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ABSTRACT OF THE DISSERTATION 

 

 

Improvements and Applications of Alchemical Free Energy, Constant pH and Accelerated 

Molecular Dynamics Calculations in the AMBER Molecular Dynamics Suite 

by 

 

Daniel Janson Mermelstein 

Doctor of Philosophy in Chemistry with a Specialization in Multi-Scale Biology 

University of California, San Diego, 2018 

Professor J. Andrew McCammon Co-Chair 

Professor Ross C. Walker, Co-Chair 

 

 The field of molecular dynamics is rapidly advancing as new theoretical techniques, 

software optimizations and computer architectures are unveiled seemingly daily.  In this 

dissertation, I first review the best practices and recent developments in molecular dynamics 

based alchemical free energy calculations in the AMBER molecular dynamics suite. I then 

present a graphics processor enabled implementation of alchemical free energy calculations with 

performance 360 times that of the existing CPU implementation, while maintaining equivalent 

accuracy through the judicious use of a combination of floating point and fixed precision. Next, I 



 

 xx 

discuss the application of constant pH molecular dynamics to investigate the role of water in beta 

secretase-1 catalysis. This protein has a known pH dependence and is a key target in the fight 

against Alzheimer’s Disease. I present a hypothesis for the role of the flap region in regulating 

beta secretase-1 catalysis.  Finally, I have investigated benzene egress from the binding pocket of 

the L99A mutant of T4 lysozyme using accelerated molecular dynamics. It is found that benzene 

exits the binding pocket by a multistep process from the buried cavity to ultimate release through 

an opening between the F/G, H and I helices. 
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Chapter 1 : A review of alchemical free energy calculations and their applications in the 

AMBER molecular dynamics suite: current approaches, success stories, and future directions 

 

Introduction 

 

In the two years that have elapsed since January 2016, there have been as many new 

publications with the topic "Molecular Dynamics" and "Drug Design" or "Drug Discovery" as in 

any five-year period before 2016. Clearly, we have begun to reach the era in which molecular 

dynamics calculations are fast enough and reliable enough to be used routinely. Much of the 

increased interest in molecular dynamics simulations is due to the use of graphics processors 

(GPUs) for MD simulations. These have allowed access to previously inaccessible timescales. 

Among open source and academic molecular dynamics suites, AMBER has traditionally led the 

way in the development of GPU accelerated tools1–3, although notable strides have been made in 

NaMD,4 GROMACS5–8, OpenMM9, CHARMM10, Desmond11, and ACEMD12 as well.  

Recently, alchemical free energy (AFE) and constant pH molecular dynamics (CpHMD) were 

ported to GPUs in the AMBER molecular dynamics suite.13,14 With these recent developments, 

this seems an opportune time to review the current capabilities of the AMBER molecular 

dynamics suite with regards to drug discovery. As these new developments (AFE and CpHMD) 

are focused on the calculation of thermodynamic quantities, this review will emphasize tools 

used to calculate thermodynamic properties of use in drug design.  The topics covered in this 

review in detail include AMBER's GPU enabled alchemical free energy, constant pH MD toward 

the calculation of pH dependent free energy, and free energies of solvation using alchemical free 

energy. For each of these topics we will present a summary of the key theoretical developments 
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in AMBER, followed by recent examples of their application to drug design efforts. 

Additionally, since each of these techniques is built upon alchemical free energy, a review of the 

most up to date practices will first be presented.  

 

 

Best practices in molecular dynamics based alchemical free energy calculations 

 

The development of accurate tools to calculate thermodynamic properties of biomolecular 

systems has been a goal of the computational chemistry community almost since the first MD 

simulations of a protein were run.15   One such tool rapidly growing in popularity is MD based 

AFE. Since the first application of AFE calculations to model ligand-binding systems,16 there has 

been a steady stream of theoretical milestones reached towards the applicability of these 

calculations to systems of biological and physical relevance. Here, we will attempt to outline the 

most important theoretical developments for AFE, what the current accepted practices are, and 

how these practices apply to AMBER. 

 

Analysis methods 

 The historically most used equilibrium AFE analysis methods include free energy 

perturbation (FEP), developed initially by Zwanzig,17 thermodynamic integration (TI), developed 

initially by Kirkwood,18 Bennett acceptance ratio (BAR) from Charles Bennett,19 the expansion 

to more than two simultaneous states multistate Bennett acceptance ratio (MBAR) by Shirts and 

Chodera,20 and the weighted histogram analysis method (WHAM) by Kumar et al21 based on the 

work of Ferrenberg and Swendsen.22 While each of these methods can be shown to be 

equivalent, in practice the results obtained vary due to a combination of limited sampling time 

and unique errors intrinsic to the method. For example, WHAM, which requires discretization of 
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samples into bins according to the degree of freedom of interest, will have an error associated 

with discretizing the values of the degree of freedom. Currently, BAR/MBAR and TI see the 

most use in the literature. WHAM can only ever be as precise as MBAR, never superior, and so 

has fallen out of use for AFE calculations of late. FEP tends to suffer from difficulty in overlap 

between neighboring states leading to poor convergence relative to other estimators. A complete 

review of why this is the case can be found in the book by Chipot and Pohorille.23  

 

Comparison of TI and BAR/MBAR in AMBER 

 Both TI and MBAR are supported in the GPU accelerated AFE calculations.13,24 TI tends 

to be faster than MBAR for a variety of reasons, most notably the extra energies needed for 

MBAR compared to TI. Our estimates indicate a 10-20% performance difference between TI and 

MBAR on a GPU (unpublished work). This does not account for analysis time, which in general 

is slower for MBAR than TI, although the absolute difference likely pales in comparison to the 

cost of running the simulations. It is much easier to add new lambda windows to a TI simulation 

than BAR/MBAR, because BAR/MBAR requires rerunning other simulations to get the adjusted 

value accounting for all states.25 Additionally, TI, relying on integration of the derivative of the 

potential energy with respect to the progress variable lambda (often referred to as dV/dL) is 

subject to integration error if an integrator is not sufficiently sensitive to the curvature of 

dV/dL.25–27. However, using Simpson’s rule or cubic spline seems to significantly reduce the 

integration error.25 MBAR (or BAR if MBAR is not supported in the software suite of choice) 

offers several analysis advantages. It is possible to calculate an overlap matrix, a direct 

representation of overlap between adjacent states. This is extremely useful for predicting when 

additional lambda windows need to be added for convergence.28 MBAR (not BAR) is also 
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proven to be the minimal variance estimator for a set of states,20 and results have lower bias and 

smaller variance than analogous TI calculations when the phase-space overlap between end 

states of a transformation is small.29 In summary, if performance over a large set of simulations 

is key, then TI is often a good choice, particularly for cases such as charge change without the 

use of softcore potentials where dV/dL is expected to be linear. If performance is not as 

important, MBAR is a safer tool and often can be run in conjunction with TI, which allows for 

better error checking as the results should be similar between the two analysis methods.  

 

Analysis tools 

 One particularly useful tool for analysis of AFE simulations is the alchemical analysis 

library pymbar30 and associated toolkit alchemlyb and predecessor alchemical-analysis.py.31 

These tools allow for analysis of virtually every type of simulation data (dV/dL for TI, multiple 

state information for MBAR, etc.), and work for most major simulation engines. Of note is the 

ability to generate the above-mentioned overlap matrix between all lambda windows for MBAR 

simulations, and ability to test for sufficiently uncorrelated samples for any type of simulation.  

 

Multi lambda window approach  

 It is well established that subdividing the change associated with each leg of a 

thermodynamic cycle into many smaller changes is necessary to enhance overlap between the 

end states.23,32 This is generally accomplished by coupling the thermodynamic leg to a variable 

lambda, which varies from 0 to 1. Each smaller individual simulation then has a unique value of 

lambda, and is referred to as a lambda window. However, it is also often necessary to equilibrate 
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each individual lambda window prior to production to avoid kinetically trapped states which may 

result from conformational changes between different values of lambda.33 

 In AMBER, the dynamic lambda functionality allows for a single equilibration 

simulation to be run with a steadily increasing value of lambda and to generate initial 

conformations at each value of lambda. While this is likely to be inferior as far as sampling is 

concerned to running minimization, heating and pressure equilibration separately for each 

lambda window, the increased computational cost of running extra minimization, heating and 

pressure simulations for potentially dozens of lambda windows means dynamic lambda is often 

worthwhile from a cost-benefit perspective.  

 

Softcore potentials 

 One of the earliest practical problems encountered in AFE calculations was the frequent 

instability of simulations at endpoints, also referred to as the endpoint problem or the endpoint 

catastrophe. One way of surmounting the nonbonded instabilities is by using “softcore” 

potentials for atoms that are appearing or disappearing. The use of a “softcore” potential for the 

annihilation/decoupling or creation/recouping of atoms has become standard practice, and is 

present in sander, PMEMD and PMEMD.cuda. The form present in all three AMBER 

executables for Lennard-Jones parameters is 

𝑉𝑑𝑖𝑠𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑖𝑛𝑔 = 4𝜀(1 − 𝜆) [
1

[𝛼𝜆+(
𝑟𝑖𝑗

𝜎
)
6

]

2 −
1

𝛼𝜆+(
𝑟𝑖𝑗

𝜎
)
6]                                               (1) 

And 
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𝑉𝑎𝑝𝑝𝑒𝑎𝑟𝑖𝑛𝑔 = 4𝜀𝜆 [
1

[𝛼(1−𝜆)+(
𝑟𝑖𝑗

𝜎
)
6

]

2 −
1

𝛼(1−𝜆)+(
𝑟𝑖𝑗

𝜎
)
6]                                                   (2) 

As originally presented by Shirts and Pande.34 Where λ is the value of the progress variable 

lambda, ε is the depth of the potential well, rij is the distance between the two atoms i and j, 𝜎 is 

the finite distance at which the inter particle potential is zero, and α is a scaling parameter. α is 

typically set to 0.5.   

 

One step vs three step protocol 

There are analogous equations to (1) and (2) for electrostatic terms35 allowing for a “one-

step” transformation rather than separate charge and LJ changes: 

               𝑉𝑑𝑖𝑠𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑖𝑛𝑔 = (1 − 𝜆)
𝑞𝑖𝑞𝑗

4𝜋𝜀0√𝛽𝜆+𝑟𝑖𝑗
2
                                            (3) 

And 

       𝑉𝑎𝑝𝑝𝑒𝑎𝑟𝑖𝑛𝑔 = 𝜆
𝑞𝑖𝑞𝑗

4𝜋𝜀0√𝛽(1−𝜆)+𝑟𝑖𝑗
2
                                                       (4) 

Where qi and qj are the charges on atoms i and j respectively, 𝜀0 is the permittivity of free space, 

rij is the distance between atoms i and j, λ is the value of the progress variable lambda, and β is a 

scaling parameter. β is typically set to 12Å2. In this one-step protocol, electrostatic nonbonded 

terms and Lennard-Jones terms are decoupled simultaneously. While this does reduce by 

potentially two thirds the number of simulations needed, in practice this is not commonly done. 

Instead, it is common to first turn off the charges on atoms unique to region 1, then change LJ 

parameters with no charge, then re-add the charges to these new atoms. This is common in 

practice because simulations involving simultaneous charge and LJ parameter changes are often 

unstable. This is due to large forces which result from incidental clashes as the repulsive terms 
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become very small near the endpoints while the attractive coulomb forces still present draw the 

atoms closer to one another. It is possible to have atoms wind up almost on top of one another, 

which in turn results in very large forces which crash the simulation.36,37 Additionally, charge 

only transformations can often be performed linearly without the use of softcore, and tend to 

converge comparatively quickly. However, there are some cases in which the one step protocol 

will be more efficient.38 A more thorough study utilizing GPU AFE would be an ideal next step 

to identify the short comings of the one-step transformations, perhaps with the goal of examining 

dynamics to see when and why the one step transformation fails, and whether a specific type of 

transformation is responsible for most of the simulation crashes.  Note, the use of softcore 

potentials and designation of a part of the system as softcore will also have implications in the 

treatment of bonded terms (see below). 

 

Topology 

There are a variety of issues relating to the treatment of bonded terms including topology 

and endpoint treatment of bonded terms. Topology refers to how the endpoints of a 

thermodynamic cycle’s legs are mapped to one another. There is no consensus as to which 

topology is better, as long as they are treated correctly.39–41 See Shirts and Mobley41 for a more 

complete discussion. AMBER supports both single and dual topologies in sander, PMEMD and 

PMEMD.cuda. However, if one chooses to examine an individual leg of a thermodynamic cycle, 

the choice of topology becomes relevant because there are terms which normally would cancel 

which must be accounted for. See the two papers by Boresch and Karplus for a thorough 

discussion.39,40  
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Bonded terms 

 The treatment of bonded terms can have major implications for the stability of a 

simulation, particularly at endpoints (lambda=0 and lambda=1). The two choices of bonded 

terms are ideal gas atom end state and ideal gas molecule end state. The difference is if bonded 

terms unique to one endpoint are scaled by lambda or not. In the ideal gas atom end state, bonded 

terms unique to one endpoint are scaled. This results in the breaking of these bonds. In the ideal 

gas molecule end state, bonded terms unique to one endpoint are NOT scaled. These bonds are 

then not broken. The free energy change associated with these bonded terms then cancels from 

the complete thermodynamic cycle. Analysis by Boresch and Karplus39,40 demonstrated that the 

endpoint catastrophe could be avoided by utilizing an ideal gas molecule end state rather than an 

ideal gas atom end state, allowing for direct sampling rather than extrapolation of the endpoint 

lambda windows (lambda=0 and lambda=1). This is implemented in the PMEMD and 

PMEMD.cuda modules of AMBER, but not in the sander module.  

 

Charge perturbations 

 As computational power increases, a natural direction for the application of AFE is 

towards more complex systems. One such complexity that may increasingly be encountered is 

the perturbation of charged ligands. The difficulty in charge perturbations arises from the use of 

periodic boundary conditions42 to describe certain long range electrostatic effects. Periodic 

boundary conditions are subject to potential finite size effects as the size of the individual 

periodic unit cell shrinks relative to the size of the entire system of interest.  The magnitude of 

these artifacts was recently investigated by Lin et al, who concluded that it is necessary to use the 

same size periodic box for each simulation.43 The source of these artifacts is completely 
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explained by Hünenberger and McCammon.44 An algorithm for the analytical correction of finite 

size terms has been developed by Rocklin et al., and should be applied whenever the net charge 

is changed between end states.45  

 

Automation of calculations 

 With the increased computational power afforded by GPUs, as well as the various 

analysis developments of late, the bottleneck of AFE calculations has shifted to setup.  AFE 

calculations often require complicated topologies and input files, as well as on the order of 100 

simulations to be run for each thermodynamic cycle leg between equilibration, numerous lambda 

windows, and multiple replicates. Additionally, virtual screening efforts ideally could include 

dozens of potential molecules, each with a minimum of two topologies but often six if using the 

three-step approach described above. Therefore, automation whenever possible is highly 

recommended. In AMBER, there are currently two highly used options: Free energy workflow 

(FEW)46,47 and Free energy setup (FESetup).48 Both can be used to generate input and 

parameter/topology files for a large set of ligands with the ability for the user to override default 

parameters, as well as run minimization, equilibration and/or production directly. However, there 

are advantages and disadvantages to both. FEW allows for automated setup of membrane 

systems.47 However, the ligand topologies are restricted to single step calculations rather than 

separate charge and LJ parameter changes. Also, FEW is currently restricted to sander input 

format, although that will be changing shortly (personal communication). FESetup does allow 

for some three step protocols, but it forces the starting configurations for systems generated in 

this way to be the same for all three steps, which in some cases is incorrect. 
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Topics not covered here 

There are a variety of useful reviews written in the last 10 years that go beyond the scope 

of this work but merit attention. These include reviews of the statistical mechanics underlying 

the analysis methods,49–51 the techniques available for calculating changes in free energy,52 and 

the current successes and limitations of alchemical free energy calculations53–55.  

    

Free energy of binding for ligand protein systems  

A natural application of AFE is the calculation of ligand protein binding affinities. There are 

two types of binding free energy calculations in common use: relative binding free energy 

(RBFE) and absolute binding free energy (ABFE). An example thermodynamic cycle for 

protein-ligand binding, as first applied by Wong and McCammon,56 is shown in figure 1 for both 

RBFE and ABFE. 

 

Figure 1.1: Example relative binding free energy (left) and absolute binding free energy (right) of 

ligand GTC000107A to spleen tyrosine kinase (Syk).  

Ligand GTC000107A was taken from the GSK Syk database available through the D3R project.57 The 

ABFE calculation is significantly more difficult due to the added phase space needed to be explored by 

the ligand as it is completely decoupled from its environment. In the RBFE case, the binding affinity of 

GTC000112A, a similar ligand, is already known and can be used to simplify the calculation.  
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Relative binding free energy 

RBFE calculations take advantage of previously calculated or experimentally measured 

binding free energies to reduce the size of the alchemical change that must be performed (figure 

1). They have been an ideal candidate for computational drug design due to the ability to 

simultaneously set up and run an entire set of similar ligands with just one initial experimental 

value.58  There have been a variety of reviews published in the last five years on the subject of 

relative binding free energy calculations55,59–66, many of them published in the last year,55,59,60,62–

64 indicative of the renewed interest in these calculations. These reviews have focused on topics 

such as benchmarks55,61,62,65, practical considerations for computational projects,59 

methodological developments,60,64,66 and the role of experimental collaboration.63 RBFE with 

AFE in AMBER has been used for a variety of purposes, including protein-ligand binding,61,65,67–

71 protein mutation energetic calculations,72–75 benchmarking forcefields and sampling 

protocols,76 and method development.77,78  

 

Absolute binding free energy calculations 

 There are several notable differences in absolute free energy of binding calculations from 

RBFE calculations. The most significant is that the ligand needs to explore potentially all of 

phase space once it is decoupled from the protein.79 The most significant developments recently 

in ABFE have focused on the use of positional and orientational restraints to reduce this 

sampling requirement.80,81  Despite impressive theoretical developments in ABFE restraints 

sampling as well as general improvements to alchemical free energy calculations, the usage of 

ABFE in practice remains sparse.82  There are some examples of applications, primarily to ligand 

binding free energy.76,83–85  
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 We have reviewed some of the best practices, new developments, and recent applications 

of AFE based binding free energy calculations in the AMBER molecular dynamics suite. 

Following this review, we will describe the newly developed GPU accelerated AFE in chapter 2 

of this document.  

 

Free energies of solvation 

Solvation free energy calculations have been used to calculate partition coefficients,86 

develop solvation prediction models for use in drug design,87 and calculate ionic hydration 

energies to help settle long standing experimental debates,88 among other uses.43,89–91 One 

particularly important use of solvation free energies is in the parametrization and testing of force 

fields.92–98 To this end, the FreeSolv database was designed and has been updated several times, 

most recently in 2017.93 The goal of FreeSolv is for it to be an ongoing effort to characterize 

rigorously the success or lack thereof for existing force fields and best practices in AFE. The 

calculations in the recent FreeSolv update were run using the Gromacs molecular dynamics suite, 

version 4.6.7.5–8 The ability to perform gas phase alchemical free energies has been added to 

AMBER’s PMEMD module (see Supporting Information, below). This, combined with our 

recently developed GPU AFE code,13 allows for the rapid calculation of solvation free energies 

in the AMBER molecular dynamics suite.   
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pH dependent free energies 

Theoretical developments 

constant pH molecular dynamics in AMBER 

An overview of the theory underlying constant pH MD can be found in Chapter 3 of this 

thesis, where CpHMD was applied to beta secretase-1 to examine the pH dependent dynamics.  

This section will focus solely on pH dependent free energy calculations.  

 

pH dependent free energies 

Kim and McCammon recently reviewed progress in the calculation of pH dependent 

binding free energies.99 For the sake of brevity and not repeating what has already been done, 

this section will only point out the most relevant papers related to the theory and practical 

application of pH dependent free energy calculations. pH dependent interactions have been 

studied for protein-protein interactions,100,101 RNA,102 DNA,103 and protein ligand binding.104–106 

Following on the various developments in constant pH MD (CpHMD),107–114 Kim et al.115 and 

Lee et al.116 independently applied the work of Wyman117,118 and Tanford119 to the calculation of 

the pH dependent component of binding free energy.  Additionally, the work by Kim et al. 

included an equation for the case in which residues are not necessarily titrating independently of 

one another. However, these calculations can require potentially hundreds of nanoseconds of 

simulation time to converge. This has traditionally made these calculations in explicit solvent 

very difficult. Recently, the Walker lab14 developed a GPU enabled constant pH molecular 

dynamics algorithm. This code has made the calculation of pH dependent free energies realistic 

for small molecule-protein systems.  
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Applications of pH dependent binding free energy 

Due to the relatively novel nature of CpHMD as a simulation technique, as well as the 

computational cost associated with pH dependent free energies, there have not been many 

applications to pH dependent binding affinities yet.104–106,115 There have been a number of 

attempts to study the effect of pH on binding affinity by running cMD with fixed protonation 

states in the predicted states for several different pHs,120–128 likely due to the aforementioned 

computational cost of running CpHMD. However, this strategy may fail when the pKa of a 

residue is significantly different from the standard value, as empirical pKa prediction tools, such 

as propka, are still an area of active development.129,130 For example, when residues are 

sufficiently buried, or else in a coupled titration environment with another residue, or are directly 

involved in interactions with a binding ligand. It is expected that as GPUs continue to improve, 

and these methods begin to circulate and find acceptance among the greater community, that 

applications of pH dependent binding affinity calculations will increase, particularly in a 

pharmaceutical setting.  

 

Accelerated MD and possible applications to drug design 

 While there has been great progress in the development of binding free energy 

calculations, one case in which they sometimes struggle is when there is a major protein 

conformational change which occurs beyond the timescale of the AFE calculation. One method 

to address this shortcoming is accelerated molecular dynamics (aMD).131 In chapter 4, I discuss 

the application of aMD to a mutant form of T4 lysozyme to elucidate the mechanism by which 

benzene exits the interior cavity.  
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Conclusions and future directions with regards to AMBER's current free energy 

capabilities 

 The AMBER molecular dynamics suite can now be used to calculate a wide variety of 

free energies beyond relative free energy of binding. The advent of GPU accelerated AFE has 

pushed the boundaries of feasibility considerably. Constant pH molecular dynamics in AMBER 

with GPU acceleration represents a major step forward particularly towards the goal of realistic 

theoretically rigorous modeling of protein scale systems. Additionally, AMBER's ability to 

calculate solvation free energy appears equal to Gromacs in precision and accuracy.  Together, 

these developments mark a major step forward in not just AMBER’s development, but for the 

entire free energy community. In this work I also discuss the use of CpHMD to probe the water 

dynamics of BACE-1, and offered a potential explanation for the pH dependence of BACE-1 

catalytic activity. Finally, the utility of aMD in sampling rare events is demonstrated. This tool 

holds potential value in computing binding affinities for protein systems with suspected large 

conformational changes. Future directions of the AMBER molecular dynamics suite free energy 

tools include PI-TI132, development of a user interface, graphical and command line, greater 

incorporation of pH dependent molecular dynamics in free energy calculations, including adding 

support for continuous state constant pH MD.109,133  
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Chapter 2 : Fast and Flexible GPU Accelerated Binding Free Energy Calculations within the 

AMBER Molecular Dynamics Package 

 

 

Abstract 

Alchemical free energy calculations (AFE) based on molecular dynamics (MD) 

simulations are key tools in both improving our understanding of a wide variety of biological 

processes and accelerating the design and optimization of therapeutics for numerous diseases. 

Computing power and theory have, however, long been insufficient to enable AFE calculations 

to be routinely applied in early stage drug discovery. One of the major difficulties in performing 

AFE calculations is the length of time required for calculations to converge to an ensemble 

average. CPU implementations of MD based free energy algorithms can effectively only reach 

tens of nanoseconds per day for systems on the order of 50,000 atoms, even running on 

massively parallel supercomputers. Therefore, converged free energy calculations on large 

numbers of potential lead compounds are often untenable, preventing researchers from gaining 

crucial insight into molecular recognition, potential druggability, and other crucial areas of 

interest. Graphics Processing Units (GPUs) can help address this. Presented here is a seamless 

GPU implementation, within the PMEMD module of the AMBER molecular dynamics package, 

of thermodynamic integration (TI) capable of reaching speeds of >140 ns/day for a 44,907-atom 

system, with accuracy equivalent to the existing CPU implementation in AMBER. The 

implementation described here is currently part of the AMBER 18 beta code and will be an 

integral part of the upcoming version 18 release of AMBER.  
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Introduction  

Computational chemists have for some time been seeking to correctly and universally 

predict the answer to the question “How well will ligand X bind to protein Y?” Couched in this is 

the implicit assumption that our predictive tool will be able to answer this question in a reasonable 

amount of time.  For years, computational chemists have been forced to strike a difficult balance 

between speed and accuracy, often being forced to rely on faster, less accurate methods because 

(TI) and related Free Energy Perturbation (FEP) methods were simply too computationally 

intensive.  However, the ceiling on the applicability of docking and MM/PBSA for use in making 

quantitative predictions of ligand binding, possibly the most relevant aspect of free energy in the 

pharmaceutical industry, has quickly become apparent.82 This has led to a renewed interest in 

improving slower but potentially more accurate methods such as TI.  One of the primary 

difficulties which TI suffers from is a severe sampling limitation.64 This limitation is the result of 

several factors including the difficulty in sampling the relevant states,23 potentially dozens of 

unphysical intermediate states that must be simulated even for systems as small as host-guest 

systems,135 and the complexity and cost of the underlying molecular dynamics based algorithm. 

Thus, either hundreds of CPU cores and/or weeks of simulation time are required to obtain results, 

within acceptable error limits, for a single ligand-protein system in a drug design setting. This is 

untenable in an industrial setting where high-throughput is integral to success. The purpose of this 

work is to help address the throughput and finite sampling problem in TI using cost effective 

consumer hardware. 

While there have been many different approaches to addressing the issue of sufficient 

sampling in TI calculations25,27,34 the most straightforward manner of improving on the sampling 

is to write faster code. This paper details a substantially faster implementation of alchemical 
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transformations using cost effective, NVIDIA GeForce graphics processors (GPUs). This code is 

fully implemented within the AMBER molecular dynamics package,136–138 and takes direct 

advantage of the existing, highly efficient, GPU support.1–3 The implementation described here 

will be released as an integral part of the GPU accelerated PMEMD program in the upcoming 

AMBER 18 software release scheduled for Q2 2018. It is currently part of the AMBER 18 Beta 

code and a patch against AMBER 17 is available by request from the corresponding author.  

 

Theory and Methods 

Model Calculations 

The goal of this paper is to demonstrate the efficacy and numerical precision of our new 

GPU TI implementation in AMBER. We have chosen two types of calculations for this purpose 

(Figure 2.1). The first, a free energy of solvation, the second, a binding affinity calculation.  
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A.  

B.  

Figure 2.1: Perturbation cycle for sample calculations performed to test the accuracy and 

performance of our new GPU implementation of TI.  

Each molecule represents a thermodynamic endpoint of a calculation. Top: Solvation free energy 

of N1-((2S,3S,5R)-3-AMINO-6-(4-FLUOROPHENYLAMINO)- 5-METHYL-6-OXO-1-

PHENYLHEXAN-2-YL)-N3,N3- DIPROPYLISOPHTHALAMIDE, a promising BACE-1 

inhibitor.105   Bottom: Relative free energy of binding of ligands GTC000107A and 

GTC000112A to spleen tyrosine kinase (Syk) from the GSK Syk database available through the 

D3R project.57 The transformation includes 3 deletions and two atom changes from 

GTC000107A to GTC000112A.  
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Solvation free energy: 

 

For our present purpose of demonstrating the precision of our GPU TI code compared to 

the existing CPU based TI implementation it was important to test calculations that were difficult 

to converge. In the original implementation of TI in pmemd,139 the solvation free energy 

calculation was the most difficult to converge, despite free energies of solvation (ΔGsolv) having 

been one of the first types of free energy calculations attempted.140 In that instance, ΔGsolv was 

defined as decoupling the ligand from the water over the course of one simulation (Figure 2.1A). 

We chose a potential inhibitor of beta secretase-1 (BACE-1), N1-((2S,3S,5R)-3-AMINO-6-(4-

FLUOROPHENYLAMINO)- 5-METHYL-6-OXO-1-PHENYLHEXAN-2-YL)-N3,N3- 

DIPROPYLISOPHTHALAMIDE as our test system here.141  

 

 

Relative free energy of binding 

Relative free energy of binding (RFEB) calculations are the most widely used application 

of thermodynamic integration given their utility in early stage (lead discovery and lead 

optimization) small molecule drug discovery.16,49 For this very reason we have chosen to 

demonstrate an RFEB calculation in this paper. Our example thermodynamic cycle for RFEB is 

shown in figure 2.1B for the spleen tyrosine kinase (Syk) system. Syk was chosen because it has 

a stable, well-defined binding pocket with a crystal structure. Ligands GTC000107A and 

GTC000112A were chosen from the D3R database  because they were shown to have similar 

binding poses57 These similar binding poses meant that convergence issues were less likely to 

dominate the results allowing us to better test the GPU implementation and to compare the 

differences in the precision model between the CPU and GPU implementations. As is typical in 
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RFEB calculations, alchemical transformations from GTC000107A to GTC000112A were 

performed for the ligands bound to the protein and the ligands free in solution. 

 

Docking of ligands to Syk 

Ligands were docked to crystal structure 1XBA21 using AutoDock Vina.22 Gaps in the 

crystal structure (residues 360-362, 393-394 and 405-406) were filled using Modeller 9v2.23 Side 

chains for residues 402, 420, and 448 were treated as flexible, while the rest of the protein was 

treated as rigid. Ligands were fully flexible. 

 

 

 Simulation details 

All the simulations follow a similar protocol; any details that are specific to a particular 

system will be described below 

System preparation and equilibration 

 The leap module in AMBER 16 was used to parametrize all systems. Protein models 

used the Amber ff14SB forcefield,142 with theTIP3P134 model for water. Neutralizing 

counterions, sodium or chloride, were added to each system as needed using TIP3P ions with 

parameters from Joung and Cheatham.143,144 Ligands were parametrized using the second 

generation generalized Amber forcefield (GAFF2)95 for the bonded and van der Waals 

parameters. Partial charges for ligands were obtained using RESP145 fitting for the electrostatic 

potentials, calculated using Gaussian146 at the Hartree − Fock/6-31G* level of theory. A cubic 

periodic box was used with a minimum distance of 15 Å between any box edge and any solute 

atom. All systems were minimized for 1000 cycles of steepest descent followed by 1000 cycles 
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of conjugate gradient. Solute atoms were restrained with a restraint weight of 10 kcal/(mol*Å)2. 

Minimization was followed, for all values of λ, by 100ps of heating at constant volume and then 

1 ns of equilibration at constant pressure. Temperature was regulated via a Langevin thermostat 

set to a target temperature of 300 K and a collision frequency of 5.0 ps-1.  Pressure was regulated 

using a Monte Carlo barostat with a target pressure of 1.0 atm and pressure relaxation time of 2.0 

ps. 

  

 

Production 

All production simulations were run in the NPT ensemble with a Langevin thermostat set 

to 300 K with collision frequency of 5.0 ps-1, and a Monte Carlo barostat at a target pressure of 

1.0 atm and pressure relaxation time of 2.0 ps. The direct space cutoff was set to 10 Å for both 

van der Waals and electrostatics. Long range electrostatics we handled via the Particle Mesh 

Ewald (PME) method42 with a FFT grid spacing of ~ 1 point per angstrom.  Both the solvation 

free energy calculation and the RFEB calculation were run with 11 equally spaced lambda 

windows ranging from 0 to 1. The default values for scalpha (0.5) and scbeta (12.0) were used. 

Energies were printed every 0.5 ps. CPU simulations were run using pmemd.MPI from AMBER 

16 with 12 Xeon cores with a single socket running at 2.50 GHz on an Intel Haswell standard 

compute node on XSEDE Comet.147 Pmemd.MPI was compiled with MVAPICH2 2.1. GPU 

simulations were run on NVIDIA GeForce Titan-X GPUs with Pascal architecture using the 

current AMBER 18 development tree with our GPU TI support incorporated.  The GPU code 

was compiled for the default SPFP precision model using CUDA 8.0 and NVIDIA driver version 

367.57. Both pmemd.MPI and PMEMD.cuda were compiled using the gnu compiler in gnutools 
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2.69. Simulations were run with a 1 fs time step (except for timing comparisons using H-mass 

repartitioning). The solvation free energy system was simulated for 15 ns.  The RFEB complex 

and solvated systems were simulated for 10 ns. The first 5 ns of each simulation was discarded 

for equilibration purposes. The VDW change of the RFEB complex system required an 

additional 10 ns of simulation to converge.  Each simulation was replicated three times with 

unique random seeds in each case.   

 

Single step alchemical change versus separate charge/VDW changes 

In transformations involving charge changes, it is possible in AMBER to use a softcore 

coulomb potential alongside the softcore Lennard-jones potential. To test both approaches for 

reproducibility between the two codes, the solvation free energy calculation was run with 

softcore electrostatics, while the RFEB was run in separate steps, turning charges off linearly 

before performing VDW changes.   

 

H-Mass Repartitioning 

Hydrogen masses bound to heavy atoms were repartitioned to 3.024 Daltons using 

ParmEd to allow for a 4-fs time step.148 Some short simulations were run with identical input 

parameters, except the additional use of SHAKE to restrain the bonds between hydrogen and 

heavy atoms. To obtain the same number of data points, print and write frequencies were 

quadrupled for these simulations.  
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Performance comparison between CPU and GPU 

All CPU simulations were run using the pmemd.MPI module om 12 Intel Xeon E5-

2680v3 cores at 2.50 GHz on a single socket of an Intel Haswell standard compute node on 

XSEDE Comet. All GPU simulations were run on NVIDIA GeForce Titan-X (Pascal) GPUs 

with driver 367.57 and CUDA 8.0.  

 

Analysis 

All integrations were carried out using a cubic spline over 11 lambda windows: 0.0, 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. The Alchemical analysis python package31 was used to 

calculate our free energy estimates and associated errors. Autocorrelation times were estimated 

using pymbar30. Uncertainties for average values are the standard deviation of the replicate 

calculations.  

 

Results and Discussion 

Numerical comparison 

Previous work by several groups has shown the CPU implementation of TI to be already 

capable of predicting experimental free energies.67,72,73,149  Thus for the purposes of validating 

our GPU implementation we consider values that agree within statistical error to the CPU 

implementation to indicate success.  

 The results of the solvation free energy and RFEB calculations are shown below (Table 

1). The average results of the CPU and GPU simulations agree to within the standard deviation 

of three replicates. 
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Table 2.1: Numerical comparison of free energy of solvation and RFEB calculations on 

CPU and GPU.  

All values are the average ± the standard deviation of three replicates. RFEB – complex is the 

sum of the simulations in which the ligands are bound to the protein. RFEB – solution is the sum 

of the simulations in which the ligands are free in solution. Values for individual charge 

transformation and Lennard-Jones transformation simulation can be found in SI table 1. 

Calculation code Relative Gibbs free 

energy change (kcal/mol) 

Solvation free 

energy 

CPU 53.0 ± 2.4 

 GPU 53.8 ± 2.4 

RFEB - complex CPU 27.50 ± 0.46 

 GPU 27.36 ± 0.55 

RFEB - solution CPU 28.95 ± 0.12 

 GPU 28.86 ± 0.05 

RFEB (ΔΔG) CPU -1.45 ± 0.48 

 GPU -1.50 ± 0.55 

 

The results agree between the CPU and GPU codes but, as shown with the performance numbers 

below, the GPU code obtained the result in approximately 1/30th of the time it took to run the 

calculations on all CPUs cores within the node. For the RFEB calculation, the charge and VDW 

changes were carried out separately. These calculations also agreed to within statistical error 

(table 2.3).  

Since the values measured here are ensemble averages using a Langevin thermostat that 

introduces random friction forces to control the temperature, it is still potentially possible that 

while the two codes agree within statistical error that we are using an incorrect potential in the 
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GPU code due to some subtle implementation bug. Therefore, it is important from a code 

validation perspective to directly compare the potentials (both energy and gradients) between the 

CPU and GPU codes by comparing the energies prior to including the random friction forces. 

Table 2 below compares initial energies for the same starting structure between the CPU TI 

(DPDP precision model) and GPU TI (SPFP precision model).  

 

Table 2.2: Numerical comparison of energies at step 0 of our RFEB trajectories. 

Results are for Lennard-Jones parameter change with softcore VDW potential. Electrostatic non-

bonded includes both direct space and PME reciprocal space terms. “Bonded terms” includes 

bonds, angles, dihedrals, and 1-4 adjustment terms. DVDL, the derivative of potential with 

respect to lambda, is the sum of the contributions from all potential terms (bonded, VDW, and 

electrostatic). Forces were also equivalent to the same numerical precision, but are not shown 

due to the sheer number of atoms for which force is calculated.   

Term CPU (kcal/mol) GPU (kcal/mol) 

VDW non-bonded 16209.8375 16209.8375 

Electrostatic non-bonded -171344.5200 -171344.5191 

Bonded terms 19937.6161 19937.6162 

DVDL -35.4512 -35.4518 

 

Energy and DVDL values agree to at least 5 significant figures which agrees with previous 

comparisons of conventional MD simulations between the DPDP (CPU) and SPFP (GPU) 

precision models. 

 

Performance comparison 

The use of GPUs has allowed for a greater than 30X average performance increase over a 

single socket 12 Intel Xeon E5-2680v3 core node. (Figure 2.2).  
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Figure 2.2: comparison of average performance of CPU and GPU TI code for a protein-

ligand binding calculation.  

CPU code was run on 12 Intel Xeon E5-2680v3 cores, while the GPU code was run on a single 

NVIDIA GeForce Titan-X [Pascal] GPU. Numbers are from a VDW transformation from the 

lambda = 0 window. There was a total of 44,907 atoms, 81 of which were defined as TI atoms, 

with 3 being softcore. Charges on the softcore atoms were turned off. The GPU code 

performance did not scale as well with HMR compared with the CPU code (3.43X vs 3.77X) 

because of the higher energy printing frequency (every 125 steps) which more negatively affects 

GPU performance than CPU performance. 

 
 

Hydrogen mass repartitioning enabled the use of a 4-fs time step. We noticed no issues in 

using 4-fs as a time step, in keeping with work done by others.148,150 Overall, we have achieved a 

greater than 360X performance enhancement for RFEB protein-ligand complex systems over a 

single CPU core, or greater than 30X performance improvement over a CPU node. With our 

code, these calculations can now be carried out on the order of hours on a single cost-efficient 

GeForce GPU, instead of weeks on a single node or having to utilize large number of CPU nodes 

with expensive interconnects. For way of reference the node used in this work can be purchased 

for approximately $2800 with a single GeForce Titan-X [Pascal] GPU. Our recommended 

configuration would, at the time of writing, be a system containing 2 x E5-2620V4 CPUs, 64GB 

of memory and 4 x NVIDIA GeForce 1080TI GPUs. This configuration currently costs between 

$5000 and $6500 and can run 4 lambda windows at once, one on each GPU, obtaining 

performance equivalent to that shown above for each window simultaneously. 

1.39

42.04

5.24

144.4

0

50

100

150

200

n
s/

d
ay

Performance of AMBER GPU TI vs AMBER CPU TI

CPU RFEB, complexes, with sc GPU RFEB, complexes, with sc

CPU RFEB complexes with sc HMR GPU RFEB complexes with sc HMR



 

 28 

 

Conclusions 

We have demonstrated GPU enabled TI in the AMBER molecular dynamics suite that 

will form the officially supported GPU TI implementation to be released in the upcoming 

AMBER v18. Our implementation compared with the most recent version of TI in pmemd136 is 

over 360X faster for protein-ligand binding than a single CPU core, 30X faster compared with a 

single node if using a single GPU per node and 120X faster per node if one considers that 4 

GeForce GPUs can be added to a single node in a very cost effective manner. These performance 

improvements come without sacrificing precision or accuracy. The input format is identical to 

CPU pmemd, making the transition seamless for existing users. MBAR support has also 

implemented, and will be discussed in follow up publications. The code described in this 

manuscript is available by request from the corresponding author as a patch against the release 

version of AMBER 17 and applicable updates as of Sept 1st, 2017 and forms part of the AMBER 

18 release scheduled for April 2018. 

 

Acknowledgements 

Chapter 2 is a modified reprint of the material as it will appear in “Mermelstein, D. J., 

Lin, C., Nelson, G., Kretsch, R., McCammon, J. A., Walker, R. C. (2018) Fast and Flexible GPU 

Accelerated Binding Free Energy Calculations within the AMBER Molecular Dynamics 

Package, Journal of Computation Chemistry. DOI: 10.1002/jcc.25187.” The dissertation author 

was the primary investigator and author of this paper. 

 The authors thank Bryce Allen and Woody Sherman of Silicon Therapeutics, Thomas 

Fox of Boehringer-Ingelheim and Sasha Buzkho of Nant Biosciences for extensively beta testing 

the software and providing critical feedback. Daniel Mermelstein is supported in part by the 



 

 29 

Interfaces training program for multi scale biology from the National Institutes of Health (NIH). 

Work in the JAM group is supported in part by NIH, NBCR, and the NSF supercomputer 

centers. RCW’s contributions were funded by royalties received from licensing of the AMBER 

software by UCSF. No contributions to this work, monetary or otherwise, were made by 

NVIDIA Corp. 

 

Supporting Information 

 
Figure 2.3: breakdown of RFEB calculation into charge change and Lennard Jones change.  

All calculated numbers agree within error (Table 2.3).  
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Table 2.3: numerical values associated with figure 2.3  
Calculation Step Relative Gibbs free energy change (kcal/mol) 

ligand binding – 

complex 

cpu discharge 17.11 ± 0.29 

gpu discharge 17.21 ± 0.36 

cpu vdw 10.38 ± 0.36 

gpu vdw 10.15 ± 0.42 

ligand binding - ligands cpu discharge 16.61 ± 0.01 

gpu discharge 16.59 ± 0.02 

cpu vdw 12.34 ± 0.11 

gpu vdw 12.27 ± 0.03 
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VDW GPU 

 

Figure 2.4: output initial energies for both Discharge and VDW changes in RFEB 

calculation.  
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VDW CPU 

 

Figure 2.4 continued: output initial energies for both Discharge and VDW changes in 

RFEB calculation.  
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Discharge CPU 

 
Discharge GPU 

Figure 2.4 continued: output initial energies for both Discharge and VDW changes in 

RFEB calculation.  
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Chapter 3 : pH dependent conformational dynamics of Beta-secretase 1: a molecular 

dynamics study 

 

 

Abstract 

Beta-secretase 1 (BACE-1) is an aspartyl protease implicated in the overproduction of β-

amyloid fibrils responsible for Alzheimer’s disease. The process of β-amyloid genesis is known 

to be pH dependent, with an activity peak between solution pH of 3.5 and 5.5. We have studied 

the pH dependent dynamics of BACE-1 to better understand the pH dependent mechanism. We 

have implemented support for graphics processor unit (GPU) accelerated constant pH molecular 

dynamics within the AMBER molecular dynamics software package and employed this to 

determine the relative population of different aspartyl dyad protonation states in the pH range of 

greatest β-amyloid production, followed by conventional molecular dynamics to explore the 

differences among the various Aspartyl dyad protonation states.  We observed a difference in 

dynamics between double protonated, mono-protonated, and double deprotonated states over the 

known pH range of higher activity. These differences include Tyr71-Aspartyl dyad proximity, 

water accessibility in the active site, and active site water lifetime. This work suggests that Tyr71 

may play a role in stabilizing catalytic water in the Aspartyl dyad active site, enabling BACE-1 

activity.    

 

Introduction 

 Alzheimer’s Disease (AD) is characterized by a degradation of cognitive function and 

memory loss.151 These phenotypes are thought to be caused by the over accumulation of a 

cytotoxic form of amyloid-beta peptide, Aβ-42.152,153 Aβ-42 is one of a variety of amyloid beta 
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peptides that are produced via the amyloidogenic pathway.154 When APP is first cleaved by β-

secretase (BACE-1) rather than α-secretase, Aβ-42 is formed preferentially over other non-

oligomerizing amyloid-beta peptides.155,156 This, coupled with BACE-1 mice knockout studies in 

which Aβ-42 production was abolished with no other apparent phenotypic changes,157,158 have 

led to BACE-1 being an extremely promising protein target in the fight against AD.159,160  

BACE-1 is a 501 amino acid transmembrane aspartyl protease.161,162 As a member of the 

aspartyl protease family, it has the characteristic aspartyl dyad at the center of its active site.163 

BACE-1 activity has a well-known pH dependence, with activity declining sharply below pH 3.5 

and above pH 5.5.164 BACE-1 is thought to act by some variant of a general acid-base 

mechanism, possibly involving a bridging catalytic water.165,166 In the case of BACE-1, the 

aspartyl dyad (Asp dyad) acts as the general acid and general base. Asp 32, with an experimental 

pKa of 5.2,166 would be the general acid, while Asp 228 (experimental pKa of 3.5)166 would be 

the general base.  The exact role of water and in turn how solution pH regulates BACE-1 activity 

are still subjects of study.105,164,166,167 Toulokhonova et al. proposed a mechanism in which a 

bridging water allows for the formation of a tetrahedral intermediate and with an unknown pH 

dependent conformational change as the rate limiting step.166 Shimizu et al. proposed that at 

acidic pH water is prevented from entering the active site and catalyzing peptide cleavage while 

at basic pH activity is prevented by a conformational change of BACE-1.164 Both hypotheses 

involved the motion of a β-hairpin loop consisting of residues Tyr68 through Glu77, more 

commonly referred to as the “flap” region. Molecular dynamics and crystallography studies have 

demonstrated the flap region’s flexibility, shown below in figure 3.1.164,168–170 
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Figure 3.1: example flap motion in BACE-1. 

Previous work by Kim et al.105 as well as Ellis and Shen167 both using constant pH 

molecular dynamics has shown that the flap region dynamics are vastly different at different 

pHs. Of relevance to the question of mechanism, pH control, and the role of water in BACE-1 

catalysis, Ellis and Shen demonstrated that Tyr 71 can hydrogen bond to BACE-1 inhibitors 

resulting in openings small enough to potentially occlude water.167 It is possible that the flap is 

capable of occluding water without the presence of inhibitor, in which case water would be a 

major limiting factor in catalysis. By calculating how much water is present in the active site at 

different pHs, and how long said water remains in the active site, we can determine if water is 

limiting to BACE-1 activity. From this information, we may be able to ascertain whether a 

conformational change is responsible for BACE-1 regulation, or whether BACE-1 pH 

dependence is due entirely to the electrostatic environment of the active site.  

To explore water residence times across a range of solution pHs, we have employed two 

variations of molecular dynamics simulations (MD): conventional MD (cMD) and constant pH 
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MD (CpH-MD). MD simulations allow the direct observation of protein sized systems as they 

propagate forward in time. This enables us to observe and account for all the binding poses and 

conformational changes that can occur. However, cMD requires a constant protonation state that 

is set prior to the simulation. For BACE-1, which has a known pH dependence, ignoring changes 

in protonation state would potentially miss very relevant information. CpH-MD can be used to 

probe the effect of the surrounding environment on the pKa of a given residue by accounting for 

the effect of conformational flexibility on pKa.
108 By accounting explicitly for the possibility of 

multiple protonation states, we can vastly improve our understanding of pH dependent 

conformational changes and the associated changes in electrostatic environment.  Previous 

studies have attempted to use constant pH105,167 or other forms of molecular dynamics168,171–175 to 

study BACE-1 dynamics. To our knowledge, this is the first study to use explicit solvent CpH-

MD to quantitatively examine the effect of pH on water lifetimes in BACE-1, and to attempt to 

correlate this with a conformational change in the protein towards the understanding of the 

source of the pH dependence of BACE-1 activity. 

 

 

Methods 

Calculating pKas using CpH-REMD 

In CpH-MD, protonation states of the residues of interest are allowed to change over the 

molecular dynamics simulations, sampling from a semi-grand canonical ensemble.107 In the 

particular variety of CpH-MD employed in this work, modified from the method of Mongan et 

al.108 and implemented on CPUs within the AMBER molecular dynamics suite136–138 by Swails 

et al.111 and subsequently extended to GPUs1–3 as part of this work by us, dynamics propagate 
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from an initial set of protonation states using explicit solvent conventional MD. In this method, 

dynamics are interrupted, and for each residue being titrated a change of protonation state is 

attempted sequentially. Protonation state changes are attempted using generalized Born implicit 

solvent. Acceptance is decided by the following Monte Carlo (MC) criteria (1):108 

∆Gtrans=kbT(pH-pKa,ref) ln(10)+∆Gelec-∆Gelec, ref (1)  

where kb is the Boltzmann constant, T is the temperature in Kelvin, pH is the solvent pH, pKa,ref 

is an experimentally measured pKa value for a simpler form of the amino acid, with the sequence 

acetyl–amino acid–methyl amine, and ∆Gelec, ref  is the precomputed free energy of changing the 

protonation state of the reference compound. ∆Gelec is the calculated free energy of changing the 

pronation state at the current simulation condition using generalized Born. Following titration, 

the water molecules must be allowed to relax before protein dynamics can continue. This is 

accomplished by holding the solute position constant and running dynamics on the water 

molecules. Replica exchange was employed along the pH coordinate. After every cycle 

described above, adjacent replicas attempt to exchange solution pH per the following MC criteria 

(2):110 

Pi→j=min{1,exp[ln10(Ni-Nj)(pHi-pHj)]}  (2) 

Where Ni  and Nj are the number of titratable residues that are currently protonated in replica i 

and j, respectively, and pHi and pHj  are solvent pH in replica i and j, respectively. The result of 

such a simulation is a protonation fraction for each residue at each pH. These values can then be 

fit to the Hill equation (3) to generate predicted pKa values: 

fraction protonated(pH)= 
1

(1+10
(n*(pKa-pH)))

       (3) 

Where n is the cooperativity coefficient, fraction protonated is the percentage of time a residue 

spent in the protonated state at a given pH, and pH is the solvent pH.  
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Conventional MD for dynamics 

While it is possible to use CpH-MD to study dynamics, as even in explicit solvent it 

satisfies the weaker detailed balance criteria,176 the solvent relaxation time requirement makes 

extracting time dependent information, e.g. water residence or flap motion, from CpH-MD very 

difficult in practice. Conventional MD (cMD) is useful for generating such time dependent 

quantitative information, but requires a set protonation state. By using CpH-MD to calculate the 

relative populations of each set of protonation states at each pH, and then running cMD on each 

of these sets of protonation states that are present at our pH range of interest, we can calculate 

residence times and flap motion for the states of interest. To test the differences at, below, and 

above the pH range of high activity, we first need to determine the different protonation states 

present within pH 3.5 – 5.5, below 3.5, and above 5.5. Then we can run conventional MD to 

extract flap-dyad distance and residence time, and correlate this with how frequently each 

protonation state occurs below, above, and within the pH range of interest.   

 

Choice of titratable residues 

 Propka130 was used to determine the predicted pKa of all potentially titratable residues at 

pH 3.5 and pH 5.5. From this, all residues with a predicted difference in pKa between pH 3.5 and 

pH 5.5 of greater than 0.5 pKa units were selected to be titratable in our CpHMD simulations.  

 

System preparation and generation of production coordinates 

 The X-ray crystallographic structures of BACE-1 in complex with the inhibitor N-

[(1S,1R)-ben- zyl-3-(cyclopropylamino)-2-hydroxypropyl]-5-[methyl(methylsulfonyl)]amino-
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N’-[(1R)- 1-phenylethyl]isophthalamide (PDB ID 2B8L)177 was used to build the starting 

structure for all simulations. The apo structure of BACE-1 was generated by removing the bound 

inhibitor from the refined 2B8L structure. The mutations that were added to the protein for 

crystallographic purposes were corrected to the original sequence.177  Residues from Gly158 to 

Ser169 were not resolved in this structure. This loop was constructed using homology modeling 

from the Structure Prediction Wizard module of Schrödinger’s Prime program.178–180 First, the 

FASTA sequence of the protein including the missing loop region was obtained from UniProt.181 

Then, utilizing the homologs found by the BLAST search algorithm182 a chimera model 

containing the missing loop region was built. Finally, the homology-modeled loop region was 

energy-refined for relaxation using the Refine Loops panel of the Prime program.180  

The leap module in AMBER 16137 was used to parameterize Apo BACE-1. the Amber 

ff14SB forcefield142 was used for protein parameters. TheTIP3P134 model was used for water. 18 

sodium and eight chlorine TIP3P ions with Joung and Cheatham parameters143,144 were added to 

generate a neutralized system with a 0.1M ion concentration. A 0.1M concentration was needed 

to match the ion concentration for which the GB pKa,ref and ΔGelec,ref were parameterized for. A 

cubic periodic box was used with a minimum distance of 10 Å between any box edge and any 

solute atom. Disulfide bonds were added manually in leap between Cys 155 and Cys 359, Cys 

217 and Cys 382, and Cys 269 and Cys 319. Residues Asp 32, Asp106, Asp138, Asp223, Asp 

228, Glu116, Glu265, Glu339, His45 and Tyr 71 were selected for titration. Initial protonation 

states were selected by using PROPKA.130,183 A modified prmtop and cpin file with generalized 

Born (GB) parameters GBOBC,I from Onufriev, Bashford and Case184,185 were generated using 

cpinutils.py in AmberTools16.136  
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Minimization was carried out over four steps. First, 2000 cycles of steepest descent were 

performed with a restraint weight of 5 kcal/(mol*Å2) on all non-hydrogen atoms. Second, 5000 

cycles of steepest descent were performed with a restraint weight of 5 kcal/(mol*Å2) on all non-

hydrogen protein atoms. Third, 5000 cycles of steepest descent were performed with a restraint 

weight of 5 kcal/(mol*Å2) on all atoms except for carbons and nitrogens. Fourth, 25000 cycles of 

steepest descent were performed with no restraint. Following minimization, the system was 

heated gradually to 300K over 250 ps using a Langevin thermostat with a collision frequency of 

2.0 ps-1. All protein atoms were restrained with a weight of 5 kcal/(mol*Å2). The system was 

then pressure equilibrated to 1 atm over 2 ns with a Langevin thermostat set to 300 K with 

collision frequency of 5.0 ps-1 and a Berendsen barostat with a pressure relaxation time of 1.0 ps. 

Finally, the system was run under NVT conditions for 100 ns of equilibration with a Langevin 

thermostat, collision frequency of 2.0 ps-1 and a target temperature of 300 K. Particle Mesh 

Ewald42 was used for long range electrostatic forces, with direct force calculation truncated after 

8.0Å.  

 

Constant pH REMD 

 CpH REMD simulations were run using our GPU implementation of CpH-MD in 

PMEMD.cuda.MPI within AMBER 16.137 The only modification beyond the code released as 

part of AMBER 16 was to allow for coupled titrations for residues which were separated by 

more than 2Å such as in this case where the bridging water caused Asp 32 and Asp 228 to be 

separated by on average 5Å. 18 total pH replicates were run, spanning from -6 to 12 by single pH 

units. Each of three replicates was run for 60 ns of dynamics (excluding solvent relaxation). 

However, pKa values appear converged after only 20 ns (Figure 3.3). Simulations were run with 
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NVT at a target temperature of 300K using the Langevin thermostat with a collision frequency of 

2.0 ps-1. Dynamics was propagated for 200 fs, at which point titration was attempted on all 

titratable residues. In the case of a successful titration on any of the residues, 200 fs of solvent 

relaxation was performed. Following solvent relaxation, replica exchange was attempted. 

Explicit solvent was used for the dynamics (icnstph=2), while generalized Born implicit solvent 

was used for the titration attempts, with igb=2 which corresponds to GBOBC,I.185 A salt 

concentration of 0.1M was used to match the parametrization of the reference pKa values. 

Protonation state population data was recorded after every set of titration attempts. Energies and 

coordinates were recorded every 10 ps.  

 

Production MD on four protonation states 

 System preparation for cMD was identical to CpH-REMD, except that instead of 

generating a modified prmtop and cpin file, the initial prmtop was modified to have the desired 

protonation states for each of the four combinations of Asp dyad protonation.  The four 

protonation states were Asp 32 protonated, Asp 228 deprotonated; Asp 32 deprotonated, Asp 32 

protonated; both Asp 32 and Asp 228 protonated; and both Asp 32 and Asp 228 deprotonated. 

Prmtop modification was accomplished using ParmEd in AmberTools17136. For each protonation 

state, three replicate cMD simulations were run for 80 ns with identical NVT conditions to CpH-

REMD simulations, for a total of 12 cMD simulations. Energies and coordinates were recorded 

every 10 ps. 
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Data analysis 

 Cphstats in amber was used to reconstruct trajectories by pH following replica exchange, 

as well as calculated protonation fractions of all residues at each pH. This data was fit to the Hill 

equation (3) using Gnuplot.186 Cpptraj in AmberTools136 was used to calculate the dyad-Tyr 71 

distance over the course of the cMD trajectories as well as generate water-dyad distances for 

residence times. The center of mass of the aspartyl dyad titratable protons was used for the dyad 

location when measuring water-dyad and Tyr71-dyad distances. Trajectories were visualized in 

VMD version 1.9.3a6.187 

 

Calculating hydration numbers and water residence time 

 Hydration numbers and residence times were calculated using an in-house python script. 

Water molecules were considered to be within the first hydration shell of the aspartyl dyad if 

their oxygen atom was within 3.5Å from the center of mass of the aspartyl dyad titratable 

protons. Only the closest 10 water molecules were considered for computational simplicity. 

There was no noticeable effect of including the 11th closest water molecule on the hydration 

number compared to just the 10 closest water molecules (Table 3.4).    

 

Results and Discussion 

Calculation of pKas 

Constant pH MD was used to generate ensemble averages of protonation fractions from 

pH -6 through pH 12 in units of single pH units for 10 residues. Residues titrated included the 

aspartyl dyad, the Tyr 71, and seven others which were hypothesized to vary significantly over 

the active pH range. The predicted pKa values are shown in table 1. 
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Table 3.1: Predicted pka values for titrated residues.  

Uncertainties are derived from the fit to the Hill equation. 

 

Residue Calculated pKa 

Asp 32 3.16 ± 0.08 

Asp106 3.35 ± 0.01 

Asp138 2.53 ± 0.02 

Asp223 3.50 ± 0.002 

Asp228 -1.17 ± 0.08 

Glu116 3.26 ± 0.04 

Glu265 5.30 ± 0.004 

Glu339 4.04 ± 0.02 

His45 7.26 ±0.01 

Tyr 71 11.80 ±0.001 

 

The pKa of the aspartyl dyads of note. The experimentally calculated values of Asp 32 

and Asp 228 are 5.2 and 3.5 respectively.166  Our macroscopic pKas were correctly ordered, but 

differ by 2.1 and 4.6, respectively.  This variation is likely due to the bridging water which is 

removed during the implicit solvent titration attempts. The other key titratable residues had pKa 

values near their normal ranges. The pKa of Tyrosine 71 was a bit elevated from the typical value 

of 9.1. Because the calculated pKa's of Asp 32 and Asp 228 appear to be artifactually perturbed 

by the missing water molecule, we used the experimental values of those resides, together with 

the calculated values of the other residues, to guide the chosen protonation states for the cMD 

simulations.   
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Protonation states relevant to the dyad motion and hydration 

To understand the Asp flap dynamics over time at different pHs, we first needed to 

determine which protonation states were likely to be present at each pH. Of the titratable 

residues, only the Asp dyad and Tyr 71 were found to influence the dyad motion.  However, Tyr 

71 had a calculated pKa of 11.8, far above that of the Asp dyad, and did not change protonation 

state below the upper bound of pH range of high activity (pH 5.5). Therefore, we assumed Tyr 

71 would be monoprotonated in all cases. As such, there were only four combinations of 

protonation states whose dynamics were of interest. These were Asp 32 protonated Asp 228 

deprotonated (32p 228d), Asp 32 deprotonated Asp 228 protonated (32d 228p), both Asp 

protonated (32p 228p), and both Asp deprotonated (32d 228d).   

 

Differences in water residence between different protonation states.  

 In the hypothesized general acid base mechanism for BACE-1, a bridging water 

facilitates a proton transfer allowing for cleavage of substrate.165,166 One hypothesis for how 

BACE-1 activity is regulated is that water is prevented from entering and leaving the active site. 

To examine this, we have calculated the residence time of water for each of the four protonation 

states. This is shown in table 2 below: 

 

 

 

 

 

 



 

 46 

Table 3.2: hydration number, active water lifetime and residence time for water molecules 

in all four combinations of protonated and deprotonated for the Asp dyad residues.  

Active water lifetime is defined as the continuous length of time the water closest to the dyad 

remains the closest water. Residency is defined as being within 3.5 A of the Asp dyad, which is 

defined as the oxygen of the water molecule to the center of mass of the four total titratable 

protons of Asp 32 and Asp 228. 
 

 State  Number of water 

present in first 

Hydration Shell 

Active water 

lifetime (ns)  

Residence Time 

for all water(ns)  

32p 228d  2.57 ± 1.4 0.16 ± 0.17 1.25 ± 0.15 

32d 228p 3.89 ± 1.8 0.20 ± 0.23  1.14 ± 0.18 

32p 228p  4.35 ± 1.8 0.07 ± 0.08 0.87 ± 0.09 

32d 228d  6.16 ± 1.7 0.03 ± 0.05 1.56 ± 0.18 

 

The data in table 2 suggests that in the 32p 228d state, water was more often occluded from 

entering the active site. However, waters that moved closest to the active site center tended to 

remain the closest water for two or three times as long as in the 32p228p or 32d228d states.  This 

is intriguing given that 32p228d is the most populated state in the pH range of highest activity, 

and therefore a water molecule should remain available to participate in catalysis in this state. 

Additionally, titratable water-dyad distances do not appear to vary greatly between different 

protonation states (table 3), indicating this behavior is likely not due to water simply avoided the 

dyad and being kinetically trapped in the 32p228d case.  
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Table 3.3: Average distance of the center of mass of the aspartyl dyad protons to the 

oxygen of the closest water.  

While the relative variance for 32d228p is almost twice that of the other protonation states, this 

is likely an artifact of the naturally high deviations that accompany water measurements, as 

32p228d did not show similar results. 

 

Protonation state Distance of Dyad to closest H2O (Å) 

32d 228p 1.92 ± 0.16 

32p 228d 1.78 ± 0.07 

32p 228p 1.72 ± 0.08 

32d 228d 1.86 ± 0.08 

 

 

Tyr flap – Asp dyad distance as a possible explanation for unique water behavior among 

protonation states 

 Given the differences in water access, we next examined the distance of the Tyr 71 flap 

to Asp dyad to test for a possible cause for these differences. It is possible that water could be 

excluded from the active site or prevented from leaving the active site if the flap moves close 

enough to the dyad. The distance between Tyr 71 to the Asp dyad as a function of time for all 

four protonation states is shown in Fig 2. 
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Figure 3.2: Distance of Tyr 71 to the Asp dyad in 32p228d (top), 32d228p (second from 

top), 32p228p (second from bottom), and 32d228d (bottom).  

Md1, md2 and md3 each represent 80 ns trajectories starting from different random seeds post 

equilibration. Distance is defined as hydrogen of the Tyr 71 side chain to the center of mass of 

the carboxylate oxygen atoms of the Asp dyad side chains.  

 

In both monoprotonated states, the flap spent more time near the dyad. Additionally, in the 32p 

228d state, the flap effectively closed (distance of < 2Å). While the actual protein motion is some 
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combination of these four states and distances, clearly if any of the four states are going to have 

limited access to water or substrate sterically, it would be 32p 228d. However, 32p 228d is the 

highest activity state. This suggests that Tyr 71 flap closure may play a role in stabilizing the 

catalytically relevant water molecule, anchoring it to allow for catalysis.  

 
 

Conclusions 

 Based on our CpH simulations and knowledge of the experimental pKas, 32p 228d 

should be the most prevalent at the pH of greatest in vivo activity. This state appears to have 

relatively little access to water, compared to 32p 228p and 32d 228d. However, in the 32p 228d 

state, the water that is in the active site remains proximal to the active site for longer.  It is 

beyond the scope of this work to attempt to measure the kinetics and timescale of the proton 

transfer, but it is also possible that the water is not able to stay long enough in the fully 

protonated or fully deprotonated states for transfer to occur. The stabilization of water in 32p 

228d may be due to not just to electrostatics, but a conformational change in which the Tyr71 

flap closes and interacts with the aspartyl dyad. It seems possible that the extra time which water 

can spend engaged with the dyad due to this anchoring by Tyr 71 may allow for optimal proton 

transfer. Given these results as well as previous studies which indicate the importance of Tyr 71 

in BACE-1105,167,170, focus on inhibitors that are capable of disrupting the Tyr 71-Asp dyad 

interaction may aid in combating AD via BACE-1 inhibition. 
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Supporting Information 

 

Table 3.4: difference in average hydration number when counting 10 closest waters vs 

counting 11 closest waters for all four protonation states. 

State  Number of water present in first 

Hydration shell counting 10 closest 

waters 

Number of water present in first 

Hydration shell counting 11 

closest waters 

32p 228d  2.43 2.43 

32d 228p 3.74 3.74 

32p 228p  4.39 4.39 

32d 228d  6.52 6.52 
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Table 3.5: Cooperativity constant, n in the Hill equation.  

A value of 1.0 indicates no cooperativity, and a perfect fit to the Hill equation.  

Residue Hill coefficient 

Asp 32 0.82 ± 0.02 

Asp106 0.73 ± 0.01 

Asp138 0.83 ± 0.03 

Asp223 0.71 ± 0.02 

Asp228 0.71 ± 0.09 

Glu116 0.73 ± 0.04 

Glu265 0.95 ± 0.01 

Glu339 0.93 ± 0.04 

His45 1.37 ± 0.04 

Tyr 71 1.06 ± 0.01 

 



 

 52 

 

Figure 3.3: Hill equation plots for titrated residues.  

Table 3.6: average distance of Tyr 71 to Asp dyad for all four protonation states.  

Error reported is the standard deviation.  

Protonation state Average Tyr71-dyad Distance (Å) 

32d 228p  6.4 ± 2.2 

32p 228d 6.9 ± 2.4 

32p 228p  8.4 ± 3.2  

32d 228d 7.1± 1.7 
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Chapter 4 : Mechanisms for Benzene Dissociation through the Excited State of T4 Lysozyme 

L99A 

 

Abstract 

The atomic-level mechanisms that coordinate ligand release from protein pockets are 

only known for a handful of proteins.  Here, we report the mechanisms for benzene dissociation 

from the buried cavity of the T4 lysozyme L99A mutant observed by accelerated molecular 

dynamics.  Remarkably, the benzene is released through a previously characterized sparsely 

populated room temperature excited state of the mutant and explains the coincidence for 

experimentally measured benzene off rate and apo protein slow timescale NMR relaxation rates 

between ground and excited states.  The path observed for benzene egress is a multistep ligand 

migration from the buried cavity to ultimate release through an opening between the F/G, H and 

I helices and requires many cooperative multi-residue rearrangements within the C-terminal 

domain core.  These rearrangements are similar to those observed along the ground state to 

excited state transitions characterized by Anton molecular dynamic simulations.  Analysis of the 

residue motion cooperativity as well as the molecular properties of the residues lining the egress 

path suggest that protein polarity in addition to cooperative residue motions plays an important 

role in the release mechanism.   
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Introduction 

While receptor flexibility has been acknowledged as important for ligand binding and 

molecular recognition188–190, its importance is less emphasized in studies of ligand release, 

particularly in cases where the ligand release occurs on timescales longer than a few hundred 

microseconds.  Recently, the development of new molecular dynamics simulation methodologies 

and faster calculations enabled through GPU or Anton technologies has allowed for a more 

detailed atom-level investigation of ligand release mechanisms 191–198 .  

The T4 lysozyme L99A mutant is a popular model system for studying excited states of 

proteins and the thermodynamics of ligand binding to buried cavities due to some interesting 

chemical features199–203. The hydrophobic cavity in the L99A mutant is greater than 100 Å3 and 

is buried more than 5Å from the protein surface199,204. Despite this large cavity, the backbone of 

the crystal structure of L99A is identical to the backbone of the crystal structure of the wild-type 

protein (Figure 4.1). This backbone overlap proved to be misleading, as two experimentally-

detected dynamic motions occur in this mutant that have not been previously witnessed in the 

wild-type protein: the formation of a sparsely populated excited state205–207 and the binding of 

ligands to the buried cavity. Strikingly, a clear path from solvent to the buried cavity is absent 

from the crystal structure200,208–217. 
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Figure 4.1: Crystallographic comparison of T4 lysozyme WT* (PDB: 1L63, gray) and 

L99A benzene bound mutant (PDB: 181L, cyan and green cavity). 

There are few noticeable differences between the two structures apart from cavity expansion. 

 

 

Here we have performed accelerated molecular dynamics (aMD) simulations of the L99A 

mutant of T4 lysozyme with benzene bound to elucidate the protein motions necessary for ligand 

dissociation. This methodology was chosen because the benzene off rate is longer than can be 

simulated using conventional molecular dynamic simulations and aMD has previously been 

shown to accurately recapitulate experimentally measured long-lived conformational phenomena 

such as torsional populations and water-protein exchange131,218.  Through this atomic-level 

mechanistic approach we witness and characterize benzene dissociation through a surface 

between the F/G, H and I helices (the “FGHI surface”).  Moreover, chemical shift calculations 219 
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and rotamer measurements confirm benzene dissociates from L99A through the NMR-

characterized excited state and not the ground state. Poisson-Boltzmann calculations for cavity 

opening surfaces between the D and F/G helices (DG), where benzene binds, and between the 

FGHI surface, where benzene exits, suggest that polar surfaces impact the direction of ligand 

ingress and egress.  

 

Results 

Benzene leaves through a transient surface opening in L99A excited state 

Accelerated molecular dynamic simulations were carried out for the L99A cavity mutant 

(apo)204, benzene bound to the L99A cavity mutant (holo)220, and WT* T4 lysozyme (PDB = 

1L63)221.  

  

 

 

 

Figure 4.2: Benzene egress along a multistate pathway.  

Superposition of benzene (orange) sampling three substates labeled S1, S2 and S3 and 

the solvent on its path of egress. L99A ribbon representation shows the structure of 

L99A after benzene exits.  
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 In one of three 500ns trajectories for holo T4 L99A, benzene unbinds from the protein 

through a transient surface opening between the F/G, H, and I helices, in a succession of steps, 

labeled S1, S2, and S3 in Figure 4.2. These substrates trace the same path that the aromatic ring 

of F114 travels in the transition from ground to excited state of L99A, albeit in the opposite 

direction. This conserved path is illuminated through internal distance measurements and protein 

alignments (Figure 4.6). 

 

Dynamic motions surrounding the buried cavity result in productive and non-productive 

excursions from the ground state to the excited state/benzene egress 

 The concerted protein motions and final structural state through which benzene leaves 

L99A recapitulate the hallmarks of the L99A ground state to excited state transition and the 

previously published structure for the excited state.  Figure 4.3 illustrates a comparison of 

measurements for our holo L99A simulations compared to published characteristic rotamer 

fluctuations, H-bond distances and back calculated chemical shifts for key residues involved in 

the ground state to excited state transition of apo T4 L99A 193,199,207,222. As benzene egresses 

(Figure 4.3b), concerted motions of buried hydrophobic side chain rotations and secondary  
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structure changes for the F and G-helices give rise to similar substates as the apo transitions 

(Figure 4.3c).  The F-helix unwinds (Figure 4.12) and then refolds to form a single long helix 

with the G helix (referred to as F/G helix).  At aMD timestep 2.2 x 104 the F/G helix rewinds and 

L121, L133 and F153 side chains rotate to open an adjacent cavity closer to the H and J helices, 

Figure 4.3: comparison of aMD and Anton L99A simulations.  

Rotamer changes, hydrogen bond distances, and back-calculated chemical shifts are 

shown over aMD simulation trajectories for (a) stable benzene holo L99A simulation, 

(b) for the benzene egress simulation, and compared to the previously reported ground 

to excited state L99A simulation (c) performed on Anton 199.  
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similar to substate 2. Concurrent with this benzene relocation, the F114 ring relaxes into a more 

buried position in the L99A pocket, the excited state position. These visual observations are 

supported by the torsional angles measured for F114 and F153, and the shortened amide nitrogen 

to carbonyl oxygen i to i+4 distance for G110-F114, A112-N116, and G113-S117 (Figure 4.3b, 

4.13, 4.14).  

 Non-productive excursions from the ground state structure of L99A, in which benzene 

remains in the buried L99A cavity, are also seen in the aMD simulations of apo and holo L99A 

(Figure 4.3b, 4.12), These fluctuations are consistent with an array of experimental observables 

for these residues: low NMR order parameters223, lower hydrogen exchange protection factors 

relative to WT224,225, high crystallographic B-factors226, and propensity to deform upon ligand 

binding to the nearby cavity214,220,227. These excursions are largely unproductive because the 

residue transitions are not concerted as they are when benzene egresses (Figure 4.3b).  

Polarity of mobile defects prescribe whether benzene stays or leaves  

 Upon characterization of the different states of benzene, we were interested to know why 

benzene leaves through this path rather than the more direct path(s) observed for benzene 

binding.205,228 We had anticipated that egress would be governed solely by the opening of a path 

with an appropriate shape and volume to the surface sufficient for benzene to pass. However, our 

results illustrate that multiple paths are available for benzene egress (Figure 4.7), as was also 

seen in the apo L99A simulation to the excited state (Figure 4.8)199. Interestingly, benzene only 

egresses from one path in our simulations.  It is possible that egress through the more direct 

path(s) would be observed in longer simulations.  

 Surprisingly, the opening where benzene exits from, between the F/G, H and I helices 

(FGHI), is narrower than the openings between the D and F/G helices (DG) (Figure 4.8).  In fact, 
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cavity opening at the DG surface is large enough to completely expose benzene to solvent. Thus, 

cavity volume and mobile defects alone cannot account for the preference of benzene to egress 

through the FGHI pocket.   

    Electrostatic changes of the protein surface over the trajectory, characterized by the 

Adaptive Poisson-Boltzmann Solver (APBS) method, reveal that polarity plays a role in benzene 

binding and release229,230. Snapshots from the trajectory, with the cavity openings simulated to 

both bind benzene (DG) and release it (FGHI), were analyzed with APBS.  These results 

demonstrate that the FGHI cavity is more polar and positively charged as compared to the 

hydrophobic DG cavity (Figure 4.3, 4.9, 4.10, 4.11). The slight positive charge of the FGHI 

pocket is due to local helix unwinding that exposes backbone amides at the pocket surface. It is 

therefore of interest that the mere opening of a path between the core and surface is not sufficient 

for benzene egress231. The change in surface charge of the buried cavity is accompanied by, or 

perhaps due to, a shift in the location of the cavity closer to the H and J helices.  

 

 



 

 61 

 

 

Figure 4.4: Mobile defects provide benzene a more polar cavity on the path of egress.  

(A) The measured buried pocket volume throughout the simulation, calculated using 

POVME2.0232. The pocket at the F, H and I helices is observed to open to solvent at ~ 25,000 

aMD timesteps. (B) The pocket opening between the F, H and I helices from the buried cavity to 

solvent occurs when benzene is in the S2 state (Figure 4.2). Blue indicates a positive charge and 

red indicates a negative charge. Helices are shown in white. 

 

Wild-type T4 lysozyme samples similar yet attenuated plasticity relative to the cavity-expanded 

mutant 

 Accelerated MD simulations on WT* lysozyme were conducted for comparison to aMD 

simulations on apo L99A and benzene bound L99A. Concerted motions seen in WT* simulations 

are reminiscent of those seen for the benzene-L99A complex (Figure 4.5A/B). Unlike in L99A, 

fluctuations within the WT* protein quickly relax back to the “ground” state. There is not a large 

enough cavity to accommodate F114 in WT* as there is in L99A. In wild type, these concerted 

motions of internal and backbone dihedral angles serve to open the groove between the F-G, H, 

and I helices, the same groove that binds the peptide portion of the peptidoglycan substrate of T4 

lysozyme (Figure 4.5C/D).  
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Discussion 

Recently, a number of T4 L99A dynamics studies have investigated the kinetic rates for 

benzene egress with metadynamics simulations 233 and suggested that the major path of ligand 

egress occurs through the FGHI pocket in the ground state with adiabatic-biased molecular 

dynamics193. Yet, the rates of benzene leaving and excited state transitioning in the L99A mutant 

Figure 4.5: Wild type T4 lysozyme transition from ground state to a high energy-

like state. 

(A) Concerted motions and backbone breakages occurring at 17000 aMD timesteps. 

(B/C) Structures from the crystal structure (green) compared to the high energy-like 

state (cyan) for F114, L133, F153, and V111. (D) Helices F, G, H and I in the ground 

state (cyan) and WT* “excited” state (orange) with the peptidoglycan substrate (purple).  

 



 

 63 

of T4 lysozyme are experimentally indistinguishable (~1 ms-1)209,234. The simulations reported 

here are the first to demonstrate that these events are coincidental because benzene leaves 

through the excited state of L99A. Additionally, our results illustrate two cooperative 

mechanisms for benzene egress through the FGHI surface: first, concerted backbone and side 

chain motions create a path to the protein surface and second, the final substate’s surface polarity 

allows benzene to partition into the aqueous environment. Thus, these results suggest that the 

benzene off pathway requires a greater degree of cooperativity than the benzene on 

pathway208,231. 

  The FGHI pocket that benzene leaves from has been previously observed in several 

instances: in the crystal structure of the L99G mutant (Figure 4.11),235 in crystal structure of 

L99A bound to a congeneric series of ligands210, in the L99A excited state from long-timescale 

simulations performed on the Anton supercomputer199, and in biased MD simulations of benzene 

dissociation.193 The polarity of this pocket is supported by the measured lower free energy of 

L99A binding iodobenzene as compared to L99A binding benzene.236 We suggest that pocket 

polarity could lead to a slower off-rate for iodobenzene than for benzene, due to greater energetic 

stability of the iodide moiety in the polar FGHI pocket. While further experiments measuring the 

on and off rates of various benzene analogs could confirm or deny these results, our findings 

provide a strong case for the importance of surface polarity in the mechanism of ligand release 

for the L99A mutant.  

 It does not appear that benzene induces the conformational changes in L99A, as identical 

motions are seen in the apo L99A simulations199, and suggests that the experimental off rate is a 

consequence of the rate required for cooperative motions to develop the sparsely populated 

higher energy state. Additionally, the L99A mutant does not elicit a completely unique set of 
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dynamics, but rather appears to exaggerate the breathing and quaking motions237 intrinsic to WT. 

In wild-type T4 lysozyme, the dynamics observed in the F helix and surrounding residues may 

be important for the threading of the peptide portion of peptidoglycan out of the active site cleft 

as part of the enzymatic mechanism of T4 lysozyme237. These results have broad implications for 

the design of new proteins from wild-type proteins, and for the engineering of dynamical 

motions in protein interiors.  

Finally, we find that in an era where various enhanced sampling methods are being tested 

for elucidation of rare, long-timescale cooperative conformational events, the accelerated 

molecular dynamics employed here was suitable for recapitulating a rare conformational event 

that occurs on the millisecond timescale experimentally.  Similarly, Anton simulations captured 

the rare transition to the excited T4 lysozyme state of the apo protein199.  It will be of interest to 

see if other enhanced sampling methods such as adiabatic metadynamics can also capture these 

rare conformational events that result from cooperative fluctuations in buried protein cavities.    

 

Methods 

Accelerated MD simulations 

Three systems were set up for accelerated molecular dynamics (aMD) simulations using 

identical methods described previously131 with the following exceptions; PDB codes 1L63.pdb, 

1L90.pdb, and 181L.pdb were used for the wild type (WT*)221, L99A apo mutant ground state238 

and L99A benzene bound mutant lysozyme ground state227, respectively. WT* refers to a 

sequence difference from WT where residues C54T and C97A mutations were made to promote 

protein stability in vitro and were maintained here in silico for alignment with experiments236. 

Proteins were prepared using the Protein Wizard in Maestro module (Schrödinger, Inc.), using 
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crystallographic pH conditions, 150mM NaCl (30 Cl- and 21 Na+ ions) and visual inspection for 

correct side-chain protonation states.   Benzene for the holo system was parameterized using 

Jaguar (Schrödinger, Inc.), for geometry optimization and charge calculations, then incorporated 

into the starting structure MD parameter file using GAFF and XLeap.  Each system contained 

~33,000 atoms.  ~1.5us of simulation was conducted for each system using AMBER 11 PMEMD 

2010 and AMBER 12 PMEMD 2012 for the holo system2,136, TIP4P waters134 and the AMBER-

ff99SB239 force field; three independently seeded runs of ~500ns were simulated for each 

system. 

50-ns of conventional MD was used as a reference for each system and to calculate boost 

potentials as described previously131.  Boost potentials for the three systems were:  WT*, E(dih-

boost) = 2535 kcal/mol, E(PE-boost) = -89887 kcal/mol; L99A apo, E(dih-boost) = 2540 

kcal/mol, E(PE-boost) = -89829 kcal/mol; L99A holo, E(dih-boost) = 2431 kcal/mol, E(PE-

boost) = -90597 kcal/mol. 

 

For all simulation analyses and simulation details of the Anton trajectory please see Schiffer et. 

al 199. 

 

APBS calculations 

The PDB2PQR 230 automated pipeline was used to investigate the electrostatics of buried 

cavities and pocket openings from the aMD trajectories. A pH of 5.5 was chosen to align with 

the pH from multiple NMR studies.240,241 The PARSE force field was chosen for the 

calculation.242 
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Supporting Information 

 

Figure 4.6: The stochastic path of benzene egress and the concerted motions of benzene 

leaving and excited state transitioning.  

(a,b) Internal distances between the center of mass between the aromatic ring of F114 (a) or the 

aromatic ring of benzene (b) and the beta carbon of A99 (red), the beta carbon of V87 (blue), and 

the center of mass of the four helix bundle (black). (d) The locations of A99 (red), V87 (blue), 

F114 (cyan) and the four-helix bundle (black) are shown for reference. The location of buried 

cavity is also shown in purple with the C-terminal domain of L99A from ground state apo crystal 

structure (PDB: 4W51). (e) The conformation of L99A when benzene samples the S2 state. 
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Figure 4.7: Internal flexible motions that result in mobile defects to the protein surface 

suggest multiple potential sites of ligand egress and ingress, depending on ligand size and 

nature.  

(a,b) A pocket opening between the D, F, and G helices is seen to occur in the aMD trajectory 

both when benzene is bound (cyan, A) and after benzene has escaped from the buried pocket the 

L99A is in its apo form (green, B). (c, d) Mobile defects of the buried cavity in the ground state 

reveal a large conformational change as well as cavity opening to surfaces previously simulated 

to either exist in the apo state196 or to allow for the egress or ingress of molecular O2.
202 
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Figure 4.8: A large transient packing defect precedes correlated fluctuations that allow for 

benzene egress and excited state transitioning.  

(a) The structure of L99A (holo) aMD simulation after ~ 24000 timesteps (~ 150 ns). This large 

cavity opening precedes the shift of benzene from S1 to S2. The surface of the protein 

surrounding benzene in this state consists primarily of hydrophobic sidechains. The location of 

benzene is shown (orange) for reference. (b) The structure of the L99A (apo) Anton trajectory at 

~ 18 s, just before the transition to an intermediate state that is characterized by flipping of the 

F114 phenyl ring into the buried cavity. A few examples of F114 in the excited state (orange) 

and one example of F114 in the ground state (cyan) are shown for reference.  
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Figure 4.9: Cavity polarity differences in mobile defects between the D/G helices and 

between the F/G/H helices.  

Positively charged surfaces are displayed in blue, negatively charged surfaces are displayed in 

red, and hydrophobic surfaces are shown in white. The cavity between the D/G helices is largely 

nonpolar and hydrophobic, whereas the cavity formed between the F/G/H helices is highly 

cationic and surrounded by charge surfaces on the solvent face of the cavity.  
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Figure 4.10: Locations of the DG and FGHI pockets differ in the C-terminal domain.  

In white cartoon is showing the backbone of the C-terminal domain from the L99A structure 

with the FGHI pocket. The FGHI pocket surface is shown in blue, whereas the DG pocket 

surface is shown in cyan. Snapshots from trajectory are aligned to the backbone of residues 75 to 

155.  
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Figure 4.11: Cavity polarity differences between the benzene leaving state in the L99A 

aMD trajectory, the processive state in the WT aMD trajectory, and the L99G T4 lysozyme 

crystal structure.  

Positively charged surfaces are displayed in blue, negatively charged surfaces are displayed in 

red, and hydrophobic surfaces are shown in white. The backbone secondary structures are 

depicted in white for mutants and black for wildtype.  

 

 

 

Figure 4.12: Helix cracking and backbone flexibility of the F/G helices during benzene 

egress. 

 Snapshots from our aMD trajectory along the path of benzene (orange) egress demonstrate the 

inherent flexibility of the F and G helices in the C-terminal domain of the L99A cavity mutant 

(cyan) during the transition. The ground state crystal structure is shown for reference in gray.  
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Figure 4.13: Dihedral angle changes enable cavity openings between various helices, 

including the D and G helices.  

An array of dihedral angle changes are mapped over time for the aMD trajectory where benzene 

egresses at ~25000 time steps.  
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Figure 4.14: Backbone hydrogen bond breakages and side chain and backbone torsion 

angle changes that accompany non-productive excursions from the ground state.  

An array of backbone hydrogen bond distances, 1 angle, and  angle changes from an aMD 

trajectory where benzene does not egress but exchanges between the S1 and S2 states of 

benzene. The difference between a productive and non-productive transition lies in the degree of 

coincidence for both backbone and side chain torsion angles. In the cases where benzene moves 

around in the buried cavity but does not leave during our aMD trajectories (column 1, Figure 

4.2), conformational changes are less concerted. Two instances of rotamer shifts are witness, at 

3,000 aMD timesteps and at 13,000 aMD timesteps. The first non-productive excursion results 

from shifting of both F114 and F153 1 rotamer flips, but are unaccompanied by any backbone 

conformational changes or motion of benzene. The second non-productive excursion results from 

F114 1 rotamer flips as well as folding of the F and G helices into a single helix, as witnessed in 

the reduction in distance between backbone nitrogen of G113 and the backbone carbonyl oxygen 

of S117. This second excursion is accompanied by benzene shifting to an S2-like state. However, 

in this second excursion, F153 and L133 1 rotamer flips do not follow the transition, and 

benzene returns to its crystallographic position.  
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Appendix 

Methods 

Alchemical path 

 One disadvantage of the AMBER solvation free energy code is that it is not currently 

possible to selectively decouple individual terms (electrostatic nonbonded interactions, Lennard-

jones interactions). The result is that solvation free energy calculations must be carried out along 

a less efficient alchemical path than in Gromacs (figure 1.2) 
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GROMACS: 

 

AMBER 

 
Figure A.1:  comparison of GROMACS (top) and AMBER (bottom) solvation free energy 

alchemical paths. 

Each arrow represents one simulation which must be run. In GROMACS, it is possible to 

selectively decouple only the interactions between ligand atoms and solvent atoms, but leave the 

ligand-ligand nonbonded interactions unchanged.  
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However, the additional gas phase calculations achieve over 1000 ns/day of performance and 

therefore add almost no overhead, and the availability of GPU AFE in AMBER adds a 

significant performance boost which more than offsets this added cost. 

 

System setup and minimization 

Mol2 and frcmod files for methyl hexanoate, butan-1-ol , 1,2,3,4-tetrachloro-5-(3,4-

dichlorophenyl)benzene, propanethiol, butan-2-ol, acetaldehyde, benzyl bromide, biphenyl, 

methylparathion, and nonanal were taken from the FreeSolv database.93 The leap module in 

AMBER 16 was used to create all systems.  Ligands were parametrized using the same  

generalized Amber forcefield (GAFF)95  parameters for the bonded and van der Waals 

parameters, and then solvated with TIP3P134 water. A cubic periodic box was used with a 

minimum distance of 15 Å between any box edge and any solute atom. All systems were 

minimized for 1000 cycles of steepest descent followed by 1000 cycles of conjugate gradient. 

Solute atoms were restrained with a restraint weight of 10 kcal/(mol*Å)2. Minimization was 

followed, for all values of λ, by 100ps of heating at constant volume and then 1 ns of 

equilibration at constant pressure. Temperature was regulated via a Langevin thermostat set to a 

target temperature of 298.15 K and a collision frequency of 5.0 ps-1.  For the solvated systems, 

Pressure was regulated using a Monte Carlo barostat with a target pressure of 1.0 atm and 

pressure relaxation time of 2.0 ps. This step was unnecessary and therefore skipped for gas phase 

calculations. 
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Simulation details 

 Solvent simulations were run in the NPT ensemble with a Langevin thermostat set to 

298.15 K with collision frequency of 5.0 ps-1, and a Monte Carlo barostat at a target pressure of 

1.0 atm and pressure relaxation time of 2.0 ps. The direct space cutoff was set to 10 Å for both 

van der Waals and electrostatics. Long range electrostatics were handled via the Particle Mesh 

Ewald (PME) method42 with a FFT grid spacing of ~ 1 point per angstrom.  Gas phase 

simulations were run in the NVT ensemble with a Langevin thermostat set to 298.15 K with 

collision frequency of 5.0 ps-1 The direct space cutoff was set to 9999 Å for both van der Waals 

and electrostatics, as there were no long-range effects to consider. Charge changing simulations 

were run with six lambda windows: 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. Softcore potentials were not 

used for charge-change simulations. Lennard-Jones changing simulations were only necessary 

for the solvated ligand and were run with entirely softcore ligands using equations (1) and (2). 

Lennard-Jones changing simulations were run at 16 different lambda windows: 0.0, 0.5, 0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.85, 0.9, 0.95, and 1.00. Energies and dV/dL values were printed 

every 0.5 ps. The default value for scalpha (0.5) was used. Energies were printed every 0.5 ps. 

Gas phase simulations were run using the current AMBER 18 development tree with serial 

pmemd on CPU. GPU simulations were run on and NVIDIA GeForce GTX 1080 Ti GPU using 

the current AMBER 18 development tree with our GPU TI support incorporated.  Simulations 

were run with a 2-fs time step.  The RFEB complex and solvated systems were simulated for 10 

ns. The first 5 ns of each simulation was discarded for equilibration purposes 
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Numerical comparison 

A diverse subset of the FreeSolv database was chosen to cover as large a portion of 

“database space” as possible with regards to atom types, molecular weight and functional groups 

to best test the accuracy of AMBER’s alchemical free energy tools. To improve the comparison, 

the same protein and ligand forcefields, as well as lambda schedule and equilibration procedures 

were replicated from the recent FreeSolv update. Table A.1 compares AMBER solvation free 

energies with those calculated using Gromacs and experimentally. 

 

Table A.1: comparison of our calculated values with those of Duarte et al. and experiment. 

All values are in kcal/mol. 

Molecule AMBER Gromacs93 Experiment

93 

Methyl hexanoate -3.40 -3.30 -2.49 

Butan-1-ol -3.27 -3.23 -4.72 

1,2,3,4-tetrachloro-5-(3,4-dichlorophenyl)benzene -1.01 -1.08 -3.04 

Propanethiol -0.19 -0.18 -1.1 

Butan-2-ol -3.17 -3.15 -4.62 

Acetaldehyde -3.44 -3.37 -3.50 

Benzyl bromide -1.92 -1.85 -2.38 

Biphenyl -3.12 -3.14 -2.70 

Methylparathion -10.52 -10.47 -7.19 

Nonanal -2.44 -2.34 -2.07 
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Discussion 

Comparison to Gromacs  

Everything in the system setup and simulation was identical to the simulations run in the 

most recent FreeSolv update, except for two factors: analysis method and alchemical path. 

Gromacs can perform a direct calculation, in which selectively the non-bonded interactions 

between solvent and solute are removed, but those between solute and solute remain on (figure 

A.1, GROMACS).  AMBER requires the use of an indirect calculation. In an indirect 

calculation, all non-bonded interactions are turned off in solution, and then the process is 

repeated in gas phase (figure A.1, AMBER). This requires additional simulations. All results 

agreed with the Gromacs calculations within error. There was deviation from experiment, in 

some cases as large as 1.5 kcal/mol. Additionally, TI results were identical to MBAR results 

obtained from Gromacs. These facts taken together indicate that in this case, analysis method and 

alchemical path are not the dominant source of error in these calculations. Factors outside of 

alchemical path and analysis method, most likely force field accuracy or protonation state,59 led 

to deviation from experiment. Statistical uncertainty due to a 10ns simulation time limit also 

likely added to the deviation from experiment, although it’s unclear by how much given that the 

two sets of simulations quickly converged to the same values. Whether this is true for all 

solvation free energy calculations or in general ligand sized systems may require further testing, 

but certainly results are promising.  Additionally, for solvation free energy calculations it may be 

acceptable to rely on TI alone rather than MBAR or MBAR and TI. While this will not always 

be the case, particularly in larger more complex systems where dV/dL is expected to be very 

non-linear23, it would be a major boon as it does provide a 10-20% performance boost  
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Conclusions and Future work 

A robust protocol first presented by Duarte et al.9 and then adapted here for AMBER has 

been used to successfully predict the solvation free energy of 10 diverse ligands, with virtually 

identical precision and accuracy to Gromacs at a fraction of the computational cost. Future work 

will include collaborating with the curators of FreeSolv and comparison of these results to the 

same systems parametrized with GAFF 2, to quantify the improvements in GAFF 2 vs GAFF 

1.7.  
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