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Magnetic Resonance Imaging (MRI) is a non-invasive imaging technology that produces 

detailed anatomical images, which has provided a giant leap forward in medical diagnosis. MRI 

segmentation and classification play an essential role in disease assessment and detection, volume 

measurement, and biopsy. Methods relying on feature engineering have traditionally been used to 

perform MRI segmentation and classification and usually produce sub-optimal results. With the 

fast growth of artificial intelligence, deep learning has achieved great success and outperformed 

these traditional methods. However, current deep learning models, especially in prostate MRI 

segmentation and classification, may provide an insufficient representative power, and lack 

prediction uncertainty information and prior knowledge such as cancer heterogeneity, and usually 
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require large-scale and generalizability evaluation. Primarily with prostate MRI, this dissertation 

concerns several advanced deep learning-based MRI segmentation and classification methods or 

applications to address the above issues. The contributions of this thesis are as follows: 

1. A new deep learning method with feature pyramid attention to enhance multi-scaled and high-

level feature extraction was developed for automated prostate zonal segmentation. The 

proposed method outperformed state-of-art deep learning-based prostate zonal segmentation 

method such as U-Net.  

2. The attention mechanism improves the deep learning-based segmentation by focusing more on 

relevant information to the region of interest, and Bayesian statistics equips deep learning with 

uncertainty measurement. An attentive Bayesian deep learning network was developed for the 

prostate zonal segmentation with uncertainty estimation. The proposed method was superior 

to the first method developed above on prostate zonal segmentation. Uncertainties produced 

between different prostate zones at three prostate locations were consistent with the actual 

model performance. 

3. Texture provides the prior knowledge that can quantitatively describe the tumor heterogeneity. 

Texture-based deep learning (Textured-DL), which can be potentially used in a small dataset 

due to the exploitation of tumor prior information, was proposed for the prostate cancer 

classification. The Textured-DL showed superior performance to the radiologist-based 

classification, conventional machine learning, and deep learning methods. 

4. A previously developed deep learning model in the second method above, attentive Bayesian 

deep learning network, was evaluated for the whole prostate gland segmentation using a large 

patient cohort. In the qualitative evaluation, the deep learning method demonstrated acceptable 
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or excellent segmentation quality in most cases. The deep learning method was superior to the 

state-of-art deep learning methods in the quantitative evaluation. 

5. A previously developed deep learning model in the second method above, attentive Bayesian 

deep learning network, was tailored and used for the placental segmentation on longitudinal 

MRI to investigate the model’s generalizability for other biomedical image applications. The 

deep learning model can automatically segment the placenta with high accuracy. In addition, 

placental volume measurement with the deep learning-based and manual segmentation can be 

used interchangeably. 

In summary, the deep learning model with feature pyramid attention and attentive Bayesian 

deep learning method achieved superior prostate zonal segmentation performance; enriching the 

image prior knowledge to the deep learning enhances the prostate cancer classification; large-scale 

and generalizability evaluation further demonstrated the segmentation model's outstanding 

segmentation and generalizability abilities. Future studies will explore the prior knowledge that 

can enhance the segmentation performance, study the contour-based fast segmentation using graph 

convolution, explore the non-textured and clinical features that could enhance the classification 

performance, and analyze the effect of data size on the Textured-DL’s classification performance.  
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Chapter 1   Introduction 

Magnetic resonance imaging (MRI) is a non-invasive imaging technology that produces 3-

dimensional anatomical images. MRI provides excellent soft tissue contrast and does not have the 

ionization radiation that can cause damage to the human body, thus playing a significant role in 

disease diagnosis. MRI segmentation and classification play an essential role in disease assessment 

and detection, volume measurement, and biopsy. For example, since prostate cancer in different 

prostate zones exhibits different morphological and functional characteristics on multi-parametric 

MRI (mpMRI), prostate zonal segmentation is crucial in interpreting mpMRI for prostate cancer 

assessment. T2-weighted, and apparent diffusion coefficient MRI images are usually used for 

primary interpretation of lesions in the peripheral and transitional zones of the prostate1. Also, 

whole prostate gland (WPG) segmentation is critical to enable MRI-targeted transrectal ultrasound 

fusion (MRI-fusion) biopsy2 and prostate volume measurement. Placenta MRI segmentation is the 

critical first step required toward accuracy in the abnormalities detection that can affect maternal 

and fetal health3,4. 

Manual segmentation and expert-based disease interpretation are highly dependent on 

reader experience and expertise, usually suffer from significant intra-and inter-reader variability 

and are also time-consuming and laborious3,5,6. Traditionally, various methods relying on feature 

7–10 have been exploited to automate MRI segmentation and classification. In recent years, deep 

learning has achieved great success and demonstrated superior capabilities in various segmentation 

and classification tasks to the conventional methods due to its capacities for extracting higher-level 

representative features with the need for handcrafted feature extraction11. However, current deep 

learning models, particularly in prostate MRI segmentation and classification, may provide an 

insufficient representative power, and lack prediction uncertainty information and prior knowledge 
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such as cancer heterogeneity, and usually require large-scale and generalizability evaluation. 

Primarily with prostate MRI, this dissertation covers several advanced deep learning-based MRI 

segmentation and classification methods or applications to address the above issues. Specific 

issues of current deep learning-based segmentation and classification methods and potential 

improvements are detailed below. 

Deep learning-based methods, such as U-Net12 and its variants, have recently been 

developed to perform prostate zonal segmentation. However, high-level semantic and multiple-

scaled information captured by U-Net may not be sufficient to describe the heterogeneous 

anatomic structures of the prostate and indiscernible borders between the prostate zones, resulting 

in inconsistent and sub-optimal performance. Deep learning incorporating a feature pyramid 

attention network can enhance capturing abilities of relevant features, especially multiple-scaled 

features13. The first aim of the dissertation is to develop and evaluate a deep learning method with 

feature pyramid attention for prostate zonal segmentation.  

Outcomes from the current deep learning networks are deficient in acquiring uncertainties 

of the MRI segmentation. Segmentation uncertainty produced by the model can allow human 

experts to intervene to enhance current segmentation workflows by improving the highly uncertain 

cases. Also, the attention mechanism improves the deep learning-based segmentation by making 

the model focus more on semantic information related to the regions of interest. The second aim 

of the dissertation is to develop and evaluate an attentive Bayesian deep learning network for 

prostate zonal segmentation with uncertainty estimation. This network has a great potential to 

enhance the prostate zonal segmentation method of the first aim. 

Heterogeneity is commonly regarded as a footprint and ecology of tumor evolution, which 

can be described by the image texture. Enriching texture into deep learning could enhance the 
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model’s classification performance and potentially make the model able to be used in a small 

dataset due to the exploitation of tumor prior information such as heterogeneity. The third aim of 

the dissertation is to evaluate a texture-based deep learning model (Textured-DL) for 

differentiating between clinically significant prostate cancer (csPCa) and non-csPCa and compare 

the Textured-DL model with conventional deep learning and radiologist-based classification. 

In addition, current deep learning-based segmentation methods were commonly evaluated 

by a relatively small sample size, limiting the ability to test the deep models in the clinical setting. 

The fourth aim of the dissertation is to evaluate the attentive Bayesian deep learning network, a 

deep learning-based segmentation model developed in the second aim, for whole prostate gland 

segmentation by using a large, continuous cohort of prostate 3T MRI scans, including 3,360 MRI 

scans. 

Deep learning-based segmentation methods above were developed and evaluated in the 

prostate MRI. To assess the deep model’s generalizability for other biomedical image applications, 

such as the placenta segmentation, the fifth aim of this dissertation is to evaluate a deep learning 

method, which was adapted from the attentive Bayesian deep learning network, a previously 

developed in the second aim, for the placental segmentation in longitudinal MRI. 

This dissertation aims to develop and evaluate advanced deep learning methods for MRI 

segmentation and classification, primarily in the prostate MRI. The specific aims are 1) to develop 

and evaluate a deep learning with feature pyramid attention for prostate zonal segmentation; 2) to 

develop and evaluate the attentive Bayesian deep learning network for prostate zonal segmentation 

with uncertainty estimation; 3) to evaluate Textured-DL for differentiating between csPCa and 

non-csPCa and compare Textured-DL’s performance with conventional deep learning and 

radiologist-based classification; 4) to evaluate the attentive Bayesian deep learning network, a deep 
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learning-based segmentation model developed in the second aim, for whole prostate gland 

segmentation by using a large, continuous cohort of prostate 3T MRI scans, including 3,360 MRI 

scans; 5) to evaluate the generalizability of a deep learning method, which was adapted from the 

attentive Bayesian deep learning network that was previously developed method in the second aim. 

 

1.1   Outline 

The structure of this dissertation goes as follows: 

Chapter 2: Background 

Chapter 2 makes the basic introduction of medical image segmentation, deep learning, 

Bayesian deep learning, texture-based deep learning methods, magnetic resonance imaging, and 

evaluation metrics for segmentation and classification tasks. 

 

Chapter 3: Automatic Prostate Zonal Segmentation Using Fully Convolutional Network with 

Feature Pyramid Attention 

Chapter 3 describes the work of a deep learning-based method with feature pyramid 

attention for automated prostate zonal segmentation in detail. This chapter developed and 

evaluated a deep learning-based method equipped with the feature pyramid attention mechanism 

for prostate zonal segmentation. The model was assessed separately on two testing datasets to 

investigate the model’s expansibility to different datasets. Performance discrepancy across 

different sections of the prostate was also investigated in the chapter. Finally, this chapter 

compared the model's performance with the inter-reader consistency that incorporates two 

independent expert-based manual segmentations. 
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Chapter 4: Exploring Uncertainty Measures in Bayesian Deep Attentive Neural Networks 

for Prostate Zonal Segmentation 

Chapter 4 developed and evaluated an attentive Bayesian deep learning method for 

automated prostate zonal segmentation with uncertainty estimation. The proposed method was 

superior to the method developed in the Chapter 3. Similar to Chapter 3, performance discrepancy 

of the proposed method in two separate testing datasets was investigated in this chapter. This 

chapter also examined the importance of the attention mechanism in the proposed model and 

calculated the average prostate zonal segmentation uncertainty maps at apex, middle and base. 

Based on uncertainty maps, primary patterns of prostate zonal segmentation uncertainty at the 

three prostate sections were summarized. 

 

Chapter 5: Texture-based Deep Learning for Prostate Cancer Classification 

Chapter 5 describes the work of Textured-DL for prostate cancer classification. In this 

chapter, Textured-DL was developed and evaluated for automated PCa classification of suspicious 

prostate lesions on a 3T mpMRI dataset with whole-mount histopathology (WMHP) correlation. 

After a lesion was detected and contoured as part of the clinical interpretation, Textured-DL was 

developed to further improve the classification of PCa for any positive MRI findings. The model 

performance was evaluated by an independent testing set and compared with the conventional deep 

learning and radiologist-based classification. Performance difference of the Textured-DL on 

lesions with different locations and types (solitary and multi-focal) were also investigated. 

 

Chapter 6: Deep Learning Enables Prostate MRI Segmentation: A Large Cohort Evaluation 

with Inter-rater Variability Analysis 
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Chapter 6 describes the work of the large cohort evaluation of a deep learning method for 

automated whole prostate gland segmentation. The deep learning method is modified from the one 

in Chapter 4 by adding the coronal-view segmentation assistance. The large cohort evaluation 

includes a qualitative, a quantitative assessment, and a volume measurement evaluation. 

 

Chapter 7: Evaluation of Spatial Attentive Deep Learning for Automated Placental 

Segmentation on Longitudinal MRI   

This chapter describes a deep learning-based segmentation method, spatial attention deep 

learning method (SADL), for fully automated placental segmentation on longitudinal MRI. Deep 

learning method from Chapter 4 forms the basic structure of SADL. Different from the method in 

Chapter 4, SADL used the criss-cross spatial attention instead of the conventional spatial attention, 

which could relieve the issue of large GPU memory. SADL-based automated volume measurement 

is also assessed in this Chapter. 

 

Chapter 8: Summary and Future Work 

This chapter summarizes the five advanced deep learning-based methods or applications 

for MRI segmentation and classification in this dissertation. Also, potential directions for future 

research are briefly discussed.   
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Chapter 2   Background 

 

This Chapter provides the basic introduction of medical image segmentation, deep learning, 

Bayesian deep learning, texture-based deep learning methods (Textured-DL), magnetic resonance 

imaging (MRI), and evaluation metrics for segmentation and classification tasks. 

 

2.1   Medical Image Segmentation 

Medical image segmentation is the task of contouring the regions of interest like organs or 

tumors in a digital medical image such as CT or MRI. Medical image segmentation plays a critical 

role in assisting various medical image-related applications, such as volume measurement, 

diagnosis, and treatment. For example, prostate zonal segmentation is an essential step to interpret 

multi-parametric MRI for prostate cancer assessment14,15. Some prostate computer-aided diagnosis 

(CADx) systems16 require the segmentation of the whole prostate gland before feeding the medical 

image data to the systems. Segmentation enables the organ volume estimation, which is important 

for the disease treatment. For example, liver volume is one of the key considerations when 

assessing the suitability for surgeries related to liver17. In the treatment, volume measurement also 

facilitates the treatment response assessment. Furthermore, segmentation has been shown to 

enhance image-guided radiotherapy18. By segmenting the tumor, the beam of radiation can be 

delivered to the correct target area18. 

2.1.1   Image Segmentation Methods 

Manual segmentation suffers from great inter-rater variability and is typically time-

consuming, laborious, and thus, inadequate for large-scale applications enabled by segmentation19. 

Various methods have been proposed to perform semi-automatic or automatic segmentation.  
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The region-based image segmentation method20 is a simple method that groups pixels with 

similar attributes into unique regions based on the similarities between adjacent pixels. 

Thresholding and region growing are the two most popular region-based image segmentation 

methods. The thresholding method assumes that images consist of regions with different intensity 

values. Threshold values are usually detected in the peaks and valleys from the histogram, which 

can be used to segment the images into different regions. Since the thresholding method does not 

consider spatial information, it will be sensitive to noise and intensity in the homogeneous region. 

The region-growing method21 requires some seed points to be initialized and compares the adjacent 

pixels with the initial seed points. The pixels will be part of the same region with the seed points 

if a similarity criterion is met.  

The clustering method is another common algorithm for image segmentation, classifying 

data and patterns into categories. Clustering method is an unsupervised algorithm, which does not 

require labelled data. It assumes that pixels in the same region have a higher similarity than those 

in different regions. The K-means algorithm22 is one of most common clustering methods, which 

uses an iterative approach to segment an image into k regions.  

Edge-based Segmentation relies on edges detection in an image. Edges are the 

discontinuities of intensity or texture in an image. By acquiring knowledge from the image 

gradients, various edge detection operators, such as Sobel edge operator and Robert edge operator, 

can help locate the edges. Segmentation achieved by edge segmentation is usually an intermediate 

segmentation result. Other segmentation methods, such as region-based methods, can be used to 

further improve it to obtain a complete segmentation.  

Partial differential equation-based segmentation, such as level set method23, is a popular 

image segmentation method based on the curve propagation. The basic idea to evolve an initial 
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curve to the actual contour when a cost function, which represents a task to be solved, reaches the 

lowest potential.  

The methods mentioned above rely on the human efforts of engineering. Human 

engineering, which is usually lack of domain knowledge, might use less knowledge than human 

to achieve the segmentation. Trainable segmentation methods, such as deep neural network, can 

help address such an issue. Specifically, these models learn the domain knowledge directly from 

the human segmentation via training. U-Net is one of most popular trainable segmentation methods 

for medical image segmentation. A more detailed introduction of U-Net is given in section 2.2.2.  

 

2.2   Deep Learning 

Deep learning has achieved great success in natural and medical image tasks such as 

classification, detection, and segmentation in recent years. By gradually extracting higher-level 

features with convolutional layers, deep learning learns representation from raw data24. Deep 

learning relieves the burden of human expert-enabled feature engineering, making it easy to exploit 

the huge amount of accessible data. Convolutional neural network is one of the most popular deep 

neural networks. 

2.2.1   Convolutional Neural Network 

The convolutional neural network (CNN) is one specialized type of neural networks 

designed to process image data, primarily incorporating three layers: convolutional layer, pooling 

layer, and fully connected layer. Convolutional layers are the primary building blocks in 

convolutional neural networks.  The convolution operation is the application of a filter to an image, 

which abstracts an image to a feature map. A convolutional layer applies a convolution operation 

to the input image and passes the feature maps to the next layer. The purpose of pooling layers is 
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to reduce the dimension of the feature maps, resulting in reducing the number of parameters to 

learn and the amount of computation performed in the network. Fully connected layers usually 

form the last few layers of the CNN for the classification tasks. Each neuron in a fully connected 

layer connects all the neurons coming from the previous layer. 

2.2.2   Deep Learning-based segmentation method 

U-Net is a deep learning-based model that gained the most popularity for biomedical image 

segmentation12, which comprises a contracting path as an encoder to extract high-level features 

and an expansive path as a decoder to recover spatial resolution compromised in the encoder. 

Encoder, consisting of multiple convolutions, each followed by a rectified linear unit (ReLU) and 

a max-pooling operation, is used to extract the high semantic information. After the encoder, the 

spatial resolution decreased, and semantic information increased. Decoder recovers spatial 

resolution by a sequence of up-convolutions and concatenations with high-resolution features from 

the encoder.  

 

2.3   Bayesian Deep Learning 

2.3.1   Bayesian probability theory 

Probability refers to the chance that a given event will happen. In Bayesian probability 

theory, probability of an event is calculated by first specifying a prior probability and then updating 

the prior probability based on Bayes' theorem after obtaining new data. The updated prior 

probability is called posterior probability. The whole process can be described by the formula: 

 

𝑃(𝑀	|	𝑁) = !(#	|	&)	!(&)
!(#)

																																																											(2-1) 
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M represents an event. 𝑃(𝑀) is the prior probability. N represents the new data or new event. The 

conditional probability of M given new data N is  𝑃(𝑀	|	𝑁) , which is also called posterior 

probability. 𝑃(𝑁	|	𝑀) is the probability of observing new data N when the hypothesis 𝑀 is fixed. 

Prior probability 𝑃(𝑀) will be updated to the posterior probability 𝑃(𝑀	|	𝑁) based on the Bayes' 

formula after taking the new data into the consideration.  

2.3.2   Bayesian deep learning  

Outcomes from current deep learning are typically deterministic; there is a lack of 

knowledge on the confidence of the model parameters25. Bayesian deep learning is a probabilistic 

model that applies Bayesian inference to a deep learning network structure, which can provide the 

uncertainty measurement of the model prediction. 

Model uncertainty estimation is commonly motivated and mathematically supported by 

Bayesian statistics. For example, Bayesian neural network (BNN) is one of the early examples that 

applies Bayesian inference to the neural network26. However, issues such as intractable integrals 

from Bayesian inference hinder the development of Bayesian-based models. Variational 

distributions, e.g., Gaussian distribution, have been studied to approximate the posterior in the 

Bayesian inference by minimizing the Kullback-Leibler (KL) divergence between the actual 

posterior and the variational distribution27. Nevertheless, number of parameters within the model 

will significantly increase by use of the variational distribution, which will make model 

computationally expensive. By randomly shutting down weights in the training, dropout usually 

serves as one of the efficacious regularization techniques to avoid overfitting in deep learning. 

Recently, studies have shown that performing dropout on the weights of a deep learning model is 

equivalent to placing the variational distribution - Bernoulli distribution over the weights28. Also, 

the effect of minimizing the cross-entropy loss is the same as the minimization of the KL-
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divergence. Therefore, training with dropout allows the approximation of posterior. These 

dropouts are also required to be kept active during the testing. In the testing, by performing 

stochastic forward passes through a trained deep learning network using dropout, Monte Carlo 

samples were taken from the posterior distribution. Compared to the use of variational Bayesian 

inference, dropout-based approaches27 can help deep learning to produce uncertainty estimations 

in a cheap way by avoiding the unnecessary computation cost. 

 

2.4   Texture-based Deep Learning 

2.4.1   Image Texture 

Image texture provides the information related to the spatial arrangement of intensities in the 

image.  Due to the heterogenous nature of the cancer, texture pattern usually correlates with the 

cancer risk29.  

2.4.2   Gray-Level Co-occurrence Matrix 

As a most used approach to statistically examine the image texture, the gray-level co-occurrence 

matrix (GLCM)30 is a matrix that calculates the frequency of pixel/voxel pairs with different spatial 

orientations and specific gray-level values, which is formulated as:  

 

																													𝐶!,#(x, y) = ∑ ∑ * 1						𝑖𝑓	𝐼(𝑖, 𝑗) = 𝑥	𝑎𝑛𝑑	𝐼(𝑖 + 𝑑𝑖, 𝑗 + 𝑑𝑗) = 𝑦																	
0																				𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																									

$
%&'

(
)&' 			(2-2)                 

 

, where	(𝑑𝑖, 𝑑𝑗) is a displacement between the point (𝑖, 𝑗) and another point along the direction 𝜃, 

𝐼 is the image data, (𝑖, 𝑗) is a pixel location in the image 𝐼, and 𝐼(𝑖, 𝑗) is the pixel value at (𝑖, 𝑗). In 

general, GLCM of a flat image will be a diagonal matrix. The more pixel intensities variate, the 

larger the off-diagonal values in the GLCM31. Since GLCM is usually sparse and large, Haralick 
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texture features, such as correlation, contrast, homogeneity, and energy, computed from the GLCM, 

are commonly the descriptors to represent the image texture32. A classification algorithm, e.g., 

support vector machine (SVM) or random forest, is used to classify the image using the Haralick 

texture features.  

2.4.3   Texture-based Deep Learning 

In the workflow of texture-based deep learning, a deep learning model learns on GLCM directly 

to conduct the image classification without feature engineering. Due to the characteristic such as 

parameter sharing scheme, deep learning such as CNN is very apt to and fits the image processing. 

Using the deep learning to learn on raw images will suffer from the resizing operation of the input 

image. GLCM will have a fixed size when the image is scaled to the same gray level. Therefore, 

CNN model demonstrates a great potential to learn the more useful and informative features from 

the GLCM than the hand-crafted Haralick features30 and raw image data.  

 

2.5   Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique that 

generates three-dimensional detailed anatomical images using a powerful magnetic field, magnetic 

field gradients, and radio waves. Unlike CT and PET, MRI does not have the ionizing radiation 

that can cause damage to the human body. MRI provides superior imaging contrast of soft tissue 

such as the brain or prostate compared to other imaging modalities. 

MRI is commonly formed by the signals produced by using magnetization properties of 

the hydrogen protons, which are abundant in water and fat of the human body. In everyday 

situations, hydrogen protons in the body spin around the randomly oriented axes, while when the 

body is in a strong magnetic field, the hydrogen protons will align with the magnetic field to create 
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a net magnetic moment parallel to the magnetic field. Hydrogen protons will absorb the 

radiofrequency (RF) energy when the radiofrequency pulse is temporarily applied to the patient, 

tilting the net magnetic moment away from the magnetic field. Once the RF pulse disappears, the 

net magnetic moment will realign to the magnetic field and return to equilibrium, and hydrogen 

protons will lose energy by emitting the RF signal. During the process, longitudinal (T1) and 

transverse (T2) relaxations will simultaneously occur. Transverse relaxation refers to the decaying 

process of transverse components of magnetization. Longitudinal relaxation is the process in which 

net magnetization return to the initial value. Characteristics of various tissues in the body can be 

reflected by longitudinal and transverse magnetizations; therefore, the differentiation between 

tissues can be based on these relaxations. Specifically, an MRI sequence can be designed to be T1-

weighted, T2-weighted, or proton-density weighted. A magnetic field gradient can achieve spatial 

encoding by varying the frequency of hydrogen protons as a function of position along the gradient 

direction. Finally, the Fourier transform transforms the encoded image into the spatial image. 

 

2.6   Evaluation Metric 

2.6.1   Evaluation Metrics for Segmentation Task 

Segmentation tasks can be evaluated both quantitatively and qualitatively. Metrics for 

quantitative evaluation include dice similarity coefficient (DSC) and average Hausdorff distance 

(HD) in this dissertation.  

DSC is an index ranging from 0 to 1 to describe the overlapping ratio between the 

automated and manual segmentation. 0 and 1 indicate no and complete spatial overlapping 

between the two segmentations. DSC is formulated as:  
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𝐷𝑆𝐶 = 	 (|)∩+||)|,|+|
                                                             (2-3) 

 

where X and Y are the automated and manual 3D segmentation. 

Patient-wise HD is an another commonly used metric to assess the performance of 

automated medical segmentation methods by measuring the longest distance between the 

automated and manual segmentation, which is formulated as:  

 

HD(X, Y) = max(h(X, Y), h(Y, X))                             (2-4) 

 

, where h(X, Y) is the directed HD, which is given by h(X, Y) = max
-∈/

min
0∈1

‖x − y‖ , X and Y are the 

point sets on the automated and manual 3D segmentation.  

In the qualitative evaluation, visual grading was adopted to evaluate the segmentation 

performance. Specifically, human experts assign a visual grade based on the level to which the 

segmentation can be accepted in the clinic setting, to score the segmentation performance.  

2.6.2   Evaluation Metrics for Classification Task 

Evaluation metrics for classification task include area under the receiver operating 

characteristic curve (ROC) (AUC), sensitivity, and specificity. ROC is a plot to show the 

performance of a classification model at each decision threshold. Each point on the ROC curve 

corresponds to a pair of sensitivity (true positive rate) and specificity (false positive rate) at a 

decision threshold. AUC represents the aggregate measure of the classification performance across 

all the decision thresholds.  

True positive rate (TPR) also called sensitivity is the percentage of positive identifications 

that is correct, formulated as: 



 16 

 

TPR = 23
23,45

																																																															(2-5) 

 

, where TP and FN represent the true positive and false negative.  

True negative rate (TNR) also called specificity is the percentage of negative 

identifications that is correct, formulated as: 

 

TNR	 = 25
25,43

                                                     (2-6) 

 

, where TN and FP represent the true negative and false positive.   
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Chapter 3: Automatic Prostate Zonal Segmentation Using 

Fully Convolutional Network with Feature Pyramid 

Attention 

 

 

In this Chapter, a deep learning with feature pyramid attention is developed and evaluated 

for the automated prostate zonal segmentation. The proposed deep learning method is compared 

with the previous deep learning-based prostate zonal segmentation, U-Net. Also, proposed method 

is also compared with the inter-reader consistency between the two independent expert-based 

manual segmentations.   

 

 

3.1   Introduction 

Prostate cancer (PCa) is the most common solid noncutaneous cancer in American men33. 

Multiparametric MRI (mpMRI), including T2, diffusion weighted imaging (DWI) and T1 dynamic 

contrast enhanced imaging (DCE) has shown promising results for the detection and staging for 

clinically significant PCa (csPCa)34,35. Previous studies have reported that PCa in transition and 

peripheral zones exhibit different morphological and functional characteristics on mpMRI. The 

Prostate Imaging Reporting and Data System version 2.1 (PI-RADSv2.1), an expert guideline for 

performance and interpretation of mpMRI for PCa detection14,15, T2 and DWI images are used for 

primary interpretation of lesions in the PZ and TZ respectively for assigning a PI-RADS score to 

lesions detected on mpMRI1. A robust method for reproducible, automatic segmentation of 
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prostate zones (ASPZ) may enable the consistent assignment of mpMRI lesion location since 

manual segmentation of prostate zones is a dependent time-consuming process, dependent on 

reader experience and expertise. A robust ASPZ may also help relieve clinician’s cognitive 

workload36.   

Atlas based methods were previously proposed to segment the prostate zones37. Deep 

learning (DL) based methods, such as U-Net12 and its variants1,38–41, have recently been developed 

to perform prostate AS. U-Net, an architecture based on fully convolutional networks (CNN), 

contains encoder and decoder sub-networks, where the encoder module is used to capture the 

higher semantic information, and the decoder module recovers spatial information. U-Net can 

classify pixels of the two zones and effectively localize and segment TZ and PZ. However, 

semantic information captured by U-Net may not be sufficient to describe the heterogeneous 

anatomic structures of the prostate and indiscernible borders between TZ and PZ, resulting in 

inconsistent and sub-optimal ASPZ performance. 

In this study, we propose a new DL based method for automatic segmentation of prostate 

zones by developing a fully CNN with a novel feature pyramid attention mechanism. In particular, 

the proposed CNN consisted of three sub-networks, comprised of an improved deep residual 

network (based on the ResNet50)42, a pyramid feature network with attention13, and a decoder. We 

incorporated the ResNet50 to cope with heterogeneous prostate anatomy with high level semantic 

features and the pyramid network with attention is designed to capture information at multiple 

scales. The proposed DL model was evaluated using both internal testing and external testing 

datasets on axial mpMRI slices. In addition, we compared the proposed method with inter-reader 

consistency using two independent expert based manual segmentations. 
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3.2   Materials and Methods  

3.2.1   MRI Datasets  

With approval from the institutional review board (IRB), this study was carried out in 

compliance with the United States Health Insurance Portability and Accountability Act (HIPAA) 

of 1996. The MRI datasets were collected from two centers: 1) The Cancer Imaging Archive 

(TCIA) for SPIE-AAPM-NCI PROSTATEX (PROSTATEX) challenge7 for development and 

internal testing of the model (n=250 and 63) and 2) a U.S. tertiary academic medical center with a 

highly curated mpMRI dataset with whole mount histopathology (WMHP) correlation for external 

testing of the model (n=46; age 45 to 73 years and weight 68 to 113 kg). Axial T2 turbo spin-echo 

(TSE) slices (Table 3-1) were used for segmentation. For the PROSTATEX data, both TZ and PZ 

were segmented in OsiriX (Pixmeo SARL, Bernex, Switzerland) by two MRI research fellows, 

where the contours were later cross-checked by both genitourinary (GU) radiologists (10-15 years 

of post-fellowship experience interpreting over 1,000 prostate mpMRI) and clinical research 

fellows. For the single institutional data, the pre-operative mpMRI scans performed between 

October 2017 and December 2018 on one of the three 3T MRI scanners (Skyra (n=38) on, Prisma 

(n=1), and Vida (n=7); (Siemens Healthineers, Erlangen, Germany)). Two clinical GU research 

fellows, supervised by expert GU radiologists, independently contoured TZ and PZ in a blinded 

fashion. 

 

Table 3-1 Detailed T2w TSE Protocols Used for Two MRI Datasets 

Datasets Internal Testing dataset (ITD) 
External Testing dataset 

(ETD) 

Spatial Resolution 0.5x0.5x3.6mm3 0.65x0.65x3.6mm3 



 20 

Flip angle 160° 160° 

Matrix Size 380x380 320x320 

Field-of-View 190x190 mm2 208x208 mm2 

Repetition Time/Echo Time 5660 ms / 104 ms 4000 ms / 109 ms 

 

3.2.2   Proposed Deep Learning Model for Automatic Prostate Segmentation  

The structure of the proposed fully convolutional network is shown in Figure 3-1. The 

network consists of three separate sub-networks, including the improved ResNet50 for encoding 

of rich semantic information from original images, a feature pyramid attention network to help 

capture the information at multiple scales, and the naïve decoder network to recover the spatial 

information. The three sub-networks are connected to be an end-to-end prostate zonal 

segmentation pipeline. 
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Figure 3-1 An overall structure of the proposed algorithm, where the input is a 2D slice of T2w MRI, and 

output is a mask showing the result of PZ and TZ segmentation (white – TZ and gray – PZ). The algorithm 

consists of three sub-networks - improved ResNet50 (a), feature pyramid attention (b), and decoder (c). 

 

ResNet50 utilizes skip connections to avoid vanishing gradients problems so that more 

convolutional layers can be added to the network. We improved the ResNet50 by removing the 

initial max pooling layer and using the regular block instead of the bottleneck block at stride 1 as 

the first block in the 4th layer, as shown in Figure 3-1 (a). The dilated bottleneck block was 

employed as the second block in the 4th layer to remain the size of the receptive field. This can 

minimize any potential loss to the spatial information and alleviate the burden of the decoder.   

Feature pyramid attention was added after modified ResNet50 for better sensing fine 

details at different scales (Figure 3-1 (b)). The 3×3, 5×5, 7×7 convolutions in the pyramid structure 

were used to extract features from different scales. The features from different scales were 

integrated progressively for more precise incorporation of adjacent scales of context features and 

then were multiplied by the features from the improved ResNet50 after a 1×1 convolution 

operation for the global prior attention. The output features will be then added with features from 

both the global pooling branch and the modified ResNet50. The decoder network consisted of two 

convolutions and two upsampling layers to recover the image dimensions to the original size 

(Figure 3-1 (c)). The final output was fed into a multi-class soft-max classifier for simultaneous 

segmentation of TZ and PZ.   

We used cross entropy (CE) as the loss function for the proposed algorithm. For each given 

pixel, the cross entropy was defined as, 

 

𝐶𝐸 = 6
7
∑ −𝑦8 log(𝑝8)7
89: − (1 − 𝑦8) log(1 − 𝑝8)																														(3-1) 
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where 𝑦8 ∈ {0,1} is the ground-truth binary indicator, corresponding to the 3-channel predicted 

probability vector 𝑝8 ∈ [0,1] . All the training and evaluation were performed on a desktop 

computer with a 64-Linux system with Titan Xp GPU with 12 GB GDDR5 RAM based on 

PyTorch. Learning rate was initially set to 2.5e-3, with momentum 0.9 and weight decay 0.0001. 

The model was trained for 100 epochs with batch size 48 and stochastic gradient descent. Since 

prostate areas are always in the middle, a central region (93𝑚𝑚 × 93	𝑚𝑚) was automatically 

cropped from original images before segmentation. Data augmentation methods were applied to 

increase the training data size, including flipped horizontally, rotated randomly between [−5°, 5°] 

and elastic transformations. 

3.2.3 Model Development and Testing  

A total of 250 patients’ MRI from PROSTATEX were used for model development. Within 

the development dataset, 5-fold cross validation was adopted for model hyperparameter tuning. 

For internal testing (internal testing dataset (ITD)) the remaining 63 MRI datasets from 

PROSTATEX were used. For external testing (external testing dataset (ETD)) 47 MRI datasets 

from the large, U.S. tertiary academic medical center were used.  For evaluation of segmentation, 

the Dice Similarity Coefficient (DSC) was used, formulated as: 

 

𝐷𝑆𝐶 = (|)∩+|
|)|,|+|

																																																												(3-2) 

 

where X is the predicted 3D zonal segmentation and Y is the ground-truth of 3D zonal contours 

on the slices.  From superior to inferior, prostate MRI slices were categorized into three levels, 

composed of base-end (includes mostly TZ), middle (includes mostly both TZ and PZ), and apex-
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end (includes mostly PZ), as shown in Figure 3-2. Both the prostate base-end and apex-end slices 

were identified when manual segmentation was performed, typically including one or two end 

slices of the prostate gland with only one prostate zone. A representative example of different 

prostate MRI slices is shown in Figure 3-3. DSCs were calculated considering different 3D zonal 

segmentation results, such as all slices (includes false positives), prostate slices (excludes false 

positives), base-end, middle, and apex-end slices. To assess the inter-reader consistency, we 

computed DSCs between two contours of TZ and PZ performed by two independent experts in a 

blinded fashion. The corresponding imaging slices were used for the inter-reader agreement 

assessment. 

 

 

Figure 3-2 Representative examples of slices of prostate MRI. In left side, base-end slice (Only TZ exists), 

middle slice (both PZ and TZ exist) and apex-end slice (only PZ exists) are shown from top to bottom. The 

regions are encircled by green (TZ) and orange (PZ) boundaries. 
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Figure 3-3 MRI slices from superior to inferior (slice 1 – 20). An example of non-prostate (slice 1-6, slice 

14-20), base-end (slice 7), middle (slice 8-12) and apex-end (slice 13) slices is shown. Regions encircled 

by orange, green boundaries are PZ and TZ, respectively. 

 

3.2.4   Statistical Analysis  

Mean and standard deviation (SD) were used to summarize the distribution of DSCs. We 

performed the following three comparisons. First, the performance of the proposed method was 

compared to the baseline method – U-Net on the ITD dataset by using Wilcoxon rank-sum test. 

Second, the performance of the proposed method on the ITD was compared to the ETD by also 

using Wilcoxon rank-sum test. Third, the performance of proposed method was compared with the 
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inter-reader agreement (Expert 1 vs. Expert 2) by using the Wilcoxon signed-rank test. P values 

less than 0.05 were considered statistically significant. 

 

3.3   Result 

3.3.1   Model Testing Using Internal Testing Dataset (ITD) and External Testing Dataset 

(ETD)  

Two representative examples of automatic prostate zonal segmentation on ITD and ETD 

by our proposed method and U-Net are shown in Figure 3-4.   

 

 

Figure 3-4 Representative examples of the automatic segmentation by the proposed method (orange lines) 

and U-Net in comparison with manual segmentation (red lines).  DSCs are shown below the figures.  
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Table 3-2 includes mean and standard deviation of DSCs for PZ and TZ. Our proposed 

method achieved the mean DSC of 0.74 and 0.86 for PZ and TZ on ITD, mean DSC of 0.74 and 

0.79 for PZ and TZ on ETD, which are all significantly larger than U-Net’s results. 

 
Table 3-2 Performance of the Proposed Algorithm on both Internal (ITD) and External Testing Dataset 

(ETD). P Values are the Comparisons Between the Proposed Model’s Performance and the U-Net on 

Internal Testing Dataset 

Datasets ITD ETD 

 PZ TZ PZ TZ 

 

U-Net 

 

0.69 ± 0.10 

 

0.83 ± 0.09 

 

0.67 ± 0.09 

 

0.76 ± 0.10 

 

Proposed Method 

 

0.74 ± 0.08 

P<0.05 

 

0.86 ± 0.07 

P<0.05 

 

0.74 ± 0.07 

P<0.05 

 

0.79 ± 0.12 

P<0.05 

 

Table 3-3 shows the performance of prostate zonal segmentation by the proposed model 

with Max-Pool and without Max-Pool on the ITD. After adding the Max-Pool in the ResNet50, 

mean DSCs for PZ and TZ are 0.72 and 0.84, which are smaller than the DSCs of proposed method 

(No Max-Pool in the ResNet50). This proves Max-Pool compromises the segmentation 

performance of prostate zones. 

 
Table 3-3 Performance Comparison Between the Proposed Model with Max-Pool and Without Max-Pool 

Under ITD. In Our Proposed Method, the Max-Pool was Removed in ResNet50. 

 
DSC 

PZ TZ 

Proposed Method 0.74 ± 0.08 0.86 ± 0.07 
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Add the Max-Pool in the proposed 

method 
0.72 ± 0.08 0.84 ± 0.07 

 

3.3.2   Comparison of Model Performance on Internal Testing Dataset (ITD) and External 

Testing Dataset (ETD)  

In Table 3-4, we show the performance of the proposed algorithm in the ITD and ETD. 

There was no significant difference of model’s DSC between the ITD and the ETD for PZ. 

However, for TZ, there was a small difference between model’s DSC on the ITD and the ETD. 

The DSC differences of proposed algorithm on the ITD compared to the validation dataset were 

8%. 

 
Table 3-4 Performance of the Proposed Algorithm on ITD and the ETD. P Values of Model’s Performance 

on ITD Relative to ETD are Given and Were Obtained by Using Wilcoxon Rank-Sum Test 

Datasets PZ TZ 

 

ITD 

 

0.74 ± 0.08 

P=0.14 

 

0.86 ± 0.07 

P<0.05 

 

ETD 

 

0.74 ± 0.07 

 

0.79 ± 0.12 

 

3.3.3   Comparison Between Proposed Model and Experts Under ETD  

Examples of automatic segmentation results of slices by our proposed method, Expert 1 

and Expert 2, at the base-end, middle, and apex-end on ETD are shown in Figure 3-5.  
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Figure 3-5 Representative examples of the automatic segmentation for testing, in comparison with manual 

segmentations by Expert 1 and 2. TZ is colored as green, and PZ is colored as orange. From superior to 

inferior, base-end (a), middle (b), and apex-end (c) slices are shown with segmentations of the prostate 

zones. 

 

In Table 3-4 the DSCs of the proposed algorithm on different types of slices in the ETD 

are shown with inter-reader agreement between Expert 1 and Expert 2.  The proposed model’s 
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DSCs for both PZ and TZ are significantly larger than the inter-reader consistency in all slices, 

middle slices, apex-end slices, and base-end slices when taking Expert 1’s annotations as the 

ground-truth. 

 

3.4   Discussion  

In this study we proposed and validated a novel fully convolutional network-based model 

with feature pyramid attention for the automatic segmentation of the two prostate zones. The 

proposed model performed consistently on both the ITD and ETD.  We observed slight differences 

between ITD and ETD, particularly in segmenting TZ. We believe this can be potentially due to 

1) differences in the imaging sequences, such as in-plane resolution and T2 contrast, 2) 

discrepancies in the zonal annotations since different experts independently segmented the prostate 

zones for ITD and ETD.  We also found that the manual PZ segmentation was less consistent than 

the manual TZ segmentation, measured by DSCs between two experts (Table 3-5). This may be 

due to the more complex shape and structure of PZ as its boundaries are sometimes not well 

discerned due to a variety of factors such as prostate or patient motion. Similarly, Meyer et. al,36 

reported that the PZ segmentation had worse inter-reader consistency than TZ segmentation with 

three different experts (first urologist, second urologist with the help of a medical student, and an 

assistant radiologist). Meyer et al. also utilized three orthogonal planes of the T2w MRI, i.e., 

sagittal, coronal and axial, to automatically determine the bounding box for the prostate before 

performing the segmentation. The bounding box approach could be added as pre-processing to 

improve both the segmentation performance and inter-reader consistency by minimizing the false 

positives.   
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Table 3-5 DSCs of the Proposed Algorithm on Different Types of Slices in the External Testing Dataset. P 

Values Relative to Inter-Reader Agreement (Expert 1 vs. Expert 2) are Given in the Table for Each and 

Were Obtained by Using Wilcoxon Signed-Rank Test. 

Comparisons All slices Middle Slices Apex-End Base-End 

Zone PZ TZ PZ TZ PZ TZ 

Model 

vs. 

Expert 1 

0.74 

±0.07 

 

P<0.05 

0.79 

±0.12 

 

P<0.05 

0.75 

±0.07 

 

P<0.05 

0.83 

±0.09 

 

P<0.05 

0.84 

±0.11 

 

P<0.05 

0.77 

±0.21 

 

P<0.05 

Expert 1 

vs. 

Expert 2 

0.71 

±0.13 

0.75 

±0.14 

0.71 

±0.13 

0.81 

±0.12 

0.76 

±0.21 

0.65 

±0.27 

 

 

In the ETD, when only considering middle slices for testing, mean DSCs were higher than 

considering all slices. This may be because: 1) the features for the differentiation of PZ and TZ are 

more distinct in the middle slices than the other slices. 2) when only considering middle slices, 

some false positives from adjacent non-prostate slices, apex-end slices and base-end slices can be 

avoided. Besides, we also found mean PZ DSC for apex-end slices is larger than the PZ DSC for 

middle slices, but to the contrary, TZ DSC for base-end slices is smaller than the TZ DSC for 

middle slices. The large standard deviations and low DSC of TZ for base-end slices indicated some 

significant discrepancies between two experts at the base-end. This indicates that it’s hard to 

recognize TZ in the base-end slices, which may explain why the proposed method got a low TZ 

DSC at the base-end.   

Compared with the DSCs to that of Meyer et al.,36 our method’s DSCs for both PZ and TZ 

are slightly lower. This may be related to: 1) Difference in sample sizes for the evaluation. In our 
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method, 63 patient datasets were used for the testing data set, in compared with their testing data 

set of only 20 patients. 2) Discrepancy in manual annotations for both PZ and TZ. 3) Inherent 

differences in methods. 4) Differences of preprocessing. In their method, before the segmentation, 

the bounding box for the prostate was determined to reduce the false positives.   

Our study also has a few limitations. Firstly, the same MRI vendor was used for both ITD 

and ETD. Also, in-plane resolution of the ITD is very close to that of the ETD. Datasets from 

different vendors and with considerable different in-plane resolutions will be incorporated into 

future related studies. Secondly, the proposed algorithm is a 2D-based FCN model, which is still 

deficient in capturing inter-slice correlation information compared to 3D-based models. In the 

future, we will explore ways of improving the capturing of inter-slice correlation information in 

our proposed model. Thirdly, the number of experts involved in obtaining inter-reader consistency 

in the paper is two. In the future, more experts will be added in the study to get more robust inter-

reader consistency. 

 

3.5   Conclusion  

This Chapter proposed a novel deep learning algorithm for the automatic segmentation of 

the two prostate zones using T2w MRI. The proposed algorithm outperforms the U-Net on 

automatic segmentation of PZ and TZ. The difference between the proposed method’s 

performance is similar on the ITD and ETD, especially for the segmentation of PZ. Moreover, the 

performance of the proposed method is comparable to the experts in the external testing dataset.    
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Chapter 4: Exploring Uncertainty Measures in Bayesian 

Deep Attentive Neural Networks for Prostate Zonal 

Segmentation 

 

 

This chapter describes a Bayesian deep learning method for automated prostate zonal 

segmentation. The deep learning method from Chapter 3 forms the bone structure of the Bayesian 

deep learning method, such as the encoder and decoder. Apart from the bone structure, the 

Bayesian deep learning method also equips with the dropout layers to help generate the uncertainty, 

and spatial attention mechanism to further enhance the segmentation performance.  

 

 

4.1   Introduction 

Prostate cancer (PCa) is the most common solid organ malignancy and is among the most 

common causes of cancer-related death among men in the United States33. Multi-parametric MRI 

(mpMRI) is the most widely available non-invasive and sensitive tool for the detection of clinically 

significant PCa (csPCa), 70% and 30% of which are located in the peripheral zone (PZ) and 

transition zone (TZ) respectively14,43. The clinical reporting of mpMRI relies on a qualitative 

expert consensus-based structured reporting scheme (Prostate Imaging-Reporting and Data 

System (PI-RADS)). The interpretation is based primarily on diffusion-weighted imaging (DWI) 

in the peripheral zone (PZ) and T2-weighted (T2w) imaging in the transitional zone (TZ) since 

csPCa lesions have different primary imaging features14,43.  
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Accurate segmentation of PZ and TZ within the 3T mpMRI is essential for localization and 

staging of csPCa to enable MR targeted biopsy and guide and plan further therapy such as radiation, 

surgery, and focal ablation44. Segmentation of the prostate zones on mpMRI is typically done 

manually, which can be time-consuming and sensitive to readers’ experience, resulting in 

significant intra- and inter-reader variability5. Automated segmentation of prostatic zones (ASPZ) 

is reproducible and beneficial for consistent location assignment of PCa lesions36. ASPZ also 

enables automated quantitative imaging feature extraction related to prostate zones and can be 

used as a pre-processing step to improve the computer-aided diagnosis (CAD) of PCa45.   

ASPZ was previously proposed by the atlas-based method46. Later, Zabihollahy et al.41 

proposed a U-Net-based method for ASPZ. Clark et al.39 developed a staged deep learning 

architecture, which incorporated a classification into U-Net, to segment the whole prostate gland 

and TZ. However, the U-Net-based segmentation sometimes resulted in inconsistent performance 

because the anatomic structure of the prostate can be less distinguishable, and the boundaries 

between PZ and TZ may distort semantic features5. Liu et al.5 recently improved the encoder of 

the U-Net by using the residual neural network, ResNet5042, followed by feature pyramid attention 

to help capture the information at multiple scales. Furthermore, Rundo et al.47 proposed an 

attentive deep learning network for ASPZ via incorporating the squeeze and excitation (SE) blocks 

into U-Net. SE adaptively recalibrated the channel-wise features to potentially improve 

inconsistencies in the segmentation performance.  Moreover, segmentation outcomes from ASPZ 

are typically deterministic; there is a lack of knowledge on the confidence of the model25. 

Providing uncertainties of the model can improve the overall segmentation workflow since it easily 

allows refining uncertain cases by human experts25. The uncertainty can be estimated by the 

Bayesian deep learning model, which not only produces predictions but also provides the 
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uncertainty estimations for each pixel. This can be done by adopting probability distributions of 

weights rather than the deterministic weights of the model.   

In this study, we propose an ASPZ with an estimation of pixel-wise uncertainties using a 

spatial attentive Bayesian deep learning network. Different from Rundo et al.47, we adopt a spatial 

attentive module (SAM), which models the long-range spatial dependencies between PZ and TZ 

by calculating the pixel level response from the image48. The proposed model incorporates four 

sub-networks, including SAM, an improved ResNet50 with dropout, a multiple-scaled feature 

pyramid attention module (MFPA)5, and a decoder. The SAM forces the entire network focusing 

on specific regions that have more abundant semantic information related to prostatic zones. We 

use the improved ResNet50 to handle the heterogeneous prostate anatomy with semantic features. 

The MFPA is designed to enhance the multi-scale feature capturing. Finally, the spatial resolution 

is recovered by the decoder. We also implement the Bayesian model through both training the 

proposed model with dropout and Monte Carlo (MC) samples of the predictions during the 

inference, inspired by prior work by Gal and Ghahramani28. The dropout can be regarded as using 

Bernoulli’s random variables to sample the model weights28.  We evaluate the proposed model’s 

performance using internal and external testing datasets and compared it with previously 

developed ASPZ methods. The segmentation performance is compared to investigate the 

discrepancy between two MRI datasets. The importance of each individual module within the 

proposed method is also examined. Finally, the overall prostate zonal segmentation at apex, middle, 

and base slices are computed to illustrate the uncertainty of segmentation at different positions of 

the prostate. 

 

4.2   Materials and Methods  
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This study was carried out in compliance with the United States Health Insurance 

Portability and Accountability Act (HIPAA) of 1996 with approval by the local institutional review 

board (IRB). The MRI datasets were acquired from two sources. For model development and 

internal testing (n = 259 and n = 45)—internal testing dataset (ITD)—we used the Cancer Imaging 

Archive (TCIA) data from the SPIE-AAPM-NCI PROSTATE X (PROSTATE X) challenge7. For 

independent model testing, we used an external testing dataset (ETD) (n = 47; age 45 to 73 years 

and weight 68 to 113 kg) retrieved from our tertiary academic medical center. For the ETD, the 

pre-operative MRI scans, which were acquired between October 2017 and December 2018 using 

one of the three 3T MRI scanners (Skyra (n = 39), Prisma (n = 1), and Vida (n = 7); (Siemens 

Healthineers, Erlangen, Germany)) were collated.  For both ITD and ETD data, both PZ and TZ 

were contoured using OsiriX (Pixmeo SARL, Bernex, Switzerland) by MRI research fellows. Then, 

two genitourinary radiologists (10-19 years of post-fellowship experience interpreting over 10,000 

prostate MRI) cross-checked the contours. The axial T2 TSE (turbo spin-echo) MRI sequence was 

used for both ITD and ETD segmentation (Table 4-1). Prior to the training and testing, all the 

images in both datasets were normalized to an interval of [0, 1] and were also resampled to the 

common in-plane resolution (0.5×0.5 mm). 

 

Table 4-1 Detailed T2w TSE Protocols Used for Two MRI Datasets 

Datasets Internal Testing dataset (ITD) 
External Testing dataset 

(ETD) 

Spatial Resolution 0.5x0.5x3.6mm3 0.65x0.65x3.6mm3 

Flip angle 160° 160° 

Matrix Size 380x380 320x320 

Field-of-View 190x190 mm2 208x208 mm2 
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Repetition Time/Echo Time 5660 ms / 104 ms 4000 ms / 109 ms 

 

4.3   Methods 

4.3.1   Proposed Model for Automatic Prostatic Zonal Segmentation 

The overall workflow of the proposed network is shown in Figure 4-1, which consists of 

four sub-networks. By joining the four sub-networks together, a fully end-to-end prostatic zonal 

segmentation workflow was formed. Both PZ and TZ segmentations were done simultaneously 

using a single network.   

 

Figure 4-1 A whole workflow of the proposed model. Input is a 2D T2w MRI slice, and output is a 

segmentation mask, which has the PZ and TZ segmentation result (Gray and white colors indicate PZ and 

TZ, respectively), and a pixel-wise uncertainty map (yellow pixel indicates large uncertainty and blue 

indicates low uncertainty). There are four sub-networks in the network, which are (a) spatial attention 
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module (SAM), (b) improved ResNet50, (c) multiple-scaled feature pyramid attention (FPA), and (d) 

decoder. 

 

Inspired by Wang et al.48, the SAM was designed to make the network intelligently pay 

attention to the regions, which had more semantic features associated with PZ and TZ (shown in 

Figure 4-1 (a)).  Inside the images, there existed some spatial dependencies of PZ and TZ pixels. 

For instance, TZ was always surrounded by PZ in the bottom of the prostate, and the urinary 

bladder region was always above PZ and TZ in the image and TZ was usually in the image center. 

SAM helped the network to model such spatial dependent information through global features. 

Specifically, the response at each pixel was computed by considering all the pixels in the image. 

Higher priorities were then adaptively assigned to the pixels, which had more informative semantic 

features.  Detailed processes regarding spatial attention are shown in the left bottom of Figure 4-

1. After going through a convolution layer and reshaping, three kinds of vectors - query vector 

𝛼(𝑥), key vector 𝛽(𝑥) and representative vector 𝑔(𝑥), were formed. Then, we performed the 

matrix multiplication between the transpose of the query vector and the key vector, and after that, 

we applied a soft-max layer to compute the weight matrix which models the spatial relationship 

between any two pixels of the features. Next, we again performed a matrix multiplication between 

the weight matrix and the representative vector and reshaped the result to the size of original 

features. These processes can be formulated by:  

 

 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥_𝛼(𝑥); ∗ 𝛽(𝑥)a ∗ 𝑔(𝑥)																																										(4-1) 

 

where 𝑥 and 𝑦 represent the raw image and attentive map of the raw image, respectively. 

* means matrix multiplication. Finally, an element-wise sum operation between the result above 
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and the original features was performed to obtain the final result which reflected the long-range 

dependencies.   

Improved ResNet50 (shown in Figure 4-1 (b)) was served as the bone structure of the 

network. ResNet50 in this paper was improved by the following three steps, which followed the 

methods of Liu et al.5. First, the initial max-pool was removed since it was proved to compromise 

the performance of segmentation. Bottleneck block at stride one as the first block in the 4th layer 

was replaced with the regular block. Then, we used the dilated bottleneck to serve as the second 

block in the 4th layer so as to minimize the potential loss to the spatial information. Finally, the 

dropout layer was inserted after each block within the improved ResNet50 to transform the current 

neural network to the bayesian neural network49.  3) Multi-Scaled Feature Pyramid Attention 

(MFPA) Feature pyramid attention (FPA) module (shown in the bottom right of Figure 4-1) was 

applied after each layer within Resnet50 to help capture the features from the multiple scales. Next, 

feature maps after each FPA were then upsampled to the same size and then concatenated in the 

decoder. 

The decoder (Figure 4-1 (d)) was used to recover feature maps’ spatial resolution. In the 

decoder, the total features calculated in the 3) went through two 3×3 convolutional layers and one 

1×1 convolutional layer, followed by an up-sampling (by a factor of 4). In the end, the multi-class 

softmax classifier was performed for the simultaneous segmentation of TZ and PZ. 

4.3.2   Uncertainty Estimation for Prostate Zonal Segmentation 

Figure 4-1 shows the uncertainty estimation workflow by the proposed method. Monte 

Carlo dropout28 was served as the method for approximate inference.  Usually, a posterior 

distribution 𝑝(𝑊|𝑋, 𝑌) placed over weights W of the neural network is computed to capture the 

uncertainty in the model, where 𝑋 is the training samples, and 𝑌 is the corresponding ground truth 
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labels of prostate zones27. However, it is intractable to compute the posterior. The posterior can be 

approximated by the variational distribution q(W) , which minimizes the Kullback-Leibler (KL) 

divergence between the actual posterior and the variational distribution: KL_𝑞(𝑊)a||𝑝(𝑊|𝑋, 𝑌) 

that performing dropout on a hidden layer is equivalent to placing the variational distribution – 

Bernoulli distribution over the weights of that layer28. Also, the effect of minimizing the cross-

entropy loss is the same as the minimization of the KL-divergence. Therefore, training with 

dropout allows the approximate inference. These dropouts are also required to be kept active 

during the testing. As the dropout is the same as placing a Bernoulli distribution over the network 

weights, the sample from a dropout network’s outputs can be used to approximate the posterior. A 

Monte Carlo sample from the posterior distribution is produced by performing a stochastic forward 

pass through a trained dropout network. There are two types of uncertainties: epistemic uncertainty 

- caused by the ineptitude of the model because of the lack of training data; aleatoric uncertainty - 

caused by the noisy measurements in the data28. Epistemic uncertainty can be mitigated by 

increasing the training samples. Aleatoric uncertainty can be restrained by increasing the sensor 

precision. Aleatoric uncertainty occurs during measuring the inherent noise in the samples and is 

reflected in the uncertainty over the model’s parameters50. A model with the precise set of 

parameters will lower down the aleatoric uncertainty50. The combination of aleatoric and epistemic 

uncertainty forms the predictive uncertainty27. In this paper, we focused on the exploring of 

predictive uncertainty for the prostate zonal segmentation, which can be measured by the entropy 

of the predictive distribution27,50 and is formulated as:  

 

−∑ 6
;

<
=96 ∑ 𝑝(𝑦 = 𝑐|𝑥, 𝑤>))log	(

6
;
∑ 𝑝(𝑦 = 𝑐|𝑥, 𝑤>);
>96 );

>96 						             (4-2) 
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where y is the output variable, T is the number of stochastic forward passes (50 was chosen 

is the experiments (Figure 4-1)), C is the number of classes (C=3, for background, PZ and TZ), 

𝑝(𝑦 = 𝑐|𝑥, 𝑤>)  is the soft-max probability of input 𝑥  being in class c, 𝑤>  represents model’s 

parameters on the 𝑡>? forward pass.   

4.3.3   Average Uncertainty Maps for the Prostate Zonal Segmentation 

The average uncertainty map tells the overall zonal uncertainty in different positions on the 

prostate image. Figure 4-2 shows the processes of obtaining the average uncertainty map. 

 

 

Figure 4-2 The overall workflow for the registration of the sample (one of the non-templates) uncertainty 

map to the template uncertainty map. A1 and A2 are a template image and its uncertainty map. B1 and B2 

are a sample image and its uncertainty map, respectively. C shows the result after the zonal boundary 

registration between the sample and the template. Red and blue points represent the zonal boundaries on 

the template and the sample images, respectively. D is the warped uncertainty map based on the 

corresponding zonal points after the registration. E and F show the overlapping of zonal boundary points 

and uncertainty maps before and after registration. 
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In order to obtain the average uncertainty map at the prostate apex, middle portion, and 

base, three template prostate images at the three sections were chosen by a radiologist after 

inspecting all the prostate images. Next, for each prostate section, zonal boundary points on non-

template prostate images (sample images) were then registered to those on the prostate template 

image within the section using a non-rigid coherent point drift method (CPD)51. Within non-rigid 

CPD, alignment of two-point sets was thought of as a probability density estimation problem where 

one point set serves as the centroids of the gaussian mixture model (GMM), and the other 

represents the data points. By maximizing the likelihood, GMM centroids were then fitted to the 

data. Also, GMM centroids were forced to move coherently to preserve the topological structure 

by regularizing the displacement field and utilizing the variational calculus to obtain the optimal 

transformation. The thin plate spline (TPS) method52 was then used to warp the sample uncertainty 

maps to the template uncertainty map based on the corresponding zonal boundary points (Figure 

4-2). In doing so, the average was computed among all the warped sample prostate uncertainty 

maps, including the template uncertainty map, yielding an average uncertainty map in this prostate 

section. In the end, three average uncertainty maps were obtained for the prostate apex, middle 

portion, and base.  In addition, the prostate zonal average uncertainty score for each prostate 

section was calculated by averaging all of the pixels’ uncertainties in the zone. 

4.3.4   Model Development and Testing 

Cross entropy (CE) served as the loss function to train the proposed model. For each given 

pixel, cross-entropy was formulated as, 

 

𝐶𝐸 = 6
7
∑ −𝑦8 log(𝑝8)(
89: − (1 − 𝑦8) log(1 − 𝑝8)																														(4-3) 
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where  𝑦8 ∈ {0,1} is the ground-truth binary indicator, corresponding to the 3-channel predicted 

probability vector 𝑝8 ∈ [0,1].  Training and evaluation were performed on a desktop computer with 

a 64-Linux system with 4 Titan Xp GPU of 12 GB GDDR5 RAM. Pytorch was used for the 

implementation of algorithms. The learning rate was initially set to 1e-3. The model was trained 

for 100 epochs with batch size 8. The loss was optimized by stochastic gradient descent with 

momentum 0.9 and L2-regularizer of weight 0.0001. The central regions 80𝑚𝑚 × 80𝑚𝑚 were 

automatically cropped from the original images of the prostate. This is because prostate areas are 

always located in the middle. On-the-fly data augmentation approaches included random rotation 

between [−3°, 3°], flipped horizontally, and elastic transformations. For the elastic transformation, 

there are three steps: 1) A coarse displacement grid with a random displacement for each grid point 

was generated. 2) Displacement for each pixel (deformation field) in the input image was 

computed via a thin plate spline (TPS) method on the coarse displacement grid. 3) The input image 

and the corresponding segmentation mask were deformed according to the deformation field. 

(Bilinear and nearest-neighbor interpolation methods were used to handle the non-integer pixel 

locations on the warped input image and segmentation mask). Totally, we used 308 unique subject 

MRIs from PROSTATE X for model development and internal testing. The model was trained by 

70% (N = 218) of the dataset, with 15% (N = 45) held out for validation and 15% (N = 45) for 

internal testing (internal testing dataset (ITD)). For external testing (external testing dataset (ETD)), 

47 unique subject MRI from the large U.S. tertiary academic medical center were used. No 

endorectal coil was used in the study.  Patient-wised Dice Similarity Coefficient (DSC) was 

employed to evaluate the segmentation performance and to compare with baseline methods, which 

is formulated as: 
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𝐷𝑆𝐶 = (|@∩A|
|@|,|A|

																																																																							(4-4) 

 

where A is the predicted 3D zonal segmentation, which is stacked by the 2D algorithmic prostate 

zonal segmentation and B is the ground-truth of 3D zonal segmentation stacked by the 2D manual 

segmentation on the prostate slices.   

Patient-wise Hausdorff Distance (HD) was also used to evaluate the segmentation 

performance, which is formulated as:  

 

𝐻𝐷(𝑋, 𝑌) = 𝑚𝑎𝑥(ℎ(𝑋, 𝑌), ℎ(𝑌, 𝑋))                                        (4-5) 

 

where ℎ(𝑋, 𝑌) is the directed 𝐻𝐷, which is given by ℎ(𝑋, 𝑌) = max
B	∈)

min
C∈+

‖𝑥 − 𝑦‖, 𝑋 and 𝑌 are the 

point sets on the A and B (defined in the Patient-wised DSC).   

 

4.3.5   Statistical Analysis 

The distribution of DSCs was described by the mean and standard deviation. Paired sample 

t-test test was used to compare the performance difference between the proposed method and 

baselines on both ITD and ETD. The performance difference of the proposed method was also 

tested by paired sample t-test.   

 

4.4   Result 

4.4.1   Performance Using Internal Testing Dataset (ITD) and External Testing Dataset (ETD) 

Figure 4-3 shows two typical examples of prostate zonal segmentation results by the 

proposed method and the three comparison methods, including Deeplab V3+53, USE-Net47, U-
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Net12, Attention U-Net54 and R2U-Net55. USE-Net was proposed by Rundo et al for the prostate 

zonal segmentation, which embeds the squeeze-and-excitation (SE) block into the U-Net and 

enables the adaptive channel-wise feature recalibration. Attention U-Net, proposed by Ozan et al, 

which incorporates attention gates into the standard U-Net architecture to highlight salient features 

that passes through the skip connections. Deeplab V3+53 is one of the state-of-art deep neural 

networks for image semantic segmentation, which takes the encoder-decoder architecture to 

recover the spatial information and utilizes multi-scale features by using atrous spatial pyramid 

pooling (ASPP). Convolutional features at multiple scales are probed by ASPP via applying 

several parallel atrous convolutions with different rates. R2U-Net is an extension of standard U-

Net using recurrent neural network and residual neural networks.   
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Figure 4-3 Two representative examples of the zonal segmentation by the proposed method, DeeplabV3+ 

USE-Net, U-Net. Yellow lines are the manually annotated zonal segmentation, and the red lines are 

algorithmic results. The top two and bottom two rows represent the segmentation examples from two 

different subjects. 
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Means and standard deviations of DSCs for PZ and TZ on ITD and ETD are shown in 

Table 4-2. Mean DSCs for PZ and TZ of the proposed method were 0.80 and 0.89 on ITD, 0.79 

and 0.87 on ETD, which were all higher than the results obtained by the comparison methods with 

significant difference.   

 

Table 4-2 Performance (DSC) of the Proposed Method and Baselines on Internal Testing Dataset (ITD) and 

External Testing Dataset (ETD). P Values are the Comparisons Between the Proposed Methods and 

Baselines in ITD and ETD 

Datasets ITD ETD 

 PZ TZ PZ TZ 

 

Proposed Method 

 

 

0.80±0.05 

 

 

0.89±0.04 

 

0.79±0.06 

 

0.87±0.07 

 

Deeplab V3+ 

 

 

0.74±0.06 

 

P<0.05 

 

0.87±0.05 

 

P<0.05 

 

0.71±0.09 

 

P<0.05 

 

0.82±0.06 

 

P<0.05 

 

Attention 

U-Net 

 

0.75±0.08 

 

P<0.05 

 

0.87±0.04 

 

P<0.05 

 

0.75±0.07 

 

P<0.05 

 

0.82±0.08 

 

P<0.05 

 

R2U-Net 

 

0.70±0.10 

 

P<0.05 

 

0.85±0.05 

 

P<0.05 

 

0.69±0.08 

 

P<0.05 

 

0.78±0.10 

 

P<0.05 

 

 

USE-Net 

 

 

0.72±0.10 

 

P<0.05 

 

0.86±0.06 

 

P<0.05 

 

0.72±0.08 

 

P<0.05 

 

0.80±0.08 

 

P<0.05 
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U-Net 

 

 

0.71±0.09 

 

P<0.05 

 

0.85±0.06 

 

P<0.05 

 

0.72±0.07 

 

P<0.05 

 

0.81±0.06 

 

P<0.05 

 

Means and standard deviations of Hausdorff Distance (HD) are shown in Table 4-3. The 

proposed method achieved the lowest mean HD among all the methods for both PZ and TZ 

segmentation. 

 
Table 4-3 Average Hausdorff Distance (mm) of the Proposed Method and Baselines on Internal Testing 

Dataset (ITD) and External Testing Dataset (ETD). P Values are the Comparisons Between the Proposed 

Methods and Baselines in ITD and ETD. 

Datasets ITD ETD 

 PZ TZ PZ TZ 

 

Proposed Method 

 

 

4.77±2.86 

 

3.52±1.81 

 

5.96±3.13 

 

 

4.92±2.73 

 

Deeplab V3+ 

 

 

5.48±2.55 

 

P=0.26 

 

5.33±4.50 

 

P<0.05 

 

7.72±4.47 

 

P<0.05 

 

7.45±5.36 

 

P<0.05 

 

Attention 

U-Net 

 

5.79±3.96 

 

P=0.14 

 

5.27±4.28 

 

P<0.05 

 

7.60±4.82 

 

P=0.06 

 

5.92±4.02 

 

P=0.13 

 

R2U-Net 

 

5.46±2.76 

 

P=0.23 

 

6.24±4.76 

 

P<0.05 

 

7.89±4.64 

 

P<0.05 

 

10.01±8.54 

 

P<0.05 

 

USE-Net 

 

8.61±6.83 

 

7.90±6.27 

 

9.74±7.06 

 

10.96±9.03 
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P<0.05 

 

P<0.05 

 

P<0.05 

 

P<0.05 

 

 

U-Net 

 

 

 

8.88±7.63 

 

P<0.05 

 

 

11.38±7.63 

 

P<0.05 

 

 

9.72±6.06 

 

P<0.05 

 

 

11.55±6.54 

 

P<0.05 

 

Figure 4-4 showed the superior and inferior cases for the PZ and TZ segmentation. The 

superior case had DSC > 0.90 for PZ segmentation and DSC > 0.95 for TZ segmentation. DSCs 

of the inferior case were lower than 0.60 and 0.50 for the PZ and TZ segmentations, respectively.   

 

 

Figure 4-4 Superior and inferior cases for PZ and TZ segmentation. Superior and inferior cases for PZ and 

TZ are shown in the first and second row. 
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4.4.2   Performance Discrepancy Between the Internal Testing Dataset (ITD) and External 

Testing Dataset (ETD)  

There was no significant difference (p<0.05) between ITD and ETD for the performance 

of PZ segmentation for the proposed method. However, there was a 2.2% difference for the TZ 

segmentation (Table 4-2). 

 

4.4.3   Performance Investigation for Each Individual Module in the Proposed Method 

We carried out the following ablation studies to investigate the importance of each module 

within the proposed network. Table 4-4 indicates which module was used (a checkmark) or not 

used (a cross) in each experiment. We showed that the best model performance is achieved when 

both SAM and MFPA are used in the model for the zonal segmentation. 

 

Table 4-4 Performance Investigation for Each Individual Module of the Proposed Method. Average DSCs 

With Standard Deviation are Shown in the Table. SAM is the Spatial Attention Module. MFPA is the Multi-

Scale Feature Pyramid Attention. Apart From the Proposed Method, There are Two Additional Independent 

Experiments, Where √ and × Under Each Row Indicates Whether the Experiment Contains the Module or 

Not 

 

Experiments 

 

SAM 

 

MFPA 

ITD ETD 

PZ TZ PZ TZ 

 

Proposed method 

 

√ 

 

√ 

 

0.80 

±0.05 

 

0.89 

±0.04 

 

0.79 

±0.06 

 

0.87 

±0.07 

 

Experiment 1 

 

× 

 

√ 

 

0.79 

±0.07 

 

0.88 

±0.04 

 

0.77 

±0.07 

 

0.85 

±0.07 
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Experiment 2 

 

√ 

 

 

× 

 

 

0.78 

±0.07 

 

0.88 

±0.04 

 

0.77 

±0.06 

 

0.85 

±0.07 

 

In experiment 1, DSCs for both zones on ITD and ETD decreased and were lower than the 

proposed model when SAM was removed from the proposed model, which proved that SAM 

helped improve the overall segmentation performance. In experiment 2, DSCs for PZ on ITD, and 

both zones on ETD decreased when MFPA was removed from the proposed model, indicating that 

that GFM was essential within the model.   

4.4.4   The Overall Uncertainty for the Prostate Zonal Segmentation of the Proposed Method 

Figure 4-5 and Table 4-5 shows the overall uncertainties of the proposed method for the 

prostate zonal segmentation. The pixel-by-pixel uncertainty maps showed that the zonal 

boundaries had higher uncertainties than the interior areas at the three prostate locations (apex, 

middle, and base slices). Also, highest uncertainties were observed at the intersection between the 

PZ, TZ and the AFS.   
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Figure 4-5 The pixel-by-pixel uncertainty estimation of the zonal segmentation at the apex, middle, and 

base slices of the prostate (top). The orange color indicates high uncertainties, and blue color indicates low 

uncertainties. Bottom: Average uncertainty scores (bottom left) and average normalized DSCs (bottom 

right; normalized by TZ DSC– 0.87 shown in in Table 4-4) with the standard deviation at the apex, middle, 

and base slices of the prostate (x-axis). 

 

Table 4-5 Performance investigation for each individual module of the proposed method. Average DSCs 

with standard deviation are shown in the table. SAM is the spatial attention module. MFPA is the multi-

scale feature pyramid attention. Apart from the proposed method, there are two additional independent 

experiments, where √ and × under each row indicates whether the experiment contains the module or not. 

 

Experiments 

 

SAM 

 

 

 

MFPA 

ITD ETD 

PZ TZ PZ TZ 
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Proposed method 
 

√ 

 

√ 

 

0.80 

±0.05 

 

0.89 

±0.04 

 

0.79 

±0.06 

 

0.87 

±0.07 

 

Experiment 1 

 

× 

 

√ 

 

0.79 

±0.07 

 

0.88 

±0.04 

 

0.77 

±0.07 

 

0.85 

±0.07 

 

Experiment 2 

 

√ 

 

 

× 

 

 

0.78 

±0.07 

 

0.88 

±0.04 

 

0.77 

±0.06 

 

0.85 

±0.07 

 

The TZ segmentation had lower overall uncertainties than the PZ segmentation, and the 

proposed method achieved better segmentation in TZ (DSC=0.87) compared to PZ (0.79). We 

used a normalized DSC (DSCnorm, normalized by TZ DSC – 0.87) to show relative differences at 

different locations of the prostate. For PZ segmentation, the highest overall uncertainty was 

observed at base, consistent with the worst model performance at base (DSCnorm=72.4 %). For TZ 

segmentation, the highest overall uncertainty was observed at the apex, matched with the worst 

segmentation performance of the model at apex (DSCnorm=55.2 %). Figure 4-5 bottom-left shows 

the average uncertainty estimation at different prostate locations, and the trend is well matched 

with the actual model performance (Fig. 4-5 bottom-right). 

 

4.5   Discussion 

In this study, an attentive Bayesian deep learning model that accounts for long-range spatial 

dependencies between TZ and PZ with an estimation of pixel-wise uncertainties of the model was 

proposed. The performance discrepancy between ITD and ETD of the proposed model was 
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minimal. There was no difference in PZ segmentation between ITD and ETD, and a 2.2% 

discrepancy in TZ segmentation. The average uncertainty estimation showed lower overall 

uncertainties for TZ segmentation than PZ, consistent with the actual segmentation performance 

difference between TZ and PZ. We attribute this to the complicated and curved shapes of PZ. The 

PZ boundaries generally have bilateral crescentic shapes, while the TZ boundaries are ellipsoid in 

shape.  SAM aided the model to focus on certain spatial areas in the zonal segmentation. This was 

done by the modeling of spatial dependencies with the help of global features. Since spatial 

attention was inserted adjacent to the raw images, large GPU memory was required to obtain the 

global spatial features during the training and evaluation. The SAM can be inserted into other 

positions within the network, but we observed that the zonal segmentation performed the best 

when the SAM followed directly after the raw image.  There exist high segmentation uncertainties 

on the zonal boundaries. This may be explained by the inconsistent manual annotations since the 

boundaries between TZ and PZ are hard to be defined precisely due to partial volume artifact. This 

resembles the “random error”, which persists throughout the entire experiment, so we call such 

uncertainty “random uncertainty” in the prostate zone segmentation.  The areas with the highest 

uncertainty are located at the junction of AFS, PZ and TZ. One possible reason is that it is hard for 

the MRI to distinguish the tissue around the junction. There is probably a significant reduction of 

signal by the more severe partial volume artifacts caused by PZ with the high pixel intensity, TZ 

with the intermediate pixel intensity and AFS with lower pixel intensity.  The overall uncertainties 

were higher at apex slices than those at base slices for the TZ segmentation. This may be caused 

by the fact that the size of TZ gradually increases from apex to base slices, making it hard to 

recognize the zone for the model. In contrast, the overall uncertainties for PZ were higher at the 
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base slices than at the apex and middle slices. Similar to TZ, we attributed the low uncertainties to 

the large PZ structure between apex and middle slices (Figure 4-6). 

 

Figure 4-6 Prostate zonal anatomy at apex, middle, and base slices of the prostate. 

 

The estimation of pixel-wise uncertainties of the prostate zonal segmentation would 

provide confidence and trust in an automatic segmentation workflow, which allows a simple 

rejection or acceptance based on a certain uncertainty level. This can be implemented as a partial 

or entire rejection of the automatic segmentation results when presenting to experts, and future 

research will be needed to determine the level of uncertainties to be acceptable to experts. We 

believe that this additional confidence would enable more natural adaption or acceptance of the 

automatic prostate segmentation than the one without it when the prostate segmentation is 

integrated into the downstream analysis decision. We observed that simple incorporation of the 

inter-slice information by 3D U-Net was not sufficient to improve the segmentation performance. 

Our prostate MRI data had a lower through-plane resolution (3-3.6 mm) than the in-plane 

resolution (0.5-0.65 mm), resulting in a conflict between the anisotropism of the 3D images and 

isotropism of the 3D convolutions56,57. This may be the main reason that the model’s generalization 

was compromised. Specifically, voxels in the x-z plane will correspond to the structure with 
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different scales along x- and z-axes after the 3D convolution58. Moreover, the performance was 

more significantly different when both ITD and ETD were used for testing, potentially due to the 

difference in the imaging protocol. Further study may be needed to investigate advanced 

approaches that incorporate the inter-slice information into the 3D convolution when there exists 

a difference between in-plane and through-plane resolutions while minimizing sensitivities to 

different imaging protocols.  The significant effect of including SAM and MFPA was investigated 

in the ablation study. The average DSCs of the proposed method were higher than the experiments 

in the ablation study for PZ and TZ in both datasets. However, there were no significant differences 

between DSCs obtained by the experimental methods and the proposed method for both zones in 

the ablation study when a paired t-test was used. Based on the power analysis, we need 100, 253, 

143, and 194 cases for Experiment 1 in Table 4-4 (when SAM is removed) and 394, 253, 143, and 

194 cases for Experiment 2 (when MFPA is removed) to achieve 80% power with alpha = 0.05.  

We also compared the uncertainty of the proposed method and that of the U-Net. We found that 

average uncertainty scores of the proposed method for both PZ and TZ at three different prostate 

locations are all smaller than U-Net (Table 4-6). 

 
Table 4-6 Row 2 - 4: Average Uncertainty Scores for all Prostate, Apex, Middle, and Base Slices in PZ and 

TZ Under the Proposed Method; Row 5 - 7: Average Uncertainty Scores for all Prostate, Apex, Middle, 

and Base Slices in PZ and TZ Under U-Net. 

Zone All Apex Middle Base 

Proposed Method 

PZ - Uncertainty 0.16±0.02 0.14±0.03 0.15±0.04 0.21±0.06 

TZ - Uncertainty 0.13±0.05 0.22±0.08 0.13±0.06 0.10±0.05 
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U-Net 

PZ - Uncertainty 0.26±0.03 0.25±0.04 0.26±0.04 0.31±0.06 

TZ - Uncertainty 0.15±0.04 0.26±0.06 0.15±0.04 0.15±0.03 

 

This study still has a few limitations. First, the training time was long due to small batch 

sizes to extract the global features which also required a large GPU memory. Second, all MR 

images were acquired without the use of an endorectal coil in the study. This mirrors general 

clinical use since the use of endorectal coil is decreasing due to patients’ preference. Also, studies 

showed no significant difference for the detection of PCa between MR images acquired with and 

without the endorectal coil56,57 due to the increased signal-to-noise ratios (SNRs) and spatial 

resolution of 3T MRI scanners, compared to 1.5T. We can apply pixel-to-pixel translation 

techniques such as cycle-GAN to handle the cases with an endorectal coil since the images with 

the endorectal coil contain large signal variations near the coil. Third, the study considered the 

slices that contain the prostate, which could potentially reduce the false positives of the non-

prostate slices and increase the overall segmentation performance. 

 

4.6   Conclusion 

This Chapter proposed a spatial attentive Bayesian deep learning model for the automatic 

segmentation of prostatic zones with pixel-wise uncertainty estimation. The proposed method is 

superior to the state-of-art methods on the segmentation of two prostate zones, such as TZ and PZ. 

Both spatial attention and multiple-scale feature pyramid attention modules had their merits for 

the prostate zonal segmentation. Also, the overall uncertainties by the Bayesian model 
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demonstrated different uncertainties between TZ and PZ at three prostate locations (apex, middle 

and base), which was consistent with the actual model performance evaluated by using internal 

and external testing data sets.  
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Chapter 5: Textured-Based Deep Learning in Prostate 

Cancer Classification with 3T Multiparametric MRI: 

Comparison with PI-RADS-Based Classification 

 

 

This chapter described a texture-based deep learning (Textured-DL) for prostate cancer 

classification on MRI and compared it with the radiologist-based classification and conventional 

deep learning methods. Sub-analyses of the proposed method on the classification of lesions on 

different prostate zones, such as peripheral zone and transition zone, and index types (solidary and 

multi-focal lesions), were performed. 

 

 

5.1   Introduction 

Multi-parametric MRI (mpMRI) has shown the ability to acquire anatomical details to 

assess the aggressiveness of PCa34. Over the last three years, 3T mpMRI has been integrated into 

guidelines for the diagnosis of prostate cancer (PCa)93,94. The current standardized scheme for the 

interpretation of mpMRI is the Prostate Imaging Reporting and Data System version 2.1 (PI-RADS 

v2.1)15. The PI-RADS scoring system has been widely adopted, and studies have shown increased 

clinically significant PCa (csPCa) diagnostic accuracy95–97. However, PI-RADS requires a high 

level of expertise and exhibits a significant degree of inter-reader and intra-reader variability98, 

likely reflecting inherent ambiguities in the classification scheme. Also, there exist limited abilities 

to use the PI-RADS suspicious score in assessing the spectrum of cancer99,100. In particular, several 
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studies reported only 15% to 35% were biopsy positive among the PI-RADS 3 lesions when 

identifying csPCa101,102.  

Image texture analysis103,104 provides the spatial arrangement of intensities in the image 

and can be used to quantitatively describe the tumor heterogeneity, which can be the primary 

feature of csPCa105. Automated classification of csPCa using texture analysis106 may overcome the 

current challenges associated with PI-RADS but commonly suffers from the tedious designing 

process, including handcrafted feature engineering, to fully capture the underlying imaging 

information. Alternatively, with the development of deep learning in medical imaging5,107,108, 

convolutional neural networks (CNNs) with the texture analysis30 may further improve the 

accuracy of csPCa classification without handcrafted feature engineering.  

In this study, we designed a texture-based deep learning (textured-DL) model for the 

automated prostate cancer classification of the suspicious lesion on MRI. After a lesion was 

detected and contoured as part of the clinical interpretation, our deep learning model was 

developed to further improve the classification of csPCa for any positive MRI findings (PI-RADS 

≥ 3). The model performance was tested by an independent testing set and compared with the 

conventional deep learning and PI-RADS-based classification99,100.  

 

5.2   Materials and Methods 

5.2.1   Study population and MRI datasets 

With approval from the institutional review board (IRB), this retrospective study was 

carried out in compliance with the United States Health Insurance Portability and Accountability 

Act (HIPAA) of 1996. A total of 402 patients who later underwent robotic-assisted laparoscopic 

prostatectomy (RALP) between October 2010 and June 2018 were enrolled in this study. Detailed 
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characteristics of the overall patients and tumors are shown in Table 5-1. Pre-operative prostate 

mpMRI scans were acquired using a standardized protocol based on the recommendation from PI-

RADS. Specifically, the MRI protocol included axial T2w turbo spin-echo (TSE) imaging (TR = 

3800-5040 ms, TE = 101 ms, FOV = 20 cm, matrix size = 320 × 310, in-plane resolution = 0.6 

mm × 0.6 mm, slice thickness = 3 mm) and echo-planar diffusion-weighted imaging (EP-DWI) 

(TR = 3300-4800 ms, TE = 60-80 ms, FOV = 26 cm × 21 cm, matrix = 160 × 94, in-plane resolution 

= 1.6mm × 1.6 mm, slice thickness = 3.6 mm). The ADC maps were calculated by using linear 

least squares curve fitting of pixels (in log scale) in the four diffusion-weighted images against 

their corresponding b values (0/100/400/800 s/mm2). Both axial T2w TSE and ADC were used as 

input to the textured-DL model.  

Three fellowship-trained genitourinary (GU) radiologists (each had interpreted 1,000-

3,000 prostate mpMRI scans with 10+ years of experience) identified suspicious lesions for PCa 

on mpMRI. Each suspicious lesion was contoured with an assigned PI-RADS suspicious score by 

the radiologists. For MRI scans interpreted before the adoption of PI-RADS v2 (2010-2015), an 

abdominal imaging fellow (in postgraduate year 6) and the fellowship-trained GU radiologist 

retrospectively reviewed and assigned PI-RADS v2 to each ROI, blinded to the pathological 

findings and clinical information at the time of the interpretation. Any lesions with PI-RADS ≥ 3 

were reported as positive findings.  

 
Table 5-1 Patient and tumor lesion characteristics. 

Characteristics Overall Train/Validation Test 

Patient Number 402 281 121 

csPCa lesions / all lesions  303 / 466 225 / 324 78 / 142 

Non-csPCa lesions / all 

lesions 

163 / 466 99 / 324 64 / 142 
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Age (yr.) 61 (56-66) 61 (56-67) 61 (58-66) 

Weight (kg.) 87 (77-95) 87 (77-96) 86 (78-94) 

PSA (ng/ml) 8.3 (4.7-8.7) 8.7 (4.7-8.9) 7.4 (4.6-8.7) 

Tumor Volume (cm3) 1.1 (0.3-1.2) 1.1 (0.3-1.2) 0.9 (0.2-1.1) 

Gleason 

score 

False 

Positive 

80 49 31 

3+3=6 83 50 33 

3+4=7 168 126 42 

4+3=7 79 57 22 

>7 56 42 14 

PI-RADS 3 119 76 43 

4 197 138 59 

5 150 110 40 

Prostate zone PZ 364 255 109 

TZ 99 67 32 

AFS 3 2 1 

Focality Solitary 190 137 53 

Multi-focal 276 187 89 

 

Blinded to MRI, two genitourinary (GU) pathologists (each had interpretated up to 1,000 

prostate wholemount histopathologic reports) identified and outlined tumors on whole-mount 

histopathology (WMHP) following RALP. On each section, individual prostate cancer lesion size, 

location, and Gleason Score (primary and secondary Gleason grade) were reported. Next, at a 

separate monthly meeting, a multidisciplinary research team consisting of GU radiologists, GU 

pathologists, and urologists reviewed each case to match the pathologically detected lesion with 

its corresponding lesion on mpMRI through visual co-registration. Each lesion detected by mpMRI 

was defined as a true-positive if it corresponded to the same quadrant (left, right, anterior, or 

posterior) and level (base, midgland, or apex) as the lesion from WMHP, or a false positive if no 

corresponding lesions existed on WMHP. Lesions with false-negative findings were lesions from 
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WMHP that lacked a corresponding lesion on mpMRI. The index tumor was defined as the most 

extensive tumor area in the surgical specimen, more specifically, the lesion with the highest 

Gleason Score or the largest diameter when multiple lesions had the same Gleason Score. csPCa 

was defined as a lesion with GS≥3+4. After the meeting, all csPCa, indolent lesions (GS=3+3), 

and false positives were retrospectively contoured on T2w and ADC images using OsiriX (Pixmeo 

SARL, Bernex, Switzerland). ADC images were registered to T2w images by using a non-rigid 

registration method109. Table 5-1 summarizes the overall patient and lesion characteristics, 

stratified by Gleason score, PI-RADS, prostate zones, and lesion focality. 

5.2.2   Texture-based deep learning model 

Figure 5-1 showed the overall workflow of the proposed texture-based deep learning 

(textured-DL) model, consisting of a 3D gray-level co-occurrence matrix (GLCM) extractor and a 

CNN. As part of the clinical MRI interpretation, a suspicious lesion was identified by the PI-RADS 

suspicious score. The positive finding (PI-RADS ≥ 3) or a suspicious PCa lesion contoured on 

T2w and ADC was assumed be an input data format to the proposed model. For a given suspicious 

PCa lesion, the volumetric patches of T2w and ADC were first cropped based on the lesion 

segmentation as input to textured-DL. The rectangular patch was selected to closely surround the 

lesion and normalized to 0-255 prior to the textured-DL model. In the workflow, 3D GLCM 

descriptors were used to extract the texture features from each volumetric patch (T2w and ADC), 

and the 3D GLCM features were combined as an input to CNN. The output of textured-DL is the 

probability of being a csPCa lesion for a given positive MRI finding (PI-RADS≥3). Note that the 

conventional deep learning approach would exclude the 3D texture extraction (i.e., the rectangular 

patches are directly used as input to CNN)110. We implemented this as the baseline model (CNN).  
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Figure 5-1 Overall workflow of the proposed textured-DL model for the prostate cancer classification. 

Suspicious lesions were firstly detected by the PI-RADS. Then, PI-RADS scores were assigned to the 

detected lesions. Lesions with PI-RADS score ≥ 4 were considered as clinically significant prostate cancers 

(csPCa). After the manual segmentation of the prostate lesion, 3D rectangular patches of the prostate lesion 

were cropped from the T2w and ADC images, and gray-level co-occurrence matrices (GLCM) were 

extracted from two patches. Next, the two GLCMs were concatenated and fed into CNN to generate the 

probability of clinically significant prostate cancer (one being the highest probability of csPCa). ROC curve, 

sensitivity and specificity were adopted to evaluate and compare the performance of csPCa classification 

by the PI-RADS and Textured-DL, confirmed by the histopathological findings. 

5.2.3   3D GLCM Extractor 
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Gray-level image was discretized into 64 gray-level bins, yielding the 3D gray-level images 

whose voxels' values ranged from 1 to 64. Then, we generated the 3D GLCM by calculating the 

frequency of voxel pairs with different spatial orientations and specific gray-level values. Unlike 

the 2D GLCM, which only considers the in-plane pixel adjacency, 3D GLCM also considers the 

through-plane voxel adjacency. For each direction 𝜃, the corresponding GLCM is calculated as 

follows: 
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, where 	(𝑑𝑖, 𝑑𝑗, 𝑑𝑧)  is a displacement between the point (𝑖, 𝑗, 𝑘)  and another point along the 

direction 𝜃, 𝑓 is the 3D image data, (𝑖, 𝑗, 𝑘) is a pixel location in the image 𝑓, and 𝑓(𝑖, 𝑗, 𝑘) is the 

pixel value at (𝑖, 𝑗, 𝑘).  

After 3D GLCMs (size is 13 × 64 × 64 for both modalities) for T2w and ADC were 

computed, the two feature maps were concatenated (final size is 26 × 64 × 64). Then, the feature 

maps went through the CNN, which consists of two convolutional layers with kernel sizes of 3 × 3 

and stride of 1, two pooling layers with a filter size of 2 × 2, and two fully connected layers, to 

perform the classification of csPCa and non-csPCa. Input and output channel sizes are (26, 32) and 

(32, 64) for the first and second convolutional layer, respectively. Each convolutional layer was 

equipped with batch normalization (BatchNorm) and Rectified Linear Unit (ReLU).  

5.2.4   Model development and comparison  
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The patient cohort was randomly split into three sub-datasets, including training (n=239; 

60%), validation (n=42; 10%) and testing (n=121; 30%) datasets. The model was trained on the 

training dataset, and hypermeter tuning, and best model selection were performed on the validation 

dataset. Weighted cross-entropy was used as the loss function, which was optimized by the Adam 

optimizer 111 with the default parameters (𝛽6 = 0.9 and 𝛽( = 0.999). The learning rate was set to 

1e-5 with a momentum of 0.9. The model was trained for 200 epochs with a batch size of 10.  

We used PI-RADS as an expert reader baseline to compare classification performance with 

textured-DL. Lesions with PI-RADS larger or equal than four were considered as prediction for 

csPCa 99,100 in the model comparison. In addition, we included a radiomics-based machine learning 

workflow (Radiomics-ML)112 to compare classification performance with texture-DL. To make a 

fair comparison with our proposed textured-DL, within each prostate lesion, a total of 104 GLCM-

based radiomic texture features on both the T2w and ADC were calculated. The radiomic features 

were then fed into an ensemble learning method, random forest (RF)113, for the csPCa 

classification. Furthermore, we also compared our proposed textured-DL with a relatively deep 

convolutional neural network (DCNN)114 that was inspired by VGG-Net115. Since PI-RADS 3 

lesions are variable in the diagnosis of prostate cancer, we conducted the sub-analysis of the PI-

RADS 3 lesions compared to PI-RADS 4-5 lesions for the performance of Textured-DL to 

diagnose the prostate cancer.  

In addition, we also performed the sub-analyses on the classification of csPCa lesions on 

different prostate zones, such as peripheral zone (PZ) and transition zone (TZ), and index types 

(solidary and multi-focal lesions) between textured-DL and PI-RADS. This is due to that 1) there 

exist significant differences in morphological appearance and cancer prevalence between tumors 

in PZ and TZ, and the assignment of the PI-RADS for each lesion utilizes different imaging 
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sequences according to zonal anatomy14. 2) The aggressiveness of the index tumor aggressiveness 

is clinically important for treatment decisions, pre-biopsy planning, and pre-surgical planning.  

5.2.5   Statistical analysis  

All models (PI-RADS, CNN, Radiomics-ML, DCNN, and textured-DL) were evaluated on 

the testing dataset by the area under the ROC (AUC) curve, sensitivity, and specificity. The 95% 

confidence interval (CI) of the AUC was computed by bootstrapping with 1000 samples. The Wald 

method116 was used to calculate 95% CI of the sensitivity and specificity. The model sensitivity 

and specificity were selected by the Youden index117. Statistical significance was defined as a p-

value <0.05. DeLong test118 was used to perform the AUC comparisons between the baseline 

methods and the proposed textured-DL. P-values for statistical comparisons of sensitivity and 

specificity were provided by the Mcnemar's test119.  

 

5.3   Results 

5.3.1   Model Performance in Comparison with PI-RADS for All Tumors 

Figure 5-2 displayed two representative examples of mpMRI findings matched with 

WMHP and predictions of the csPCa classification using textured-DL. Figure 5-2 (top) represents 

the imaging for a 56-year-old man with a serum prostate-specific antigen (PSA) of 12.2 ng/m. A 

PI-RADS 4 lesion and Gleason score 3+3 were shown on both MRI and WMHP images. The 

textured-DL predicted the lesion as a non-csPCa while this would have been considered as csPCa 

when PI-RADS 4 was used as a cutoff. Figure 5-2 (bottom) represents the imaging for a 72-year-

old man with a PSA of 8.8 ng/m. A PI-RADS 3 lesion and Gleason score 4+3 were shown on both 

MRI and WMHP images. Similarly, textured-DL predicted correctly, which would have been 

missed in PI-RADS-based classification. 
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Figure 5-2 Two examples of prostate lesion classification are shown in row (A) and (B), respectively. In 

each row, from left to right, axial T2w and axial ADC, gray-level co-occurrence matrix (GLCM), and 

matched whole-mount histopathology (WMHP) are shown. A) Imaging for a man with a 56-year-old man 

with a PSA of 12.2 ng/m. A lesion (blue rectangular box pointed by a red arrow) with PI-RADS 4 and GS 

3+3 was shown on both the axial T2w and ADC images. The proposed textured-DL predicted this lesion 

as a non-clinically significant lesion. B) Imaging for a 72-year-old man with a PSA of 8.8 ng/m. A lesion 

(blue rectangular box pointed by a red arrow) with PI-RADS 3 and GS 4+3 was shown on both the axial 

T2w and ADC images. The proposed textured-DL predicted this lesion as a clinically significant lesion.  

 

Figure 5-3 showed the overall classification performance among textured-DL, baseline 

CNN, Radiomics-ML, and PI-RADS. For all lesions, textured-DL achieved an AUC of 0.85, 

significantly higher than CNN (AUC of 0.74; p<0.01), radiomics-ML (AUC of 0.78; p=0.04), and 

PI-RADS (AUC of 0.73; p<0.01). The textured-DL model also demonstrated the significantly 

higher sensitivity than CNN, radiomics-ML, and PI-RADS (all p values<0.05), with a comparable 

specificity to CNN and radiomics-ML (p values are 0.82, 0.76) and a significantly higher 

specificity than PI-RADS (p value<0.01).  
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Figure 5-3 Comparisons of ROC, sensitivity, and specificity between PI-RADS, Radiomics ML, 

conventional CNN, DCNN, and textured-DL on the classification of csPCa in the overall tumor lesions. 

 

5.3.2   Classification Performance for Tumors on Different Prostate Zone 

We further conducted the secondary analysis on the different lesion locations, such as 

peripheral zone (PZ) and transition zone (TZ), for the classification performance using the same 

model (Figure 5-4). In PZ, we found that our textured-DL achieved an AUC of 0.88, higher than 

PI-RADS (AUC of 0.72; p<0.01). The specificity of textured-DL (0.78) was also significantly 

higher than that of PI-RADS (p<0.01). In TZ, textured-DL achieved a higher AUC than that of the 

PI-RADS with higher sensitivity and similar specificity.  
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Figure 5-4 Comparisons of ROC, sensitivity, and specificity between PI-RADS and textured-DL in the 

tumor lesions on different prostate zones, transition, and peripheral zones. 

 
5.3.3   Classification Performance for Solidary and Multi-focal Tumors 

Figure 5-5 shows another secondary analysis with different tumor types, solitary and multi-

focal tumors. In solitary tumors, textured-DL demonstrated a significantly higher AUC and 

specificity than those of PI-RADS (p<0.01 and p=0.01). Similarly, in multi-focal tumors, we 

observed that the specificity of textured-DL was significantly higher than those of PI-RADS 

(p=0.04). However, the sensitivity was similar between PI-RADS and textured-DL.  
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Figure 5-5 Comparisons of ROC, sensitivity, and specificity between PI-RADS and textured-DL in the 

solitary and multi-focal tumors. 

 

5.3.4   Classification Performance for Tumors of different PI-RADS categories 

We also separately compared classification performance between PI-RADS and textured-

DL in PI-RADS category 3, 4, and 5 lesions (Table 5-2). We found that the proposed textured-DL 

achieved consistent classification performance in AUC, sensitivities, and specificities across 

different PI-RADS-categorized lesions. There exist 13 csPCa lesions in PI-RADS 3 lesions, which 

would have been missed if a threshold of PI-RADS 4 is used for the classification of csPCa (PI-

RADS≥4), while 11 of those correctly classified by textured-DL. Also, there exist 28 non-csPCa 

in PI-RADS 4 lesions, which would have included as positive lesions if a threshold of PI-RADS 4 
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is used, and 20 of those were correctly classified by the proposed textured-DL. Four out of six 

non-csPCa lesions with PI-RADS 5 were also correctly classified by textured-DL.  

 

Table 5-2 Classification performance of textured-DL on the tumor lesions with different PI-RADS 

categories. 

Lesion 
Type 

csPCa 
(%) 

Non 
csPCa 
(%) 

Method AUC 
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

PI-RADS 3 13 
(30)  

30 
(70)  

Textured-DL 0.81 
(0.68-0.94) 

0.85 
(0.65-1) 

0.73 
(0.58-0.89) 

PI-RADS 4 31 
(53)  

28 
(47)  

Textured-DL 0.84 
(0.74-0.94) 

0.87 
(0.75-0.99) 

0.71 
(0.55-0.88) 

PI-RADS 5 
34 

(85) 
6 

(15) Textured-DL 
0.84 

(0.66-1) 
0.88  

(0.77-0.99) 
0.67  

(0.29-1) 

 

5.3.5   Classification Performance for Index Tumors 

We further carried out the sub-analysis with the index tumor lesions only (Table 5-3). The 

index tumors were divided into three groups according to the PSA values (PSA < 4, 4 ≤  PSA < 

10, and 10 ≤  PSA). For the group of index tumors with PSA<10 (i.e., low-to-average risk group), 

textured-DL achieved a higher sensitivity in detecting csPCa than PI-RADS, while textured-DL 

achieved the perfect specificity for the group of index tumors with PSA ≥ 4 (i.e., average-to-high 

risk groups).   

 

Table 5-3 Performance comparison between PI-RADS and textured-DL on the classification of the index 

tumors with different PSA levels. 
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Tumor 

Type 

csPCa 

(%) 

Non 

csPCa 

(%) 

Method 
AUC 

(95% CI) 

p- 

value 

Sensitivity 

(95% CI) 

p- 

value 

Specificity 

(95% CI) 

p-

value 

All 

index 

77 

(84) 
 

15 

(16) 
 

PI-RADS 
0.65  

(0.52-0.78) 
0.32 

 

0.83  

(0.75-0.91) 
0.25 

 

0.27  

(0.04-0.49) 
0.18 

 Textured-

DL 

0.73  

(0.59-0.88) 

0.90 

(0.83-0.96) 

0.47  

(0.21-0.72) 

Index with 

PSA<4 

10 

(77) 
 

3 

(23) 
 

PI-RADS 
0.72  

(0.41-1) 
0.06 

 

0.7  

(0.42-0.98) 
0.32 

 

0.67  

(0.13-1) 
>0.99 

 Textured-

DL 

0.87  

(0.58-1) 

0.9  

(0.71-1) 

0.67  

(0.13-1) 

Index with 

4	≤PSA<10 

53 

(87) 
 

8 

(13) 
 

PI-RADS 
0.56  

(0.37-0.75) 
0.35 

 

0.87  

(0.78-0.96) 
0.03 

 

0.12  

(0-0.35) 
0.56 

 Textured-

DL 

0.43  

(0.20-0.65) 

0.98  

(0.94-1) 

0.25  

(0-0.55) 

Index with 

PSA≥10 

14 

(78) 

4 

(22) 

PI-RADS 
0.79  

(0.58-0.99) 
0.17 

0.79  

(0.57-1) 
>0.99 

0.25  

(0-0.67) 
0.08 

Textured-

DL 

0.93  

(0.80-1) 

0.79  

(0.31-0.83) 
1 (1-1) 

 

5.4   Discussion 

A novel textured-DL method for the automated prostate cancer classification was proposed 

by combining CNN with the texture analysis30. Compared with conventional image texture 

analysis and deep learning, Textured-DL utilized the spatial arrangement of intensities in the MRI 

images without handcrafted feature engineering, which can be used to describe the tumor 

heterogeneity. Furthermore, textured-DL may alleviate the requirement of large datasets for 
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training as CNN was trained on predefined textured-based features. Compared to conventional 

CNN and PI-RADS-based classification, textured-DL achieved significantly higher AUC than 

both methods. 

The training and testing for the model were based on the patient cohort who underwent 3T 

mpMRI prior to radical proctectomy. Although the testing dataset contained the similarly 

distributed lesions (78 csPCa vs. 64 non-csPCa), the results may not be directly translatable for 

the biopsy planning patient cohort, including biopsy naïve and prior negative biopsy patients, due 

to lower rates of csPCa. However, our findings in the PI-RADS-based classification were 

consistent with the previous multi-center, multi-reader study120, and the proposed model 

consistently achieved higher sensitivities and specificities than the PI-RADS-based classification. 

We believe that the proposed model can be adopted as an additional means to reduce the 

overdiagnosis of csPCa in conjunction with radiologists. Future studies, including the biopsy 

planning cohort for model testing, will further solidify our findings.   

The clinical significance of PI-RADS 3 lesions is considered to be equivocal. The range of 

positive biopsy rates in PI-RADS 3 lesions is between 15% and 35%101,102. Our method achieved 

the AUC of 0.81 in differentiating csPCa and non-csPCa among PI-RADS 3 lesions. Of 30 non-

csPCa with PI-RADS category 3, 73% were correctly classified by textured-DL, and of 13 csPCa 

lesions with PI-RADS category 3, 85% were correctly classified by textured-DL. There are still 

no standardized strategies to predict the risks associated with PI-RADS 3 lesions, but PSA density 

(PSAD)102 is commonly used as the reference. Table 5-4 includes a comparison between PSAD-

based classification and textured-DL. The textured-DL model performed better than the PSAD-

based predictions among PI-RADS 3 lesions by having a high negative predictive value (NPV) 

while maintaining a high positive predictive value (PPV). This indicated that textured-DL could 
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potentially serve as an additional tool to predict risks associated with PI-RADS 3 lesions and 

further to reduce unnecessary biopsies for PI-RADS 3 lesions.  

For feature engineering-based workflow, handcrafted radiomic features such as grey-level 

co-occurrence matrix-based texture features (correlation, contrast, energy, and homogeneity) were 

firstly extracted. Afterwards, the hand-crafted features were input to the machine learning 

algorithms such as random forest (RF). However, the handcrafted features do not necessarily 

represent the whole of the texture within the GLCM. For the textured CNN workflow, instead of 

computing the hand-crafted features from GLCM, we directly input the GLCM to the CNN. 

Therefore, textured CNN can get rid of the designing process of handcrafted texture features and, 

meanwhile, could potentially probe more into the texture within the GLCM.  

Deep learning has already been used in the prostate cancer classification. For example, 

Zhong et.al110 and Yuan.et al121 proposed a transfer deep learning workflow for the prostate cancer 

classification. For these existing CNN workflows, raw image patches must be resized to a fixed 

size before feeding them into CNN, which could compromise the scale information of the tumors. 

However, within our proposed textured CNN, GLCM, which is a fix-sized matrix, was input to 

the CNN. In addition, texture describes the tumor heterogeneity, which can be the primary feature 

of csPCa. Texture information from the GLCM provided the prior knowledge of prostate cancer 

to the whole workflow.  

This study included a few limitations: 1) the patient cohort was based on an MRI dataset 

at a single academic center. In the future, model evaluation using multi-center MRI datasets can 

be conducted to test the generalizability of the proposed model. 2) Our study included T2w and 

ADC for the model. The inclusion of other MRI sequences/components, such as high b-value DWI, 

and dynamic contrast-enhanced (DCE) MRI, into the model is expected to further improve the 
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prostate cancer classification in the future. 3) The number of patients in the independent testing 

dataset was not large, particularly for all sub-analyses. Although we observed interesting findings 

in different tumor locations, types, and PI-RADS categories, larger testing datasets would provide 

further detailed comparisons between PI-RADS and textured-DL. 4) Our study mainly focused on 

showing the benefit of using a combination of GLCM-based texture information and CNN in the 

classification of prostate cancer. We believe that other clinical and demographic information, such 

as PSA, PSA density, age, location of the lesion, patients' inheritance, BMI, etc., can be combined 

with our model to improve the performance in the future.  

 

5.5   Conclusion 

This Chapter proposed a novel texture-based deep learning (textured-DL) method for the 

automated prostate cancer classification using 3T mpMRI. The proposed textured-DL 

outperformed PI-RADS in the classification of clinically significant prostate cancer. The textured-

DL showed superior performance in specificities for the PZ and solitary tumors, compared with 

PI-RADS-based classification, and demonstrated a sensitivity of 0.85 and a specificity of 0.73 

among the PI-RADS 3 lesions.   
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Chapter 6: Deep Learning Enables Prostate MRI 

Segmentation: A Large Cohort Evaluation with Inter-rater 

Variability Analysis 

 

 

This chapter describes a large patient cohort evaluation of a previously deep learning 

method for automated whole prostate gland segmentation. The deep learning method evaluated is 

primarily based on the one from Chapter 4 but with one improvement by adding the coronal-view 

segmentation assistance. The large cohort evaluation includes a qualitative, a quantitative 

assessment, and a volume measurement evaluation. 

 

6.1   Introduction 

Whole-prostate gland (WPG) segmentation plays an important role in prostate volume 

measurement, biopsy, and surgical planning59. Magnetic resonance imaging (MRI)-targeted 

transrectal ultrasound fusion (MRI-fusion) biopsy has shown increased detection of clinically 

significant PCa and reduced identification of clinically insignificant PCa60, where the WPG 

segmentation is critical to enable the MRI-fusion biopsy2. Also, prostate volume measurement via 

WPG segmentation can be used to quantify the progression of benign prostatic hyperplasia 59 and 

to assist surgical planning61.  

Manual segmentation of WPG is time-consuming and laborious and commonly suffers 

from inter-rater variability3, making it inadequate for large-scale applications19. Deep learning (DL) 

62–65 has increasingly been utilized for the automatic segmentation of WPG. Zhu et al.66 proposed 
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a deeply supervised convolutional neural network (CNN) using the convolutional information to 

segment the prostate from MR images. Cheng et al.63 developed a DL model with holistically 

nested networks for prostate segmentation on MRI. Jia et al.67 proposed an atlas registration and 

ensemble deep CNN-based prostate segmentation. In addition, attentive DL68 models were 

introduced to enhance DL by paying attention to the particular regions of interest in an adaptive 

way and thus, have achieved better segmentation performance than other DL-based models. 

However, to the best of our knowledge, the evaluation of these methods was currently limited by 

relatively small sample size, ranging from tens to hundreds of MRI scans. It is relatively expensive 

to create large, continuous samples with manual segmentation of WPG, which limits the ability to 

test the DL models in a clinical setting. 

In this paper, we evaluated a previously developed DL-based automatic segmentation 

model, deep attentive neural network (DANN)68, using a large, continuous cohort of prostate 3T 

MRI scans acquired between 2016 and 2020. The WPG segmentation by DANN was evaluated 

both quantitatively and qualitatively. The quantitative evaluation was performed by using 

independent testing set with manual segmentation as a ground-truth on a small dataset (n=100). 

The dice similarity coefficient (DSC)69 was used to measure the segmentation performance, 

compared with other baseline DL methods. For qualitative evaluation, the segmentation 

performance was evaluated by two abdominal radiologists independently via visual grading since 

the ground-truth manual segmentation was not available for the large cohort (n=3,210). Inter-rater 

agreement between the two radiologists was evaluated to check the consistency of the visual 

grading. We further investigated the segmentation on different anatomical locations (i.e., apex, 

midgland, and base) as a secondary analysis. Finally, we conducted the volume measurement using 
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DANN-based segmentation on a small cohort (n=50) (DANN-enabled volume measurement) and 

compared it with the manual volume measurement. 

 

6.2   Materials and methods 

6.2.1   MRI Datasets 

With approval from the institutional review board (IRB), this retrospective study was 

carried out in compliance with the United States Health Insurance Portability and Accountability 

Act (HIPAA) of 1996. After excluding MRI scans with severe artifacts and patients with prior 

surgery history and Foley catheter, a total of 3,695 MRI scans, acquired on 3 T scanners (Skyra, 

Prisma, and Vida, Siemens Healthineers, Erlangen, Germany), from January of 2016 to August of 

2020, were included in the study. Axial and coronal T2-weighted (T2W) Turbo spin-echo (TSE) 

images were used. Table 6-1 shows the characteristics of the T2W MRI scan in the study.  

Out of 3,695 3T MRI scans, 335 MRI scans (9%) were used as a training set, and the 

remaining 3,360 (91%) MRI scans were used as a testing set. Training and testing datasets were 

randomly chosen from the whole dataset. The testing set included a qualitative evaluation set 

(n=3,210), a quantitative evaluation set (n=100), and a volume measurement evaluation set (n=50). 

Table 5-2 shows the data characteristics for each dataset. Training, quantitative, and volume 

measurement evaluation sets required manual prostate contours as the segmentation reference 

standard. The manual annotation was prepared by an abdominal radiologist (Q.M.) with more than 

five years of experience in the interpretation of prostate MRI. In the training set, prostate contours 

were drawn on all axial T2W images from all MRI scans, and on four mid-coronal T2W images 

(8th to 11th out of twenty slices) from a subset of 100 MRI scans. In the quantitative and volume 

measurement evaluation sets, prostate contours were drawn on all axial T2W images. 
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Table 6-1 T2-weighted TSE MRI sequence parameters in the study. 

View Axial Coronal 

Matrix size 320	 × 320 320	 × 320 

Flip angle 160o 147o 

Resolution 0.625		 × 0.625	 × 	3.6 0.625		 × 0.625	 × 	3.6 

Field of View (mm2) 200	 × 200 200	 × 200 

Repetition Time (ms) 3000-7480 2880-7200 

Echo Time (ms) 97-112 97-109 

Number of slices 20 20 

Scan Time (s) 200 200 

ms: Millisecond; s: second; mm: millimeter; 

 

 

Table 6-2 Data characteristics in the training, qualitative, and quantitative evaluation. 

 
Training 

Dataset 

Qualitative 

Evaluation 

Dataset 

Quantitative 

Evaluation 

Dataset 

Volume 

Evaluation 

Dataset 

Number of MRI scans 335 3,210 100 50 

Number of patients with 

Endo-Rectal Coil 
3 84 0 0 

MRI scans 

with different 

vendors 

Skyra 295 2,806 93 

 

45 
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Prisma 10 145 4 
 

3 

Vida 30 259 3 2 

 

 

6.2.2   DL-based Whole Prostate Gland Segmentation Model  

Figure 6-1 shows the overall workflow of the automatic WPG segmentation with DANN68. 

We added the segmentation on the coronal plane to assist the selection of axial slices, reducing the 

inference time of segmentation on the axial plane. During the testing, the workflow went through 

the following steps. First, a DANNcor, responsible for segmenting coronal slices, was adopted to 

segment the prostate on the two-middle coronal images (9th and 10th slices out of twenty slices) for 

each MRI scan in the entire testing set. The segmented coronal images were used to automatically 

select the axial T2W images that contained the prostate gland. This would provide proper through-

plane coverage of the prostate in the axial slices. Next, DANNax was used to perform the WPG 

segmentation on the selected axial T2W images for each MRI scan in all the testing sets.  
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Figure 6-1 The overall workflow of the automatic WPG segmentation with DANN. Both axial and coronal 

T2W images were used as input, where the coronal images were used to assist the selection of certain axial 

images containing the prostate gland. DANNcor was firstly performed on the two middle coronal images, 

indicated by images with the red border. Next, green lines selected by the prostate segmentation on the 

coronal images were used to determine the selection of axial slices (images with green borders). Once the 

axial images were selected, DANNax was performed on the axial MRI slices for the segmentation of WPG. 

 

Both DANNax and DANNcor were trained independently using the training set (n=335). 

First, a subset of the training data (n=100) was used for training of DANNcor, and four-middle 

coronal slices (8th to 11th slices out of twenty slices) were used to make use of as many samples 

as possible. Once the initial training of DANNcor was finished, two middle coronal slices were 

used as input to DANNcor for the rest of the training data. The segmented coronal slices by 

DANNcor were used to select certain axial slices, and DANNax was trained using all the selected 

axial slices in the entire training set. Training and inferencing were conducted on a desktop 

computer with a 64-Linux system with 4 Titan Xp GPU of 32 GB GDDR5 RAM. All the networks 

were trained with stochastic gradient descent as the optimizer, with binary cross-entropy as the 

loss function. Pytorch was used to implement all the DL networks. The models were initially 

trained using 80% of the training dataset, and the rest of the training dataset was used as the 

validation dataset. After the optimal hypermeters were found, we re-trained the models using the 

whole training dataset. The learning rate was initially set to 2.5e-3. All the networks were trained 

for 100 epochs with batch size 12.  

6.2.3   Evaluation of Segmentation Performance 

 

Table 6-3 Description of each visual grade for qualitative segmentation evaluation. 
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Score Visual scoring description 

3 

The segmentation is excellent. The vast majority (>90%) of the prostate region has been 

correctly segmented and the percentage of prostate slices with the failure segmentation is 

less than 10%. 

2 
The segmentation is acceptable. Most of the region (>70%) is correctly segmented, and the 

percentage of prostate slices that the method fails to segment is less than 30%. 

1 

The segmentation is unacceptable. More than 30% of the prostate region has been not 

correctly segmented or wrongly segmented, and the percentage of prostate slices that the 

method fails to segment is larger than 30%. 

 

We adopted the visual grading, similar to the literature70, to qualitatively evaluate the WPG 

segmentation. Two abdominal radiologists (M.Q. and C.S; each has over five years of experience 

in prostate MRI interpretation) assigned a visual grade, ranging from 1 to 3, to evaluate the 

segmentation performance, focusing on the whole prostate and sub-portions of the prostate (e.g., 

apex, midgland, and base). 1, 2, and 3 indicate unacceptable, acceptable, and excellent 

segmentation performance, respectively. Table 3 shows the details when assigning the visual grade. 

Typical examples associated with each visual grade are shown in Figure 6-2. The readers 

independently ranked the segmentation quality. In addition, inter-rater reliability was assessed. To 

further investigate the segmentation at sub-portions of the prostate, we performed the sub-analysis 

for MRI scans without excellent segmentation performance agreed by both radiologists. Also, the 

segmentation performance for MRI scans with and without endorectal coil (ERC) was compared. 

3D DSC5 was also used to quantitatively evaluate and compare the segmentation 

performance in the quantitative evaluation set (n=100). The manual segmentations (M) were 

prepared by the radiologist on all axial slices as ground truths. DSC measures the overlapping 

between M and method-based (N) segmentation of the WPG volume and can be formulated as:   
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                        𝐷𝑆𝐶 = (|&∩#|
|&|∪|#|

                                                                  (5-1)   

  

where ∩ and ∪ indicate the intersection and union, respectively.  

We further evaluated the performance of DANN-enabled volume measurements. After the 

radiologist manually drew the WPG contour on all axial slices, Pyradiomics71 was used to calculate 

the prostate volume in the volume measurement evaluation set (n=50). The prostate volume from 

the DANN-based segmentation was compared with the manual volume measurement. The Bland-

Altman plot72 was used to analyze the agreement between manual and DANN-enabled WPG 

volume measurements. 



 84 

 

Figure 6-2 Typical examples for each visual grade. Row A, B, and C represent two segmentation examples 

with visual grades 3 (excellent), 2 (acceptable), and 1 (unacceptable), respectively. Slice 1-20 represents 

MRI slices from superior to inferior. Regions encircled by organ boundary are the prostate whole gland. 
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6.2.4   Statistical Analysis 

Mean and standard deviation were used to describe the distribution of DSC. The 

quantitative segmentation performance difference between the DANN and the baselines was 

compared using a paired sample t-test73. P values < 0.05 were considered statistically significant. 

Inter-rater reliability between two radiologists was measured by using the κ statistic74.  The 

relationship between the value of κ and inter-rater reliability is listed as below, κ<0: pool 

agreement; 0<κ<0.2: slight agreement; 0.21<κ<0.4: fair agreement; 0.41<κ<0.6: moderate 

agreement; 0.61<κ<0.8: substantial agreement; 0.81<κ<1.0: almost perfect agreement. 

 

6.3   Result  

6.3.1   Qualitative Evaluation of WPG Segmentation 

Figure 6-3 shows the proportion of acceptable or excellent segmentation quality in all MRI 

scans on the qualitative evaluation set at the whole prostate, or each sub-portion (apex, midgland, 

or base) of the prostate. The DANN method exhibited an acceptable or excellent segmentation 

performance in more than 96% of the MRI scans on the whole prostate or each sub-portion of the 

prostate. The segmentation at the midgland portion had achieved the best segmentation 

performance, while performed the worst at the base portion. 
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Figure 6-3 The proportion of segmentation with acceptable or excellent performance evaluated by 

radiologists 1 and 2 among all MRI scans (n=3210). Kappa statistics between the two readers were also 

provided in the figure. 

 

For WPG segmentation, 97.9% (n=3,141) and 93.2% (n=2,992) of the MRI scans were 

graded as having acceptable or excellent segmentation performance. Table 6-4 includes the 

confusion matrix to show the inter-rater variability of the visual grading. Overall, two readers 

reached a substantial consensus on the visual grading in 95.8% of the patients (κ =0.74). When 

readers differed on the grading, the discrepancy in grading was less than one. 94.6% of 

segmentation results were unanimously considered as acceptable or excellent. Moreover, 91.5% 

of the MRI scans (n=2,861) were graded as having excellent segmentation performance according 

to the two radiologists. Unacceptable segmentation performance occurred only in 1.2% of the MRI 

scans (n=39), agreed by the two radiologists.  
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Table 6-4 Confusion matrices between the visual grades assigned by two readers. Kappa coefficient (κ) is 

used to measure the inter-rater variability between the two readers. 

All Reader 2 Kappa (κ) 

 

 

 
Reader 1 

Visual grade 1 2 3  

Substantial 

agreement 

(κ =0.75) 

1 47 (1.5) 1 (0.0) 0 (0.0) 

2 22 (0.7) 99 (3.1) 49 (1.5) 

3 0 (0.0) 63 (2.0) 2,929 (91.3) 

 

We conducted the sub-analysis related to each sub-portion of the prostate (apex, midgland, 

or base) when the WPG segmentation was not excellent. The MRI scans with excellent 

segmentation agreed by two readers were excluded (n=2,929), and the rest of the MRI scans were 

used for the analysis (n=281). Figure 6-4 shows the confusion matrices of each sub-portion of the 

prostate on the rest of the MRI scans. 46.3% of the MRI scans achieved the acceptable (or better) 

segmentation quality at the base slices, while 94.3% and 83.3% of the MRI scans achieved the 

acceptable (or better) segmentation quality at the midgland and apex slices. 

 

Figure 6-4 Confusion matrices of the prostate base, mid-gland, and apex for the cases without excellent 

segmentation (n=281). 
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We compared the WPG segmentation quality for the MRI scans with and without ERC75. 

Figure 6-5 shows the confusion matrices of the visual grades of segmentation on MRI scans with 

and without ERC. There were substantial agreements (κ =0.64 and 0.85) between the two 

radiologists on WPG segmentation of MRI scans with and without ERC. When considering the 

inter-rater agreement of WPG segmentation, DANN demonstrated acceptable WPG performance 

in more than 95.5% of MRI scans with ERC compared to 84.3% of those without ERC. MRI scans 

with ERC had a larger proportion of unacceptable WPG segmentation compared to those without 

ERC (12.1% vs. 2.2%).  

 

 

Figure 6-5 Confusion matrices of the visual grades of segmentation on MRI scans with and without endo-

rectal coils. Kappa coefficient (κ) is used to measure the inter-rater variability between the two readers.  

 

6.3.2   Quantitative Evaluation of WPG Segmentation 

The quantitative performance of the DANN was compared to the other two baseline 

methods, including Deeplab v3+53 and UNet12. Table 6-5 shows the comparisons of DSCs between 

DANN and the baseline methods. The DANN achieved a DSC of 0.93, which was higher than 

those of Deeplab v3+ and UNet with significant differences (both p values < 0.05).  
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Table 6-5 Quantitative DSC comparisons with baseline methods 

Methods DSC 

Proposed Method 0.93±0.02 

Deeplab v3+ 
0.92±0.02 

P<0.05 

UNet 
0.91±0.03 

P<0.05 

 

 

6.3.3   Evaluation of Volume Measurement 

Figure 6-6 shows the agreement between manual and DANN-enabled volume 

measurements in the Bland-Altman plot. The mean difference between the two-volume 

measurements was calculated as an estimated bias. Standard deviation (SD) of the differences and 

95% limits of agreement (average difference ± 1.96 SD) were calculated to assess the random 

fluctuations around this mean. 48 out of 50 cases (96%) had the volume measurement differences 

within 95% limits of agreement, indicating that the manual and DANN-enabled volume 

measurements can be potentially used interchangeably.  

 

Table 6-6 Inference time estimation and DSCs obtained with and without coronal segmentation assistance 

 
Without coronal 

segmentation assistance 

With coronal 

segmentation assistance 

Overall inference time estimation in the 

qualitative evaluation 
16.4 minutes (67,775) 12.6 minutes (45,713) 
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DSCs obtained in the quantitative 

evaluation 
0.93 0.93 

( ) indicates the total amount of MRI slices the method needed to segment.  

 

6.4   Discussion 

A deep attentive neural network68, DANN, for the automatic WPG segmentation was 

evaluated on a large, continuous patient cohort. In the qualitative evaluation, DANN demonstrated 

that the segmentation quality is either acceptable or excellent in most cases. Two radiologists 

exhibited a substantial agreement for the qualitative evaluation. In the quantitative evaluation, 

DANN exhibited a significantly higher DSC than the baseline methods, such as UNet and Deeplab 

v3+. Also, 96% of the testing cohort had volume measurement differences within 95% limits of 

agreement.  

We found that DANN demonstrated worse segmentation performance at the prostate base 

than at the apex and midgland slices. This may be due to the fact that the anatomical structure of 

the prostate base is relatively more complex than other prostate portions. The prostate base is in 

continuity with the bladder and seminal vesicles, and thus the boundary may contain partial volume 

effects and mild movement artifacts.  
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Figure 6-6 Bland–Altman plot to show the agreement between manual and DANN-enabled WPG volume 

measurements. 

 

We observed that the segmentation performance was somewhat limited when MRI scans 

were acquired with an ERC. We believe that this may be because there were only three MRI scans 

with ERC in the training dataset. A large training data with ERC may allow the model to learn 

representative features related to the prostate MRI with ERC. In addition, images often exhibit 

large intensity variation compared to the MRI scans without ERC as ERC is close to the prostate. 

This may require including an even larger training dataset to account for these intensity variations 

than those without ERC. 

We refined DANN by adding the coronal segmentation to assist the selection of axial slices 

for WPG segmentation. With assistance from the coronal segmentation, the axial model conducted 

the segmentation only on the selected axial slices instead of applying it to all axial slices, which 

reduces the inference time. Table 6-6 contains the inference time between the segmentation with 

and without coronal segmentation. The total inference time in a combination of coronal and axial 
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slices was 25% less than the inference time without assisting the selection of axial slices (12.6 min 

vs. 16.4 min). In addition, we observed that DSC was not different when adding the coronal 

segmentation in the quantitative evaluation.  

Compared with quantitative evaluation, qualitative evaluation includes unique 

characteristics and benefits. The DSC-based evaluation often overlooks the segmentation 

performance on small regions when they were combined with larger regions. Prostate at apex or 

base slices is relatively smaller than the one in the middle, and therefore, the quantitative 

evaluation may not be sensitive enough to illustrate limitations at these locations when 3D DSC is 

used for the evaluation. Also, the DSC-based evaluation is not directly associated with clinical 

implications, while qualitative evaluation categorized the segmentation results based on the quality 

to which segmentation can be acceptable clinically. 

Our study still has a few limitations: 1) the MRI scans in this study were acquired from 

three 3T MRI scanners at a single medical center. Prostate MRI sequence parameters are generally 

well-standardized by the Prostate Imaging–Reporting and Data System (PI-RADS) guidelines15, 

but future studies would include testing DANN at multiple institutions. 2) the inter-rater variability 

was tested between two radiologists. We will include more radiologists to evaluate comprehensive 

inter-rater variability. 3) large GPU memory was required during the training and testing since 

DANN included the spatial attention mechanism that caused considerable computational 

complexity. In the future, we will explore the criss-cross attention module76 that uses the 

contextual information of all the pixels on the criss-cross path for each pixel, which has shown the 

potential to reduce the GPU memory.  
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6.5   Conclusion 

The proposed deep learning-based prostate segmentation (DANN) could generate 

segmentation of the prostate with sufficient quality in a consistent manner when a large, continuous 

cohort of prostate MRI scans was used for evaluation. The qualitative evaluation conducted by 

two abdominal radiologists showed that 95% of the segmentation results were either acceptable or 

excellent with a great inter-rater agreement. In the quantitative evaluation, DANN was superior to 

the state-of-art deep learning methods, and the difference between manual and DANN-enabled 

volume measurements was subtle in most cases. The method has a great potential to serve as a tool 

to assist prostate volume measurements, and biopsy and surgical planning in a clinically relevant 

setting.   
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Chapter 7: Evaluation of Spatial Attentive Deep Learning for 

Automated Placental Segmentation on Longitudinal MRI   

 

 

To investigate the deep learning’s generalizability for other biomedical image applications 

except prostate segmentation, this chapter describes an end-to-end deep learning-based 

segmentation method, spatial attention deep learning method (SADL), for automated placental 

segmentation on the longitudinal MRI. SADL improves the deep learning method from Chapter 4 

by adding the criss-cross spatial attention that could relieve the issue of large GPU memory 

required for conventional spatial attention. SADL-based automated volume measurement is also 

evaluated by comparing it with the manual volume measurement.  

 

 

 

7.1   Introduction 

The placenta is a critical intrauterine organ necessary for the maintenance of pregnancy 77. 

Abnormal placental development can adversely affect maternal health and interfere with nutrient 

and oxygen transport to the developing fetus. Collectively, aberrant placental development 

contributes toward perinatal morbidity and mortality through the development of preeclampsia 

(PE) in the mother with or without fetal growth restriction (FGR)77,78. Magnetic resonance imaging 

(MRI), a reliable imaging modality that offers significantly higher resolution than ultrasound, has 

previously been studied in the detection of placental dysfunction related to placental volume and 
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perfusion78,79. Segmentation of the placenta by MRI is the critical first step required toward 

accuracy in the detection of volumetric abnormalities that can affect maternal and fetal health3,4. 

Manual segmentation of the placenta involves comprehensive delineation of multiple 2D MRI 

placental slices that contribute toward the ultimate construction of the entire placenta 

volumetrically. This process is time-consuming and is wrought with significant inter-and intra-

individual reader variability6. Automated segmentation enables the process of rapid tissue 

segmentation and overcomes subjectivity offered by the inter- and intra-user variability observed 

with manual segmentation.   

In recent years, machine learning and deep learning (DL) have demonstrated superior 

capabilities in the medical image segmentation5,12,68,77,80–87. For example, Wang et al.46 developed 

an online learning-based placental segmentation method in MRI images88. Alansary et al.86 

implemented a 3D multi-scale convolutional neural network (CNN) with 3D dense conditional 

random fields for placental segmentation. Wang et al.80,87 developed a DL-based interactive 

framework that integrated user interaction with CNN for placenta MRI segmentation. Han et al.81 

and Shahedi et.al77 evaluated the U-Net variants for the placental segmentation in MRI. However, 

these studies were either evaluated in a single and late gestational age (GA) or incapable of 

providing fully automated workflows for placental segmentation. The placenta is constantly 

evolving and growing throughout pregnancy. An automated segmentation model working in the 

case of late gestation pregnancy MRI may not transfer effectively for use during early pregnancy 

MRI. In addition, a single placental MRI scan could comprise a multitude of image slices, that 

have to be appropriately managed in the proper sequential order. Manual operations and 

interactions such as selecting image slices containing the placenta could contribute toward 

significant subjectivity and increase the cognitive workload on experts.  
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In this study, we aimed to evaluate an end-to-end, fully automated segmentation workflow, 

spatial attention deep learning method (SADL), for placental segmentation using MRIs obtained 

during early pregnancy. Two temporal measurements were used (14-18 weeks and 19-24 weeks 

of gestation), and the placenta segmentation with SADL was evaluated by comparing the 

segmentation performance with the state-of-the-art DL-based method, U-Net. We further 

compared placenta volume measurements obtained by manual and automated volume assessments. 

 

7.2   Materials and Methods 

7.2.1   Subject Population and MRI Dataset 

This study was carried out according to the United States Health Insurance Portability and 

Accountability Act (HIPAA) of 1996 with approval from the institutional review board (IRB), and 

all subjects provided written informed consent. We approached all eligible pregnant women 

entering prenatal care in the first trimester of pregnancy at the local antenatal clinic without pre-

selection. Inclusion criteria were a gestational age of fewer than 14 weeks, age more than 18 years 

old, pregnancy with a single fetus, the absence of fetal chromosomal or structural abnormalities, 

no treatment with aspirin, heparin, or antihypertensive drugs before enrollment, the ability to 

provide consent, a non-smoker, and planning to deliver at the same local institution. Exclusion 

criteria included abortion (spontaneous or planned termination), loss of follow-up, withdrawal 

from the study, and a history of diabetes mellitus. A total of 154 pregnant women who completed 

two MRI scans during the second trimester were recruited between 2016 and 2019. The 

longitudinal MRI scans were acquired at 14-18 weeks (first MRI) and 19 to 24 weeks (second 

MRI) gestational age. Gestational age was confirmed by a dating ultrasound scan in the first 

trimester of pregnancy. The summary of the study subjects’ characteristics is shown in Table 7-1.  



 97 

 

Table 7-1 Summary of the characteristics of the subjects with pregnancies. 

 Total Training Validation Testing 

No. of Patients 154 108 15 31 

Age, yr. (IQR) 
32.91 

(30-35)2 

33 

(30-35) 

33 

(30-35) 

32 

(30-34) 

Weight, kg. (IQR) 
67.2 

(58.5-73.0) 

67.1 

(58.3-72.7) 

67.0 

(58.3-72.1) 

67.5 

(59.1-74.5) 

GA3 at the first MRI, weeks (IQR) 
15.7 

(15.0-16.3) 

15.6 

(14.9-16.3) 

15.8 

(15.3-16.5) 

15.8 

(15.1-16.0) 

GA at the second MRI, weeks (IQR) 
20.7 

(19.9-21.3) 

20.7 

(19.9-21.3) 

20.6 

(19.9-20.8) 

20.9 

(20.1-21.3) 

MRI scans 
No. of first MRIs 154 108 15 31 

No. of second MRIs 154 108 15 31 

No. of MRI slices 

 

42,553 

 

29,896 4,162 8,495 

1Mean; 2Interquartile range; 3Gestational age 

 
 

A T2-weighted Half-Fourier Single Shot Turbo Spin Echo (T2 HASTE)89 sequence was 

used to acquire placental MRI on one of the two 3.0 T MRI scanners (Prisma and Skyra; Siemens 

Healthcare, Erlangen, Germany). Detailed sequence parameters for T2-HASTE are described in 

Table 7-2. The T2 HASTE MRI images were acquired in three orthogonal imaging planes (axial, 

sagittal, and coronal). The image analysis was performed using the open-source image analysis 

software OsiriX MD software package (Pixmeo SARL, Geneva, Switzerland). 3D regions of 

interest (ROIs) were first manually drawn in each imaging plane to cover the entire placenta as 
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ground truth. A clinical fellow supervised by the MRI scientist manually defined ROIs on each of 

the T2-HASTE MRI slices. The clinical fellow was also supervised by an obstetrician-

gynecologist who is a specialist in maternal and fetal medicine whenever the placental anatomy 

was considered challenging to segment. Figure 7-1 shows a representative example of a placental 

MRI image with manual placental segmentation in the three planes. The placenta volumes 

measured by three orthogonal imaging planes were averaged to minimize potential error due to 

low through-plane resolution on T2 HASTE MRI images.  

 
Table 7-2 Detailed T2-HASTE MRI sequence parameters. 

Parameter Value 

TE/TR (msec) 92 / 3000 

Flip Angle (degree) 150 

Bandwidth (Hz/pixel) 390 

Resolution (mmx×mmy) 0.976 × 0.976 

Slice Thickness (mm) 5 

Echo Train Length 70 

Matrix (Nx×Ny) 272 × 512 

Field of View (mmx×mmy) 265 × 500 
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Figure 7-1 Representative placental MRI images in three imaging planes at the first MRI at 15.3 weeks 

(left; volume = 119cm3) and second MRI at 21.3 weeks (right; volume = 270cm3). The placenta was 

manually contoured and shown as the green line. 

 
7.2.2   Proposed Spatial Attentive Deep Learning  

The structure of the proposed SADL is shown in Figure 7-2. The whole network is 

comprised of a spatial attentive deep residual network (based on the ResNet50)42 as the encoder, 

a feature pyramid attention module13 to enhance capturing of multi-scaled information, and a naïve 

decoder network to recover spatial resolution. Inside the encoder, the modifications were twofold. 

1) Criss-cross (CC) spatial attention module76 was added at the beginning of the ResNet50, which 

helped the network emphasize areas with more semantic features of the placenta by modeling 

spatial dependent information via the global features. Specifically, each pixel’s response was 

obtained by considering all the pixels so that more importance was adaptively given to pixels with 

more semantic information. 2) MaxPool was removed from the original ResNet50. Several studies5 

have proved that the inclusion of MaxPool compromised image segmentation performance. Next, 

a feature pyramid attention (FPA) network was added after the encoder, thereby furthering the 

enhancement of multi-scaled feature extraction. Finally, a naïve decoder was connected to the FPA 

to recover the spatial resolution. 
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Figure 7-2 An overall structure of the proposed SPDL network. The network consists of 4 sub-networks: a 

spatial attention module, an improved attentive ResNet50, a feature pyramid attention, and a naïve decoder. 

The input and output are a 2D placental MRI slice and a placental segmentation prediction. Aggregation 

and affinity processes were defined in the literature76. 

 
7.2.3   Experimental Setups – Training and Testing 

 All deep learning models were implemented using Pytorch, and the volume was calculated 

using Pyradiomics90. We divided the study cohort into training (n=108; 70%), validation (n=15; 

10%), and testing (n=31; 20%) sets. We used stochastic gradient descent (SGD) as an optimizer 

and a binary cross-entropy as the loss function for the deep learning model training.  The network 

was trained for 200 epochs and the model with the lowest validation loss was selected as the 

optimal model for placenta segmentation. Finally, the optimal model was tested using the testing 

set of MRIs. The image slices in the three views were cropped by a matrix size of 256 × 256 in 

the central region. The bounding box contained all placental structures in the images obtained from 

each view. In-fly data augmentation techniques included random rotations between [−5°, 5°], 



 101 

elastic transformations, random contrast adjustment, and random horizontal flip. We also 

performed the image normalization to reduce skewing. Each placental MRI scan contained three 

imaging planes (axial, coronal, and sagittal). To make the model capable of segmenting placental 

MRI images in different imaging planes (axial, coronal, and sagittal), we included the images from 

all three views to train the model. All slices, including those with and without the placenta, were 

fed into the models to help the network learns the placenta span.  

7.2.4   Evaluation metrics and Statistical Analysis 

3D Dice Similarity Coefficient (DSC)69 was used to measure the segmentation 

performance in the testing set, formulated as:  

 

𝐷𝑆𝐶 = (|@	∩A|
|@	∪A|

																																																																			(7-1) 

 

where A and B are automated and manual segmentation of 3D placental, respectively. DSC of 

each MRI scan was calculated by averaging the DSCs from the three orthogonal imaging planes 

(axial, sagittal, and coronal). We further evaluated the automated volume measurement by SADL, 

compared to the manual volume measurement. The Bland–Altman plot72 was used to analyze the 

agreement between manual and automatic placental volume measurements. The significant 

difference between DSC obtained using SADL and the baseline method was investigated using a 

paired sample t-test at the 95% level of confidence. 

 

7.3   Results 

 Figure 7-3 shows a representative example of automated placenta segmentation by SADL 

and U-Net. Table 7-3 shows the DSC comparison between SADL and U-Net in the testing dataset. 
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In the first and second MRI, SADL achieved the average DSCs of 0.83 ± 0.06 and 0.84 ± 0.05, 

which were significantly higher than those of U-Net (both p-values <0.05). We also found that 

SADL performed similarly between the first and second MRI (0.83 ± 0.06 vs. 0.84 ± 0.05). 

Representative examples of excellent and poor placental segmentation of MRI images using SADL 

are shown in Figure 7-4. 

 

Table 7-3 DSC comparisons between SADL and U-Net in the testing dataset. 

Methods DSC 

SADL 

0.83 ± 0.06 

First MRI Second MRI 

0.83 ± 0.06 0.84 ± 0.05 

U-Net 

DSC 

0.76 ± 0.09 

p<0.05 

First MRI  Second MRI  

0.77 ± 0.08 

p<0.05 

0.76 ± 0.10 

p<0.05 

P values are the comparisons between the SADL and the U-Net. 
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Figure 7-3 Representative example of automated segmentation by SADL and U-Net (blue lines) compared 

to the manual segmentation (red lines) at the first MRI (GA = 15 weeks and 1 day) and the second MRI 

(GA = 19 weeks and 4 days). DSCs are shown below. 
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Figure 7-4 Representative examples of excellent and poor automated placental segmentation at the first 

MRI scan (GA between 14-18 weeks) and the second MRI scan (GA between 14-18 weeks) by the proposed 

method. Red and blue lines are manual and automated segmentation.  

 

Table 7-4 shows the DSC by SADL and U-Net across the three different orthogonal planes. 

At the first MRI, SADL achieved similar DSCs across the three orthogonal imaging planes (0.83, 

0.83, and 0.82 for axial, coronal, and sagittal planes). However, at the second MRI, the SADL 

achieved a DSC of 0.87 ± 0.03 at the axial plane, which was slightly higher than those of other 

imaging planes (0.82 ± 0.10 and 0.83 ± 0.07 for coronal and sagittal planes). In addition, we found 

SADL outperformed U-Net across each imaging plane at either MRIs.  

 

Table 7-4 Segmentation Performance of SADL in the three orthogonal views in the testing dataset. 

Methods  Ax Cor Sag 
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SADL 
First MRI 0.83 ± 0.06 0.83 ± 0.07 0.82 ± 0.12 

Second MRI 0.87 ± 0.03 0.82 ± 0.10 0.83 ± 0.07 

U-Net 

 

First MRI 

0.79 ± 0.06 

p<0.5 

0.78 ± 0.09 

p<0.5 

0.74± 0.15 

p<0.5 

 

Second MRI 

0.84 ± 0.04 

p<0.5 

0.77 ± 0.10 

p<0.5 

0.67 ± 0.25 

p<0.5 

Cor, Sag and Ax are abbreviated for the coronal, sagittal and Axial planes, respectively. 

 

Figure 7-5 shows the agreement between manual and SADL-based automated volume 

measurements in the Bland–Altman plot. The mean difference between the two-volume 

measurements was calculated as an estimated bias. Standard deviation (SD) of the differences, and 

95% limits of agreement (average difference ± 1.96 SD) were calculated to assess the random 

fluctuations around this mean. It turned out that 6 out of 62 MRI scans (9.5%) had the volume 

measurement differences that were beyond the 95% limits of agreement, which supports the 

validity of the automated volume measurements even during early pregnancy to be at least as 

reliable as the manual measurements, and perhaps can be used interchangeably.  
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Figure 7-5 A Bland-Altman plot showing the agreement between the automated and manual placental 

volume measurement. Red and green points represent the first and second MRIs, respectively.  

 

Figure 7-6 shows the linear regression models between the placental volume size and the 

gestational ages for SADL-based automated (Figure 7-6 (A)) and manual (Figure 7-6 (B)) volume 

calculations. Automated and manual volume calculations shared similar linear regression models 

that characterized the relationship between the volume and gestational ages. 
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Figure 7-6 Linear regression models between placental volume and gestational age with the manual (A) 

and automated (B) segmentation. Red and green points are the volume measurements for the first and 

second MRIs. Blue lines represent the linear regression models between placental volume and gestational 

age. 

 

7.3   Discussion 

We developed a novel method, SADL, for automated segmentation of placenta from two 

longitudinal MRI scans, taken at 14-18 and also at 19-24 weeks of gestation. Our results 

demonstrated that accurate contouring of placenta on both MRIs is feasible, which is a prerequisite 

step for detecting abnormalities in this organ. The proposed method is fully automated; thus, the 

results are reproducible. The evaluation results showed that placental volume computed from 

manual and automatic segmentations can be used interchangeably. Our suggested methodology 

outperformed to the most-state-of-the-art methods for placenta delineation from MRI. 
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Our model is equipped with a CC spatial attentive module76 that requires less GPU memory 

than the regular spatial attentive module. In the CC spatial attentive module, the response of each 

pixel only considers the pixels on its criss-cross path rather than all the pixels in the image, which 

reduces a significant amount of GPU memory. CC spatial attentive module could provide an 

alternative to the regular spatial attention module when the GPU memory available is limited.  

Previously some deep learning-based techniques presented for placenta segmentation, 

among them only the method introduced by Han et al.81 employed a U-Net to perform placental 

segmentation on axial, coronal, and sagittal MRI. Although we used a U-Net-based architecture , 

our work is different from theirs in the following aspects: 1) We had a larger data set containing 

MRI of 154 subjects, from which 32 images were used for test; 2) Our model is fully automated 

where the whole images is fed to the network for placental segmentation while in the method 

proposed by Han et al., first user needs to determine the extent of the placenta on MRI; 3) Our 

study conducted a patient-wise segmentation evaluation compared to the image-wise segmentation 

evaluation in their study; 4) Dataset used in our study included MRI scans obtained at two 

gestational ages, which we used to explore the performance of the segmentation model across 

multiple gestational ages; 

Table 7-5 presented the testing result of SADL when different combinations of MRI served 

as the training set. We found that the model trained using both MRIs (first and second) achieved 

better segmentation performance than the one trained only using a single MRI. Since the placenta 

is a temporary human organ that varies substantially during early gestation, using the first and 

second MRI together during the training increased the amount and type of training samples of 

placental MRI, which could have improved the model’s ability to recognize different-sized 

placental regions. The consistent segmentation performance in the MRI at two different early GAs 
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also suggests that the model potentially provide robust segmentation across differing longitudinal 

MRI scans during early gestation. 

 

Table 7-5 Testing of SADL trained with different combinations of MRI 

 Model Trained using the 

first MRI 

Model Trained using the 

second MRI 

Model Trained using both 

MRI 

Testing on the  

first MRI 
0.81 ± 0.06 0.77 ± 0.09 0.83 ± 0.06 

Testing on the 

second MRI 
0.81 ± 0.06 0.76 ± 0.13 0.84 ± 0.05 

 

Our findings indicated that the relationship between volume and gestational age was 

maintained between manual and automated volume calculations. This could benefit future studies 

that require such relationships for the detection of placental volume-related disease models. 

Examples such as gestational diabetes mellitus or ischemic placental disease that lend themselves 

to changes in placental volumes91,92 could perhaps be accurately detected prior to the development 

of clinical and biochemical symptomatology. 

Our study has some limitations. First, the SADL model is a 2D-based deep learning model, 

which does not retain the inter-slice correlation information as in 3D placental images. We will 

explore ways to develop a 3D-based model to better capture the inter-slice correlation information 

in the future. Second, although we used a relatively large dataset, all images were obtained from a 

single medical center, that may introduce population bias to this study. Moreover, the same 

placental MRI protocol with a single vendor was used for acquiring placental MRI images for all 

scans. In the future, datasets from multiple institutions and vendors will be integrated to test the 

generalizability of our developed automated placenta segmentation method. 



 110 

 

7.4   Conclusion 

This Chapter proposed a spatial attentive deep learning network - SADL for automated 

segmentation of the placenta during the second trimester. SADL can automatically segment the 

placenta with high accuracy in placenta MRI at different gestational ages during the second 

trimester. In addition, the difference between automated placental volume measurement with the 

SADL-based segmentation and manual volume measurement was subtle.   
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Chapter 8 Summary and Future Work 

This dissertation covers several improvements for current deep learning-based methods for 

MRI segmentation and classification, particularly in the prostate MRI. Specifically, for prostate 

zonal segmentation, Chapter 3 describes a deep learning model that incorporates the feature 

pyramid attention module to enhance the network’s segmentation abilities, and Chapter 4 describes 

an attentive Bayesian deep learning method to enhance Chapter 3’s result and meanwhile produce 

the uncertainty measurements of the automated segmentation; Chapter 5 describes a texture-based 

deep learning method (Textured-DL), which enriches tumor prior information into the deep 

learning, to improve the prostate cancer classification of the suspicious lesion on MRI; Chapter 6 

describes a large patient cohort evaluation of a deep learning method that was previously 

developed in Chapter 4, for whole prostate gland segmentation; To evaluate the generalizability of 

the deep learning model for other biomedical image applications, Chapter 7 evaluated a deep 

learning-based segmentation method, which was adapted from the deep learning model developed 

in Chapter 4, for the placental segmentation on longitudinal MRI. 

In this chapter, summaries of technical developments covered in this dissertation were 

described in the first part of the chapter and potential future work are discussed in the second part 

of this chapter. 

 

8.1   Summary of Technical Development 

8.1.1   Automatic Prostate Zonal Segmentation Using Fully Convolutional Network with 

Feature Pyramid Attention 

As described in chapter 3, the proposed deep learning method was superior to the typical 

deep learning method - U-Net, for prostate zonal segmentation, in two separate testing datasets. 
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Besides, performance difference between the two datasets for prostate zonal segmentation was 

subtle for the proposed method. In addition, segmentation performance achieved in the middle 

slices was better than in other slices, such as apex-end and base-end slices. The reason could be 

the more conspicuous image features in the middle slices than in other slices. Moreover, the 

proposed deep learning-based model has a comparable segmentation performance to the human 

experts. Nevertheless, only two experts were involved in the performance comparison with the 

model. The study will recruit more experts to acquire more robust comparisons. 

 

8.1.2   Exploring Uncertainty Measures in Bayesian Deep Attentive Neural Networks for 

Prostate Zonal Segmentation 

As described in chapter 4, the proposed attentive Bayesian deep learning can automatically 

produce the prostate zonal segmentation with the uncertainty measurement. For the prostate zonal 

segmentation, the proposed method is superior to the state-of-art methods on the prostate zonal 

segmentation including the method in the Chapter 3. For the average uncertainty measurement at 

the three prostate locations (apex, middle, and base slices), zonal boundaries exhibit higher 

segmentation uncertainties than interior areas. Organ boundaries are usually challenging to define 

precisely due to the partial volume effects, possibly leading to inconsistent manual annotations 

and higher segmentation uncertainty. Also, the model has the highest uncertainties at the 

intersection between the prostate zones. The overall uncertainties by the Bayesian model 

demonstrated different uncertainties between prostate zones at three prostate locations (apex, 

middle and base), which was consistent with the actual model performance. 

8.1.3   Textured-Based Deep Learning in Prostate Cancer Classification with 3T 

Multiparametric MRI: Comparison with PI-RADS-Based Classification 
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As described in Chapter 5, the proposed texture-based deep learning model (Textured-DL) 

outperformed the radiologist-based classification, radiomics texture-based machine learning, and 

conventional deep learning methods. In addition, Textured-DL demonstrated a better classification 

performance for the PZ tumors than the TZ tumors. Also, Textured-DL achieved better 

classification performance for lesions with PI-RADS scores of 4 or 5 than those with a PI-RADS 

score of 3. The superior classification performance of Textured-DL over PSAD-based predictions 

among PI-RADS 3 lesions indicated that Textured-DL could potentially serve as an additional tool 

to predict risks associated with PI-RADS 3 lesions and further reduce unnecessary biopsies for 

these lesions.  

8.1.4   Deep Learning Enables Prostate MRI Segmentation: A Large Cohort Evaluation with 

Inter-rater Variability Analysis 

In Chapter 6, a previously developed deep learning-based segmentation model in Chapter 

4, attentive Bayesian deep learning network, was evaluated for whole prostate gland segmentation 

using a large, continuous cohort of prostate 3T MRI scans. In qualitative evaluation, the deep 

learning model demonstrated either acceptable or excellent segmentation performance in most of 

the MRI scans. In the quantitative evaluation, the deep learning model demonstrated a dice 

similarity coefficient of 0.93, which outperformed other baseline deep learning methods, such as 

DeepLab v3+ and UNet. Deep learning-enabled volume measurement can be used interchangeably 

with manual volume measurement in evaluating the volume measurement. 

8.1.5   Evaluation of Spatial Attentive Deep Learning for Automated Placental Segmentation 

on Longitudinal MRI   

In Chapter 7, a deep learning network, which was adapted from a previously developed 

deep learning in Chapter 4, was evaluated for the placental segmentation on longitudinal MRI to 
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investigate the model’s generalizability for other biomedical image applications except the prostate 

segmentation. The deep learning model can automatically segment the placenta with high 

accuracy. In addition, the difference between automated placental volume measurement with the 

deep learning-based segmentation and manual volume measurement was small. Furthermore, 

automated and manual volume calculations shared similar linear regression models of 

characterizing the relationship between the volume size and gestational ages. 

8.1.6   Overall Summary  

Advanced deep learning models covered in this dissertation demonstrated outstanding 

segmentation and classification performance and outperformed state-of-art deep learning methods. 

The deep learning model with feature pyramid attention achieved superior prostate zonal 

segmentation performance to the state-of-art deep learning method. This dissertation's advanced 

deep learning models demonstrated outstanding segmentation and classification performance and 

outperformed state-of-art deep learning methods. The deep learning model with feature pyramid 

attention achieved superior prostate zonal segmentation performance to the state-of-art deep 

learning method. The attentive Bayesian deep learning model outperformed more state-of-art 

methods, including the deep learning model with feature pyramid attention, and generated 

uncertainties consistent with the actual model performance. Deep learning-based prostate cancer 

classification can be enhanced by enriching prior knowledge into the deep learning. The deep 

learning-based segmentation could generate segmentation of the prostate with sufficient quality 

when a large cohort of MRI scans was used for evaluation. High accuracy segmentation 

performance of the deep learning on the longitudinal MRI demonstrated the model's superb 

generalizability abilities on other biomedical applications apart from the prostate segmentation.  
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8.2   Future work 

In the segmentation, one of the future works is to explore the prior knowledge that can 

enhance the MRI segmentation performance. Fusing the prior knowledge into the deep learning 

model can potentially reduce the deep learning’s need for a large dataset in training. Gradient and 

texture images can be the prior knowledge for the segmentation. Especially for tumor 

segmentation, texture image will play a critical role since texture can quantify a tumor's prior 

knowledge, such as heterogeneity. A combination of prior knowledge and the input image can 

directly input into the model to enhance the segmentation performance in a small dataset. 

Another future work in segmentation is fast segmentation. We can utilize contour-based 

deep learning instead of pixel-based deep learning to perform the automated segmentation. In the 

contour-based method, graph convolution achieves a regression task of pixel-wise offsets to 

deform the initial contour to the reference contour of the target region. Unlike pixel-based 

segmentation, the contour-based method's computation is primarily around the contour, which can 

vastly improve the segmentation speed. 

As described in Chapter 6, evaluation of deep learning-based segmentation can be done 

using quantitative, and qualitative evaluation. Using segmentation-based downstream applications 

such as volume measurement and radiomic features can also evaluate segmentation performance. 

In Chapters 5 and 6, the discrepancy between automated and manual volume measurements has 

been adopted to measure model’s segmentation performance. In the future, the difference between 

radiomic features extracted from the automated and manual segmented regions will also be used 

to estimate the model’s segmentation performance. Segmentation evaluation using radiomic 

features difference assesses to which level the model can be involved in automating the extraction 

of features, which is significant to large-scale studies related to radiomics features that usually 
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relies heavily on the automated process. 

In Chapter 5, Textured-DL used T2W and ADC as the input to classify a suspicious prostate 

cancer. Although the model has achieved the satisfactory result, inclusion of other MRI 

sequences/components, such as high b-value DWI, dynamic contrast-enhanced (DCE) MRI, and 

oxygen-enhanced MRI, into the model could provide more useful information for the prostate 

cancer classification. Besides, Textured-DL relied on the texture information from the GLCM to 

classify the suspicious lesions. Although texture information is the key to cancer, other radiomics 

features such as shape-based features and first-order statistics could still be essential in the 

classification. Also, the clinical and demographic information, such as PSA, PSA density, age, 

location of the lesion, patients’ inheritance, BMI, etc., can be used to improve the performance. In 

the future, the study will also include the non-textured radiomics features and clinical and 

demographic information into the model to provide a more representative and robust 

characterization of prostate cancer. 

In Chapter 5, Textured-DL uses tumor prior knowledge for the classification, thus making 

it potentially able to be used in a small dataset. However, this Chapter did not evaluate the effect 

of data size on the Textured-DL classification performance. Future studies will perform a thorough 

comparison of the amount of data required by Textured-DL and deep learning and investigate the 

minimal data size used to sustain Textured-DL classification performance.   
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