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ABSTRACT

This thesis investigates the enhancement of crashworthiness and structural integrity in Glass Lam-

inate Aluminum Reinforced Epoxy (GLARE) channel section beams through the introduction of

cross stiffeners. The ultimate goal is to improve crashworthiness, with a specific focus on the com-

paratively longer and gradual process of buckling and post-buckling analysis under compressive

loads, rather than conducting a classical impact analysis. The study’s methodology integrates a

literature review with advanced numerical modeling using ABAQUS, validated by experimental

benchmarking. The ABAQUS eigenbuckling and Riks analyses are meticulously validated against

experimental data, achieving minimal error margins for buckling loads (3.5% - 5.2%), which are

well below the allowable 10% error margin, and accurately matching failure modes. The intro-

duction of cross stiffeners in the GLARE channel beam effectively recreates the mode shape con-

centrated at the mid-span of the beam, decreasing the buckling load by 39% compared to the

no-stiffener configuration, potentially creating a crumple zone and maximizing energy absorption

during high impact tests. Additionally, a more distributed failure pattern, controlled deformation,

and a higher and longer post-buckling path are achieved, indicating improved stability and load-

bearing capacity, with a 36% increase in failure load compared to the no-stiffener configuration.

These findings demonstrate significant improvements in damage tolerance and provide a solid mo-

tivation for future work to test the crashworthiness of GLARE structures with cross stiffeners in

aerospace applications, such as airframes and subcomponents, to better protect occupants.

xii



Chapter 1. Foundations: Introduction, Comprehensive Literature Review, and Initial Research

1.1 Rationale for Progressing Glass Laminate Aluminum Reinforced Epoxy in Aerospace

Glass Laminate Aluminum Reinforced Epoxy (GLARE) is a thin-walled Fiber Metal Laminate

(FML) material composed of alternating layers of aluminum and glass fiber-reinforced epoxy [1].

It has gained significant attention in the aerospace industry due to its unique combination of prop-

erties that are highly advantageous for modern aircraft design [2]: GLARE exhibits exceptional

fatigue and impact resistance compared to traditional monolithic aluminum alloys such as the

2024-T3 alloy [3]. The hybrid nature of GLARE, which combines layers of aluminum with fiber-

reinforced epoxy, allows it to withstand cyclic loading more effectively [4, 5].

GLARE has been shown to have superior performance in terms of crack growth resistance

under fatigue loading [6]. In multi-axial fatigue loading scenarios, such as enduring shear along-

side recurrent tensile stresses, GLARE demonstrates improved resistance to crack propagation [7].

Analytical, numerical, and experimental studies have highlighted GLARE’s ability to slow down

crack growth through its layered structure [8, 9]. The fiber-bridging effect in GLARE helps to

arrest crack growth, reduce the rate of crack propagation [10], and distribute impact energy over

a larger area [11], reducing the severity of damage from impacts such as bird strikes or ground

handling incidents [12].

Moreover, the adoption of GLARE in aerospace is driven by its high strength-to-weight ratio

[13], which is crucial for weight reduction—a key objective in aircraft design that directly impacts

fuel efficiency and operational costs [14]. GLARE’s excellent damage tolerance and impact re-

sistance, combined with its high strength-to-weight ratio, enhance the crashworthiness of aircraft,

which refers to the ability of aircraft structures and onboard systems to protect its occupants dur-

ing an impact [15]. The layered structure of GLARE helps to absorb and dissipate energy during

an impact, reducing the severity of damage and improving the survivability of the structure [16].

This is particularly important in critical areas such as fuselage skins, where maintaining structural

integrity during a crash can prevent catastrophic failure and protect passengers [17, 18].
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GLARE has been successfully implemented in various aircraft, demonstrating its reliability and

effectiveness in real-world applications. For example, GLARE material is employed in the primary

fuselage skin, with 27 GLARE skin panels spanning a combined area of 469 square meters on the

upper fuselage skin of the Airbus A380, resulting in a weight reduction of 794 kg. It is also used

in the leading edges of the horizontal and vertical stabilizers [19, 20, 21]. Additionally, GLARE

is selected for the Boeing 777 bulk cargo floors and engine cowlings to enhance impact resistance

[20, 22, 23]. The positive performance and durability observed in these applications provide a

strong rationale for the further adoption and development of GLARE in future aerospace research.

1.2 Literature Review

Despite significant progress in the aerospace structures field, the use of stiffeners to improve

damage tolerance and buckling resistance in thin-walled composites remains underexplored in

academia.

Yang et al. [24] demonstrated that longitudinal stiffeners significantly enhance the performance

of I-shaped steel beams, showing an 82% increase in flexural capacity and a reduction in lateral

displacement and failure twist angle during Lateral-Torsional Buckling (LTB). Prado et al. [25]

explored glass fiber-reinforced epoxy stiffeners in I-beams, noting a 207% increase in flange local

buckling strength with optimally spaced stiffeners. Guo et al. [26] observed a 20.88% increase

in the first-ply-failure load in carbon fiber-reinforced epoxy C-beams with L-shaped stiffeners and

hole cutouts under off-center loads.

The extensive body of literature on aerospace structural elements, such as beam sections, pro-

vides valuable insights into the mechanical performance of composite structures. These studies

highlight the influence of various laminate configurations, damage impacts, material properties,

and failure criteria on the structural behavior of thin-walled composites. This enriched understand-

ing of composite materials underscores their potential for real-world applications and sets the stage

for further investigation into performance enhancements.

Gliszczynski and Kubiak [27] significantly contributed to this field by assessing the load capac-

2



ity of glass fiber-reinforced epoxy laminate C-shaped composite columns under uniform compres-

sion. They investigated three-ply configurations representing diverse laminate behaviors including

quasi-isotropic, quasi-orthotropic, and angle-ply orientations. Their experimental setups, adher-

ing to American Society for Testing and Materials (ASTM) standards, involved uniform compres-

sion and displacement monitoring, with corresponding Ansys numerical models closely replicating

these conditions. The strong correlation between experimental and numerical results validated the

simulation models’ effectiveness in capturing real-world behavior.

Building on the previous work, Gliszczynski et al. [28] explored the impact of low-velocity im-

pacts (LVIs) on pre-damaged, thin-walled composite channel-section columns made of glass fiber-

reinforced epoxy laminate. They used the same lay-up configurations and added two more quasi-

isotropic configurations, resulting in a comprehensive analysis. Their findings revealed minor

variations in buckling and failure loads due to LVIs, with angle-ply systems occasionally exhibit-

ing increased loads. The research highlighted the resilience of composite structures post-damage

and their reliability in practical applications.

Expanding on Gliszczynski et al.’s work, Debski et al. [29] delved into numerical models of

the nonlinear stability of thin-walled composite struts subjected to LVIs. They focused on the

quasi-isotropic [0/-45/45/90]s layup configuration, named C1, and assessed the impacts of various

damage scenarios on stability and post-buckling behavior. Using ABAQUS, they evaluated differ-

ent models to determine their effects on material rigidity and buckling load. Their comprehensive

analysis of damage effects on the structural integrity of composite struts validated the results and

enriched the understanding of pre-damage impacts on composite materials.

Debski and Jonak [30] studied the post-buckling elastic behavior of carbon/epoxy composite

channel section columns. They used the Tsai-Wu failure prediction criterion in ABAQUS, which

accurately captured the complex interactions between different stress components. Their numer-

ical results closely aligned with experimental data, highlighting the necessity for comprehensive

failure criteria in understanding composite material behavior, crucial in industries like aviation and

automotive.
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Banat and Mania [31] investigated the stability and failure of thin-walled GLARE Z-shape and

channel cross-sections under axial loading. Their study involved experimental tests across five

layup configurations and numerical simulations, focusing on various fiber alignments. The Finite

Element Analysis (FEA) results closely matched experimental data, especially for Z-sections.

Their research highlighted the importance of aluminum layers and fiber alignment on critical loads,

providing valuable insights for FEA structure design.

Banat et al. [32] further investigated the load-carrying capacity and stress state failure of thin-

walled GLARE composite members under axial loading in the post-buckling range. They used

experimental tests across two layup configurations and FEA simulations to assess top-hat GLARE

sections. The study highlighted critical stresses leading to aluminum plastic deformation and intra-

laminar failure in composite plies, emphasizing the robustness of the simulation models.

Mania and York [33] examined buckling strength improvements for GLARE in thin-walled

open cross-section profiles across ten layup configurations using thin-ply material technology.

Their research showed that thin-ply designs achieved significant increases in post-buckling strength

compared to traditional FML configurations, highlighting the benefits of thin-ply technology for

enhancing FML mechanical properties in aerospace applications.

Zaczynska and Mania [34] investigated dynamic buckling in thin-walled GLARE columns

under axial compressive loading. Their study assessed the structure’s resistance to dynamic pulse

loading, considering initial geometric imperfections, stacking sequence, and pulse load shape. One

specimen exhibited the greatest resistance to failure out of the three. The research highlighted the

importance of dynamic buckling and failure criteria for GLARE structures, noting aluminum layer

yielding as a primary failure mechanism.

Subbaramaiah et al. [16] evaluated the axial crushing response of GLARE top-hat structures

across two layup configurations using experimental and numerical techniques. They measured

crush force and energy absorption capabilities, finding that GLARE structures demonstrated su-

perior performance compared to equivalent aluminum structures, highlighting their viability for

crashworthy applications.
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In summary, existing literature predominantly investigates various layup configurations and

ply designs for channel and Z-section beams under axial loading, focusing on pre-buckling, post-

buckling, and dynamic conditions, as well as damage tolerance. GLARE composites have shown

exceptional resistance to failure, balancing the properties of aluminum and glass fiber-reinforced

epoxy for crashworthy applications. However, a different approach is needed in research. Building

on this foundation, this research aims to incorporate stiffeners into aerospace composite structural

elements, such as channel section beams or C-beams, to evaluate enhancements in crashworthiness

and structural performance during pre- and post-buckling. Specifically, this study aims to develop

and validate numerical models using FEA software, ABAQUS, to assess the impact of stiffen-

ers on the damage tolerance of GLARE C-beams. Additionally, it will investigate the effects of

stiffener configurations on the structural behavior of composite thin-walled structures under pre-

and post-buckling conditions as a proof-of-concept to demonstrate enhanced damage tolerance and

increased crashworthiness of GLARE materials. It is important to note that this study does not in-

volve classical impact tests; rather, it focuses on quasi-statically loading the beam over a relatively

short period. While improved crashworthiness is the ultimate goal, this study lays the groundwork

for future research to explore the full potential of GLARE materials in impact scenarios.

1.3 Introduction to Predicting Instabilities in Thin-Walled Composite Structures

Given the critical role of materials like GLARE in modern aerospace applications, it is essen-

tial to understand their behavior under various loading conditions, particularly under compressive

stresses. While this thesis explores the numerical modeling and analysis of pre- and post-buckling

behavior of GLARE C-beams, the mathematical overview will cover pre-buckling up to buckling,

focusing on elasticity right before the onset of yielding to understand the choices made to assign

the material properties in ABAQUS.

Buckling is a critical failure mode for slender structural elements under compressive stresses.

It manifests as a sudden lateral deflection that can lead to catastrophic failure [35]. This behavior

represents both a geometrical instability and a material failure. For example, in a slender beam

5



under unidirectional loading, buckling occurs when compressive stress reaches a critical level,

causing the structure to deflect into a new configuration [35, 36].

To simplify the concept, consider the web section of a thin-walled C-beam under compression

as shown in Figure 1.

Figure 1: Web section of a thin-walled C-beam under axial compression.

This section now represents a thin plate. The anisotropic nature of GLARE, due to the glass fiber-

reinforced epoxy laminates [37, 38], adds complexity to predicting buckling behavior because,

instead of being isotropic, it is a special case of anisotropic material [39, 40]. More details on the

nature of GLARE will be discussed in the subsequent chapter.

Buckling analysis in composite structures frequently employs Classical Laminated Theory

(CLT), treating the laminate plate as a specific type of anisotropic laminae with directional prop-

erties tailored to complex load conditions, such as coupling effects that may occur in composite

laminates [41]. From the web section taken from the C-beam in Figure 1, the modeling of a simply

supported, special anisotropic plate under uniaxial compressive in-plane loading using CLT can be

represented in Figure 2.
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Figure 2: Special anisotropic plate experiencing directional compressive in-plane stress.

The critical buckling load, as shown in Figure 2, is given by the equation [41]:

Ncr =
⇡2

a2m2

⇥
(D11m

4 + 2(D12 + 2D66)(mnR)2 +D22(nR)4)
⇤

N (1)

where Ncr is the critical buckling load in newtons (N), a and b are the plate dimensions in mil-

limeters (mm), Dij are the bending stiffnesses in Nmm, and R = a/b is unit-less. The buckling

mode’s configuration is defined by the indices m and n, which represent the number of half-sine

waves along the x-coordinate and y-coordinate, respectively. As an example, for the loading case

depicted in Figure 2, the bending stiffnesses can be expressed as [41]:

D11 =
t3

12

✓
E1

1� ⌫12⌫21

◆
Nmm, D12 =

t3

12

✓
� ⌫12E2

1� ⌫12⌫21

◆
Nmm, (2)

D22 =
t3

12

✓
E2

1� ⌫12⌫21

◆
Nmm, D66 =

G12t3

12
Nmm. (3)

Here, E1, E2, G12, ⌫12, and ⌫21 represent the material’s elastic and shear moduli in MPa, and Pois-

son’s ratios in the local system (where 1 and 2 correspond to x and y, respectively, in Figure 2).

The relationship between the Poisson’s ratios is given by [41]:

⌫21 =
E2

E1
⌫12

These stiffness coefficients Dij are significantly affected by the anisotropy of the composite,
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demonstrating how material properties and structural design influence the buckling behavior under

specific loading scenarios [41]. The minimum buckling load corresponds to n = 1, and determin-

ing the minimum load for any given m requires knowledge of the Dij coefficients and the plate

dimensions a and b.

The prediction of buckling loads in composites is extensively studied both theoretically and

experimentally. Research efforts, like those by Hatcher and Tuttle, strive to validate theoretical

models against experimental data, highlighting the challenges in predicting composite panel buck-

ling responses [41]. Although theoretical models offer a fundamental understanding, they may

diverge from experimental findings due to idealized assumptions, complex real-world boundary

conditions, and material property variabilities [41, 42].

Detailed analyses often utilize numerical methods, such as the Rayleigh-Ritz or Galerkin Finite

Element Method (FEM), using commercial codes like ABAQUS [43]. These methods are particu-

larly useful when closed-form solutions, like Equation 1, are impractical due to material anisotropy

and structural geometry complexities [41, 44]. Instead, the governing equation of the plate buck-

ling problem with coupling out-of-plane effects needs to be used [41]:

D11
@4w

@x4
+ 4D16

@4w

@x3@y
+ 2(D12 + 2D66)

@4w

@x2@y2
+ 4D26

@4w

@x@y3
+D22

@4w

@y4

� B11
@3u0

@x3
� 3B16

@3u0

@x2@y
� (B12 + 2B66)

@3u0

@x@y2
� B26

@3u0

@y3

� B16
@3v0

@x3
� (B12 + 2B66)

@3v0

@x2@y
� 3B26

@3v0

@x@y2
� B22

@3v0

@y3

= q(x, y) +Nx
@2w

@x2
+ 2Nxy

@2w

@x@y
+Ny

@2w

@y2

(4)

where the coupling of the in-plane forces are Nx, Ny, Nxy, the coupling stiffness matrix is B, the

out-of-plane displacements are w, and the distributed load is q(x, y). Eigenbuckling analysis can

numerically solve buckling problems but assumes linear elastic behavior of materials up to buck-

ling. This means it maintains a linear stress-strain relationship and excludes any plastic deforma-

tions before buckling occurs [45, 46]. Therefore, post-buckling analysis, such as the Riks method,

is essential as it provides insights into structural behavior beyond the initial buckling event [47].
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This stage involves large displacements, material and geometric nonlinearities, and imperfections,

which the Riks method accommodates [48, 49].

In this thesis, the Riks method is utilized to investigate the post-buckling response, allowing

for a detailed understanding of the stability and resilience of GLARE C-beams under compressive

loads [50]. This comprehensive approach, integrating both buckling and post-buckling analyses,

ensures a thorough assessment of GLARE materials’ performance in crashworthy aerospace struc-

tures [51, 52].
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Chapter 2. Numerical Linear and Nonlinear Buckling Analysis and Benchmarking

A comprehensive examination of the numerical modeling process, underpinned by rigorous bench-

marking strategies, is presented to ensure the accuracy and reliability of the computational analysis

of GLARE C-beams. The section meticulously details the development and refinement of a nu-

merical model, emphasizing the critical alignment with experimental benchmarks to validate the

simulation outcomes. Through a systematic approach that includes geometry definition, material

property characterization, and boundary condition application, this section unfolds the layers of

complexity involved in simulating the real-world behavior of composite structures. This endeavor

not only serves as a cornerstone for the subsequent analytical phases but also establishes a ro-

bust framework for investigating the effects of perforations and geometric enhancements on the

structural integrity of GLARE C-beams.

2.1 Numerical Modeling

The numerical model of the GLARE C-section beam under compressive loading, created using

ABAQUS, was developed to establish a benchmarking foundation. This approach facilitates a clear

assessment of the beam’s inherent structural behavior, serving as a critical reference point against

which the effects of subsequent modifications can be measured. This baseline model is essential for

validating the computational analyses and ensuring that the simulations reliably reflect the beam’s

performance as reported by Banat and Mania [31].

2.1.1 Beam Geometry and Dimensions

The GLARE C-section beam was modeled with precise dimensions: 300 mm in length, 40 mm

in width, and 80 mm in height, and the radius (R) at the junction of the web and the flange is

approximately 1.75 mm. The total thickness of the composite is 1.9 mm. Details of the GLARE

layers, which are further discussed in the following section, align with the physical specimens used

by Banat and Mania [31] and are used for Verification and Validation (V&V). Figure 3 shows the
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dimensions of the GLARE C-section beam as configured for the compression test.

Figure 3: Composite beam schematic, with a fillet radius (R) of 1.75 mm and a load of (P).

The beam model was initially created in SOLIDWORKS and subsequently saved as an Initial

Graphics Exchange Specification (IGS) file, a format chosen for its broad compatibility across

different software platforms. This IGS file was then imported into ABAQUS for further analysis

and simulation purposes.

2.1.2 Composite Behavior and Modeling

The GLARE laminate is composed of seven layers, featuring alternating plies of aluminum and

fiber-reinforced composite. The aluminum used is a Al2024-T3 alloy, with each layer being 0.3

mm thick. The composite plies consist of glass-epoxy unidirectional fiber-reinforced prepreg TVR

380 M12 26% R-glass (Hexcel™), also referred to simply as R-Glass/Epoxy [31]. For all fiber-

metal laminate (FML) configurations, a 3/2 stacking sequence is employed, where ’3’ represents

three aluminum layers and ’2’ denotes two composite layers sandwiched between the aluminum

sheets. The web and flanges consist of seven GLARE plies, each with a distinct fiber orientation,

as depicted in as shown in Figure 4.
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Figure 4: C2 laminate layering configuration of C-beam

This layup is modeled based on the orientations proposed by Banat and Mania for the C1-C5

beams, where all ply configurations are designed to align their orthotropic principal axes either par-

allel (0�—longitudinal fibers) or at a 45� angle (90�—transverse fibers) to the C-beam’s wall edges.

Aluminum is isotropic, but when defining the composite properties of the C-beam in ABAQUS, an

arbitrary fiber direction must be assigned, which is set to 0�. Banat and Mania conducted tests on

five laminate configurations, as detailed in Table 1.

Table 1: Examined Configurations of Layer Sequences and Their Concise Notation [31]

C-section Beam Layups

C1 [AL/0/90/AL/90/0/AL]
C2 [AL/90/0/AL/0/90/AL]
C3 [AL/45/0/AL/0/45/AL]
C4 [AL/0/45/AL/45/0/AL]

C5 [AL/0/0/AL/0/0/AL]

For the general numerical modeling approaches and development, configuration C2 will be

primarily used. This selection establishes a foundation for a detailed exploration of the mechani-
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cal and physical characteristics of these laminates. Subsequently, V&V will be conducted across

all configurations, but only the buckling load values will be considered, as Banat and Mania pro-

vided mode shapes only for the C2 configuration. This is why C2 was selected over the other

configurations in Table 1.

2.1.2.1 Mathematical Modeling Overview of Composite Laminate Behavior

Inside the GLARE laminates the R-Glass/Epoxy plies, are transversely isotropic materials, exhibit-

ing unique orthotropic properties [53]. A single R-Glass/Epoxy unidirectional ply, defined within

its (1, 2, 3) principal coordinate system, demonstrates symmetry in the (2, 3) plane, as depicted in

Figure 5.

Figure 5: Orthotropic lamina with glass fibers in an epoxy matrix, 2-3 plane symmetry.

This schematic highlights the transversely isotropic nature of the polymer, reinforced by parallel

glass fibers aligned with the 1-axis. The strength and stiffness peak in the direction parallel to the

fibers (1-direction), while the (2, 3) plane exhibits a uniform response due to the material’s sym-

metry. In this plane, the material behaves isotropically, equating the properties in the 2-direction

with those in the thickness direction (3-axis), which simplifies the structural analysis by reducing

the number of independent constants in the stiffness matrix [54].

The generalized 3D linear elastic Hooke’s law for the stress-strain relationship is formulated as

[41]:

13



8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�1

�2

�3

⌧23

⌧31

⌧12

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

=

2

666666666666664

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

SYM C55 0

C66

3

777777777777775

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

✏1

✏2

✏3

�23

�31

�12

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

MPa (5)

Here, � and ⌧ denote the normal stress and shear stress components in MPa, respectively, while ✏

and � represent the normal and shear strain components. The stiffness matrix Cij in MPa relates

these stress and strain components, with subscripts ij indicating the material’s principal directions.

The material’s symmetry within the transverse 1-2 plane simplifies this relationship, allowing a

reduction in the matrix’s complexity.

Considering the theoretical predictions of buckling loads for an orthotropic ply, as discussed in

Equation 1 from Section 1.3, a plane stress condition is assumed. This leads to a simplification of

Equation 5 to a two-dimensional state, defining engineering constants as:
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where Qij are the stiffness coefficients in MPa within the lamina stiffness matrix that encapsulates

the material properties. The relationships between the engineering constants and the stiffness

coefficients are given by [41]:

Q11 =
E1

1� ⌫12⌫21
MPa, Q12 = Q21 =

⌫12E2

1� ⌫12⌫21
MPa, (7)

Q22 =
E2

1� ⌫12⌫21
MPa, Q66 = G12 MPa (8)
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where E1 and E2 are the longitudinal and transverse elastic moduli in MPa, respectively; ⌫12

and ⌫21 are the major and minor Poisson’s ratios, respectively; and G12 is the shear modulus in

MPa. Qij is ubiquitously used throughout CLT to defined the mechanical behavior of lamina

under loading as evident in Equation 1 where the bending stiffnesses expressed in 2 and 3 can

re-expressed to:

D11 =
Q11t3

12
Nmm, D12 =

Q12t3

12
Nmm, D22 =

Q22t3

12
Nmm,

D66 =
Q66t3

12
Nmm

A comprehensive explanation of the derivations of Equations 5 to 8 and their implications is avail-

able in Appendices A.1 through A.3.

Each laminate possesses a principal, or global, coordinate system (x, y, z) and has plies in their

own non-principal, or local, coordinate systems (1, 2, 3) due to the orientation of each lamina, ✓,

as illustrated in Figure 6.

Figure 6: Laminate global (x, y, z) coordinates vs. ply local (1, 2, 3) coordinates.

Therefore, the concept of plane stress transformation becomes crucial here. The resulting stress

and strain components of each lamina, as defined in Equation 6, must be transformed into the

global components to account for the fiber orientation. This transformation is accomplished using

the following relation [41]:
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where c = cos ✓ and s = sin ✓, and ✓ is in degrees (�). The components Qij refer to the elements

of the transformed lamina stiffness matrix in MPa, which are defined [41]:

Q11 = Q11c
4 +Q22s

4 + 2(Q12 + 2Q66)s
2c2 MPa

Q12 = (Q11 +Q22 � 4Q66)s
2c2 +Q12(c

4 + s4) MPa

Q22 = Q11s
4 +Q22c

4 + 2(Q12 + 2Q66)s
2c2 MPa

Q16 = (Q11 �Q12 � 2Q66)c
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3 MPa
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Alternatively, the strains can be expressed in relation to the stresses as follows:
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The components S̃ij represent the elements of the transformed lamina compliance matrix in

MPa�1, which is defined by the inverse of the stiffness matrix [Q]. The transformed compliance

matrix components are given by [41]:
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S11 = S11c
4 + (2S12 + S66)s

2c2 + S22s
4 MPa�1

S12 = S12(s
4 + c4) + (S11 + S22 � S66)s

2c2 MPa�1

S22 = S11s
4 + (2S12 + S66)s

2c2 + S22c
4 MPa�1

S16 = (2S11 � 2S12 � S66)s
3c� (2S22 � 2S12 � S66)s

3c MPa�1

S26 = (2S11 � 2S12 � S66)s
3c� (2S22 � 2S12 � S66)s

3c MPa�1

S66 = 2(2S11 + 2S22 � 4S12 � S66)s
2c2 + S66(s

4 + c4) MPa�1

The detailed derivation of Equations 9 and 10 is available in Appendix A.3.3. The implemen-

tation of these theoretical principles in ABAQUS will now be examined.

2.1.2.2 Laminate Transformations in ABAQUS

Table 2 demonstrates the ABAQUS interface for defining the layup of each web and flange laminate

in the beam (Figure 4).

Table 2: C2 Beam Web, Top, and Bottom Flanges Ply Properties and Orientation

Ply Name Region Material Thickness CSYS Rotation Integration

Angle Points

Ply-1 (Picked) Al2024-T3 0.3 hlayupi 0 3
Ply-2 (Picked) R-GlassEpoxy 0.25 hlayupi 90 3
Ply-3 (Picked) R-GlassEpoxy 0.25 hlayupi 0 3
Ply-4 (Picked) Al2024-T3 0.3 hlayupi 0 3
Ply-5 (Picked) R-GlassEpoxy 0.25 hlayupi 0 3
Ply-6 (Picked) R-GlassEpoxy 0.25 hlayupi 90 3
Ply-7 (Picked) Al2024-T3 0.3 hlayupi 0 3

The ’Region’ column represents the geometric part defined by the user for each respective web,

top, and bottom flange, resulting in three laminates defined. Each ply corresponds to the selected

geometric part for the laminate, which is why it is labeled as ’(Picked)’. The ’CSYS’ column corre-

sponds to the discrete orientation that defines each laminate’s global coordinate system in relation
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to the global datum coordinate system, which serves as the reference point for the entire model and

determines the orientation and location of all entities within the simulation. The ’Thickness’ col-

umn specifies the ply thickness in mm. The ’Rotation Angle’ column specifies the orientation of

each lamina, ✓ in degrees (�), to effectively transform the local stress and strain components of the

ply to the global components of the laminate, guided by the theoretical framework of Equations 9

and 10, albeit ABAQUS employs a full 3D and higher-order analysis [55]. Figure 7 illustrates the

layup for various structural elements of the C2 C-beam.

(a) Web (b) Top flange (c) Bottom flange

(d) Top fillet (e) Bottom fillet

Figure 7: Fiber orientations at 0� ply.

This includes the web (Figure 7a), the top flange (Figure 7b), the bottom flange (Figure 7c), bottom

fillet (Figure 7e), and fop fillet (Figure 7d), each defined with its respective coordinate system. Fig-

ure 8 details the discrete orientation definitions in the global coordinate systems for each laminate.

For the web laminate (Figure 8a), the normal vector is (0.0, 1.0, 0.0), parallel to the y-axis, with the

primary direction vector (0.0, 0.0, 1.0) aligned with the z-axis. This sets the laminate global 3-axis

as the global datum z-axis and the laminate global 2-axis as the global datum x-axis. Similarly, the

top and bottom laminates (Figures 8b and 8c) feature normal vectors (1.0, 0.0, 0.0) and primary

direction vectors (0.0, 0.0, 1.0), consistent with the datum global z-axis and x-axis, respectively.

In contrast, for the top and bottom fillet laminates (Figures 8d and 8e), the normal vectors are de-
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(a) Web (b) Top flange (c) Bottom flange

(d) Top fillet (e) Bottom fillet

Figure 8: Discrete orientations for local coordinate systems.

termined by the surfaces on the inside of the C-beam, with primary direction vectors (0.0, 0.0, 1.0)

consistently aligned with the datum global z-axis and x-axis, respectively.

The configuration of the C2 beam layup is shown in Figure 9, detailing the C-beam’s web,

flange, and fillet properties.

(a) Ply stack-up. (b) Isometric view.

Figure 9: C2 Layup configurations for C-beam: web, flange, and fillet properties in ABAQUS.

Figure 9a details each laminate in both the web and flange with respect to the properties and

orientations defined in Table 2. The isometric view of the C-beam’s complete laminated structure

is showcased in Figure 9b, illustrating the consistent application of ply thicknesses, lamination

stacks, and fiber orientations across all laminates.
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The material properties of the Al2024-T3 alloy and the R-Glass/Epoxy prepreg were sourced

from the research by Banat and Mania [31]. Kamocka et al. [56], co-authored with Mania, con-

ducted bending tests on the prepreg using ASTM D 790-00 and tensile tests using ASTM D 3039/D

3039M-00. For Al2024-T3, the PN-EN ISO 6892-1 standards were applied [56]. Banat and Mania

[31] incorporated these results into their numerical study parameters. Therefore, the elastic and

plastic properties, including the strength properties of the R-Glass/Epoxy prepreg, are summarized

in Tables 3-4, which are used for the numerical model laminates shown in Figure 9.

Table 3: Mechanical Properties of Al 2024-T3 and R-Glass/Epoxy [31, 56]

Property Al 2024-T3 R-Glass/Epoxy

E1 [MPa] 77000 53900
E2 [MPa] – 14920
G12 [MPa] 28950 5490
G23 [MPa] – 5330
G13 [MPa] – 5490
Ry [MPa] 359 –
⌫12 0.33 0.28
⌫23 – 0.40
⌫13 – 0.28

Table 4: Strengths of R-Glass/Epoxy [31]

Description Strength [MPa]

Xt 1534
Xc 800
Yt/Zt 75
Yc/Zc 500
S 58

Ry is the yield strength where the stress is measured at a strain of 0.2% [56]. Xt is the longitu-

dinal tensile strength, Xc is the longitudinal compressive strength, Yt/Zt is the transverse tensile

strength, Yc/Zc is the transverse compressive strength, and S is the shear strength in the plane of

the layer.
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2.1.3 Boundary Condition Specifications

The comprehensive literature review in Chapter 1 highlighted recent advancements in numerical

modeling techniques for C-beams under compression. Research efforts by Gliszczynski et al. [28],

Debski and Jonak [30], and Banat and Mania [31] have focused on creating numerical models of

experimentally tested C-beams in a Universal Testing Machine (UTM). Debski and Jonak [30]

implemented constraints at both lower and upper sections of the beam, fixing translation such that

movement perpendicular to each wall was restricted (Ux = 0, Uy = 0, Uz = 0). Banat and Mania

[31], on the other hand, secured the constraints to the nodes, considering the flat bottom grooves

in which the beam was seated. Debski and Jonak’s [30] setup also featured a ball-and-socket

joint allowing rotational freedom in the Y-direction, a characteristic that permits slight pivotal or

rotational movement under load without sideways translation. Gliszczynski et al. [28] adopted a

more sophisticated approach in modeling boundary conditions for C-beams, incorporating detailed

considerations for various constraints and loading scenarios. Their simulation model not only

demonstrates a clear visual representation of applied boundary conditions but also provides an

insightful analysis of anticipated deformation under compressive load, as depicted in Figure 10.

(a) Test stand. [28] (b) Boundary conditions. [28]

Figure 10: Gliszczynski et al.’s experimental mapping of boundary conditions to numerical model.

In this setup, the lower plate was fully constrained, restricting all degrees of freedom at the
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reference points (RP), while the upper plate allowed movement solely in the Z-axis to simulate

compressive loading. This design closely replicates an experimental UTM setup, where movement

is limited to the direction of the applied load, thus ensuring a uniaxial compression state. The

beam ends were simply supported, allowing rotational freedom while constraining movement per-

pendicular to the plane of the beam’s web and flanges, as illustrated in Figure 10b. This approach

maintains the structural integrity of the C-section during load application.

The accuracy of the simulation critically hinges on these boundary conditions, ensuring the

numerical model mimics the physical constraints of the experimental setup. Gliszczynski et al. [28]

further addressed contact interactions at the end-plate contacts, essential for accurately replicating

stress distribution and deformation characteristics under load. The nodes at the C-beam edges were

restrained from moving perpendicular to the its walls while allowing rotation, effectively capturing

the behavior of the C-beam within the UTM. This detailed simulation approach enhances the

reliability and validity of performance predictions, setting it apart from the methodologies used by

Debski and Jonak [30] and Banat and Mania [31], where the compression plates were not modeled,

possibly leading to discrepancies in results.

2.1.3.1 Coupling Constraints

In the current numerical model, a simplification is adopted, aiming to accurately reflect the effects

of the compression plates used by Gliszczynski et al. [28], while streamlining the model. This

simplification involves omitting the physical representation of the compression plates, instead us-

ing abstract coupling constraints [57, 58]. RP-1 and RP-2 are established at the center of the beam

at both upper and lower ends (Figure 11).

These reference points serve as application sites for boundary conditions, effectively simulating

the effects of the compression plates on the beam. Surface sets at the beam ends, highlighted in

Figure 12 in red, correspond to areas of interaction with the compression plates.

Coupling constraints, necessary for accurately modeling interactions between structural com-

ponents as depicted in Figure 13, link the surface displacements of the beam to specific reference
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Figure 11: Assembly model indicating the reference points.

(a) Bottom surface set (b) Top surface set

Figure 12: Illustration of surface sets

points.

The ’Control Points’ (RP-1 and RP-2), marked in red, are where constraints are applied, regulating

degrees of freedom in different model regions. The ’Surface’, in magenta, consists of bottom

and top surface sets (Figure 12) of the beam. This interaction establishes coupling constraints,

governing the behavior of affected model areas in response to displacements at the control points

during simulation [55].

The kinematic coupling constraints ensure uniform load distribution across the beam’s width,

facilitating precise control over displacement in specific degrees of freedom while preventing ro-

tational movement [55]. This choice allows the displacements of the beam’s top surface nodes to

follow those of the reference point precisely, permitting displacement control in specific degrees of

freedom, without rotational movement [55]. A key advantage of this modeling approach is its abil-

ity to factor in the influence of the plates without explicitly modeling them, thereby significantly
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(a) Bottom constraint (b) Top constraint.

Figure 13: Kinematic coupling constraints

reducing the model’s computational complexity.

2.1.3.2 Support Conditions

Figure 14 displays the support conditions of the beam, setting the stage for developing a robust

numerical model with accurate boundary constraints.

(a) Encastre at RP-1 (b) Displacement/Rotation at RP-2

Figure 14: Illustration of support boundary conditions.

In alignment with the methodology of Gliszczynski et al. [28], the beam’s lower end is fully con-

strained at reference point RP-1. This mimics a fixed support condition, prohibiting all translations

and rotations, akin to an encastre boundary condition (U1 = U2 = U3 = UR1 = UR2 = UR3 =

0). Figure 14a illustrates this setup, where small orange arrows indicate fixed translations and

large blue arrows denote fixed rotations. Conversely, at the beam’s upper end, RP-2 is constrained

to simulate compressive loading (Figure 14b), limiting the upper plate’s movement solely to the
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z-axis (U3), similar to a displacement/rotation boundary condition (U1 = U2 = UR1 = UR2 =

UR3 = 0). These constraints, defined in the ’initial step’ of the analysis, establish the essential

boundary conditions, predefined fields, and interactions at the start of the analysis [55]. They serve

as the cornerstone for ensuring the accuracy and reliability of subsequent simulation results by

correctly setting up the model’s initial state and governing behavior.

2.1.3.3 Loading Conditions

A constant concentrated force of 1.0 N is applied in the z-axis (U3) direction at reference point

RP-2, as depicted in Figure 15.

Figure 15: Application of concentrated force at RP-2 mimicking top plate compression [28].

This force simulates the compressive force exerted by the top plate on the beam [57] and is trans-

ferred to the beam’s top surface via the kinematic coupling illustrated in Figure 13b, linking RP-2

to the corresponding beam surface nodes.

2.1.4 Eigenbuckling Analysis

Transitioning to the stability analysis setup, the numerical model incorporates eigenvalue buck-

ling analysis in ABAQUS. This approach is grounded in solving an eigenvalue problem, which is

foundational to linear perturbation theory. Subsequently, to capture the realistic behavior of the

structure post-buckling, the Riks method is employed. This analysis phase is essential for under-

standing the large deflection responses of the structure and ensuring post-buckling stability.

25



2.1.4.1 General Eigenvalue Buckling

Eigenvalue buckling analysis determines the conditions that cause the stiffness matrix to become

singular, resulting in nontrivial displacement solutions vM with units of millimeters mm, as de-

scribed by [55]:

KMNvM = 0 (11)

where KMN represents the tangent stiffness matrix, in Nmm�1, under unidirectional compres-

sive forces, with M and N indicating the degrees of freedom. This method proves effective for stiff

structures by identifying critical loads predominantly carried by axial loads or membrane actions,

with minimal pre-buckling deformation [55, 59].

2.1.4.2 Base State and Eigenvalue Problem

Buckling loads are evaluated relative to the structure’s base state, either the initial conditions or the

state following the last general analysis step. The eigenvalue problem is articulated as [55]:

�
KNM

0 + �iK
NM
�

�
vM
i = 0 (12)

with KNM
0 and KNM

� denoting the stiffness matrices in the base state and those resulting from

incremental loading QN in N, respectively, both with units of Nmm�1. The stability threshold

is indicated by the smallest significant eigenvalue �i, with eigenvectors vM
i elucidating the ith

potential failure modes, in mm.

2.1.4.3 Subspace Method

The subspace iteration method, tailored for extracting significant eigenmodes, refines the lowest

eigenvalues and their corresponding eigenvectors through iterative processes [60]. Selected for

its efficiency in pinpointing critical buckling modes, this method simplifies the analysis procedure

[61]. The steps in ABAQUS for the eigenbuckling analysis include [55]:
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1. Defining geometric and material properties.

2. Applying boundary conditions, considering the base state geometry aligns with the body’s

original configuration without initial preloads or geometric nonlinearity.

3. Initiating a linear perturbation analysis step for buckling.

4. Conducting the analysis using the subspace iteration method to ascertain critical load factors

and buckling modes.

Focusing on the first buckling mode necessitates requesting a single eigenvalue. The setup

specifies using two vectors per iteration, with a cap of 300 iterations, to thoroughly explore for the

buckling load. Insights into the onset of instability and deformation patterns at buckling are derived

from this analysis, leveraging Equations 11 and 12. Suitable for linear response scenarios, non-

linear methods like the Riks method are advised for analyses anticipating significant deformations

under buckling loads.

The quasi-static loading conditions in the experimental study by Gliszczynski et al. on C-

beams, performed in the UTM, underscore the subspace method’s applicability to scenarios where

static equilibrium assumptions are already valid [27, 62], offering valuable insights into instability

onset and buckling deformation patterns.

2.1.5 Static Riks

After obtaining the critical buckling loads through eigenvalue buckling analysis, the load applied

during the nonlinear analysis phase is scaled according to the smallest eigenvalue obtained. This

scaling adjusts the initial 1.0 N load from Figure 15 to match the critical load, providing a realistic

basis for assessing the structure’s response under actual buckling conditions.

2.1.5.1 Arc Length Method and Control

The static Riks method, also defined as the arc-length method, captures softening behavior while

using load control [63]. In a Riks step, the loading remains proportional throughout any increment.
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The current load magnitude, Ptotal, is calculated as [55]:

Ptotal = P0 + �f (Pref � P0) (13)

where P0 is the initial load, Pref is the reference load vector, and �f is the load proportionality

factor (LPF) dynamically computed as part of the solution. Pref is defined as a prescribed load,

explicitly defined and applied to the structure. All loads are ramped from their initial values, P0, to

the specified reference loads, Pref , and beyond Pref if not terminated manually or by user-defined

criteria.

In ABAQUS, the Riks method employs Newton’s method to solve the nonlinear equilibrium

equations [55, 64, 65]:

R(u) = Fext � Fint(u) = 0 (14)

Fint(u
(k+1)) = Fint(u

(k)) + J�1(u(k))�u(k) = Fext (15)

where R(u) is the residual vector, Fint(u) is the internal force vector, which is a function of

the displacements u, and Fext is the external force vector. Moroever, u(k) is the displacement

vector at iteration k, J(u(k)) =
�
@Fext
@u

�k and is the Jacobian matrix (or tangent stiffness matrix)

at iteration k, and �u(k) is the displacement increment of the solution. This technique relies on

a 1% extrapolation of the strain increment to control incrementation [66]. The initial arc length

increment establishes the scale for subsequent steps, enabling precise control over the solution’s

progression along the equilibrium path [55]:

��in =
��in

lperiod
(16)

Here, ��in represents the initial increment in the arc length, and lperiod is a user-specified total

arc length scale factor, typically set equal to 1. The initial load proportionality factor, ��in, is
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computed based on this value. Configuring the Riks method in ABAQUS involves the following

steps [55]:

1. Establishing initial and boundary conditions based on the unloaded geometry of the structure.

2. Defining material properties that accommodate nonlinearity and specifying options for geo-

metric nonlinearity to manage large deformations.

3. Selecting the Riks analysis step and setting parameters such as the total arc length, initial

step size, and controls for incrementation.

4. Monitoring the analysis for convergence issues, especially during transitions through un-

stable paths, and adjusting solver settings as necessary to ensure accurate tracing of the

equilibrium path.

The setup configures the incrementation to be automatic, with a maximum number of iterations

set to 1000. The default is set to 100, and the license constraint is 10000. This configuration ensures

that the solution is accurate and stable without using excess computational resources [55]. The arc

length increments start with an initial value of 0.01, with a minimum of 1⇥ 10�6 and a maximum

of 1 ⇥ 1036, and a total arc length of 1. In the unloaded geometry scenario, the primary buckling

mode shape derived from eigenbuckling analysis is transferred to the geometric profile through the

Riks method, setting an initial imperfection at 0.01 times the total wall thickness.

It should be noted that observing negative increments in the arc length is indicative of struc-

tural failure, particularly in scenarios involving buckling or post-buckling behavior [67, 68]. This

condition is often associated with significant structural damage or failure. When this is observed,

the simulation will be terminated as it indicates the failure mode [67].

From this analysis, the LPF versus arc length history plot can be derived, leveraging Equa-

tions 13 & 16. The LPF can then be used to multiply the critical buckling load to obtain a more

accurate critical buckling load. The failure load and shape can be found to observe the path of

instability.
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2.1.6 Mesh Optimization and Element Selection

The numerical model employs the quadrilateral stress/displacement four-node shell element with

reduced integration (S4R), featuring large-strain capabilities, for meshing [55]. This element is

depicted in Figure 16.

Figure 16: Degenerated mid-surface S4R element.

It approximates the three-dimensional C-section beam as a two-dimensional degenerated mid-

surface, streamlining computations without sacrificing accuracy. The S4R element provides six

degrees of freedom per node—three translational and three rotational. In ABAQUS, it models

the behavior of structures with intrinsic thickness effectively. The mid-surface represents the cen-

troidal plane of the element, with the projected positive and negative surfaces corresponding to the

beam’s physical boundaries. These projections enable the S4R element to integrate the thickness

’t’ and mimic the actual structural response without the computational expense of a fully three-

dimensional mesh [29]. The validity of this method is supported by research from Gliszczynski

and Kubiak [27], as well as Debski and Jonak’s use of a similar element, the eight-node shell

element with reduced integration (S8R) [30].

When modeling beams with holes, a quad-dominated free meshing strategy is preferred. This

technique primarily utilizes quadrilateral elements, introducing triangular elements as needed for

complex geometries. It strikes a balance between structured and free meshing methods. An initial

mesh size of 5 mm is chosen, as shown in Figure 17.
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Figure 17: Initial mesh model with 5 mm global seed size.

2.2 Linear Buckling Verification and Validation

Performing an eigenbuckling analysis on a specific layup by conducting a mesh sensitivity analysis

ensures that the results are independent of the mesh size, which is critical for obtaining reliable

and accurate results. A mesh sensitivity analysis aids in determining the optimal mesh density

and checks for buckling mode validation by comparing numerical results with experimental data

to ensure that the model accurately captures the critical buckling phenomena before proceeding

with the V&V process. Once the eigenbuckling analysis and model iteration have been completed

across all five laminate configurations, the next step is to use the Riks method for a more detailed

nonlinear analysis of the selected layup.

2.2.1 Model-Experimental Data Validation

Banat and Mania [31] provided the buckling mode shapes for only the C2 configuration; therefore,

C2 will be chosen to conduct the analysis with different mesh densities and observe the changes

in critical buckling loads and mode shapes. Settle on a mesh size that provides stable results with

minimal variation between successive refinements before moving forward with the V&V process.

To perform a mesh sensitivity analysis, a Python script interfacing with ABAQUS was de-

veloped [69]. The script extracts desired quantities including model name, buckling loads, and

number of elements. Each quantity is then written to a comma-separated value (CSV) file and

saved. This data automation ensures a comprehensive validation of all configurations for this study
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and facilitates easy implementation of parameters and modularity for subsequent studies.

2.2.2 Mesh Density Sensitivity Analysis

The Python script executed in ABAQUS analyzes mesh sizes from 1 to 5 mm for the C2 configura-

tion, with detailed results in Appendix C.1. A MATLAB script imports the CSV file and generates

convergence plots shown in Figure-18, as described in Appendix B.1.

Figure 18: C2 convergence plot.

These plots graph the critical buckling load against the number of elements, illustrating five data

points for mesh sizes between 5 and 0.5 mm (from left to right). Figure 18 shows that the C2

configuration demonstrates asymptotic convergence, suggesting an increasing independence of re-

sults from mesh size. The convergence table for the C2 C-beam is presented in Table 5, which is

processed using the MATLAB code from Appendix B.1 under the ’Convergence Tables’ section.

Table 5: Convergence Data for C2

Mesh Size [mm] Num. of Elements Eigenvalue [N] Percent Error [%]

1.0 47400 27971 7.13
2.0 12000 28015 6.98
3.0 5500 28075 6.78
4.0 3268 28138 6.57
5.0 2100 28216 6.31
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The MATLAB code section also includes calculations for the percentage error for each simulation,

comparing them against the experimental value of 30117 [N] for Banat and Mania’s [31] C2 C-

beam. The 1 mm mesh fails to accurately capture the physical buckling behavior, as visually

supported by Figure 19.

(a) N-M2 (b) N-M1 (c) E [31]

Figure 19: C2 buckling mode shapes with both numerical (N), with mesh sizes of 2 mm (M2) and
1 mm (M1), and experimental (E) results.

The 2 mm mesh closely resembles the experimental buckling modes, underscoring the importance

of careful mesh selection. A 1 mm mesh may lead to inaccurate predictions, as evidenced by dis-

crepancies in buckling load predictions. Moreover, a 2 mm mesh falls well within the 10% range

of permissible variations between experimental and numerical outcomes in composite structures

[27]. Therefore, the study endorses no further refinement beyond 2 mm to enhance the fidelity

of the structural response in simulation results, ensuring congruence with experimental observa-

tions. This emphasizes the importance of mesh quality in achieving a balance between accuracy in

buckling load predictions and guiding the selection of the most efficient mesh size for dependable

structural analysis

2.2.3 Model Refinement from Sensitivity Analysis

Building upon the mesh sensitivity analysis, the optimal mesh size is identified as 2 mm, which

closely aligns with experimental data both quantitatively and qualitatively, offers a favorable error
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margin, and conforms to the established convergence trend. Opting for the 2 mm mesh aligns with

the objectives of iterative model refinement. Figure 20 depicts the refined mesh, showcasing this

prudent selection.

Figure 20: Iterative refinement of the mesh model.

The same Python script was configured to set the mesh size variable to 2 mm and to accept

a vector array of string inputs naming the laminate layups from Table 1, C1-C5. The script was

then executed in ABAQUS, with results presented in Appendix C.2. These results are tabulated in

Table 6, which presents a comparison between the experimental data and the latest iteration of the

numerical model for all layups.

Table 6: Comparison of Linear Numerical Model to Experimental Buckling Loads

Model Critical Buckling Load [N] Percent Error [%]
Numerical Experimental [31] (Numerical vs Experimental)

C1 28193 31434 10.3
C2 28015 30117 6.98
C3 29308 32634 10.2
C4 28968 30920 6.31
C5 28218 29836 5.42

While the mesh sensitivity analysis contributed to selecting a mesh size that ensured results

are independent of the mesh size and validated the buckling mode shape with experimental data,

the percentage errors—slightly above 10% for configurations C1 and C3 in Table 6—are outside

the acceptable variations between experimental and numerical outcomes [27]. This highlights the

limitations of an eigenbuckling analysis in providing a realistic investigation and recreation of
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structural performance. These limitations are attributed to assumptions that include small defor-

mations and perfect geometry. The Riks method addresses these assumptions and aids in further

achieving more accurate results to meet the acceptable margins for the V&V process.

2.3 Nonlinear Buckling Verification and Validation

Based on the V&V results from the eigenbuckling analysis, the Riks method is used to provide a

more comprehensive understanding of post-buckling behavior, including the load-displacement

path beyond the initial buckling point. Geometrically nonlinear analyses are introduced here,

which account for material nonlinearities such as yielding and failure stress properties listed in

Table 2, as well as large deformations. This step is crucial for structures where post-buckling

strength or the pathway to failure is as important as the initial buckling load itself. A selected

laminate configuration for the C-beam will be simulated, and the buckling load and failure mode

will be obtained and verified against experimental results. Once the nonlinear numerical model

is verified, a new analysis on more accurate critical buckling loads for all five laminates will be

conducted.

2.3.1 Buckling Load Validation

The C2 configuration will be selected and focused on because Banat and Mania [31] provided the

failure mode shapes for only that configuration. For V&V, the LPF vs. arc length plot will be

extracted which provides important insights into the structural behavior under load. At some point

the plot will denote when the structure behaves elastically and is stable up to a certain point. The

point where the curve starts to show nonlinearity often corresponds to the onset of buckling [70].

This is where the structure begins to lose stiffness significantly, leading to large deformations for

small increases in load [55].

After modifying the ABAQUS eigenbuckling analysis for the C2 configuration to incorporate

the Riks method, the CSV file in Appendix C.1 was processed using the MATLAB code in Ap-

pendix B.2, which displayed the LPF versus arc length plot in Figure 21.
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Figure 21: Load proportionality factor (LPF) vs arc length for C2 C-beam

There is a gradual increase in load capacity after an initial buckling point, rather than a sudden

drop or jump, which would typically be indicative of snap-through behavior [70]. This suggests

that while the structure underwent buckling, it didn’t exhibit a snap-through but rather a post-

buckling strength increase, where the structure is capable of carrying additional load in a deformed

configuration [71]. In many structural systems, particularly in slender structures or shells, once

buckling occurs, the structure may still carry additional load but in a different deformation mode

[72].

Figure 21 clearly shows where the linear region ends and the structure begins to behave nonlin-

early, which is aligned with standard practices in buckling analysis. This transition zone typically

represents the critical load beyond which the structure may not return to its original state under un-

loading, indicating potential buckling or yielding [73, 74]. Therefore, the onset of buckling occurs

at a LPF of 1.05157 and an arc length of 1.1433. Taking the eigenbuckling value from Table 6, the

new C2 buckling load for the nonlinear analysis is established as follows:
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Pcr = 28015 N ⇥ 1.05157 = 29460 N (17)

As a result, the percentage error between the experimental results and the nonlinear analysis is

2.18%, representing a significant reduction from the 6.98% error observed in the eigenbuckling

analysis. This improvement highlights the effectiveness of the Riks method in closely approxi-

mating real-world behavior, thereby enhancing the reliability of structural assessments. This accu-

racy suggests that the numerical model is reasonably precise in predicting experimental behavior,

although minor discrepancies can arise from modeling assumptions such as using coupling con-

straints for simplification instead of applying individual nodes for boundary conditions.

2.3.2 Failure Mode Validation

Figure 21 indicates where the material experiences failure. The failure mode is obtained at an arc

length of 31.746, corresponding to an LPF of 1.5934; this is where the negative increments are

observed. Taking the C2 eigenbuckling value from Table 6, the C2 failure load for the nonlinear

analysis becomes Pfailure = 28015⇥1.5934 = 44639 N, which is demonstrated and compared with

experimental data in Figure 22.

(a) N (b) E [31]

Figure 22: C2 failure mode shapes with both numerical (N) and experimental (E) results.
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Figure 22a shows the stress distribution using the von Mises stress criteria in the numerical

model, which is commonly used to predict yielding of ductile materials under complex loading

[75]. The color coding indicates the stress levels, with red representing the highest at 308.5 MPa,

set as Ry for the aluminum layer. This stress distribution aids in identifying potential failure zones,

which correspond to the areas of highest stress concentration. The areas in green and blue indicate

lower stress levels, suggesting these parts of the structure are less likely to fail under the given load

conditions. Figure 22b shows physical deformations and damage of the experimental C-beam,

which closely match the high-stress areas predicted by the numerical model in Figure 22. This

correlation is significant because it validates the accuracy of the numerical model in predicting

how the material will behave under load, particularly in terms of where it will buckle and likely

fail. Banat and Mania did not provide failure loads (Pfailure) for the experimental specimen in

Figure 22b to compare with numerical values. Now that the C2 configuration has been verified,

the new critical buckling loads across all five laminates can be calculated.

2.3.3 Nonlinear vs. Linear Model Buckling Loads

After modifying the ABAQUS eigenbuckling analysis for C1-C5 C-beam configurations to in-

corporate the Riks method, the CSV files in Appendices C.2 to C.5 were processed using the

MATLAB code in Appendix B.3 and compiled into the LPF versus arc length plots in Figure 21.
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Figure 23: Load proportionality factor (LPF) vs arc length for C1-C5 C-beams.

After obtaining the LPF for each configuration at the onset of buckling and multiplying these values

by their respective eigenbuckling values from Table 6, the results for the nonlinear model buckling

loads are presented in Table 7.

Table 7: Comparison of Nonlinear Numerical Model to Experimental Buckling Loads

Model Critical Buckling Load [N] Percent Error [%]
Numerical Experimental [31] (Numerical vs Experimental)

C1 30324 31434 3.53
C2 29460 30117 2.18
C3 30949 32634 5.16
C4 29530 30920 4.50
C5 28529 29836 4.38

The comparison between linear and nonlinear numerical models, as seen in Tables 6 and 7,

demonstrates a significant reduction in percentage error when using the nonlinear model to estimate

experimental buckling loads. Specifically, the percentage errors in the linear model range from

5.42% to 10.3%. In contrast, the errors in the nonlinear model are considerably lower, ranging
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between 2.18% and 5.16%, and fall well within the 10% range of acceptable variations between

experimental and numerical results in composite structures [27]. This reduction in error suggests

that the nonlinear model, particularly when employing the Riks method, is more adept at capturing

the complex behaviors associated with buckling, including material and geometric nonlinearities

that linear analysis does not consider. This capability is crucial for analyzing GLARE materials,

where accurate predictions of where aluminum may yield and R-Glass/Epoxy might fail are vital

for applications demanding high safety and durability.

Moreover, compared to eigenbuckling assumptions, the Riks method provides a more realistic

approximation of buckling loads and additional information on post-buckling behavior [76, 77].

Eigenbuckling analysis typically assumes perfect linearity and small deformations, idealizing the

behavior of materials and structures under load [55]. In contrast, the Riks method accounts for the

nonlinear load-deformation relationship and can incorporate the effects of large deformations and

material yielding [55], which is crucial for materials like GLARE laminates that exhibit complex

interactions between their components under stress [78].

Now that the numerical modeling and V&V have been completed for all C1-C5 C-beam con-

figurations, the next chapter will explore ways to enhance both the pre- and post-buckling strength

of a GLARE C-beam by examining the effects of adding cross stiffeners.
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Chapter 3. Introduction of Cross Stiffeners

This exploration delves into one distinct type of stiffener—cross stiffeners—inspired by the re-

search of Prado et al. on steel I-beams under lateral torsional bending [25]. The aim is to assess the

potential of these cross stiffeners to enhance both the pre- and post-buckling strength of GLARE

C-beams.

3.1 Modeling

In the modeling phase, integrating cross stiffeners within the C-beam is focused on aligning ge-

ometric and material characteristics with mechanical and structural criteria. The process entails

detailing assumptions, geometric configurations, and computational strategies critical for simulat-

ing interactions between the stiffeners and the C-beam. This comprehensive examination prepares

the groundwork for a detailed numerical analysis, which will assess the stiffeners’ effectiveness in

enhancing both pre- and post-buckling strengths.

3.1.1 Stiffener Geometry and Modeling Assumptions

C2 C-beam configuration is chosen because of the low percent error and the additional experimen-

tal buckling and failure loads provided. In this preliminary study, the focus is on establishing a

proof-of-concept for the improvement of damage tolerance of GLARE C-beam with introduction

of cross stiffeners. While the details of bonding techniques and their effects are crucial for a com-

prehensive understanding, they are not the primary focus at this stage. Future research can delve

into the specifics of bonding methods and their impact on the mechanical properties and perfor-

mance of the stiffened structures. Drawing upon the geometrical descriptions provided by Prado

et al. [25], one set of cross stiffener was modeled and positioned at 61 mm from each C-beam

end, where two of the local buckling occured, Figure 19a, and an attempt at redistributing the

stresses and helping to prevent such deformations. A clearance of 1.75 mm is maintained between

the stiffeners to the web due to the radius fillet. The specific dimensions of the cross stiffener are
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illustrated in Figure 24.

Figure 24: Cross Stiffener dimensions (units in mm).

The dimensions discussed were used to create models of the cross stiffener integrated into

the existing C-beam using SOLIDWORKS. This model was then converted to IGS format and

imported into ABAQUS to simulate the cross stiffener as part of the beam assembly. The graphical

representations of the stiffeners integrated into the beam are exhibited in Figure 24. Figure 25

shows the beam with the stiffeners incorporated, providing a three-dimensional perspective of the

placement of the cross stiffener within the C-beam’s architecture.

Figure 25: Beam with incorporated stiffeners.

The Python script was modified to import the distinct IGS model, as shown in Figure 25. Each

model is associated with unique surface set region definitions that are used for assigning material

properties and applying coupling constraints at the beam ends.

3.1.2 Stiffener Material Properties and Coordinate System Definitions

Constructed as GLARE laminates, each stiffener will mirror the material properties of the C-

section beam detailed in Section 2.1.2. The mechanical properties, as listed in Table 2, along
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with the laminate stacking approach for the stiffeners, will adhere to the modeling principles ap-

plied to the beam’s web or flange laminates. This ensures methodological consistency, facilitating

a unified analysis of composite behavior and enabling direct comparison of structural performance

across configurations. This approach not only streamlines the evaluation process but also enhances

the reliability of the study’s conclusions.

The coordinate systems for each stiffener type must align with the comprehensive composite

modeling methodology discussed in Section 2.1.2. Figure 26 shows the layup orientations for the

cross stiffener.

(a) Top left laminates. (b) Top right laminates.

Figure 26: Fiber orientations at 0� ply for cross stiffeners.

For the cross stiffeners, the top left laminates (Figure 26a) have a normal vector of (0.9121,

0.0, 0.4099) and a primary direction vector of (�0.4099, 0.0, 0.9121), setting the global 3-axis

along the global datum z-axis and the global 2-axis along the global datum y-axis. Similarly, for

the top right laminates (Figure 26b), the normal vector is (0.9121, 1.0,�0.4099) with the primary

direction vector (0.4099, 0.0, 0.9121).

3.2 Results

Executing the modified Python script in ABAQUS for the eigenbuckling analysis yielded a buck-

ling load of 32070 N, as shown in Figure 27.
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Figure 27: Cross stiffener configuration bucking mode plot.

After the eigenbuckling analysis was modified for the Riks analysis, the failure of the C-beam is

shown in Figure 28.

Figure 28: Cross stiffener configuration failure mode plot.

In addition, the LPF vs. arc length data was extracted (Appendix C.6) and plotted together with the

C2 configuration without a stiffener (Appendix C.1) using the MATLAB code in Appendix B.4,

which produced Figure 29.
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Figure 29: Load proportionality factor (LPF) vs arc length for C2 C-beam with and without cross
stiffener

Since non-linearity appears everywhere in the cross configuration, the 0.2% offset method was

employed to determine the LPF at the onset of yielding [79]. This method involves identifying the

point at which the curve deviates from linearity by 0.2%, indicating the onset of yielding, which

corresponds to an LPF of 0.7549. The failure load is obtained at an arc length where negative

increments are observed, corresponding to an LPF of 1.49381. The obtained buckling and failure

loads for the cross configuration, calculated by multiplying the eigenbuckling load, 28015 N, by the

respective LPF values of 1.09447 and 1.49381, are tabulated alongside the configuration without a

stiffener in Table 7.

Table 8: Comparison of Nonlinear Numerical Models of Cross and No Stiffener C2 C-beam Buck-
ling Loads

Stiffener Load [N]
Buckling Failure

Cross 21149 46956
None 29460 30117
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For further comparison of the performance between the cross and no-stiffener configurations, in

the C2 C-beam, the pre- and post-buckling paths have been plotted using the same data (see Ap-

pendices C.1 and C.6) but processed through the MATLAB code in Appendix B.5 resulting in

Figure 30.

Figure 30: Axial load (kN) vs arc length for C2 C-beam with and without cross stiffener.

In the axial load plot, Figure 27 shows that the deformation of the buckling mode shape is

primarily concentrated at the mid-span of the beam, redistributing these stresses at the center. This

indicates that the cross stiffeners potentially create crumple zones, which are desirable in crash-

worthy designs, where buckling and other deformation mechanisms are intended to occur [80].

These zones are designed to buckle early in the impact process, reducing the initial kinetic force

involved and protecting the more rigid, occupant-protecting parts of the structure [81]. In contrast,

Figure 19a shows significant deformation concentrated in multiple regions along the beam length.

Additionally, Table 8 shows a 39% decrease in buckling load from the no-stiffener configuration

to the cross-stiffener configuration. The earlier onset of buckling can absorb and dissipate more

energy from an impact, making deformation more predictable and controlled [82].
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Figure 28 illustrates that the cross stiffeners contribute to a more distributed failure pattern

and controlled deformation compared to the no-stiffener configuration in Figure 22, which fails

at a lower load with more pronounced localized deformations and stress concentrations. This

suggests an improvement in the overall load-carrying capacity and structural integrity of the C-

beam. Furthermore, Figure 29 demonstrates that the introduction of cross stiffeners results in a

higher and more stable load path factor, indicating improved stability and load-bearing capacity.

Additionally, Figure 30 illustrates that the stiffened beam can sustain higher loads, exhibit a more

gradual decline after reaching the peak load, and maintain better stability, confirming the beneficial

impact of the cross stiffeners. This improvement is further evidenced by Table 8, which records a

36% increase in failure load from the no-stiffener configuration to the cross-stiffener configuration.

To emphasize from Chapter 1, such characteristics are critical for applications that require en-

ergy absorption mechanisms and dissipation, particularly in the crashworthiness design of aerospace

structures. These include fuel tanks to minimize the risk of fire, subfloors, seats, and airframes that

maintain a survivable space during hard landings or collisions, thus protecting occupants and crit-

ical components [24, 83].
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Chapter 4. Future Directions and Conclusions

This research has established the fundamental impact of incorporating cross stiffeners in GLARE

C-beams on their pre- and post-buckling performance. The numerical models validated in this

study demonstrate that cross stiffeners significantly enhance the stability of thin-walled compos-

ite beams under quasi-static compressive loading, with a 39% decrease in buckling loads and

a 36% increase in failure loads from the no-stiffener configuration to the cross-stiffener con-

figuration. These findings are particularly relevant for the aerospace industry, where GLARE

materials are favored for their superior fatigue resistance [6], impact resistance [7], strength-to-

weight ratio [13], and crashworthiness [16]. The application of cross stiffeners can lead to future

studies involving classical impact tests to investigate crashworthy aerospace structures, such as

fuselage skins, subfloors, and other critical components. This promising direction sets the stage

for a discussion on how GLARE, alongside emerging materials like Polylactic Acid (PLA) and

Polyhydroxyalkanoate (PHA), could shape the future of aircraft development, emphasizing sus-

tainability, efficiency, and cutting-edge technological integration.

4.1 Future Research Directions

The journey of material innovation in aerospace engineering continues to evolve, particularly with

the introduction of sustainable materials such as PLA and PHA, combined with fiber-reinforced

particles like metals to create Metal Matrix Composites (MMCs) [84, 85]. These innovative ma-

terials promise to enhance structural performance and contribute to environmental sustainability

[86].

A promising research direction involves utilizing these materials in three-dimensional (3D)

printing processes. This approach includes determining their mechanical properties using ASTM

standards, developing new material models for the stiffeners, and conducting additional pre- and

post-buckling analysis to compare their performance with traditional GLARE stiffeners.

To ascertain the mechanical properties of composites, including elastic moduli (E1, E2), shear
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modulus (G12), and Poisson’s ratio (⌫), several ASTM standards are applicable. ASTM D638 pro-

vides guidelines for tensile testing of plastics, including PLA, to determine E1 and ⌫ [87]. ASTM

D790 outlines methods for assessing the flexural properties of unreinforced and reinforced plas-

tics, thereby determining E2 [88]. For shear properties, ASTM D5379 offers a standard approach

to measure G12 [89], and Poisson’s ratio can be determined indirectly from the results of tensile

and shear tests [90]. These ASTM standards have been used for hybrid composites such as MMCs

[91, 92, 93].

The integration of bio-based polymers and fiber-reinforced particles not only offers environ-

mental benefits but also provides the flexibility required for modern manufacturing processes

[94, 95], aligning with the aerospace industry’s shift towards greener and more sustainable prac-

tices [96].

4.2 Concluding Remarks

The research presented in this thesis has demonstrated the significant benefits of incorporating

cross stiffeners in GLARE C-beams, highlighting their potential to enhance both pre- and post-

buckling strength for crashworthy aerospace structures. The validated numerical models provide

a robust framework for further investigation and optimization of composite structures. Future

research should continue to explore innovative sustainable materials to fully realize the potential

of these findings. The integration of sustainable materials and comprehensive testing will ensure

that advancements in structural performance also align with environmental and operational goals.

By pursuing these future directions, the research community can continue to push the bound-

aries of aerospace structures, shaping the next generation of safer, more efficient, and environmen-

tally responsible aircraft.
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Appendix A. Fundamental Approach to Mathematical Foundations of Stress in Orthotropic

Composite Materials

The appendix presents a suite of mathematical foundations vital to the understanding of stress in

orthotropic composite materials. This compendium is largely informed by the seminal work of

Ronald F. Gibson, as articulated in Principles of Composite Material Mechanics [41]. Gibson’s

comprehensive exploration of stress-strain relationships, symmetry in material properties, and the

behaviors of composite laminae under various conditions, provides the crucial theoretical under-

pinning for the numerical modeling techniques employed in this thesis. The concepts distilled

herein are applied to extend the grasp of the complex interactions within composite structures,

enabling a more profound and precise engineering analysis.

A.1 Mathematical 3D State of Stress General Representation of Anisotropic Lamina

A comprehensive three-dimensional (3D) stress state at a specific point within a material can be

characterized by nine stress components �ij (where i, j = 1, 2, 3), as depicted in Figure A1.

Figure A1: Stress state in three dimensions.

In standard subscript notation, �ij represents a normal stress when i = j; and a shear stress when

i 6= j. The first subscript indicates the direction of the outward normal to the face where the stress

component acts, and the second subscript indicates the direction of the stress component itself.
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The generalized Hooke’s law, correlating stress components with all nine strain components

within an elastic material, is expressed in contracted notation as

�i = Cij✏j, i, j = 1, 2, . . . , 6 (A1)

Summation is implied over the repeated subscript j. The relationship can be presented in matrix

form as

{�} = [C]{"} (A2)

Here, the elastic constant matrix or stiffness matrix [C] is a 6⇥6 matrix comprising 36 components,

with the stress and strain represented as six-element column vectors. Similarly, the strains can be

related to stresses by

✏i = Sij�j, i, j = 1, 2, . . . , 6 (A3)

and in matrix notation,

{"} = [S]{�} (A4)

where [S] is the compliance matrix, the inverse of the stiffness matrix [C]. The stiffness and com-

pliance matrices are symmetric due to the strain energy density, reflecting mechanical properties

of the material. All real materials exhibit a degree of inherent symmetry, which influences their

anisotropic behavior, dictated by their atomic and molecular structure.

A.2 Mathematical 3D State of Stress General Representation of Othotropic Lamina

The symmetry within the material’s properties enables simplification of the anisotropic Hooke’s

law. For orthotropic materials, such symmetry allows for two reductions of the generalized model.
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A.2.1 First Symmetry Condition

The initial symmetry condition arises from the strain energy density function W , which depends

on the strain components "i, and is given by

W =
1

2
"iCij"j (A5)

Stress components �i are obtained by differentiating W with respect to the strain components:

�i =
@W

@"i
= Cij"j (A6)

Taking the second derivative of W , one can deduce:

@2W

@"i@"j
= Cij (A7)

The symmetry of second derivatives, based on the Maxwell-Betti reciprocity theorem [97], indi-

cates that

@2W

@"j@"i
= Cji (A8)

Because the order of differentiation does not affect the outcome (the mixed partial derivatives are

equal due to the symmetry of second derivatives), and therefore,

@2W

@"i@"j
=

@2W

@"j@"i
(A9)

This results in the stiffness matrix being symmetric (Cij = Cji):
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Cij =

2

666666666666664

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

SYM C55 C56

C66

3

777777777777775

(A10)

Considering a full 3D stress state aligned with the principal material axes (refer to Figure A1) and

incorporating the symmetric stiffness matrix from Equation A10 into Equation A2, the stress-strain

relationship can be expressed as:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�1

�2

�3

⌧23

⌧31

⌧12

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

=

2

666666666666664

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

SYM C55 C56

C66

3

777777777777775

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

✏1

✏2

✏3

�23

�31

�12

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(A11)

A.2.2 Second Symmetry Condition

The second symmetry condition in orthotropic materials concerns the invariance of material prop-

erties within the 2-3 plane. This symmetry condition influences the configuration of the stiffness

matrix, ensuring the properties in the 2 and 3 directions are identical, thereby simplifying the stiff-

ness matrix. As a consequence, the number of independent constants in the stiffness matrix is

reduced from the possible thirty-six for a general anisotropic material to nine for an orthotropic

material. This reduction is attributable to the material’s symmetry, ensuring that Cij = Cji, result-

ing in:
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Cij =

2

666666666666664

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

SYM C55 0

C66

3

777777777777775

(A12)

This final reduction is a consequence of special orthotropic symmetry. When integrated into Equa-

tion A2, the updated stress-strain relationship can be expressed as:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�1

�2

�3

⌧23

⌧31

⌧12

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

=

2

666666666666664

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

SYM C55 0

C66

3

777777777777775

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

✏1

✏2

✏3

�23

�31

�12

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(A13)

Re-expressing in terms of Equation A4:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

✏1

✏2

✏3

�23

�31

�12

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

=

2

666666666666664

S11 S12 S13 0 0 0

S22 S23 0 0 0

S33 0 0 0

S44 0 0

SYM S55 0

S66

3

777777777777775

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�1

�2

�3

⌧23

⌧31

⌧12

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(A14)

Figures A2 and A3 illustrate the principal and non-principal coordinate systems of an orthotropic

lamina, and a material with special orthotropic properties, respectively.
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Figure A2: Lamina with orthotropic properties in principal (123) and non-principal (xyz) coordi-
nate systems.

Figure A3: Material with special orthotropic properties and transverse isotropy, demonstrating the
2-3 plane symmetry. [41]

A.3 Mathematical 2D State of Stress Representation of Orthotropic Lamina in Using

Engineering Coefficients

Orthotropic lamina is commonly assumed to experience a simplified two-dimensional stress state,

also known as plane stress shown in Figure A4.
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Figure A4: Stress state in two dimensions.

Reducing the dimensionality of the stiffness matrix (Equation A14) from 3D to 2D eliminates

all terms containing a 3-direction component (�3 = ⌧23 = ⌧31 = 0), leading to the following

transformation:

8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

=

2

66664

S11 S12 0

S21 S22 0

0 0 S66

3

77775

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

= [S]

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

(A15)

A.3.1 Deriving the Connection between Engineering Coefficients and Terms in the Compliance

Matrix

Orthotropic materials are characterized by unique directional properties, necessitating the use of

subscripts on engineering constants to denote directional dependency. Unlike isotropic materials,

where properties such as Young’s modulus and Poisson’s ratio are uniform in all directions, or-

thotropic materials exhibit distinct values in different directions, such that E1 6= E2 and ⌫12 6= ⌫21.

For isotropic materials, a negative sign in the definition of Poisson’s ratios is common, but separate

definitions are necessary for orthotropic materials. The major Poisson’s ratio, typically denoted as

⌫12, describes the ratio of the transverse strain to the axial strain in the material’s primary direc-

tion, while the minor Poisson’s ratio, ⌫21, defines this relationship in the transverse direction. In the

principal material coordinate system, a normal stress induces only normal strains, with all shear

strains being null, indicating no shear-normal interaction. The orthotropic material properties for
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the plane stress case are derived using three loading conditions shown in Figure A5.

(a) Longitudinal normal. (b) Transverse normal. (c) In-plane shear.

Figure A5: Applied stress states utilized for determining lamina engineering constants.

In the first case, a uniaxial load is applied along the fiber direction, inducing a longitudinal

normal stress, �1, with all other stresses being zero, as depicted in Figure A5a. In the linear range,

empirical observations suggest that the strains along the 1-2 plane can be expressed in terms of

engineering constants as follows:

✏1 =
�1

E1
(A16)

✏2 = �⌫12✏1 = �⌫12�1

E1
(A17)

�12 = 0 (A18)

In the second case, when the load is applied perpendicular to the fibers, a transverse normal stress,

�2, is applied with all other stresses equal to zero, as depicted in Figure A5b. The resulting strains

are:
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✏2 =
�2

E2
(A19)

✏1 = �⌫21✏2 = �⌫21�2

E2
(A20)

�12 = 0 (A21)

For the third case, a pure shear loading condition along the 1-2 plane (�12 = ⌧12), as shown in

Figure A5c, results in:

�12 =
⌧12
G12

(A22)

✏1 = ✏2 = 0 (A23)

where G12 represents the shear modulus related to the 1-2 plane.

The empirical observations from Equations A16-A23 can be translated into matrix forms to

obtain the reduced stiffness matrices for the orthotropic lamina under plane stress conditions.

Case 1:

8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

=

2

66664

1
E1

0 0

�⌫12
E1

0 0

0 0 0

3

77775

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

(A24)

Case 2:

8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

=

2

66664

0 �⌫21
E2

0

0 1
E2

0

0 0 0

3

77775

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

(A25)

Case 3:
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8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

=

2

66664

0 0 0

0 0 0

0 0 1
G12

3

77775

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

(A26)

Utilizing the principle of superposition, valid for linear elastic materials where the stress-strain

relationship is linear, the strains calculated independently can be summed to obtain the total strain

under a combined loading condition, yielding:

8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

=

2

66664

1
E1

0 0

⌫12
E1

0 0

0 0 0

3

77775

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

+

2

66664

0 ⌫21
E2

0

0 1
E2

0

0 0 0

3

77775

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

+

2

66664

0 0 0

0 0 0

0 0 1
G12

3

77775

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

which reduces to:

8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

=

2

66664

1
E1

�⌫21
E2

0

�⌫12
E1

1
E2

0

0 0 1
G12

3

77775

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

(A27)

The relationships between the compliances Sij and the engineering constants can be expressed by

the following equations:

S11 =
1

E1
, S22 =

1

E2
, S12 = S21 = �⌫21

E2
= �⌫12

E1
, S66 =

1

G12
(A28)

Though there are five non-zero values in the compliance matrix, only four of these values are

independent. One of the values (either S12 or S21) can be expressed as a combination of the other
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four independent values, rendering it redundant.

Substituting the coefficients from Equation A28 into Equation A27 results in the original ma-

trix, Equation A15. This matrix serves as a crucial tool in composite material analysis, as it con-

denses the material’s response to various stress states into a concise, two-dimensional representa-

tion. It involves condensing the multidirectional elasticity constants to directly relate stress vectors

to strain vectors in the lamina’s plane.

A.3.2 Deriving the Stress-Strain Relationship in Orthotropic Lamina using Engineering

Coefficients

To obtain the stresses in the orthotropic lamina, expressed in tensor strains, from Equation A15,

matrix algebra is employed. To isolate the stress vector on the right-hand side, multiply both sides

by the inverse of [S], denoted as [S]�1:

[S�1]

8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

= [S�1][S]

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

(A29)

Given that [S][S]�1 equals the identity matrix [I], where [I] multiplied by any matrix or vector

yields the same matrix or vector, this leads to:

[S�1]

8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

= [I]

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

(A30)

Simplifying to:

[S�1]

8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

=

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

(A31)
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Hence, the stresses in the 1-2 system can be articulated as follows:

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

= [S�1]

8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

(A32)

To compute the inverse of [S], the formula for the inverse of a 3⇥ 3 matrix is used [98]:

S�1 =
1

det(S)
· adj(S) (A33)

where the determinant is defined as:

det(A) = S11S22S66 � S12S21S66

The adjugate matrix, adj(S), is derived from the transpose of the cofactor matrix of S. Upon

calculating the determinant and the adjugate matrix, the inverse of the matrix is obtained as:

S�1 =

2

66664

S22
S11S22�S12S21

� S12
S11S22�S12S21

0

� S21
S11S22�S12S21

S11
S11S22�S12S21

0

0 0 1
S66

3

77775
(A34)

Re-expressing Equation A32 by substituting Equation A34 for S�1:

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

=

2

66664

S22
S11S22�S12S21

� S12
S11S22�S12S21

0

� S21
S11S22�S12S21

S11
S11S22�S12S21

0

0 0 1
S66

3

77775

8
>>>><

>>>>:

✏1

✏2

�12

9
>>>>=

>>>>;

(A35)

Substituting the coefficients from Equation A28 into Equation A34, the values for S11, S21, S11,

S22, and S66 can be determined, resulting in:
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S22

S11S22 � S2
12

=
E1

1� ⌫12⌫21
(A36)

� S12

S11S22 � S2
12

=
⌫12E2

1� ⌫12⌫21
(A37)

S11

S11S22 � S2
12

=
E2

1� ⌫12⌫21
(A38)

1

S66
= G12 (A39)

In composite materials analysis, the lamina’s stiffness is encapsulated within a matrix called

the lamina stiffness matrix, denoted as [Q]. This means that the material properties represented in

Equations A36 through A39 can be expressed as:

Q11 =
E1

1� ⌫12⌫21
, Q12 = Q21 =

⌫12E2

1� ⌫12⌫21
, Q22 =

E2

1� ⌫12⌫21
Q66 = G12 (A40)

Reformulating Equation A35 using the Q coefficients from Equation A40:

2

66664

�1

�2

⌧12

3

77775
=

2

66664

Q11 Q12 0

Q21 Q22 0

0 0 2Q66

3

77775

2

66664

✏1

✏2

�12/2

3

77775
(A41)

where the factor of 2 in Q66 adjusts for the tensor shear strain, with ✏12 = �12/2.

Equation A41 forms the basis for understanding the mechanical behavior of composites un-

der various loads, representing a transition from the compliance matrix [S] to [Q], shifting focus

from deformation response to load-bearing capability by relating the strains in the material to the

applied stresses. This approach establishes the Qij components and connects them to the underly-

ing physical properties described by the engineering constants, clarifying how these quantities are

interrelated.
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A.3.3 Plane Stress Transformation of Orthotropic Lamina

When analyzing laminates with multiple layers (laminae or plies) bonded together, understanding

the stress-strain relationships of orthotropic plies in non-principal coordinates, such as x and y,

becomes essential, as depicted in Figure A3. The off-axis stress-strain relationships relate to four

independent elastic constants in principal material coordinates and the lamina orientation angle, ✓.

Figure A6 details the sign convention for ✓.

Figure A6: Convention for the sign of lamina orientation.

The equations for transforming stress and strain components from the 1-2 axes to the xy axes are

derived by integrating these relationships.

To derive the transformation relationships for stress components between coordinate axes, one

can analyze the equations of static equilibrium for a wedge-shaped differential element, as depicted

in Figure A7.

Figure A7: Differential element in static equilibrium with forces in two coordinate systems.
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These equilibrium equations provide the required transformation relationships for stress compo-

nents between coordinate axes. Considering the equilibrium along the x direction:

X
F = �dA� �dA cos2 ✓ � �dA sin2 ✓ + 2⌧dA sin ✓ cos ✓ = 0 (A42)

Dividing by dA leads to a relationship between �x and the stresses in the 1-2 system:

�x = �1 cos
2 ✓ + �2 sin

2 ✓ � 2⌧12 sin ✓ cos ✓ (A43)

Applying the same approach yields the complete set of stress transformation equations for the

xy-coordinate system in matrix form:

8
>>>><

>>>>:

�x

�y

⌧xy

9
>>>>=

>>>>;

=

2

66664

c2 s2 �2cs

s2 c2 2cs

cs �cs c2 � s2

3

77775

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

= [T ]�1

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

(A44)

To isolate the vector on the right-hand side, multiply both sides by the inverse of [T ], denoted as

[T ]�1:

[T ]

8
>>>><

>>>>:

�x

�y

⌧xy

9
>>>>=

>>>>;

= [T ][T ]�1

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

Since [T ][T ]�1 is the identity matrix, which is denoted as [I], and [I] times any matrix or vector is

the matrix or vector itself, therefore:

[T ]

8
>>>><

>>>>:

�x

�y

⌧xy

9
>>>>=

>>>>;

= [I]

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

This simplifies to:
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[T ]

8
>>>><

>>>>:

�x

�y

⌧xy

9
>>>>=

>>>>;

=

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

Therefore, The stresses in the 1-2 system can be expressed as follows:

8
>>>><

>>>>:

�1

�2

⌧12

9
>>>>=

>>>>;

= [T ]

8
>>>><

>>>>:

�x

�y

⌧xy

9
>>>>=

>>>>;

(A45)

where c = cos ✓ and s = sin ✓. The transformation matrix, [T ], facilitates the conversion between

the coordinate systems.

It is also demonstrated that tensor strains transform similarly to the stresses, as shown by:

[T ] =

2

66664

c2 s2 2cs

s2 c2 �2cs

�cs cs c2 � s2

3

77775
(A46)

It can also be demonstrated that the tensor strains transform in the same manner as the stresses,

and that

8
>>>><

>>>>:

✏1

✏2

�12
2

9
>>>>=

>>>>;

= [T ]

8
>>>><

>>>>:

✏x

✏y

�xy
2

9
>>>>=

>>>>;

(A47)

By substituting Equation A47 into Equation A41, and subsequently inserting the resulting equa-

tions into Equation A44, it can be determined that

8
>>>><

>>>>:

�x

�y

⌧xy

9
>>>>=

>>>>;

= [T ]�1[Q⇤][T ]

8
>>>><

>>>>:

✏x

✏y

�xy
2

9
>>>>=

>>>>;

(A48)
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The components of the stiffness matrix [Q⇤] in Equation A48 are defined as Q⇤
ij = Qij for all ij

except Q⇤
66 = 2Q66. Upon performing the specified matrix multiplications and converting back to

engineering strains, it can be obtained that:

8
>>>><

>>>>:

�x

�y

⌧xy

9
>>>>=

>>>>;

=

2

66664

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

3

77775

8
>>>><

>>>>:

✏x

✏y

�xy

9
>>>>=

>>>>;

(A49)

where the Qij are the components of the transformed lamina stiffness matrix, which are defined as

follows:

Q11 = Q11c
4 +Q22s

4 + 2(Q12 + 2Q66)s
2c2

Q12 = (Q11 +Q22 � 4Q66)s
2c2 +Q12(c

4 + s4)

Q22 = Q11s
4 +Q22c

4 + 2(Q12 + 2Q66)s
2c2

Q16 = (Q11 �Q12 � 2Q66)c
3s� (Q22 �Q12 � 2Q66)cs

3

Q26 = (Q11 �Q12 � 2Q66)cs
3 � (Q22 �Q12 � 2Q66)c

3s

Q66 = (Q11 +Q22 � 2Q12 � 2Q66)s
2c2 +Q66(s

4 + c4)

Finally, the transformed orthotropic lamina stiffness matrix (Equation A49) resembles that of an

anisotropic material, featuring nine non-zero coefficients. However, only four of these coefficients

are independent, as they are expressible in terms of the four independent lamina stiffnesses in

plane stress orthotropic conditions. Despite the transformation, the material’s orthotropic nature is

retained, even though its representation in off-axis coordinates might suggest anisotropy. Experi-

mentally characterizing the lamina in principal material coordinates remains more straightforward

than in off-axis coordinates, with the engineering constants (typically measured) directly relating

to the lamina stiffnesses as delineated in Equation A40.

Alternatively, the strains can be described in relation to the stresses as:
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8
>>>><

>>>>:

✏x

✏y

�xy

9
>>>>=

>>>>;

=

2

66664

S̃11 S̃12 S̃16

S̃12 S̃22 S̃26

S̃16 S̃26 S̃66

3

77775

8
>>>><

>>>>:

�x

�y

⌧xy

9
>>>>=

>>>>;

(A50)

where the Sij are the components of the transformed lamina compliance matrix, defined by [S] =

[Q]�1:

S11 = S11c
4 + (2S12 + S66)s

2c2 + S22s
4

S12 = S12(s
4 + c4) + (S11 + S22 � S66)s

2c2

S22 = S11s
4 + (2S12 + S66)s

2c2 + S22c
4

S16 = (2S11 � 2S12 � S66)s
3c� (2S22 � 2S12 � S66)s

3c

S26 = (2S11 � 2S12 � S66)s
3c� (2S22 � 2S12 � S66)s

3c

S66 = 2(2S11 + 2S22 � 4S12 � S66)s
2c2 + S66(s

4 + c4)
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Appendix B. MATLAB Codes

B.1 Mesh Convergence

1

2

3 %% Convergence plots

4

5 clear

6 clc

7 close all

8 warning (’off’,’all’);

9

10 % Load the data

11 data = readtable(’output_file.csv’);

12

13 % Filter data for each category

14 c2_data = data(contains(data.ModelType, ’C2’), :);

15

16 % Plotting

17 lw = 2;

18 ms = 13;

19 fs = 13;

20

21 figure;

22 plot(c2_data.NumberOfElements, c2_data.CriticalBucklingLoadEigenvalue_N_/1000,

’v-’,’LineWidth’, lw,’MarkerSize’, ms,’MarkerFaceColor’,’#EDB120’);

23 %title(’C2 Buckling Values’);

24 xlabel(’Number of Elements’);

25 ylabel(’Critical Buckling Load Eigenvalue [kN]’);

26 set(gca,’FontSize’,fs)

27 grid on

28 print(gcf, ’C2_Buckling_Plot.png’, ’-dpng’, ’-r1200’);

29

30 %% Convergence Table

31

32 clear

33 clc

34 close all

35 warning (’off’,’all’);

36
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37 % Load the CSV data

38 data = readtable(’output_file.csv’);

39

40 % Extract the ’C’ category from the ’ModelType’ string

41 data.C_Category = regexprep(data.ModelType, ’(C\d+)/.*’, ’$1’);

42

43 % Filter data for the ’C2’ category

44 c_data = data(strcmp(data.C_Category, ’C2’), :);

45

46 % Sort by number of elements (assuming more elements means finer mesh)

47 c_data = sortrows(c_data, ’NumberOfElements’, ’descend’);

48

49 % Experimental Buckling loads [N] for ’C2’

50 experimental_eigenvalue = 30117; % Example value for C2, adjust as necessary

51

52 % Calculate the percentage error with respect to the experimental eigenvalue

53 percentage_errors = abs((c_data.(’CriticalBucklingLoadEigenvalue_N_’) -

experimental_eigenvalue) ./ experimental_eigenvalue) * 100;

54

55 % Create a table for ’C2’

56 convergence_table = table(c_data.NumberOfElements, ...

57 c_data.(’CriticalBucklingLoadEigenvalue_N_’), ...

58 percentage_errors, ...

59 ’VariableNames’, {’Number_of_Elements’, ’Eigenvalue’,

’Percentage_Error’});

60

61 % Write the table to a CSV file for the ’C2’ category

62 csv_filename = ’C2_convergence.csv’;

63 writetable(convergence_table, csv_filename);

64

65 disp(’CSV files for each C category created successfully.’);

Listing 1: meshconvergence.m

B.2 Data Processing for C2 C-beam

1 % MATLAB Script to plot arc length vs LPF for configuration C2

2

3 close all;

4 clc;

5 clear all;
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6

7 % Define filename for C2

8 file = ’C2_LPF_ArcLength.xlsx’;

9 label = ’C2’;

10

11 % Prepare the plot

12 figure;

13 hold on; % Hold on to plot

14

15 % Define line style

16 lineStyle = ’-’;

17 color = [0 0.4470 0.7410]; % Typical blue color

18

19 % Read data from file

20 data = readtable(file, ’Range’, ’A2:B100’); % Adjust the range as needed

21 arc_length = data.Var1;

22 ldp = data.Var2;

23

24 % Plot data

25 plot(arc_length, ldp, ’LineWidth’, 3, ’LineStyle’, lineStyle, ’Color’, color);

26

27 % Add labels, legend, and grid

28 % Set font size

29 ax = gca; % Get current axes

30 ax.FontSize = 14; % Set font size for axes labels and tick labels

31 xlabel(’Arc Length [-]’, ’FontSize’, 14); % Set font size for x-axis label

32 ylabel(’Load Proportionality Factor (LPF) [-]’, ’FontSize’, 14); % Set font size for

y-axis label

33 %legend(label, ’FontSize’, 15, ’Location’, ’southeast’); % Set font size for legend

34 grid on;

35 hold off;

36

37 % Save the figure

38 filename = ’C2_ArcLength_vs_LPF.png’; % Define the filename and format

39 print(’-dpng’, ’-r1200’, filename); % Save as PNG at 1200 DPI

Listing 2: C2NonLinearLPF.m

B.3 Data Processing for C1-C5 C-beam

1 % MATLAB Script to plot arc length vs LPF for multiple configurations
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2

3 close all

4 clc

5 clear all

6

7 % Define filenames

8 files = {’C1_LPF_ArcLength.xlsx’, ’C2_LPF_ArcLength.xlsx’, ’C3_LPF_ArcLength.xlsx’, ...

9 ’C4_LPF_ArcLength.xlsx’, ’C5_LPF_ArcLength.xlsx’};

10 labels = {’C1’, ’C2’, ’C3’, ’C4’, ’C5’};

11

12 % Prepare the plot

13 figure;

14 hold on; % Hold on to plot multiple lines

15

16 % Define line styles

17 lineStyles = {’-’, ’--’, ’-’, ’-.’, ’:’};

18 colors = lines(numel(files)); % Get distinct colors

19

20 % Loop through files and plot with different line styles

21 for i = 1:length(files)

22 data = readtable(files{i}, ’Range’, ’A2:B100’); % Adjust the range as needed

23 arc_length = data.Var1;

24 ldp = data.Var2;

25

26 % Plot data with different line styles and colors

27 plot(arc_length, ldp, ’LineWidth’, 3, ’LineStyle’, lineStyles{i}, ’Color’,

colors(i,:));

28 end

29

30 % Add labels, legend, and grid

31 % Set font size

32 ax = gca; % Get current axes

33 ax.FontSize = 14; % Set font size for axes labels and tick labels

34 xlabel(’Arc Length [-]’, ’FontSize’, 14); % Set font size for x-axis label

35 ylabel(’Load Proportionality Factor (LPF) [-]’, ’FontSize’, 14); % Set font size for

y-axis label

36 legend(labels, ’FontSize’, 15, ’Location’, ’southeast’); % Set font size for legend

37 grid on;

38 hold off;

39

40 % Save the figure
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41 filename = ’ArcLength_vs_LPF.png’; % Define the filename and format

42 print(’-dpng’, ’-r1200’, filename); % Save as PNG at 1200 DPI

Listing 3: NonLinearLPF.m

B.4 Data Processing for Cross C2 C-beam

1 % MATLAB Script to plot arc length vs LPF for None and Cross configurations

2

3 close all

4 clc

5 clear all

6

7 % Define filenames

8 files = {’C2_LPF_ArcLength.xlsx’, ’Cross_LPF_ArcLength.xlsx’};

9 labels = {’No Stiffener’, ’Cross Stiffener’};

10

11 % Prepare the plot

12 figure;

13 hold on; % Hold on to plot multiple lines

14

15 % Define line styles

16 lineStyles = {’-’, ’-.’};

17 colors = lines(numel(files)); % Get distinct colors

18

19 % Loop through files and plot with different line styles

20 for i = 1:length(files)

21 data = readtable(files{i}, ’Range’, ’A2:B100’); % Adjust the range as needed

22 arc_length = data.Var1;

23 ldp = data.Var2;

24

25 % Plot data with different line styles and colors

26 plot(arc_length, ldp, ’LineWidth’, 3, ’LineStyle’, lineStyles{i}, ’Color’,

colors(i,:));

27 end

28

29 % Add labels, legend, and grid

30 % Set font size

31 ax = gca; % Get current axes

32 ax.FontSize = 14; % Set font size for axes labels and tick labels

33 xlabel(’Arc Length [-]’, ’FontSize’, 14); % Set font size for x-axis label
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34 ylabel(’Load Proportionality Factor (LPF) [-]’, ’FontSize’, 14); % Set font size for

y-axis label

35 legend(labels, ’FontSize’, 15, ’Location’, ’southeast’); % Set font size for legend

36 grid on;

37 hold off;

38

39 % Save the figure

40 filename = ’ArcLength_vs_LPF_Cross.png’; % Define the filename and format

41 print(’-dpng’, ’-r1200’, filename); % Save as PNG at 1200 DPI

Listing 4: CrossNonLinearLPF.m

B.5 Data Processing for Cross C2 C-beam Axial Loads

1 % MATLAB Script to plot arc length vs LPF for None and Cross configurations

2

3 close all

4 clc

5 clear all

6

7 % Define filenames

8 files = {’C2_LPF_ArcLength.xlsx’, ’Cross_LPF_ArcLength.xlsx’};

9 labels = {’No Stiffener’, ’Cross Stiffener’};

10

11 % Prepare the plot

12 figure;

13 hold on; % Hold on to plot multiple lines

14

15 % Define line styles

16 lineStyles = {’-’, ’-.’};

17 colors = lines(numel(files)); % Get distinct colors

18

19 % Loop through files and plot with different line styles

20 for i = 1:length(files)

21 data = readtable(files{i}, ’Range’, ’A2:B100’); % Adjust the range as needed

22 arc_length = data.Var1;

23 ldp = data.Var2;

24 if i == 1

25 ldp = 28.015*ldp;

26 else

27 ldp = 32.070*ldp;
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28 end

29

30 % Plot data with different line styles and colors

31 plot(arc_length, ldp, ’LineWidth’, 3, ’LineStyle’, lineStyles{i}, ’Color’,

colors(i,:));

32 end

33

34 % Add labels, legend, and grid

35 % Set font size

36 ax = gca; % Get current axes

37 ax.FontSize = 14; % Set font size for axes labels and tick labels

38 xlabel(’Arc Length [-]’, ’FontSize’, 14); % Set font size for x-axis label

39 ylabel(’Axial Load [kN]’, ’FontSize’, 14); % Set font size for y-axis label

40 legend(labels, ’FontSize’, 15, ’Location’, ’southeast’); % Set font size for legend

41 grid on;

42 hold off;

43

44 % Save the figure

45 filename = ’ArcLength_vs_AxialLoad_Cross.png’; % Define the filename and format

46 print(’-dpng’, ’-r1200’, filename); % Save as PNG at 1200 DPI

Listing 5: CrossNonLinearLoads.m
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Appendix C. CSV files

C.1 Load proportionality factor (LPF) vs arc length for C2 C-beam

arc length LPF

0.01 0.010000193

0.02 0.020000767

0.035 0.035002336

0.057500001 0.057506245

0.091250002 0.091265485

0.141874999 0.141911447

0.217812493 0.217894092

0.331718743 0.331887007

0.502578139 0.502829432

0.758867204 0.757612169

1.143300772 1.051570296
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arc length LPF

1.335517526 1.054296613

1.479680181 1.058781028

1.695924044 1.068521261

2.020289898 1.089539886

2.506838799 1.132440329

3.236661911 1.213580966

4.33139658 1.353793144

4.605080128 1.380905747

4.878764153 1.403043866

5.289289474 1.413064957

5.699814796 1.426363111

6.110340595 1.44183135

6.726128578 1.458318472

7.341917038 1.460662484

7.957705498 1.462522864

8.881387711 1.46661365

10.26691151 1.47028935

11.6524353 1.481140137

13.0379591 1.496285915

14.42348194 1.512672901

15.80900574 1.52858758

17.19453049 1.54331255

19.2728157 1.561989546

22.39024353 1.583345056

25.50767136 1.596986294

28.62509918 1.601467609

31.74252701 1.593406081
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C.2 Load proportionality factor (LPF) vs arc length for C1 C-beam

arc length LPF

0.01 0.010000193

0.02 0.020000767

0.035 0.035002336

0.057500001 0.057506237

0.091250002 0.091265447

0.141874999 0.141911298

0.217812493 0.217893451

0.331718743 0.331883907

0.502578139 0.502810299

0.758867204 0.757330894

0.854975581 0.883220255
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arc length LPF

1.215382099 0.987199843

1.539747953 1.019696355

2.026296616 1.075608492

2.756119728 1.186361194

3.029803514 1.257095695

3.098224401 1.259614348

3.166645288 1.258373499

3.269276857 1.252648115

3.423223734 1.241409063

3.654144526 1.22398448

4.000525475 1.245562315

4.346906185 1.302427888

4.693287373 1.360006928

5.039668083 1.39886117

5.559239388 1.433472991

6.338596344 1.454608321

7.507632256 1.467728496

8.676667213 1.481131911

9.845703125 1.491477847

11.01473904 1.498408198

12.18377399 1.501520872

13.35280991 1.500556111

14.52184582 1.495892048

16.27539825 1.481897712

18.02895164 1.461540103
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C.3 Load proportionality factor (LPF) vs arc length for C3 C-beam

arc length LPF

0.01 0.01000019

0.02 0.020000754

0.035 0.035002295

0.057500001 0.057506133

0.091250002 0.091265194

0.141874999 0.141910702

0.217812493 0.217892215

0.331718743 0.331882238

0.502578139 0.502817452

0.758867204 0.757555604

1.143300772 1.042741895
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arc length LPF

1.912168026 1.087486863

2.296601534 1.120255828

2.39270997 1.130259514

2.536872625 1.145898223

2.753116369 1.171226144

3.077482224 1.215316176

3.564031124 1.331942201

4.050580025 1.385818481

4.537128448 1.42620039

5.023677349 1.42689538

5.51022625 1.427105904

5.996774673 1.428581476

6.726598263 1.431319833

7.821332932 1.432298779

9.463435173 1.434600949

11.10553741 1.442970872

12.7476387 1.453373313

14.38974094 1.463305354

16.03184319 1.471740723

17.67394447 1.478381634

20.13709831 1.484372497

23.83182907 1.485443473

27.52655792 1.478344321

31.22128677 1.462625623
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C.4 Load proportionality factor (LPF) vs arc length for C4 C-beam

arc length LPF

0.01 0.01000018

0.02 0.020000719

0.035 0.035002183

0.057500001 0.057505824

0.091250002 0.091264397

0.141874999 0.141908705

0.217812493 0.217887238

0.331718743 0.331869215

0.502578139 0.502777934

0.758867204 0.757329941

0.854975581 0.883763731
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arc length LPF

1.215382099 0.987213135

1.539747953 1.019383669

2.026296616 1.074977756

2.756119728 1.185393691

3.029803514 1.258574367

3.132434845 1.288733125

3.235066175 1.289285302

3.337697744 1.281148553

3.440329075 1.271892071

3.59427619 1.262833357

3.825196743 1.278157234

4.171577454 1.338013887

4.517958641 1.399929404

4.864339352 1.433814287

5.210720539 1.448833823

5.730291843 1.45776403

6.5096488 1.468830824

7.289005756 1.478663564

8.06836319 1.484001279

8.847720146 1.485172391

9.627077103 1.481926322

10.40643406 1.474554062
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C.5 Load proportionality factor (LPF) vs arc length for C5 C-beam

arc length LPF

0.01 0.01000013

0.02 0.020000514

0.035 0.035001554

0.057500001 0.057504106

0.091250002 0.091259979

0.141874999 0.141897634

0.217812493 0.217859417

0.331718743 0.331795901

0.502578139 0.502549708

0.758867204 0.755939305

0.854975581 0.877039015
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arc length LPF

1.215382099 0.980432928

1.539747953 1.011039257

2.026296616 1.060123444

2.756119728 1.155091524

3.850854635 1.337489247

4.124538422 1.36561811

4.39822197 1.364126205

4.671905518 1.353507519

5.082431316 1.33455348

5.698219299 1.340125203

6.314007759 1.39732337

6.929796219 1.461386919

7.853478432 1.535093904

9.239002228 1.588363528

10.62452602 1.609601736

12.01004887 1.624408126

14.08833504 1.637017965

16.16662025 1.644220471

18.24490547 1.645344615

20.32319069 1.64050436

22.40147591 1.629628658

24.47976112 1.613476157
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C.6 Load proportionality factor (LPF) vs arc length for Cross Stiffener C2 C-beam

arc length LPF

0.01 0.010001337

0.02 0.020005383

0.035 0.035016757

0.057500001 0.057546362

0.091250002 0.091371126

0.141874999 0.142183959

0.217812493 0.218598485

0.331718743 0.333729565

0.502578139 0.507395506

0.758867204 0.754854918

1.143300772 0.908366323
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arc length LPF

2.584926844 1.094468713

3.882390022 1.241264939

5.179853439 1.31898284

6.477316856 1.369721174

7.774780273 1.405649185

9.07224369 1.426942468

10.36970711 1.446128249

12.31590176 1.468038321

14.26209736 1.486974478

14.74864578 1.49222219

15.23519516 1.49678719

15.72174358 1.500997782

16.4515667 1.506694794

17.54630089 1.514090538

19.18840408 1.523249149

21.65155602 1.532988787

25.34628677 1.537303448

29.04101563 1.530619025

32.73574448 1.515411258

36.43047714 1.493813396

98


	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms/Abbreviations
	Abstract
	Foundations: Introduction, Comprehensive Literature Review, and Initial Research
	Rationale for Progressing Glass Laminate Aluminum Reinforced Epoxy in Aerospace
	Literature Review
	Introduction to Predicting Instabilities in Thin-Walled Composite Structures

	Numerical Linear and Nonlinear Buckling Analysis and Benchmarking
	Numerical Modeling
	Beam Geometry and Dimensions
	Composite Behavior and Modeling


	Mathematical Modeling Overview of Composite Laminate Behavior
	Laminate Transformations in ABAQUS
	Boundary Condition Specifications

	Coupling Constraints
	Support Conditions
	Loading Conditions
	Eigenbuckling Analysis

	General Eigenvalue Buckling
	Base State and Eigenvalue Problem
	Subspace Method
	Static Riks

	Arc Length Method and Control
	Mesh Optimization and Element Selection
	Linear Buckling Verification and Validation
	Model-Experimental Data Validation
	Mesh Density Sensitivity Analysis
	Model Refinement from Sensitivity Analysis

	Nonlinear Buckling Verification and Validation
	Buckling Load Validation
	Failure Mode Validation
	Nonlinear vs. Linear Model Buckling Loads


	Introduction of Cross Stiffeners
	Modeling
	Stiffener Geometry and Modeling Assumptions
	Stiffener Material Properties and Coordinate System Definitions

	Results

	Future Directions and Conclusions
	Future Research Directions
	Concluding Remarks

	References
	Appendix A. Fundamental Approach to Mathematical Foundations of Stress in    Orthotropic Composite Materials
	Mathematical 3D State of Stress General Representation of Anisotropic Lamina
	Mathematical 3D State of Stress General Representation of Othotropic Lamina
	First Symmetry Condition
	Second Symmetry Condition

	Mathematical 2D State of Stress Representation of Orthotropic Lamina in Using Engineering Coefficients
	Deriving the Connection between Engineering Coefficients and Terms in the Compliance Matrix
	Deriving the Stress-Strain Relationship in Orthotropic Lamina using Engineering Coefficients
	Plane Stress Transformation of Orthotropic Lamina


	Appendix B. MATLAB Codes
	Mesh Convergence
	Data Processing for C2 C-beam
	Data Processing for C1-C5 C-beam
	Data Processing for Cross C2 C-beam
	Data Processing for Cross C2 C-beam Axial Loads
	Appendix C. CSV files
	Load proportionality factor (LPF) vs arc length for C2 C-beam
	Load proportionality factor (LPF) vs arc length for C1 C-beam
	Load proportionality factor (LPF) vs arc length for C3 C-beam
	Load proportionality factor (LPF) vs arc length for C4 C-beam
	Load proportionality factor (LPF) vs arc length for C5 C-beam
	Load proportionality factor (LPF) vs arc length for Cross Stiffener C2 C-beam









