]. An initial report on the salivary acetylcholinesterase activity
was carried out by Sayer et al. and showed a significant decrease in AD patients [143].
Further studies also suggested a reduced salivary acetylcholinesterase activity in AD
patients [144,145]. Protein carbonyl levels result from protein oxidation, and multiple stud-
ies examined elevated protein carbonyls in brain regions of AD patients [146,147]. One
study evaluated and identified protein carbonyl levels in saliva of AD patients and healthy
controls [148]. Metabolomics is an emerging research technique used in various research
fields to identify metabolites within a target sample. Yilmaz et al. analyzed saliva samples
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from healthy control, mild cognitive impairment sufferers, and AD patients. They pro-
filed multiple metabolites that changed significantly in the saliva of MCI and AD patients
compared to healthy controls [149]. Table 9 summarizes the results of core AD biomarker
studies using saliva.

Table 9. Summary of core AD biomarkers in saliva.

AD Patho.logy Biomarkers Analytical Method Results Reference
Mechanism
Increased saliva A4, levels in
ARy Immunoassay mild AD patients [128-131]
. Salivary A7 levels increase
APy Magneto-immunoassay as the AD severity increases [132]
Ap pathology ARy Immunoassay Sahva;}; ﬁ:liﬁcl’fa‘;)elles were [127]
Immunoassay Lower salivary A4, levels in
Aba (MILLIPLEX) AD patients [133]
. No statistically
ARy Magneto-immunoassay significant change [132]
Increased P-tau/T-tau ratio in
T-tau, P-tau Immunoassay D it [127,134]
Tau pathology No significant difference in
T-tau Immunoassay salivary T-tau between AD and [135]
healthy control
4.4. Urine

Urine contains thousands of proteins, mostly metabolic wastes, and is currently
actively utilized to study pregnancy, aging, and kidney diseases [150,151]. Nevertheless,
for many years urine has been neglected as a promising source of biomarkers for studying
AD since there is little agreement on urine reflecting the changes occurring in the brain
due to the BBB and glomerular filtration. However, several studies have indicated the
potential of urinary biomarkers in neurodegenerative diseases, such as Parkinson’s disease
and Alzheimer’s disease [152-154].

More importantly, urine collection does not require special equipment and can be
repeated without discomfort to subjects. The Human Kidney and Urine Proteome Project
(HKUPP) in 2005 and European Kidney and Urine Proteomics (EuroKUP) in 2008 were
initiated to promote proteomics research, and they together have achieved the establishment
of a standard protocol for urine collection and storage [78-81]. The collection method is
summarized in Table 6.

Initial report on detecting A3 peptide in the urine of AD patients was carried out by
Takata et al. by Western blot analysis and suggested that monomeric Af3 level may reflect
the severity of AD [155]. A key question raised by Takata et al. was that they could not
pinpoint the origin of A{3 in urine. A recent study developed an indirect competitive ELISA
to measure Af4; in human urine samples [156].

Several studies have profiled potential urine protein biomarkers for AD. One study
identified 15 proteins using LC/MS-MS and validated three proteins, SPP1, GSN, and
IFGBP7, by ELISA [157]. Higher urinary AD7c-NTP, Alzheimer-associated neural thread
protein, was demonstrated in another study [158]. Watanabe et al. analyzed AD patients’
urine samples and profiled 109 proteomes differentially expressed in AD and healthy
controls [159]. Their subsequent study showed that apolipoprotein C3 levels in AD pa-
tients” urine samples were higher in the AD and MCI groups than healthy controls using
ELISA [160]. Urine also contains many metabolites, reflecting the gut microbiome theory in
neurodegeneration studies [161-163]. One study recently examined urinary metabolome
using NMR spectroscopy and UHPLC-MS and built a model that could discriminate
between AD and healthy age-matched controls [164]. Another study developed a new
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screening approach using LC/MS and proposed that lipid peroxidation compounds may
be potential predictors of early AD [165]. In addition, many studies reported microRNA
in human urine samples and demonstrated that urinary microRNAs are relatively stable
under various storage conditions, supporting their utility as urinary biomarkers [166-168].
Table 10 summarizes the results of core AD biomarker studies using urine.

Table 10. Summary of core AD biomarkers in urine.

AD Pathology Mechanism

Biomarker Analytical Method Results Reference

Ap pathology

Monomeric ARy levels differed [155]

A Immunoblot . e .
Ba unoblo according to cognitive impairment

4.5. Limitations and Future Perspectives of Novel Peripheral Body Fluid Biomarkers

Currently, a multitude of studies are discovering potential body fluid biomarkers to
assist in assessing disease progression, developing treatments, and monitoring treatment
efficacy. Nevertheless, there are substantial challenges in the validation and application
of peripheral body fluid biomarkers in AD to clinical practice, and there is no single
ideal peripheral body fluid biomarker that exists. The main challenge arises from the
fact that core AD biomarkers are proteins, which can be affected by preanalytical factors
such as sample collection conditions, the timing of sample processing, and sample storage
conditions [169]. Another limitation is low concentrations of biomarkers in peripheral body
fluids. Commonly used detection methods utilize technologies, including immunoblot and
electrochemiluminescent immunoassays, and quite often the low concentrations require
highly sensitive novel technologies with a lower limit of detection and lower limit of
quantification [170]. Besides, the peripheral body fluid biomarker research field has not yet
established a consensus on experimental techniques and methods, resulting in low assay
standardization [169].

Despite these limitations, the advantages that the novel peripheral body fluid biomark-
ers possess should be taken into account for easier, faster, and more accessible diagno-
sis for a wider spectrum of patients. Studies suggested that a combination of multiple
biomarkers will improve the diagnostic accuracy when compared with the use of a single
biomarker [171,172]. The use of multi-biomarker panels will provide a platform to monitor
disease progression longitudinally. Validation of perspective biomarkers in large cohorts of
patients would be crucial to be implemented in practical use.

5. Conclusions

In combination with clinical examination of cognition and neuropathology, biomarker
studies have evolved quickly to understand the pathogenesis and implement early diagno-
sis for timely therapeutic interventions. Nevertheless, the accessibility to the conventional
CSF- and blood-based biomarker tests is hindered due to their invasive and high-cost
sampling measures.

We have also outlined the guidelines for AD diagnosis; however, each study offered its
own classification criteria. Therefore, it was difficult to provide an encompassing A/T/N
diagnosis status for all the reviewed studies. We hope that the use of A/T/N diagnosis will
work in unison with the body fluid biomarkers and provide an overall spectrum of core
biomarker modalities in AD. Such elaborated biomarker indices will help better understand
the pathology and bolster overall diagnostic accuracy.

This review has explored considerable progress in identifying non-invasive peripheral
body fluid biomarkers from nasal discharge, tears, saliva, and urine. A great deal of work
on the potential of these non-invasive peripheral body fluid biomarkers has suggested that
these biomarkers can be used for early detection and diagnosis of AD and monitoring the
disease progression from preclinical to full-blown AD stages. Ideal biomarker character-
istics include easy accessibility, high accuracy, minimal invasiveness, cost-efficiency, and
reproducibility. A lot of evidence proposed that core AD biomarkers in the non-invasive
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peripheral body fluid discussed in this review have the possibilities to meet these criteria
and be utilized in clinical practice with further research.

The discovery and application of the non-invasive peripheral body fluid biomarkers
may enable early diagnosis, help patient monitoring in clinical trials, or identify disease-
relevant molecular pathways to develop novel therapeutic targets. Further refinement in
using these biomarkers may lead to the invention of AD screening tests, biosensors, or chip
devices with high accuracy and reproducibility. We believe that future studies in this field
will undoubtedly have a profound and positive impact on the patients and their families.
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