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A continuous-time state-space model
for rapid quality control of argos locations
from animal-borne tags
Ian D. Jonsen1* , Toby A. Patterson2, Daniel P. Costa3, Philip D. Doherty4, Brendan J. Godley4, W. James
Grecian5, Christophe Guinet6, Xavier Hoenner2, Sarah S. Kienle3, Patrick W. Robinson3, Stephen C.
Votier4, Scott Whiting7, Matthew J. Witt4, Mark A. Hindell8, Robert G. Harcourt1 and Clive R. McMahon9

Abstract

Background: State-space models are important tools for quality control and analysis of error-prone animal
movement data. The near real-time (within 24 h) capability of the Argos satellite system can aid dynamic ocean
management of human activities by informing when animals enter wind farms, shipping lanes, and other intensive
use zones. This capability also facilitates the use of ocean observations from animal-borne sensors in operational
ocean forecasting models. Such near real-time data provision requires rapid, reliable quality control to deal with
error-prone Argos locations.

Methods: We formulate a continuous-time state-space model to filter the three types of Argos location data
(Least-Squares, Kalman filter, and Kalman smoother), accounting for irregular timing of observations. Our model is
deliberately simple to ensure speed and reliability for automated, near real-time quality control of Argos location data.
We validate the model by fitting to Argos locations collected from 61 individuals across 7 marine vertebrates and
compare model-estimated locations to contemporaneous GPS locations. We then test assumptions that Argos
Kalman filter/smoother error ellipses are unbiased, and that Argos Kalman smoother location accuracy cannot be
improved by subsequent state-space modelling.

Results: Estimation accuracy varied among species with Root Mean Squared Errors usually <5 km and these
decreased with increasing data sampling rate and precision of Argos locations. Including a model parameter to inflate
Argos error ellipse sizes in the north - south direction resulted in more accurate location estimates. Finally, in some
cases the model appreciably improved the accuracy of the Argos Kalman smoother locations, which should not be
possible if the smoother is using all available information.

Conclusions: Our model provides quality-controlled locations from Argos Least-Squares or Kalman filter data with
accuracy similar to or marginally better than Argos Kalman smoother data that are only available via fee-based
reprocessing. Simplicity and ease of use make the model suitable both for automated quality control of near real-time
Argos data and for manual use by researchers working with historical Argos data.

Keywords: Animal-borne sensors, Bio-telemetry, foieGras R package, Global Positioning System, Seabird, Pinniped,
Sea turtle, Template Model Builder
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Background
State-space models have emerged as important tools both
for quality control and ecological analysis of error-prone
animal movement data [1–5]. Analysis of these data
with discrete-time models is simple in principle, breaking
down animal movement into a series of discrete steps that
occur on some fixed time interval (e.g., [1, 6]). Yet animal
movement is a process that unfolds continuously through
time, usually absent of clear breaks that could delineate
discrete steps. We merely measure the movements from
locations obtained over discrete, often irregular intervals
in time. In this sense, a continuous-time model can more
naturally handle temporally irregular observations while
mimicking the true underlying continuous movement
process(es) [2, 7].
In the marine realm, air-breathing animal locations are

typically measured by satellite-linked electronic tags at
irregular time intervals dictated by a combination of satel-
lite availability and an animal’s surface behaviour. The
Argos satellite telemetry system is one of the most com-
mon platforms used to track animals at sea, with over
40,000 individuals tracked since 2007 (S. Baudel, pers.
comm.). In this system, transmissions from electronic tags
are received by one of several polar-orbiting satellites as
they pass overhead, and the Doppler shift in transmis-
sion frequency along with other information is used to
geolocate the tags [8]. The polar orbits of Argos satel-
lites result in more dense coverage and potentially higher
temporal , resolution data closer to the poles than at the
equator. From inception in 1978 to 2011, CLS (Collecte
Localisation Satellites) has used a Least-Squares algorithm
to geolocate the tag transmissions. This approach does
not quantify location uncertainty but rather provides loca-
tion quality classes based on information including the
number of transmissions received [8].
State-space models developed for Argos Least-Squares

locations have relied on independent, ground-truth data
(e.g., [9]) to quantify location uncertainty for each of the
location quality classes [1, 2]. However, independently
quantified uncertainties, based on a single or small num-
ber of data sets, are unlikely to be appropriate for all
species in all locations. For example, modifications to
assumed Least-Squares error variances can influence the
accuracy of locations predicted by different state-space
models [10].
In 2011, CLS replaced their Least-Squares algorithm

with a state-space model, based on a multiple model
Kalman filter algorithm, to estimate locations and their
uncertainty [11]. This approach provides more location
estimates, each with a corresponding estimated error
ellipse, and with greater accuracy compared to the orig-
inal Least-Squares method. These locations are provided
in near real-time; here defined as within 24 h of occur-
rence. A fixed-interval Kalman smoother is also provided

by CLS as an extra service to further improve location
accuracy from the original Kalman filter-based location
estimates [12]. Whereas the Kalman filter employs a one-
step recursion to estimate locations based only on the
current and previous observations, the Kalman smoother
uses a two-pass approach, first employing the Kalman fil-
ter and then employing a backwards smooth of the data
[13]. In this sense, the Kalman smoother uses informa-
tion from the entire animal track to estimate locations
and their uncertainty. This results in more accurate loca-
tion estimates than the Kalman filter alone [12]. Such
smoother-based location estimates are theoretically opti-
mal given the available data, and it should not be possible
to improve on them if uncertainty is characterised and
propagated accurately (e.g., [14]). Currently, CLS does not
provide Kalman smoother-based locations in near real-
time, they can only be obtained with reprocessing, for an
additional fee, after a tag deployment ends.
Traditional use of animal tracking data has required nei-

ther near real-time data provision nor rapid modelling
tools for quality control or ecological analysis. How-
ever, real-time management of at-risk species’ mortality
from interactions with human activities such as offshore
wind farms, fisheries and shipping increasingly relies on
animal telemetry data [15–17]. Dynamic ocean manage-
ment applied at high spatial and temporal resolutions
can increase the efficiency and efficacy of measures to
reduce mortality [18], placing an onus on rapidly avail-
able, high-resolution data. Similarly, the utility of animal-
borne sensors for ocean observing [19, 20] as part of the
Global Ocean Observing System has spurred coordinated
animal telemetry programs, such as the Australian Inte-
grated Marine Observing System’s Animal Tracking Facil-
ity (IMOS ATF1) and the U.S. Integrated Ocean Observ-
ing System’s Animal Telemetry Network (IOOS ATN2).
These programs aim to provide near real-time ocean
measurements via the World Meteorological Organiza-
tion’s Global Telecommunication System for assimilation
in operational ocean and atmospheric forecast models.
In all these cases, near real-time telemetry data pro-
vision requires rapid and therefore automated, reliable
quality control processes, including the error-prone Argos
location data that are essential for understanding animal
movements and distribution, and for providing geospatial
context to ocean measurements.
Here we present a continuous-time state-space model

for rapid filtering of any Argos location data. This model
is now used as part of the IMOS ATF’s quality con-
trol/quality assurance process for animal-borne ocean
observations. To facilitate fast automation, we trade off

1http://imos.org.au/facilities/animaltracking
2https://ioos.noaa.gov/project/atn

http://imos.org.au/facilities/animaltracking
https://ioos.noaa.gov/project/atn
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realism - the ability to explain complex movement pro-
cesses - for reliability by using a simple continuous-time
random walk on velocity with a single variance parameter.
We evaluate the model by: 1) comparing fits to all three
Argos location types from the same individuals; 2) assess-
ing accuracy of model-estimated locations against con-
temporaneous GPS locations; 3) assessing how a model
assumption about Argos error ellipses influences estima-
tion accuracy; 4) comparing the accuracy of modelled and
un-modelled Kalman Smoother locations.

Methods
A continuous-time state-space model for animal telemetry
data
We model animal movement as a continuous-time ran-
dom walk on velocity vt in two coordinate axes:

vt = vt−� + �� (1)

where � is the time increment and �� is a zero-mean,
bi-variate Gaussian random variable with variance 2D�.
The parameter D is a 1-d diffusion coefficient account-
ing for variability in velocity, which increases with the
time interval �. Noting that locations x are the summed
velocities, given a starting location, the following equation
describes a simple process model subject to variable time
increments:

xi = xi−1 + vi�i (2)

where the subscript i indexes time ti, xi is the true loca-
tion of the animal at time ti and vi�i is the displacement
(velocity x elapsed time) between xi−1 and xi. To sim-
plify the model, we assume that the velocity random walk
variances 2D�i are equal on the two axes but they could
also be assumed to vary independently [2]. Correlation in
movements arises from allowing the locations to be the
sum of the velocities.
We couple this process model to a generally applicable

measurement model that describes how the error-prone
and possibly irregularly-timed observed locations yi map
onto the corresponding true location states xi:

yi = xi + εi; εi ∼ N(0,�i) (3)

where yi the location observed at time ti corresponding to
xi , and �i is the measurement error variance-covariance
matrix that can be structured to suit different types of
location data. Below, we focus on modifications to accom-
modate different Argos location types, but other location
data (e.g., processed light-level geolocations) could also be
considered in this framework.

Argos Least-Squares data
Locations measured using CLS’ older Least-Squares (LS)
approach [8] are associated with location quality class des-
ignations: 3, 2, 1 0, A, B, and Z. These classes are the only

contemporaneous information about location quality and
provide only a relative index of measurement uncertainty
[1]. We use the class information, along with indepen-
dent estimates of their associated standard errors from
Argos transmitters deployed on seals held captive at a
known location [9], to construct the following variance-
covariance matrix:

�i =
[

τ 2x K2
x,i ρτxKx,iτyKy,i

ρτxKx,iτyKy,i τ 2y K2
y,i

]
(4)

where τ 2x and τ 2y are the overall measurement error vari-
ances on the two coordinate axes, Kx,i and Ky,i are error
weighting factors that scale the τ ’s appropriately for the
Argos location quality class associated with the ith obser-
vation, and ρ is the correlation between τxKx,i and τyKy, i.
The τ ’s are estimated during model fitting and the error
weighting factors are the standard error ratios between
the best quality class, 3, and each other class (2, 1, 0, A, B,
Z).

Argos kalman filter and kalman smoother data
Locations measured using CLS’ Kalman filter (KF) or
Kalman smoother (KS) algorithms have their estimated
uncertainties provided to users as error ellipses [11].
Ellipses are defined by three variables: semi-major axis,
semi-minor axis and semi-major axis orientation from
north. Building on McClintock et al. [14], the error
variance-covariance matrix is:

�i =
[

τ 2x,i τxy,i
τxy,i τ 2y,i

]
(5)

with the elements being derived from the Argos error
ellipse components:

τ 2x,i =
(
Mi√
2

)2
sin2 ci +

(
miψ√

2

)2
cos2 ci (6)

τ 2y,i =
(
Mi√
2

)2
cos2 ci +

(
miψ√

2

)2
sin2 ci (7)

and

τxy,i =
(
M2

i − m2
i ψ

2

2

)
cos ci sin ci (8)

where Mi is the ellipse semi-major axis length of the i-th
observation,mi is the semi-minor axis length and ci is the
semi-major axis orientation [11, 14].
McClintock et al. [14] used a bivariate t-distribution,

with variance-covariance defined by the Argos error
ellipses, in their measurement model to account for
occasional outlier observations (i.e., where error ellipses
underestimate the true measurement uncertainty). Here
we chose to identify and remove outlier locations using a
travel rate filter [21] prior to fitting the state-space model,
as per [2, 22]. Additionally, we included the parameter
ψ to account for possible consistent under estimation of
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the Kalman filter (& smoother)-derived location uncer-
tainty (Fig. 1). ψ re-scales all ellipse semi-minor axes
mi, where estimated values > 1 inflate the uncertainty
region around measured locations by lengthening ellipse
semi-minor axes.
In all cases, we project the yi’s from geographic coordi-

nates (lon, lat) onto a Cartesian plane prior to modelling,
using the WGS84 World Mercator projection (EPSG
3395). To facilitate optimization, all planar coordinates
and their uncertainty estimates, where available, are con-
verted from m to km.

Estimation
We used the R package TMB (Template Model Builder,
[23]) to fit the state-space model, using maximum like-
lihood to estimate model parameters and the Laplace
approximation to rapidly estimate the random effects
- the unobserved location and velocity states, x and v

[5, 24]. Using this estimation approach, uncertainty in x
and v estimates are obtained using a generalised delta
method (see [23] for details).
The model presented here and associated general data

preparation code are available in the foieGras R pack-
age [25], available on the CRAN server (https://CRAN.
R-project.org/package=foieGras). The latest version can
also be downloaded from the lead author’s GitHub site
(https://github.com/ianjonsen/foieGras).

Data and pre-processing
We model all three types of Argos satellite location data:
LS, KF, and KS. The data are comprised of four pinnipeds,
one seabird and two sea turtle species (Table 1); with
deployment locations ranging between polar, temperate,
and tropical marine regions (Additional file 1: Fig S1). The
number of individual data sets by species and data type
range from 6 to 13 with all having locations measured by

Fig. 1 Unprocessed Argos Kalman filter (KF) locations (gold points) and error ellipses (pale blue with black borders) for (a) hawksbill turtle (HBTU)
and (b) southern elephant seal (SESE). Temporally sequential but spatially distant locations are connected by dashed blue lines. Scale bars provide
an indication of the magnitude of errors. The extreme outlier location at top right (a) is approximately 650 km distant from the preceding and
following locations, and has a vastly underestimated error ellipse

https://CRAN.R-project.org/package=foieGras
https://CRAN.R-project.org/package=foieGras
https://github.com/ianjonsen/foieGras
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Table 1 Number of individual data sets by species and data type. Argos data types are: Least-Squares (LS); Kalman filter (KF); Kalman
smoother (KS). Mean track durations were calculated from the data after removing periods of prolonged data gaps. Tag programming
details were not available for all deployments, so Argos and GPS sampling rates were calculated from the unfiltered data

Species Common name Code
Deployment Mean track Data type GPS sample Fastloc

year(s) duration (d) LS KF KS GPS rate (min) GPS

Zalophus californianus California sea lion CASL 2007 79 8 . . 8 58 Y

Arctocephalus pusillus Cape fur seal CPFS 2007 25 6 . . 6 49 Y

Dermochelys coriacea leatherback turtle LBTU 2008/12 92 13 . . 13 195 Y

Eretmochelys imbricata hawksbill turtle HBTU 2009/10 24 6 6 6 6 124 Y

Hydrurga leptonyx leopard seal LESE 2018 171 8 8 8 8 47 Y

Mirounga leonina southern elephant seal SESE 2009/11/12/14 53 11 11 11 11 28 Y

Morus bassanus northern gannet NOGA 2010 23 9 9 9 9 60 N

GPS and at least one Argos type (Table 1). All data col-
lected after 2008 were reprocessed by CLS to obtain the
three Argos data types (4 species; Table 1).

We used an automated pre-filtering step to identify out-
lier observations to be ignored by the state-space model.
This pre-filtering used the argosfilter R package [21]
to identify locations implying travel rates >3 ms-1 for
all pinnipeds and sea turtles and travel rates >17 ms-1
for northern gannets. These speed thresholds represent
conservative upper limits of travel for these species and
are intended to identify only the extreme outlier observa-
tions. This resulted in < 30% of Least-Squares, < 15% of
Kalman filter, and < 10% of Kalman smoother data being
removed. The proportion of data removed by pre-filtering
is considerably less than those associated with optimal
speed thresholds for other species (e.g., [22]).

Empirical validation
We examined the accuracy of model-predicted locations,
assuming GPS data represent truth. Although GPS data
have higher spatial accuracy and precision, and typically
have higher sampling rates than Argos data, they are
nonetheless discrete measurements of a continuous-time
process. As a consequence, they are also likely to misrep-
resent animals’ true movement paths but to a far smaller
extent (10’s of m; [26]) than Argos data.
For all validations presented, we compared GPS

locations to model-fitted locations (hereafter model-
estimated locations), which are location states estimated
at the times of the Argos-measured locations. By focusing
on model-estimated locations and not predicted locations
that occur at regular time intervals, we reduce the degree
to which model accuracy is confounded with data sam-
pling rates that are known to vary across species and
Argos data types (see Discussion).
We compared model-estimated locations from fits to all

three Argos data types, where available, with GPS data.
In all cases, the times of GPS observations do not match

the times of Argos observations or the corresponding
model-estimated locations. To account for this mismatch,
we initially considered three approaches for comparing
between GPS and modelled locations. First, using a linear
interpolation of GPS locations to model-estimated loca-
tion times [27]. Second, using the temporally closest GPS
observation if any occurred within ±10 min. Third, using
the model to predict locations at the GPS observation
times. In several cases, it was not feasible to predict model
locations for each GPS observation time as the typically
higher frequency of GPS observations resulted either in
implausible artefacts in the model fits to the Argos data
or in convergence failures of the optimiser used to fit the
model. For these reasons, we chose not to consider this
approach further.
Fitting the state-space model with a fixed 2-h prediction

interval resulted in optimiser convergence for all individ-
ual tracks. For each individual track, we summarized the
deviations between model-estimated locations and either
the linearly interpolated GPS locations or the temporally
matched GPS locations by taking the root mean of the
squared distances (RMSD in km) between all pairs of loca-
tions and comparing distributions of individual RMSD
values among species. We report results of comparisons
with the linearly interpolated GPS locations here and
comparisons with the temporally matched GPS locations
in Supplementary Information.We discuss implications of
using each of these approaches.
Total sequential processing time for validation using all

129 Argos data sets (Table 1) was 13.43 min, an average
of 6.25 s per data set. This included both the pre-filter
algorithm and state-space model estimation, running on a
2018 MacBook Pro 15" laptop with 2.9 GHz i9 processor,
32 GB RAM, with R 3.6.2.

Potential under-representation of Argos KF/KS location
uncertainty
Our default model accounts for a perceived under-
estimation of the size of CLS’ Kalman filter and Kalman
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smoother error ellipses (Figs. 1 and Additional file 1: S2-
S5) by including the parameter ψ (Eqns. 6, 8). Although
uncertainty is expected to be lower in the general North
- South plane due to the polar orbits of the Argos satel-
lites [11], the frequent compression of error ellipses in
this plane (semi-minor axis; e.g., Fig. 1b) seems extreme.
Values of ψ > 1 inflate the semi-minor axis, increas-
ing the uncertainty region around Argos KF/KS obser-
vations and could allow the model to more appropri-
ately smooth the data. It is unclear how much the
parameter actually improves the accuracy of estimated
tracks versus yielding a less accurate over-smoothing
of the data. To assess this, we evaluated the influ-
ence of the ψ parameter on the accuracy of model-
estimated locations by comparing RMSD values from
models with and without the ψ parameter. To simplify
the results, we pooled RMSD values across species and
assessed the loge difference in RMSD (denoted as log�

RMSD), which approximates % difference on the linear
scale [28].

Argos KS location accuracy

The CLS Kalman smoother locations have greater spa-
tial accuracy and precision than Least-Squares or Kalman
filter data [12]. In principle, it should not be possible to
improve the accuracy of KS-based locations with subse-
quent modelling because they are theoretically optimal
estimates, using all available data. It does seem rea-
sonable, however, to question whether this is actually
the case. We evaluated this by comparing log� RMSD
derived from GPS and KS locations to those derived
from GPS and estimates from the state-space model fit
to the KS locations. In both cases, we apply the same
pre-filtering to identify and remove outlier locations,
though these outliers should not be present in KS-based
locations.

Fig. 2 State-space model fits to the three Argos satellite data types obtained from a hawksbill turtle (HBTU; a,e,i), a leopard seal (LESE; b,f,j), a
southern elephant seal (SESE; c,g,k), and a northern gannet (NOGA; d,h,l). State-space model-predicted locations (dark blue points) smooth through
the Argos data types (gold points) - Least-Squares (a,b,c,d), Kalman filter (e,f,g,h) and Kalman smoother (i,j,k,l) - at regularly specified 2-h intervals. The
95% confidence intervals on the predicted locations (light blue shading) are also displayed. Spatial scale in km is indicated at lower left or right of
each panel
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Results
State-space model fits to the 3 Argos data types
We fit the state-space model to the four species with all
three Argos data (Table 1), and present fits with a 2-h pre-
diction time interval. Model fits to hawksbill turtle and
southern elephant seal data show a consistent increase in
spatial resolution and decrease in estimation uncertainty
of the predicted tracks across the three Argos data types
(top to bottom; (Fig. 2 a,e,i and b,f,j, respectively). This
effect is due to an increase in the number of observa-
tions from least-squares to Kalman filter data, and to a
shrinking of the error ellipses (measurement uncertainty),
by nearly half, from Kalman filter to Kalman smoother
data (Table 2). Model fits to leopard seal and northern
gannet data do not show any clear differences in reso-
lution or estimation uncertainty across the Argos data
types (Fig. 2 c,g,k and d,h,l, respectively). This appears
due to smaller differences in the number of observa-
tions for Least-Squares versus Kalman filter data, arising
from lower proportions of class A and B locations, rel-
ative to hawksbill turtles and southern elephant seals
(Table 2). The lower proportions of class A and B loca-
tions for leopard seals and northern gannets are likely
due to the large amount of time they spend at or above
the ocean surface. Additionally, northern gannets had, on
average, far larger error ellipses than the other species
(Table 2). The uncertainty of their state-space model-
predicted locations was consequently larger, regardless
of Argos data type (light blue 95% confidence ellipses in
Fig. 2 d,h,l).

Validation with GPS data
Median distances between state-space model-estimated
and interpolated GPS locations were within 8 km for all
species and data types, with most species and data types
having 95% of estimated locations within 12 km of GPS
locations (Table 3). Northern gannets were an exception,
with 95-th percentiles extending > 40 km for all Argos
data types (Table 3). Importantly, the median accuracy
of state-space model-estimated locations, regardless of
Argos data type, were all smaller or comparable to those
of pre-filtered but un-modelled KS locations (Table 3).
Across species, the weighted average (± se) improvement
of state-space model-estimated location accuracy relative
to un-modelled KS location accuracy was: LS = 0.21±0.60
km; KF = 0.14 ±0.07 km; KS = 0.34 ±0.05 km.
Six of the 7 species’ estimated tracks had median RMSD

values under 5 km with all values under 10 km, regardless
of Argos data type (Fig. 3). Northern gannet tracks had
considerably higher and more variable RMSD’s (between
13 and 31 km), across all Argos data types (Fig. 3).
This is consistent with their considerably larger state-
space model-predicted location uncertainty (Fig. 2). Both
hawksbill turtle and southern elephant seal tracks had
declining RMSD values as Argos data frequency and pre-
cision increased (Fig. 3), and this was consistent with
the increasing resolution and precision of their state-
space model-predicted tracks (Fig. 2). Conversely, leopard
seal and northern gannet tracks showed no such pattern,
which was consistent with the general lack of increas-
ing resolution of both the observed and predicted tracks

Table 2 Argos track summary statistics by species and data type. prop’n A,B is the proportion of all locations that are in quality class A
and B. Error ellipse shape is the ratio of semi-minor to semi-major axis length, with values closer to 1 indicating a more circular shape.
Shape and area statistics were calculated from values pooled among individuals within species and Argos data type

Species Argos Total n prop’n Error ellipse Error ellipse area (km)

code type locations A,B shape median 95th %-ile

HBTU LS 603 0.71 . . .

HBTU KF 1 038 0.84 0.24 17.31 120.29

HBTU KS 1 038 0.84 0.27 8.44 60.31

LESE LS 32 780 0.47 . . .

LESE KF 41 367 0.57 0.13 1.73 69.23

LESE KS 41 367 0.57 0.14 1.03 31.50

SESE LS 3 152 0.82 . . .

SESE KF 5 016 0.91 0.13 34.40 780.11

SESE KS 5 016 0.91 0.14 16.26 338.18

NOGA LS 1 568 0.36 . . .

NOGA KF 2 066 0.52 0.18 25.43 5 573.62

NOGA KS 2 066 0.52 0.19 16.73 2 104.87
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Table 3 Accuracy in km of state-space model-estimated locations and pre-filtered KS locations (pf_KS), by species and Argos data
type. The pf_KS locations had the pre-filter algorithm applied but not the state-space model. Median and 95th percentile statistics were
calculated from distances to GPS locations, pooled among individuals within species and Argos data type

LS KF KS pf_KS

Species median 95th %-ile median 95th %-ile median 95th %-ile median 95th %-ile

CASL 1.70 10.15 . . . . . .

CPFS 1.87 8.03 . . . . . .

LBTU 2.77 10.06 . . . . . .

HBTU 1.60 8.11 1.69 7.08 1.47 6.05 1.62 5.91

LESE 1.88 11.11 2.05 11.61 1.89 10.90 2.25 12.62

SESE 4.40 15.03 3.24 12.06 2.97 9.50 3.29 11.02

NOGA 6.04 43.95 7.50 52.62 7.37 46.47 7.85 53.67

(Fig. 2). Results were similar, although with overall lower
RMSD values, when comparing state-space model esti-
mated locations to the temporally closest GPS location
within ±10 min (Additional file 1: Fig. S6).

Effect ofψ parameter
Inclusion of the ψ parameter resulted in lower RMSD
values, on average, implying that Argos error ellipses
under-represent the true location uncertainty in the gen-
eral north - south direction (Fig. 4). This result was less
pronounced with fits to Argos Kalman smoother loca-
tions, with 81% of individuals having a log� RMSD <0
versus 90% of individuals for Argos Kalman filter loca-
tions (KF� RMSD:median = -0.57 km, range = -3.78,0.45;
KS � RMSD: median = -0.27 km, range = -3.34, 0.85). Of
the four species, predicted locations for hawksbill turtle

tracks were least likely to benefit from re-scaled error
ellipses, with most individuals having log� RMSD values
close to or >0 (Fig. 4). It is unclear whether this is due
to: 1) their relatively low absolute RMSD values (Fig. 3); 2)
their slightly more circular error ellipses (Table 2), where
the ψ re-scaling effect would be less pronounced; or, 3) a
combination of the two.

Argos KS accuracy
Argos Kalman smoother locations were less accurate by
an average of 0.34 km without subsequent state-space
model filtering (Table 3; compare KS and pf_KS values),
although comparisons of log� RMSD were variable both
within and among species (Fig. 5). The mean log� RMSD
across species implied a average 6% increase in accuracy
with subsequent state-space model filtering of Argos KS

Fig. 3 Accuracy of state-space model-estimated locations across the three Argos location data types and by species. Accuracy is assessed using root
mean squared distance (RMSD in km) from interpolated GPS locations. Individual RMSD values are filled circles, coloured by Argos data type, beige
boxes are inner quartile ranges, and black bars are medians. Species codes: CASL - California sea lion; CPFS - Cape fur seal; LBTU - leatherback sea
turtle; HBTU - hawksbill sea turtle; LESE - leopard seal; SESE - southern elephant seal; NOGA - northern gannet
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Fig. 4 Accuracy of estimated locations from models fit with and without a ψ parameter to re-scale Argos error ellipse sizes. The log difference in
root mean squared distance (log� RMSD) from interpolated GPS locations was calculated for the two models fit to each individual animal. Negative
values indicate the model with a ψ parameter is more accurate, whereas positive values indicated the model without a ψ parameter is more
accurate. Results are pooled across species with individual log differences in RMSD displayed as species-specific shapes (gold, blue). The inner
quartile ranges are beige boxes and medians are black bars

locations. However, results were equivocal for southern
elephant seals and hawksbill turtle tracks were typically
more accurate without any subsequent state-space filter-
ing (Fig. 5).

Discussion
We presented a continuous-time model for animal move-
ment, fit in a state-space framework that allows flexible
handling of Argos satellite telemetry data. The model
was initially intended for automated quality control of
large Argos animal tracking data sets, but is broadly
applicable for any Argos location data. Using Argos -
GPS double tagged animals, we assessed the accuracy of

model-estimated locations, comparing across three types
of Argos data where possible. Median accuracy was within
4 km for most species and data types, with state-space
model-estimated locations being slightly more accurate
(by 0.1 - 0.3 km on average) than the best quality CLS
Kalman smoother locations. Median root mean squared
deviations were typically at or under 5 km for 6 of the 7
species studied. In most cases, RMSD values were lowest
when fitting to Argos Kalman smoother data and high-
est when fitting to Argos Least-Squares or Kalman filter
data, although the within-species differences in RMSD
between data types were typically small. Although the
model was evaluated over a limited number of individuals

Fig. 5 Accuracy of Argos Kalman smoother locations with and without subsequent state-space model filtering. The log difference in root mean
squared distance (log� RMSD) from interpolated GPS locations was calculated for each individual animal. In both cases, the Kalman smoother
locations were subjected to the same travel-rate filtering to remove highly implausible observations. Negative values indicate the state-space
model-estimated locations are more accurate. The inner quartile ranges are beige boxes and medians are black bars
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and species, it is apparent that the accuracy and spatio-
temporal resolution of inferred locations is situational.
Highlighting this situational aspect are the northern

gannet results (Table 3; Figs. 2 & 3), which are clearly dis-
tinct from the other species. Accuracy of model-estimated
locations was approximately 4-5 times worse than for
other species, although absolute magnitude is subject to
the approach used for matching model-estimated and
GPS locations (compare Figures. 3 & Additional file 1: Fig
S5). Unlike other species where median distances between
model-estimated and GPS locations either declined con-
sistently or were similar when comparing LS to KF and
KF to KS data types, gannets had the lowest median dis-
tances for fits to LS data and had far broader distributions
of distance across the 3 data types.We suspect this pattern
may arise from the considerably faster mean travel rates of
northern gannets (12 km h-1, with cruising speeds up to
45 km h-1) compared to the other species (approximately
0.7 - 3 km h-1). Similarly, Lopez et al. [12] reported lower
overall coverage probabilities of error ellipses estimated
by their Kalman filter and Kalman smoother algorithms
for two avian species analyzed in comparison to other
platforms (terrestrial and marine mammals, sea turtles,
ships and drifters). Combined, this implies that Argos
error ellipses may be more strongly underestimated for
species/platforms that travel faster and/or at higher alti-
tude.
McClintock et al. [14] used a bivariate t-distribution,

parameterised by the Argos error ellipse information, to
model location measurement error. Their estimates of the
t degrees of freedom parameter implied that the Argos
error ellipses do not fully explain location measurement
error. To avoid computational challenges associated with
t-distribution parameter estimation, we used a two-step
approach for dealing with location measurement error in
Argos Kalman filter and Kalman smoother data. First, we
identified and removed potentially large outliers using a
travel-rate filter [21] prior to fitting the state-space model,
as per [2, 22]. Although underestimation of location error
was acknowledged by Lopez et al. [11, 12] and has been
reported by others [14, 29], it is unclear why occasional,
apparent hugely underestimated error ellipses are present
in the Kalman filter and Kalman smoother data. Second,
we accounted for potential Argos error ellipse under-
estimation by including the ψ parameter to inflate the
semi-minor axis. We adopted this approach given the
observation that Argos error ellipses often have semi-
minor axes vastly smaller than corresponding semi-major
axes, resulting in “squashed” error ellipses (Additional
file 1: Figures S2-S4). We found that in most cases the
ψ parameter contributed to more accurate location esti-
mates, implying that the error ellipses commonly underes-
timate the true uncertainty in Argos-measured locations.
This result is evident but less pronounced when fitting to

Kalman smoother versus Kalman filter data. Location esti-
mates were more accurate for at least some individuals of
all species, however, hawksbill turtles and northern gan-
nets appeared least likely to benefit from the ψ re-scaling
effect (see Fig. 4). Both of these species had somewhat
more circular error ellipses, in comparison to the leopard
and southern elephant seals, and thus any possible contri-
bution of ψ would be reduced. Ultimately, we are unsure
why Argos error ellipses appear to be so commonly biased
low in the semi-minor axis direction (generally north -
south).
Where possible, both Kalman filter and Kalman

smoother data types were included in this study. We
found, in most cases, that the model-estimated locations
were most accurate when using the Kalman smoother
data, but on average by less than 200 m compared with fits
to Kalman filter data. Although the Kalman smoother data
should represent optimal estimates of location because
information along the entire movement track is used to
update and smooth each location estimate, we show that
fitting the state-spacemodel to these estimates can further
improve location accuracy in some cases (by an aver-
age reduction in error of approximately 6%). The Kalman
smoother data are not provided in the default, near real-
time service from CLS, rather they are only available with
post-processing by CLS at an additional cost. There are
two points to be made about this. First, the smoothing
algorithm is a standard approach that can be implemented
rapidly, with computing requirements no greater than the
Kalman filter. It could be applied in near real-time. Sec-
ond, a near real-time Kalman smoother would result in
the best available location estimates changing as new data
became available. This incremental improvement, due to
information gain propagating backwards in time, would
reduce as locations become less recent. This should be
of little consequence to most wildlife users who typically
do not use their data in near real-time, and users who
do require near real-time data may see greater benefit in
more accurate locations even if they are subject to change
in retrospect.
Our state-space model produced location estimates

with a median accuracy comparable to or greater than
CLS’ Kalman smoother locations, regardless of input
Argos data type. This implies that users can obtain similar
or better accuracy than CLS’ Kalman Smoother locations
by applying the state-space model to their Least-Squares
or Kalman filter data. Therefore themethod we describe is
a viable alternative to the CLS’ fee-based reprocessing ser-
vice. The Laplace approximation approach employed in
Template Model Builder models states (velocity and loca-
tion) as unknown random effects, providing a most likely
estimate of the current state from the posterior of it’s loca-
tion given all available data, both forward and backward in
time. This is precisely what a Kalman smoother does. That
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our model can improve on the CLS Kalman smoother’s
location estimates may imply that uncertainty is somehow
not well-propagated from the rawDoppler shift data avail-
able to CLS through to the location estimates available to
users. If this is indeed the case, it is unclear why this is
so. The issue may be due to necessary trade-offs between
accuracy and precision versus providing a near real-time
location service for a multitude of moving platforms, of
which wildlife are a small component.

Spatio-temporal resolution and spatial accuracy
It is important to note that when comparing GPS loca-
tions with those from models fitted to Argos-measured
locations, accuracy is interlinked with the temporal reso-
lution (sampling rate) of Argos relative to GPS locations.
As GPS resolution is typically greater than Argos, compar-
isons to determine spatial accuracy of estimated locations
are confounded by this difference. No model fit to Argos-
measured locations alone can resolve all the nuances of a
movement path that are present in higher resolution GPS
data. This discrepancy will be reflected in measures of
spatial accuracy, unless GPS data are suitably sub-sampled
or interpolated.
We interpolated GPS locations to the times of the

Argos-measured locations to which the state-space model
was fitted. Our reasoning was that interpolation of the
generally higher resolution GPS data should be less
corrupted by spatial error than a similar interpola-
tion of the lower resolution and irregularly occurring
model-estimated locations. Sub-sampling GPS locations
by matching them with the temporally closest model-
estimated location, commonly used elsewhere [12, 30, 31],
resulted in lower RMSD or greater (apparent) accuracy
than comparison with the linearly interpolated GPS loca-
tions. These lower RMSD values, however, were based
on fewer (n <10) temporally matched pairs of model-
estimated and GPS locations for some species/individuals
(Additional file 1: Fig S5); using a 20-min window.
Although sample sizes could be increased by choosing
a wider time window, the potential for biased compar-
isons would increase differently across species due to their
different spatio-temporal scales of movement.
Fits to the three Argos location types from the same

individuals showed that movement pathways can be pre-
dicted with increasing spatial resolution, i.e., resolve
greater spatial detail despite the same prediction time
interval (2 h), and precision as the number of Argos-
measured locations increased (transition from Least-
Squares to Kalman filter data) and as their uncertainty
decreased (transition from Kalman filter to Kalman
smoother data). One of the main advantages of Argos’
Kalman filter over the older Least-Squares method is a
gain in the number of location estimates, mostly by resolv-
ing locations from the single transmissions between tag

and satellite that Least-Squares can not [11]. This increase
in resolution and precision is case-dependent, however, as
species with lower overall proportions of class A and B
locations do not gain as many new locations when tran-
sitioning from Least-Squares to Kalman filter data. This
case-dependency is likely tied to typical surface time inter-
vals of diving species, and, for those species spending the
majority of time in air, on the magnitude of their travel
rates.

Caveat
Fitting a state-space model to animal location data is
not a panacea. Many ecological analyses of animal track-
ing data consider remotely sensed or other environmen-
tal data at spatial resolutions (2 - 10 km; e.g., [32])
approaching the state-space model accuracy limits found
here. This highlights the need for researchers to con-
sider the appropriate resolution of their environmental
data given their specific questions and the limitations
of their location estimates. While spatio-temporal mis-
matches between location estimates and environmental
data can sometimes be dealt with by specifying coarser
or finer prediction time intervals, such an approach has
implications both for spatial and temporal autocorrela-
tion affecting inference from subsequent analyses and
for uncertainty in the location estimates themselves.
Researchers should consider carrying location uncertainty
estimates provided by state-space models through to sub-
sequent ecological analyses. For example, by repeatedly
sampling from the location uncertainty, conducting the
analysis, and pooling results (sensu [33]). This can be
done either completely through the whole analysis or
partially via subsequent sensitivity analysis. Failure to
examine or directly account for potential influences of
spatio-temporal autocorrelation and estimation uncer-
tainty of locations in subsequent analyses risks biased
inferences.

Conclusions
The state-space model developed and validated here can
be used to obtain quality-controlled animal locations from
Argos Least-Squares or Kalman filter data in near real-
time, with median accuracy comparable to or marginally
better than CLS’ reprocessed Kalman smoother data.
Our model also accounts for apparent north-south bias
in Kalman filter- and Kalman smoother-derived error
ellipses.
The model’s near real-time capability provides the best

estimates of location, given the available data, that can
be continually updated as new data arrive via the Argos
system. This rapid, continual quality control of animal
tracking data is necessary as near real-time monitoring
and forecasting of ocean states increasingly incorporates
oceanographic data from animal-borne sensors, and as
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the need for dynamic ocean management grows in our
increasingly exploited and rapidly changing oceans.
Although the model was developed for fast, automated

quality control processes, its simplicity and ease of use
also make it suitable for manual use by researchers wish-
ing to conduct quality control of historical or otherwise
less immediate Argos data.
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