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Function to Experimental Data
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Abstract
The stretched exponential function has many applications in modeling numerous types of
experimental relaxation data. However, problems arise when using standard algorithms to fit this
function: we have observed that different initializations result in distinct fitted parameters. To
avoid this problem, we developed a novel algorithm for fitting the stretched exponential model to
relaxation data. This method is advantageous both because it requires only a single adjustable
parameter and because it does not require initialization in the solution space. We tested this
method on simulated data and experimental stress-relaxation data from bone and cartilage and
found favorable results compared to a commonly-used Quasi-Newton method. For the simulated
data, strong correlations were found between the simulated and fitted parameters suggesting that
this method can accurately determine stretched exponential parameters. When this method was
tested on experimental data, high quality fits were observed for both bone and cartilage stress-
relaxation data that were significantly better than those determined with the Quasi-Newton
algorithm.
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I. INTRODUCTION
Relaxation experiments are widely used across multiple scientific and engineering
disciplines. Examples include dielectric relaxation, for characterization of dielectric
responses to external electric fields [1], nuclear magnetic relaxation, used to characterize the
molecular mobility of paramagnetic atomic nuclei [2], and stress-relaxation, which
characterizes the response of a viscoelastic material to a rapid deformation [3].

Interpreting relaxation data involves fitting mathematical models to the experimental data to
determine how the model parameters vary between experimental conditions. Therefore,
curvefitting the model to the experimental data is of fundamental importance for deriving
meaningful model parameters toward improved understanding of physical systems. Many
different models have been used to fit relaxation data including various mono and multi-
exponential functions [4–9]. The stretched exponential function (Equation 1) is a common
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model for describing relaxation data. This model has been used extensively to represent the
stress-relaxation of biological tissues and other systems [10–14].

The stretched exponential model presents significant challenges for standard curve fitting
methods, including redundant fits (Figure 1). The present study was motivated by these
fitting difficulties which present a challenge to the interpretation of relaxation data modeled
by the stretched exponential model. Our objective was to develop a method for stretched
exponential fitting that improves the aforementioned difficulties.

II. METHODS
A. Stretched Exponential Model and Optimization Framework

The stretched exponential function is a model for relaxation of complex systems (Equation
1) [15, 16]:

(1)

σ represents the temporally-measured dependent variable (e.g. stress in a stress-relaxation
experiment). This model has four parameters, A, B, τ, and β, which can be adjusted to fit
relaxation data [17]. The parameters B and A represent the equilibrium and peak beyond
equilibrium values, respectively. τ is the time constant of relaxation of the system. β (0 ≤ β <
1) is the stretching parameter. For polymer systems, the time constant can be derived from
polymer statistical physics, and the stretched exponential form represents polydisperse
collections of polymers such as cartilage [15, 16, 18].

Ideally, we want to minimize the weighted and squared L2 norm (wL2) between the data and
the model (Equation 2) with respect to the model parameters.

(2)

In Equation 2, w represents the weight, d the data, and σ the model. The index i represents
each discrete timepoint at which data was sampled. First, we note that this function is not
convex in the parameter set, and empirically we have found this parameter set to have
multiple local minima [19]. Both of these facts complicate fitting substantially.

B. Data Transformation and Novel Fitting Algorithm
Toward addressing the fitting complications, the relaxation data were transformed by first
subtracting the measured equilibrium value, σeq, followed by division by the difference
between the peak and equilibrium values, σpeak – σeq. Note that these values allow direct
calculation of model parameters A and B. For testing, the equilibrium value was estimated
from the average of the last 0.25 seconds of data and the peak value from the largest stress

value. We call the transformed data  (Figure 2, Equation 3):

(3)

Our goal becomes to find the values of τ and β that best fit the transformed data using the
transformed model ( , Equation 4):
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(4)

We applied an additional constraint that required the area under the curve of the transformed
data to equal the area under the transformed model. Experimental noise is usually
symmetrically-distributed (data not shown), so this is a logical constraint. We defined  as

the area under the transformed data and  as the area under the transformed model. 
was calculated in closed form (Equation 5), as

(5)

where Γ is the gamma function.  was estimated from the data using the trapezoidal rule

[20]. Applying the area constraint, , allows us to solve Equation 5 for τ, substitution
of which into Equation 6 yields a one-dimensional Γ optimization problem, with the single
free parameter β.

(6)

We minimized the squared L2 norm of the weighted residuals between the transformed data
and the model (Equation 7):

(7)

Weights, wi, were determined using a standard method by dividing the stress at each
timepoint by the signal variance, which provided a method for minimizing the potentially
dominant influence of datapoints collected during the equilibrium portion of the experiment
which have a low signal to noise ratio (e.g. Figure 1a) [21]. Fitting the model required
determining the free parameter β that minimizes Equation 7. Note that the domain of β is (0,
1). Hereafter, we refer to the method presented above as the Transform-β (Tβ) method.

We minimized Equation 7 for values of β between 0 and 1 using the Golden Section Search
algorithm with custom-written MATLAB (Mathworks, Natick, MA, USA) software. Our
convergence criterion was a change of less than 10−9 between successive values of either β
or the cost function. The Tβ algorithm was compared to a commonly-used Quasi-Newton
method implemented in MATLAB via the function fminunc with the same convergence
criterion using initial values of τ = 5 and β = 0.5. This Quasi-Newton method utilized a line
search procedure [22], finite-differences to approximate the Hessian matrix via the BFGS
method [23–26], and the same convergence criterion as the Tβ algorithm.

C. Data for Algorithm Testing
The optimization algorithms were tested on both simulated and experimental data.
Simulated data were generated from a stretched exponential function with randomly-
selected parameters of known values, which acted as gold standards for determining the
accuracy of the fitting method. These data (n = 100) were simulated using τ and β values
sampled from a uniform random distribution (0 < τ < 10 and 0 < β < 1) with normally
distributed noise added with a variance σ2 = 2.68×10−6.
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The experimental data used to test the curvefitting algorithm consisted of stress-relaxation
tests performed on cartilage and bone samples. For the tests, a rapid compression was
applied and the relaxation of the stress, defined as measured force divided by the initial
sample cross-sectional area, was observed. For cartilage tests, a 5% compression was
applied followed by 300 s of relaxation for n = 70 samples [12]. For demineralized bone
samples [27], a 50% strain was applied and relaxation data were sampled for 1000 s (n = 6).

D. Analysis
The quality of the fitting methods was assessed using both a nonlinear R2 metric (Equation
8) [7, 28] and the value of the weighted L2 norm for the converged fit parameters.

(8)

For calculation of R2,  represents the average value of the transformed data and the
subscript i represents the index of the discretely-sampled data. The wL2 norm values were
normalized by dividing by the number of datapoints to account for small variations in
sampled datapoints between experiments. To compare the algorithms, Wilcoxan Signed-
Rank tests [29] with an a priori significance level of α= 0.05 were used to assess statistical
differences between R2 and wL2 values. To assess the accuracy of the Transform-β method,
linear correlation coefficients were calculated between the fitted τ and β values and the gold-
standard parameters used to simulate the data. To examine the Tβ method, graphs of the wL2

norm as a function of β were generated and examined for each stress-relaxation dataset. The
relaxation data are downsampled for ease of visual display in all plots.

III. RESULTS
Data for the fit quality metrics of R2 and wL2 norm were found to be non-normally
distributed using the Lilliefors test [30], necessitating the use of the non-parametric
Wilcoxan test for statistical comparison between the novel Transform-β method and the
Quasi-Newton algorithm. The Transform-β method resulted in significantly larger R2 values
(p = 0.0003) and smaller wL2 norm values (p = 0.003) than the Quasi-Newton method when
fitting the stress-relaxation data from bone and cartilage samples (Figure 3). Generally, the
Tβ method resulted in qualitatively better or similar fits than the Quasi-Newton method for
each experimental dataset. The worst fits for the Tβ method were better than the worst fits
for the Quasi-Newton method (Figure 4). The Tβ method resulted in accurate fits for both
stretched exponential parameters τ (r = 0.97) and β (r = 0.99). Graphs of wL2 norm as a
function of β demonstrated a single minimum for each dataset (n = 76) indicating that the Tβ
method results in unimodal fits. When fitting the simulated data, each algorithm failed to
converge on a meaningful solution for a small number of datasets (3 out of 100 for the Tβ
method and 10 out of 100 for the Quasi-Newton method).

IV. DISCUSSION AND CONCLUSIONS
The algorithm presented herein fits the model using a single adjustable parameter in a
transformed space which greatly simplifies computation. Using simulated data, we
compared this algorithm to a common Quasi-Newton method and found both good
performance and accurate fits over a wide parameter range for the novel method.
Furthermore, we tested this method on experimental stress-relaxation data from bone and
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cartilage, and found that it provided good fits that were better than the Quasi-Newton
method.

The Transform-β method provided high-quality fits to the experimental data. Large R2 and
small wL2 values (Figure 3) demonstrate the capacity to fit cartilage and bone stress-
relaxation data (Figure 4). The Tβ method resulted in better fits than the Quasi-Newton
method as assessed by R2 and wL2 norm values indicating that it may be an improvement
for determining stretched exponential parameters for relaxation data. The high-quality fits to
the simulated data suggesting that the Tβ algorithm may be generalizable to many different
relaxation systems [1, 2, 6, 10].

The Tβ method has advantages compared with the Quasi-Newton and other gradient-based
methods. While gradient-based methods require an initialization in the solution space,
because the Tβ method requires searching for only a single parameter over a finite interval
(0 < β < 1), no initialization is needed, and the entire solution space can be searched. Finally,
in all of the datasets examined, the wL2 norm appears to be a unimodal function of β
indicating that unique solution can be obtained to avoid the problems of redundant fits
(Figure 5).

While the Tβ method can provide high-quality fits to experimental and simulated data, there
are important limitations to this method. First, the relaxation data to be fit must be shaped as
a stretched exponential. Non-stretched exponential relaxation data cannot be fit by this
algorithm. Additionally, the Tβ method is challenged by datasets containing small τ and
large β values. In these cases our empirical results suggest that good estimation of the
equilibrium values is essential toward using the Tβ method to obtain high-quality fits.

In conclusion, we have developed a novel algorithm for determining the stretched
exponential parameters for relaxation data. This method is advantageous compared with
other fitting algorithms in that it does not require an initialization in solution space and
requires searching in only one dimension.
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Fig. 1.
Non-unique fitting of the stretched exponential function to relaxation data using a gradient-
based steepest descent method. (A) Two distinct converged models for the same
experimental dataset have substantially different τ and β values while having similar
derivative values (B). These fits were obtained by minimizing the weighted sum of the
squared error (wSSE) between the model and the data using a Quasi-Newton method.
Similar quality fits resulted with disparate combinations of fitted parameters that depended
on the initialization of the algorithm. These results demonstrate the challenges associated
with using a descent-based fitting method to determine stretched exponential parameters
from experimental data.
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Fig. 2.
Transformation used in Tβ method. This method utilizes the parameter  to fit the data.  is
calculated by transforming the data as shown. Relaxation data (A) were transformed via
Equation 3. The shaded region (B) represents  which is calculated from the experimental
data and used to calculate the final fitted parameters.
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Fig. 3.
The Transform-β method resulted in higher-quality fits than the commonly-used Quasi-
Newton method. Each symbol represents results from an individual experimental dataset
connected by gray lines between methods. (A) R2 values were significantly larger (p =
0.0003) for fits resulting from the Tβ method than those resulting from the Quasi-Newton
method. (B) wL2 norm values were significantly smaller for the Tβ method than for the
Quasi-Newton method (p = 0.003).
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Fig. 4.
The Transform- β method yielded better fits to both bone and cartilage stress-relaxation data
than the Quasi-Newton method. Panels A–C (left) show cartilage data and panels D–F
(right) show bone data. Best (top), median (middle), and worst (bottom) fits were
determined, respectively, by the smallest, median, and largest normalized wL2 norm values
obtained using the present method. For comparison, the Quasi-Newton results are shown in
black.
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Fig. 5.
Large correlation coefficient values between simulated data (gold standard) and converged
model parameters for the present method. Gold standard data were simulated numerically
including zero-mean noise. The proposed algorithm was used to determine τ and β from the
simulated data. Large correlations > 0.96 were found between the gold standard values for
both τ (A) and β (B).
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