UC Irvine

UC Irvine Previously Published Works

Title

Traffic-related Air Pollution and Lung Cancer Incidence: The California Multiethnic Cohort Study.

Permalink

https://escholarship.org/uc/item/03d7v7t1

Journal

American Journal of Respiratory and Critical Care Medicine, 206(8)

ISSN

1073-449X

Authors

Cheng, Iona

Yang, Juan

Tseng, Chiuchen

et al.

Publication Date

2022-10-15

DOI

10.1164/rccm.202107-1770oc

Peer reviewed

ORIGINAL ARTICLE

Traffic-related Air Pollution and Lung Cancer Incidence

The California Multiethnic Cohort Study

Iona Cheng^{1,2}, Juan Yang¹, Chiuchen Tseng³, Jun Wu⁴, Salma Shariff-Marco^{1,2}, Sung-shim Lani Park⁵, Shannon M. Conroy⁶, Pushkar P. Inamdar¹, Scott Fruin³, Timothy Larson⁷, Veronica W. Setiawan³, Mindy C. DeRouen^{1,2}, Scarlett Lin Gomez^{1,2}, Lynne R. Wilkens⁵, Loïc Le Marchand⁵, Daniel O. Stram³, Jonathan Samet^{8,9}, Beate Ritz¹⁰, and Anna H. Wu³

¹Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California; ²University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California; ³Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; ⁴Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, California; ⁵Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, Hawaii; ⁶Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California; ⁷Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington; ⁸Department of Epidemiology and ⁹Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado; and ¹⁰Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, California

ORCID ID: 0000-0003-4132-2893 (I.C.).

Abstract

Rationale: Although the contribution of air pollution to lung cancer risk is well characterized, few studies have been conducted in racially, ethnically, and socioeconomically diverse populations.

Objectives: To examine the association between traffic-related air pollution and risk of lung cancer in a racially, ethnically, and socioeconomically diverse cohort.

Methods: Among 97,288 California participants of the Multiethnic Cohort Study, we used Cox proportional hazards regression to examine associations between time-varying traffic-related air pollutants (gaseous and particulate matter pollutants and regional benzene) and lung cancer risk (n = 2,796 cases; average follow-up = 17 yr), adjusting for demographics, lifetime smoking, occupation, neighborhood socioeconomic status (nSES), and lifestyle factors. Subgroup analyses were conducted for race, ethnicity, nSES, and other factors.

Measurements and Main Results: Among all participants, lung cancer risk was positively associated with nitrogen oxide (hazard ratio [HR], 1.15 per 50 ppb; 95% confidence interval [CI], 0.99–1.33), nitrogen dioxide (HR, 1.12 per 20 ppb; 95% CI,

 $0.95{-}1.32),$ fine particulate matter with aerodynamic diameter $<\!2.5~\mu m$ (HR, 1.20 per 10 $\mu g/m^3;$ 95% CI, 1.01–1.43), carbon monoxide (HR, 1.29 per 1,000 ppb; 95% CI, 0.99–1.67), and regional benzene (HR, 1.17 per 1 ppb; 95% CI, 1.02–1.34) exposures. These patterns of associations were driven by associations among African American and Latino American groups. There was no formal evidence for heterogeneity of effects by nSES (*P* heterogeneity > 0.21), although participants residing in low-SES neighborhoods had increased lung cancer risk associated with nitrogen oxides, and no association was observed among those in high-SES neighborhoods.

Conclusions: These findings in a large multiethnic population reflect an association between lung cancer and the mixture of traffic-related air pollution and not a particular individual pollutant. They are consistent with the adverse effects of air pollution that have been described in less racially, ethnically, and socioeconomically diverse populations. Our results also suggest an increased risk of lung cancer among those residing in low-SES neighborhoods.

Keywords: air pollution; lung cancer; racial and ethnic disparities; socioeconomic disparities

(Received in original form July 28, 2021; accepted in final form May 31, 2022)

Supported by National Institute Environment Science grant R01ES026171; National Cancer Institute grants 5-R21-CA094723-03, P01CA138338, and U01 CA164973; National Institute of Environmental Health Sciences Environmental Exposures, Host Factors, and Human Disease grant P30 ES0070480 (A.H.W.); and California Air Resource Board contract 04-323 (B.R.).

Author Contributions: Conceptualization: I.C. and A.H.W. Data curation: S.F., T.L., B.R., and J.W. Formal analysis: S.M.C., P.P.I., C.T., and J.Y. Funding acquisition: I.C. and A.H.W. Investigation: I.C., S.L.G., S.M.C., M.C.D., S.F., P.P.I., T.L., L.L.M., S.-s.L.P., B.R., J.S., V.W.S., S.S.-M., D.O.S., C.T., L.R.W., J.W., J.Y., and A.H.W.

Data availability: The Multiethnic Cohort investigators and institutions affirm their intention to share the research data consistent with all relevant NIH resource/data-sharing policies. Data requests should be submitted through Multiethnic Cohort online data request system at https://www.uhcancercenter.org/for-researchers/mec-data-sharing.

Am J Respir Crit Care Med Vol 206, Iss 8, pp 1008–1018, Oct 15, 2022 Copyright © 2022 by the American Thoracic Society Originally Published in Press as DOI: 10.1164/rccm.202107-1770OC on June 1, 2022 Internet address: www.atsiournals.org

At a Glance Commentary

Scientific Knowledge on the

Subject: Although the contribution of air pollution to lung cancer risk is well characterized, few studies have been conducted in racially, ethnically, and socioeconomically diverse populations.

What This Study Adds to the

Field: The findings in this large multiethnic study are consistent with the adverse effects of air pollution that have been described in less racially, ethnically, and socioeconomically diverse populations and suggest an increased risk of lung cancer among those residing in neighborhoods of low socioeconomic status.

It is well established that exposure to outdoor air pollution, and airborne particulate matter (PM) specifically, contributes to the development of lung cancer. In 2013, the International Agency for Research on Cancer classified outdoor air pollution and PM as carcinogenic to humans based on evidence from experimental and epidemiological studies (1). A meta-analysis of 15 observational studies of lung cancer risk and exposure to fine PM with aerodynamic diameter $< 2.5 \,\mu m$ (PM_{2.5}), accounting for smoking and socioeconomic status, reported that a 10 μ g/m³ increase in PM_{2.5} was associated with a 16% increase in lung cancer risk (2). In a large U.S. study based on data from the Surveillance, Epidemiology, and End Results program, a 10 μg/m³ increase in county-level PM_{2.5} estimates was associated with a 19% increased risk of lung cancer (3). Other components of the air pollution mixture have also been investigated. For example, a meta-analysis of 20 observational studies estimated the associations of exposures to nitrogen oxides (NO_X) and nitrogen dioxide (NO₂) with lung cancer incidence and mortality in North America, Europe, and Asia, finding that a 10 μg/m³ increase was associated with a 4% and 3%

increase in risk of lung cancer incidence and mortality, respectively (4). Other gaseous pollutants, such as carbon monoxide (CO) resulting from the combustion of fossil and biomass fuels as well as ozone (O_3) formed in the atmosphere when NO_X reacts with hydrocarbons in the presence of sunlight, have also been associated with lung cancer risk (5–7).

Patterns of exposure to air pollution and potential confounding and modifying factors vary across populations. Several studies have documented a higher burden of air pollution exposure in low neighborhood socioeconomic status (nSES) areas, which typically have more residents from minoritized racial and ethnic populations than higher SES areas (8). Yet, few studies have investigated whether the associations between air pollutants and lung cancer risk differ by nSES and across racial and ethnic groups (9, 10). Such investigations of SES- and racial and ethnic-specific associations can inform the origins of inequities in lung cancer risk.

We conducted a prospective cohort study of long-term air pollution exposures and lung cancer incidence from 1993–2013 among 97,288 African American, European American, Japanese American, and Latino American participants from the California component of the MEC (Multiethnic Cohort Study) (11). Approximately 95% of the study participants resided in Los Angeles County, a region in the United States with the highest levels of outdoor air pollution despite recent declines (12) and documented inequities in air pollution levels across neighborhoods defined by minoritized racial and ethnic groups and low SES (13, 14). The study was further motivated by prior findings from the MEC of strong differences in risk for smoking-caused lung cancer across the racial and ethnic groups in the study (15, 16). The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Institutional Review Boards at the University of California, San Francisco; University of Hawaii; and University of Southern California.

Methods

Study Subjects

The MEC is a large population-based prospective cohort study of older U.S. adults, full details of which are available elsewhere (11). Briefly, from 1993 through 1996, 96,810 males and 118,441 females 45-75 years of age largely from five selfreported racial and ethnic groups (African American, European American, Japanese American, Latino American, and Native Hawaiian), residing in Hawaii or California (primarily Los Angeles County), were enrolled. Participants completed a baseline questionnaire that surveyed demographic characteristics, anthropometrics, reproductive history, and other lifestyle factors. Participants were followed prospectively for diagnosis of incident invasive lung cancer through routine linkages with the California Cancer Registry and Hawaii Tumor Registry, and for vital status through linkages to the National Death Index and state death certificate files. Lung cancer histologic types (adenocarcinoma, squamous cell carcinoma, small cell, and large cell) were obtained from the cancer registries and classified according to Lewis and colleagues (17). For this study, 105,359 eligible MEC participants had lived in California at baseline and had no lung cancer diagnosis before cohort entry (i.e., reported on baseline questionnaire or through linkage with the tumor registry). We also excluded participants with missing smoking information (n = 7,974) and invalid addresses (n = 97), resulting in 97,288 participants for analysis. Participants were followed from the date of cohort entry (1993–1996) to the earliest date of diagnosis of invasive lung cancer, death, or December 31, 2013 (end of follow-up), whichever came earlier (mean \pm SD follow-up time, 16.53 ± 5.38 yr). Over this period 2,796 incident lung cancer cases were identified.

Study Participant Characteristics

Participant characteristics considered were those associated with lung cancer risk. These included age at cohort entry; race and ethnicity; sex; and baseline variables including family history of lung cancer in first-degree relatives (no, yes); education

Correspondence and requests for reprints should be addressed to Iona Cheng, Ph.D., Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, San Francisco, CA 94158. E-mail: iona.cheng@ucsf.edu.

This article has a related editorial.

This article has an online supplement, which is accessible from this issue's table of contents at www.atsjournals.org.

(high school graduate or less, some college, college graduate, graduate school); marital status (married, separated, divorced, or widowed, single); work history (with six categories that combine industries, occupations employed for 10 years or more [yes: manufacturing enterprises (i.e., government regulation of manufacturing), or no: none of those enterprises] and longest worked occupation classifications [office work only, labor/craft only, or both]); nonsteroidal antiinflammatory drug use (no, yes); body mass index (BMI) (underweight [<18.5 kg/m²] or normal weight [18.5-24.9 kg/m²], overweight $[25-29.9 \text{ kg/m}^2]$, and obese $[\ge 30 \text{ kg/m}^2]$); smoking status (never, current, former); alcohol intake per day (nondrinker, one drink, two or more drinks); moderate or vigorous physical activity (none, quartiles); energy intake (quintiles); red meat intake (quintiles); and processed red meat intake (quintiles). In addition, our model accounted for smoking by calculating the duration of smoking (pack-years of smoking), taking into account quitting probabilities that were allowed to depend on average number of cigarettes per day, race, ethnicity, interaction of race and ethnicity with cigarettes per day, and participant time on study (16).

Address History, Geocoding, and nSES

The MEC actively maintains accurate and up-to-date addresses on all participants via periodic mailings of newsletters, follow-up questionnaires, and linkages to administrative databases and registries. For the 97,288 California MEC participants included in this study, 167,859 residential addresses were recorded across the study period. Residential addresses were geocoded to latitude and longitude coordinates using point or street locators. Geocoded addresses were linked to 1990 (1993-1996 baseline addresses), 2000 (1997-2005 addresses), and 2010 (2006-2013 addresses) U.S. Census block groups. A composite measure of nSES was based on principal component analysis of seven census-based indicators of SES from census data: education, median household income, percentage living 200% below poverty level, percentage blue-collar workers, percentage older than 16 years in workforce without job, median rent, and median house value; nSES was the first principal component extracted from the correlation matrix of these variables (18, 19). The nSES index was assigned to participants' census

block group at baseline (diagnosis), death, or censoring time and categorized into quintiles based on the nSES distribution of all Los Angeles County block groups. Low and high nSES were defined as quintiles 1–3 and 4–5, respectively (20–22).

Air Pollution Exposure Assessment

We used established approaches to estimate air pollutant concentrations at residential locations across the study period (1993–2013) as previously described (23, 24). For gaseous traffic-related pollutants, based on empirical Bayesian kriging interpolation, largely exposures from regional emission sources (25) were estimated using air monitoring data routinely collected by the U.S. Environmental Protection Agency for NO_x, NO₂, PM₁₀, CO, and ozone (O₃) (1993-2013) and PM_{2.5} (2000-2013). PM_{2.5} concentrations for 1993-1999 were estimated from a published spatiotemporal model based on PM₁₀, meteorology, and land use data at the monitoring sites with PM₁₀ measurements (26) that were further interpolated using empirical Bayesian kriging. We herein refer to the above PM_{2.5} concentrations derived from PM₁₀ and land use data in the 1990s and monitored PM_{2.5} measurements since 2000 as krigged PM_{2.5}. In addition, concentrations of PM_{2.5} were obtained from the fine-resolution geoscience-derived model outputs (27). This model provides validated and publicly available PM_{2.5} outputs at a 1-km resolution over North America by statistically fusing chemical transport modeling (GEOS-Chem) outputs and satellite observations of aerosol optical depth with ground-based observations using a geographically weighted regression. We herein refer to this as satellitebased PM_{2.5}. The satellite-based PM_{2.5} concentrations were generally consistent with ground PM_{2.5} measurements (R^2 of 0.6-0.85 since 1999 when PM_{2.5} measurements are available; R^2 of 0.45–0.6 in 1993–1998 when comparing to PM_{2.5} derived from PM₁₀ measurements in the absence of PM_{2.5} measurements) (27). For NO_x and NO₂ based on a land-use regression (LUR) model, regional and local source emissions were estimated using air monitoring data from spatially dense air monitoring campaigns (2006-2007) as well as spatial data on land use and traffic characteristics. For temporal adjustment of LUR-based NOx and NO2 concentrations, monthly scaling factors were applied based on long-term data from monitors nearest to the participants'

residences (28, 29). For benzene, the U.S. Environmental Protection Agency–measured monthly data (1993–2016) were used from air monitors located within a 20 km radius buffer from residential addresses with <50% missing air monitoring data (24). Individual exposures were calculated by combining the estimated concentrations over time (monthly) and space at residential locations (latitude and longitude as the geographic unit) with time lived at these locations. Correlation matrices of the air pollutants is presented in the online supplement in Tables E1 (overall and by race and ethnicity) and E2 (by baseline nSES).

Statistical Analysis

We estimated the risk of lung cancer incidence in relation to air pollution exposure using Cox proportional hazards regression with monthly time-varying exposure variables. The Cox regression model used calendar month and year as the time variable and defined a series of risk sets based on month and year at diagnosis of each lung cancer event (index case) using age at cohort entry (1-year age groups) as a stratum variable. Each risk set consisted of all MEC participants who remained alive and uncensored at the time of lung cancer diagnosis. For each member of each risk set (including the index case) based on his or her residential history, we computed an average air pollutant exposure for the period starting from the time of cohort entry (month and year) up to the time of lung cancer diagnosis of the index case in each risk set. This average exposure was used as the independent variable. Models were adjusted for demographics and lung cancer risk factors, including race and ethnicity; sex; education; marital status; smoking intensity, duration, and cessation (16); family history of lung cancer; occupation; nSES at baseline and time of event; nonsteroidal antiinflammatory drug use; BMI; alcohol drinking; physical activity; intake of energy; and red meat and processed meat. Table E3 presents the mean concentrations of krigged vs. kriging NO_x for these covariates. Minimally adjusted models that included only race, ethnicity, sex, and smoking intensity, duration, and smoking cessation (16) were also examined and showed similar associations to the full model (Table E4).

Hazard ratios (HRs) and 95% confidence intervals (CIs) for common fixed size increases in air pollutants were calculated to allow for comparing effect

estimates with previous reports. For NO_x, we chose 50 ppb, which was close to the interquartile range (IQR) of the krigged (51.6 ppb) and the LUR (41.7 ppb) estimates. For NO₂, we used 20 ppb consistent with the IQRs of krigged (16.4 ppb) and LUR (18.2 ppb) estimates. For PM_{10} and $PM_{2.5}$, we used $10 \,\mu\text{g/m}^3$; this value was close to the IQR of krigged PM_{10} (9.0 µg/m³) and higher than satellite-based $PM_{2.5}$ (3.3 $\mu g/m^3$) and krigged $PM_{2.5}$ (3.8 $\mu g/m^3$). For CO and O₃, we used 1,000 ppb and 10 ppb, respectively, close to the IQRs of krigged CO (743.6 ppb) and krigged O₃ (9.2 ppb). For regional benzene, we used 1 ppb, and the IQR was 1.2 ppb. We checked the proportional hazards assumption for each pollutant in a model with all covariates by graphing Schoenfeld residuals against time and found no violations.

As we observed racial, ethnic, and nSES differences in average air pollutant exposures (Tables E5 and E6), subgroup analyses were conducted to assess differences in effect estimates by race, ethnicity, and baseline nSES. In addition, we examined differences in effect estimates by sex, smoking status, and lung cancer histology at diagnosis. We assessed heterogeneity of effects for each pollutant and subgroup using a global simultaneous test of interaction based on the Wald test. To test for differences in associations by histology, we conducted a competing risk analysis using a Lunn-McNeil augmentation approach (30, 31), where each histology was fit by a causespecific model in a separate stratum. We used the Wald test to compare the parameter estimates across histological cell types.

We applied the Lin and Wei (32) covariance sandwich estimator to our overall lung cancer model to account for correlation structure among covariates, including clustering by geographic area. As similar results were observed, we present the lung cancer model without this estimator.

All *P* values are two-sided with a significance level of 0.05. Analyses were performed using SAS 9.2 statistical software (SAS Institute).

Results

The study population consisted of 41,248 males and 56,040 females (32% African American, 14% European American, 12% Japanese American, 41% Latino American participants) with racial and ethnic

differences in the distribution of education, marital status, occupation, BMI, smoking, alcohol intake, and other lung cancer risk factors (Table 1). African American (36%) and Latino American (26%) participants were more likely to live in the lowest nSES (quintile 1) at baseline in comparison with Japanese American (5%) and European American (8%) participants. Higher average NO_x exposures were observed for African American and Latino American in comparison to Japanese American and European American participants (Table E5). Across almost all pollutants, higher average exposures were seen among participants residing in low-versus high-SES neighborhoods at baseline (Table E6).

Table 2 presents associations of air pollutant exposures assessed by kriging interpolation, satellite-based PM_{2.5} (27), and regional benzene with lung cancer incidence among California MEC participants overall and by race and ethnicity. Exposures to NO_X (per 50 ppb), NO₂ (per 20 ppb), PM_{2.5} (per $10 \,\mu\text{g/m}^3$), CO (per 1,000 ppb), and also regional benzene (per 1 ppb) were positively associated with lung cancer risk in all participants combined. For satellite-based PM_{2.5} and regional benzene exposures, increased risks of lung cancer were observed (HR, 1.20; 95% CI, 1.01-1.43 and HR, 1.17; 95% CI, 1.02–1.34, respectively). NO_X exposure was borderline statistically significant (HR, 1.15; 95% CI, 0.99-1.33). For O₃ (per 10 ppb), which was inversely correlated with NO_X (correlation coefficient, -0.74) and NO₂ (-0.56; Table E1), an inverse association with lung cancer risk was observed (HR, 0.85; 95% CI, 0.74-0.97). We conducted 2-, 5-, and 7-year lagged analyses for NO_X and O₃ and observed similar results (data not shown).

There were no statistically significant differences in associations across the four racial and ethnic groups (Table 2). However, African American and Latino American participants with the larger sample sizes displayed patterns of associations consistent with those for all racial and ethnic groups combined. In multipollutant models including all kriging pollutants, satellite-based $PM_{2.5}$ (27), and benzene, benzene had the strongest association with lung cancer risk (data not shown).

Findings of separate analyses for participants residing in low (Q1–Q3) and high (Q4–Q5) nSES at baseline are presented in Table 3. Among participants living in low SES neighborhoods, an increased risk of lung

cancer was associated with NO_X (HR, 1.20; 95% CI, 1.01–1.43) and a decreased risk with O_3 (HR, 0.80; 95% CI, 0.68–0.95) was seen. In contrast, these pollutants were not associated with lung cancer among participants living in high-SES neighborhoods. There were no statistically significant differences in associations by nSES (P values > 0.21).

For NO_X and NO_2 , the HRs were relatively larger among those who had never smoked in comparison to former and current smokers, although there was no formal evidence in heterogeneity of effects by smoking status (Table 4). Among current smokers, O_3 was negatively associated with lung cancer risk (HR, 0.81; 95% CI, 0.66–0.99), whereas regional benzene was positively associated with risk (HR, 1.25; 95% CI, 1.01–1.54).

Relatively similar patterns of associations were observed among men and women (Table E7) and across histological cell types (Table E8).

LUR NO_X was inversely associated with lung cancer risk (HR, 0.83; 95% CI, 0.73–0.94), with a consistent pattern of association across racial and ethnic groups (Table E9).

No statistically significant associations were observed between krigged $PM_{2.5}$ and lung cancer risk overall and across racial and ethnic groups (Table E10).

Discussion

In this prospective study of 97,288 California MEC participants, we found positive associations for traffic-related air pollutant exposures (NO_X, NO₂, CO, satellite-based PM_{2.5}, and benzene) with risk of lung cancer in a large multiethnic population. Similar patterns of associations were observed among African American and Latino American participants, the two largest racial and ethnic groups in the California MEC, representing 73% of the study population. Although no formal evidence of heterogeneity in effects by nSES was observed, suggestive associations for NO_x and NO2, indicators of traffic-related air pollution, were observed among participants residing in low-SES neighborhoods, and no associations were seen for those in high-SES neighborhoods.

Many low-SES communities in the United States experience high levels of air pollution that may contribute to inequities in air pollution–related health outcomes (8).

(Continued)

Table 1. Distributions of Lung Cancer Risk Factors and Neighborhood Factors by Race/Ethnicity among California Multiethnic Cohort Study Participants at Baseline, 1993–1996

	W		African American	an can	European American	ean San	Japanese American	se	Latino American	o	Native Hawaiian	a a
	u	%	u	%	u	%	и	%	и	%	u	%
All	97,288	100	31,103	100	13,756	100	12,028	100	40,239	100	162	100
Hace/Ethnicity African American European American Japanese American Latino American Native Hawaiian	31,103 13,756 12,028 40,239 162	84440	31,103	5	13,756 ————————————————————————————————————	6	12,028 	5	 40,239 	6	162	11116
Sex Male Female Formula Liston of Lives Second in first Algebra	41,248 56,040	42 58	11,003 20,100	35 65	4,881 8,875	35 65	5,844 6,184	49 51	19,432 20,807	48 52	88 74	54 46
Family history of lung cancer in first degree relative No Yes Yes Tal.oosi.oos	92,111 5,177	95 5	29,217 1,886	94	12,702 1,054	92 8	11,272 756	94	38,768 1,471	96	152 10	94
Education ≪High school graduate Some college College graduate Graduate school	49,286 28,292 10,060 8,976	51 10 9	12,958 11,259 3,528 3,191	36 11 10	5,043 4,331 2,049 2,285	37 31 15 17	3,666 4,301 2,521 1,506	30 21 13	27,557 8,333 1,943 1,983	68 21 5	62 19 11	38 12 7
Marial Satus Married Separated/divorced/widowed Single Employement in a manufacturing enterprise and	58,911 30,730 6,619	61 32 7	14,032 14,509 2,097	45 47 7	8,787 3,871 998	64 28 7	8,955 1,979 1,037	74 16 9	27,020 10,339 2,475	67 26 6	117 32 12	72 20 7
occupational category No and office No and office/labor/craft Yes and office/labor/craft Yes and office/labor/craft	42,759 12,471 24,910 4,201 10,176 2,771	4 t t 2 6 8 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9	14,757 3,678 8,355 1,060 2,513 740	4+ 4 + 2 α 8 α α	11,659 7,075 11,885 1,683 6,339 1,598	80 80 80 80 80 80 80 80 80 80 80 80 80 8	828 825 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	84 41 0 7	7,803 797 1,839 726 648 215	65 7	8,462 899 2,797 717 665 216	62 20 20 20 20
NO NO YEAR NO	36,217 55,893	37 57	9,628 19,433	31 62	5,009 8,322	36 61	6,638 5,022	55 42	14,873 23,023	37	69 63	43 57
Underweight/normal Overweight Oberveight	33,015 39,713 23,311	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8,119 12,286 9,797	26 40 32	5,844 5,096 2,782	42 37 20	7,771 3,632 613	65 30 5	11,224 18,635 10,078	28 46 25	57 64 41	35 40 25
Sinoking status Never Current smoker Frommer smoker	44,551 16,635 36,102	46 17 37	12,265 7,156 11,682	38 38 38	5,807 2,354 5,595	42 71 41	5,868 1,389 4,771	64 12 04	20,539 5,702 13,998	51 35	72 34 56	44 121 35
orgarettes per day arrorig ever-sirrovers ≤10 11–20 ≥1–30	27,683 16,504 5,581 2,969	31 11 6	9,925 6,515 1,646 752	35 9 4	2,643 2,723 1,578 1,005	33 34 13	2,182 2,494 1,012 472	35 40 16 8	12,898 4,734 1,329 739	65 24 7	35 38 1	39 18 1
												3

<	I
ς	3
0	۵
- 2	٦
2	3
2	=
5	=
Č	5
C	5
_	
	•
۳	
0	ľ
3	2
0	Ū

	A		African American	ın an	European American	an	Japanese American	se	Latino American	an	Native Hawaiian	ا ھ
	c	%	2	%	u	%	c	%	2	%	u	%
Time since quit among former smokers, yr	7,797 16,244 12,061	22 45 33	2,986 4,507 4,189	26 39 36	1,085 2,799 1,711	19 50 31	734 2,603 1,434	15 55 30	2,981 6,312 4,705	21 45 34	11 23 23	20 41 39
Duration of smoking among ever-smokers, yr <20 < 20-40 > 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	24,329 20,946 7,462	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7,795 8,157 2,886	41 43 15	3,245 3,355 1,349	44 42 71	2,842 2,578 740	9 4 4 1 2 2 4	10,407 6,817 2,476	53 35 13	40 39 11	4 4 4 2 4 5 4
Alconol Intake Nondrinker 1 drink 2 or more drinks	49,002 29,739 14,436	50 31 15	16,797 8,696 4,244	54 14 14	5,431 4,827 2,781	39 35 20	7,029 3,100 1,434	58 26 12	19,668 13,064 5,949	49 32 15	77 52 28	48 32 17
Priysical activity, nours in moderate of vigorous activity No: 0 Quartile 1: 0.11–0.32 (M); 0.11–0.32 (F) Quartile 2: 0.36–0.71 (M); 0.36–0.57 (F) Quartile 3: 0.82–1.43 (M); 0.713–1.18 (F) Quartile 4: 1.329 (M); 1.21–13.29 (F)	7,480 16,820 25,672 21,632 22,984	8 7 7 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2,130 5,750 9,136 6,756 6,243	18 22 20 20	653 1,715 3,467 3,332 4,403	25 25 32 32	317 1,786 3,307 3,082 3,400	3 15 26 28	4,370 7,545 9,731 8,418 8,885	110 22 22 25 25	10 24 31 53	6 15 27 33
Quintile 1: 488.85–1,439.49 (M); 425.20–1,175.43 (F) Quintile 2: 1,439.66–1,909.07 (M); 1,175.44–1,559.77 (F) Quintile 3: 1,909.09–2,432.75 (M); 1,559.81–1,981.89 (F) Quintile 4: 2,432.78–3,259.80 (M); 1,981.93–2,658.18 (F) Quintile 5: 3,259.86–8,670.39 (M); 2,658.19–7,401.34 (F)	18,634 18,630 18,639 18,636 18,636	00000	7,569 6,003 5,593 5,321 5,251	24 19 17 71	2,503 3,171 2,982 2,701 1,682	22 22 120 120	2,127 2,905 2,900 2,388 1,243	18 24 20 10	6,415 6,514 7,137 8,195 10,420	20 20 20 20 20 20	20 37 27 31	12 13 19 26
Hed meat Intake, g/d during the control of the cont	18,636 18,635 18,632 18,643 18,631	000000	6,661 6,168 5,920 5,878 5,110	21 19 19 16	3,367 2,921 2,618 2,242 1,891	221 410 410 410	2,284 2,546 2,612 2,436 1,685	19 22 14 14	6,308 6,963 7,451 8,047 9,912	16 17 20 25	16 37 31 40 33	10 23 25 20
Quintile 1: 0-3.05 (M); 0-1.95 (F) Quintile 2: 3.05–5.63 (M); 1.95–3.94 (F) Quintile 3: 5.63–8.50 (M); 3.94–6.39 (F) Quintile 4: 8.50–13.00 (M); 6.39–10.15 (F) Quintile 5: 13.00–172.79 (M); 10.15–122.10 (F)	18,641 18,631 18,646 18,632 18,627	00000	4,918 4,728 5,168 6,209 8,714	16 17 20 28	3,262 2,822 2,575 2,044	24 12 11 17 15	2,522 2,441 2,574 2,341 1,685	20 21 14 19	7,918 8,616 8,290 7,710 6,147	20 11 12 15	21 24 39 37	13 22 23 23
Dasellie 1. Iow Quintile 2 Quintile 3 Quintile 4 Quintile 5: high	23,346 25,021 19,544 17,417 11,914	20 20 20 21 20 21	11,167 9,077 4,985 4,428 1,437	36 14 36 36 37	1,085 2,159 2,963 3,690 3,846	22 22 24 28	585 1,479 2,931 3,663 3,359	242 28 28 28 28	10,491 12,284 8,620 5,592 3,239	26 11 14 8	4 4 5 2 3 3 4 4 5 5 5 5 4 4 5 5 5 5 5 5 6 5 6 5 6 5	11 24 20 20

Definition of abbreviations: BMI = body mass index; NSAID = nonsteroidal antiinflammatory drug; nSES = neighborhood socioeconomic status. *Does not add to 100% because of missing data.

Table 2. Associations of Gaseous and Particulate Matter Air Pollutants and Benzene with Risk of Lung Cancer Overall and by Race/Ethnicity among California Multiethnic Cohort Study Participants, 1993-2013

,			All			Africar	n American			urope	European American	_	اد	apanes	Japanese American	_		Latin	Latino American		4
Air Pollutant	Cases (n)	뚶	12 % S6	P Value	Cases (n)	뚲	95% CI	Р Value	Cases (n)	뚶	95% CI	P (Cases (n)	뚶	95% CI	<i>P</i> Value	Cases (n)	뚶	95% CI	P Value	Race/ Ethnicity
*× Q	2,712		0.99-1.33)		1,210		(0.92–1.37)	0.25	501	0.87	_	0.46	319		0.45–1.52)	0.54	678	1.30	0.89–1.89)	0.17	0.70
* [*] Q	2,775		0.95 - 1.32	_	1,272		(0.89 - 1.42)	0.33	501	0.82	_	0.33	319	1.18	(0.62-2.24)	0.61	629	1.31	0.84 - 2.04	0.24	0.14
PM ₁₀ *	2,775		0.91 - 1.08	_	1,272	0.95	(0.84 - 1.06)	0.34	501	0.92	(0.71-1.19)	0.53	319		(0.83 - 1.93)	0.27	629	1.1	0.86-1.44)	0.43	0.71
M _{2.5} ⁺	2,769		1.01 - 1.43	_	1,266	1.12	(0.89 - 1.41)	0.32	501	1.12	_	0.60	318		(0.39 - 1.68)	0.57	089	1.15	0.71 - 1.86	0.57	0.82
*O	2,775		0.99 - 1.67	_	1,272	1.18	(0.84 - 1.66)	0.35	501	0.71	_	0.38	319		(0.25 - 3.69)	0.95	629	_	0.68 - 3.42	0.31	0.23
**C	2,775	0.85	0.74 - 0.97	0.05	1,272	0.78	(0.64-0.95)	0.01	501	1.13	_	0.43	319	0.96	(0.49-1.85)	0.89	629	_	0.63 - 1.26	0.51	0.11
enzene	2,678		(1.02 - 1.34)	_	1,239	1.13	(0.91-1.41)	0.26	468	0.94	$\overline{}$	0.68	307		(1.04-2.52)	0.03	099	1.12	0.82-1.54)	0.46	0.90

O₃, 1 ppb benzene. Models were adjusted for activity, energy intake, red meat intake, and processed meat intake with age at cohort entry as the Definition of abbreviations: CI = confidence intervals; HR = hazard ratio; NO_x = nitrogen oxides; P het = P for heterogeneity; $PM_{2.5}$ = fine particulate matter with aerodynamic lung cancer, occupation, neighborhood socioeconomic status, Because of small counts, racial/ethnic-specific associations for Native Hawaiians are not presented. Values in bold represent P<0.05 10 ppb (PM_{2.5}, 1,000 ppb CO, race/ethnicity (among all), sex, education, marital status, smoking intensity and duration, family history of per 50 ppb NO_X , 20 ppb NO_2 , 10 mg/m³ PM_{10} , 10 mg/m³ diameter <2.5 μm; PM₁₀ = fine particulate matter with aerodynamic diameter <10 μm body mass index, drinking, physical HR represent the increase in lung cancer nonsteroidal antiinflammatory drug use, stratum variable.

*Assessed by kriging interpolation †Satellite based. In this study, we observed higher average concentrations of NO_x, NO₂, PM₁₀, satellitebased PM_{2.5}, CO, and benzene among participants residing in low- versus high-SES neighborhoods at baseline, and for an identical unit of NO_x and NO₂ exposure an increased risk of lung cancer was seen in low-SES neighborhoods, whereas no association was seen in high-SES neighborhoods. Neighborhood factors such as the social and community context (e.g., racial and ethnic segregation) may be embodied in psychosocial stress that could influence adverse health outcomes related to air pollution (33). Among neighborhoods with higher proportions of minoritized racial and ethnic groups, built environment factors (e.g., proximity to truck routes, ports, storage, warehouses, poor housing quality) may increase coexposure of other environmental factors (e.g., unmeasured air toxics) that may have synergistic adverse air pollution-related health effects.

Air pollution is a heterogeneous mixture that includes gaseous pollutants, PM, and air toxics from a variety of sources. From this complex mixture, it is a challenge to dissect any effects of individual pollutants, given their high degree of correlation and the commonality of sources. Consequently, we interpret the observed associations with the various air pollutants as reflecting a general association between lung cancer and trafficrelated air pollution, not any particular pollutant. Our hazard ratio estimate for satellite-based PM_{2.5} per 10 µg/m³ (HR, 1.20; 95% CI, 1.01-1.43) was generally similar to the meta-analysis estimate (HR, 1.16; 95% CI, 1.09–1.23) for $PM_{2.5}$ and lung cancer risk that was obtained from 15 cohort studies published since 2004 that accounted for smoking and socioeconomic status (2). The positive association with nitric oxide assessed by kriging interpolation supports the influence of traffic-related air pollutants, as it represents a key ambient marker of urban air pollution produced predominantly and directly by fuel combustion (34). Our HR estimates, scaled to per 10 µg/m³ NO_x (HR, 1.02; 95% CI, 1.00-1.04) and NO₂ (HR, 1.03; 95% CI, 0.99-1.08), were similar to the 3% and 4% increased risks of lung cancer, respectively, reported by a large metaanalysis (4). Similar increased risk associations with CO were reported in prior studies of lung cancer mortality (5). In conjunction with the increased risk associations we observed for regional benzene, the associations with various

Table 3. Associations of Gaseous and Particulate Matter Air Pollutants and Benzene with Risk of Lung Cancer by Neighborhood Socioeconomic Status among California Multiethnic Cohort Study Participants, 1993–2013

Air	Lo	w nSES	(Quintiles 1-3)		H	ligh nSE	S (Quintiles 4-5	5)	P het by
Pollutant	Cases (n)	HR	95% CI	P Value	Cases (n)	HR	95% CI	P Value	nSES
NO _x * NO ₂ * PM ₁₀ * PM _{2.5} † CO* O ₃ * Benzene	1,953 2,003 2,003 2,000 2,003 2,003 1,959	1.20 1.20 0.99 1.23 1.31 0.80 1.20	(1.01–1.43) (0.97–1.47) (0.88–1.10) (0.99–1.53) (0.97–1.78) (0.68–0.95) (1.00–1.43)	0.03 0.09 0.80 0.06 0.08 0.01	757 770 770 767 770 770 717	1.01 1.00 1.01 1.14 1.20 0.99 1.14	(0.76–1.34) (0.75–1.35) (0.86–1.19) (0.86–1.52) (0.72–2.00) (0.75–1.29) (0.91–1.43)	0.94 0.98 0.88 0.36 0.50 0.91	0.31 0.39 0.76 0.71 0.80 0.21 0.77

Definition of abbreviations: CI = confidence intervals; HR = hazard ratio; NO_X = nitrogen oxides; nSES = neighborhood socioeconomic status; P het = P for heterogeneity; $PM_{2.5}$ = fine particulate matter with aerodynamic <2.5 μ m; PM_{10} = fine particulate matter with aerodynamic diameter <10 μ m. HR represent the increase in lung cancer per 50 ppb NO_X , 20 ppb NO_Z , 10 mg/m³ PM_{10} , 10 mg/m³ $PM_{2.5}$, 1,000 ppb $PM_{2.5}$, 1,000 ppb

combustion-related pollutants jointly underscore the importance of traffic, as CO and benzene are largely emitted by gasolinepowered vehicles and show large concentration declines with distance from roadways (35). On a mechanistic basis, CO itself would not contribute to carcinogenicity, but it is a specific indicator of traffic-related air pollution (36, 37). We recognize the temporal decline in CO and benzene concentrations during the study period in Los Angeles (38, 39), which has been captured by using time-varying exposure estimates. In a subgroup analysis with available PM_{2.5} species (black carbon, sulfate, and nitrate) information for the period 2000-2013, we observed a suggestive positive association with black carbon only (HR, 1.09; 95% CI, 0.99–1.21; P = 0.09). This supports our positive associations with CO and benzene and the role traffic-related air pollution plays in lung cancer risk.

Prior investigations of benzene and lung cancer have largely focused on occupational exposures to benzene (40). In a Canadian case–control study of lung cancer, outdoor ambient benzene was based on a land use regression model, and the estimated odds ratio was 1.84 (95% CI, 1.26–2.68) per 0.15 µg/m³ (0.05 ppb) increase in benzene after adjusting for demographics, secondhand smoke, BMI, and family history of cancer (41). Our findings add further support for an increased risk of lung cancer associated with outdoor ambient benzene exposure. Although benzene is a well-known

leukemogen found in cigarette smoke and gasoline, the finding of an association with regional benzene exposure (per 1 ppb) was seen both in current smokers (HR, 1.25) and never-smokers (HR, 1.28), supporting the importance of benzene as one of the most common traffic-related air pollutants in the environment.

The inverse association we observed with O_3 is likely attributable to the negative correlation between O_3 and NO_X concentrations due to the photochemical reaction between O_3 and nitric oxide (42), thus also reflecting the NO_X association and marking traffic as a source of inhaled carcinogens. The lack of an association with LUR NO_X may reflect the use of a model developed in 2006–2007 with temporal adjustment that may not capture sufficiently local traffic pollutants during the 1990s, an exposure period likely relevant for our study population given the long latency period of lung cancer.

Although we observed the adverse impacts of traffic-related air pollution on the risk of lung cancer mainly in the metropolitan Los Angeles area, we should not ignore the impact of other fossil-fuel sources, such as the burning of coal in other parts of the world. Coal is more widely used in generating energy in developing countries (43, 44). Coal smoke has been consistently associated with lung cancer risk (45), and the reliance on coal as an energy source has been linked to lung cancer risk in an analysis based on data from 83 countries (46).

The absence of an association with krigged PM_{2.5} may be explained by misclassification in exposure assessment for historical PM_{2.5} concentrations (1993–1999), for which PM_{2.5} concentrations were modeled based on measured PM₁₀ together with meteorological and spatial data in the absence of measured PM_{2.5} data (26) and further spatially interpolated by krigging. This is particularly relevant given the long latency period of lung cancer of 10-30 years (47), for which accurate historical concentrations of PM_{2.5} are important. The associations we identified between satellitebased PM_{2.5} and lung cancer risk speak to the more refined exposure assessment across the entire study period from 1993-2013 with the use of chemical transport modeling coupled with satellite- and ground-based data (27).

Several biological mechanisms by which air pollutants influence carcinogenesis have been proposed. Combustion-related air pollution includes mutagens such as polycyclic aromatic hydrocarbons that have been linked to DNA damage in the formation of polycyclic aromatic hydrocarbon-DNA adducts (48). Higher concentrations of DNA adducts in white blood cells have been observed among subjects who were more heavily exposed to air pollution (49). In addition, DNA adduct concentrations in lung tissues have correlated well with concentrations in white blood cells among patients with lung cancer (48, 50–52). Air pollutants have also been

^{*}Assessed by kriging interpolation.

[†]Satellite based.

Fable 4. Associations of Gaseous and Particulate Matter Air Pollutants and Benzene with Risk of Lung Cancer by Smoking Status among California Multiethnic Cohort Study Participants, 1993-2013

		Never-	Never-Smokers			Forme	Former Smokers			Curre	Current Smokers		P het by
Air Pollutant	Cases (n)	뚶	95% CI	P Value	Cases (n)	뚶	95% CI	P Value	Cases (n)	뚶	95% CI	P Value	Smoking Status
*× ON	337	1.40	(0.88–2.22)	0.15	1,056	1.14	(0.91–1.42)	0.26	1,319	1.14	(0.92–1.41)	0.24	0.43
, NO NO	346	1.33	(0.80-2.22)	0.28	1,078	1.14	(0.88-1.48)	0.32	1,351	1.12	(0.88-1.44)	0.36	0.17
PM ₁₀ *	346	1.01	(0.77-1.33)	96.0	1,078	1.02	(0.89 - 1.17)	0.77	1,351	1.00	(0.88-1.14)	0.98	0.31
PM ₂ +	345	98.0	(0.54 - 1.38)	0.53	1,076	1.10	(0.84 - 1.43)	0.48	1,348	1.21	(0.94 - 1.56)	0.14	0.97
i* 00	346	1.17	(0.51-2.68)	0.72	1,078	1.38	(0.93-2.07)	0.11	1,351	1.36	(0.92-1.99)	0.12	0.97
* . O	346	0.77	(0.49-1.21)	0.26	1,078	0.92	(0.75-1.14)	0.45	1,351	0.81	(0.66-0.99)	0.04	0.78
Benzene	337	1.28	(0.86 - 1.91)	0.22	1,035	1.07	(0.87 - 1.32)	0.52	1,306	1.25	(1.01–1.54)	0.04	0.99

For definitions of abbreviations, see Table 2.

50 ppb NOx, 20 ppb NO₂, 10 mg/m³ PM₁₀, 10 mg/m³ PM₂₅, 1,000 ppb CO, 10 ppb O₃; 1 ppb benzene. Models were adjusted for sex, education, marital status, family history of lung cancer, occupation, neighborhood socioeconomic status, nonsteroidal antiinflammatory drug use, body mass physical activity, energy intake, red meat intake, and processed meat intake with age at cohort entry as the stratum variable. For former and current smokers, index, drinking, physical activity, energy intake, red meat intake, and processed meat intake with age at cohort entry as the stratum variable. smoking intensity and duration were also included for adjustment. Smoking status assessed at baseline. Values in bold represent P < 0.05 HR represent the increase in lung cancer per 'Assessed by kriging interpolation. race/ethnicity.

linked to increased inflammation (53) and oxidative stress (54) that involves the release of reactive oxygen species and proinflammatory cytokines, leading to tissue and organ damage (55, 56). In addition, epigenetic changes in DNA methylation and accelerated epigenetic aging may be a possible mechanism (57) by which air pollution influences lung cancer development.

The strengths of this study include its racially, ethnically, and socioeconomically diverse study population. In addition, we assessed long-term air pollutant exposures, covering a study period of up to 21 years with detailed residential histories that allowed us to capture time-varying exposures. With the extensive questionnaire data, we were able to account for detailed repeated smoking behaviors relevant for lung cancer incidence.

There are limitations to our study that warrant consideration. We did not have information on ambient air pollutant exposures aside from residential locations (e.g., no information about work, transportation, or outdoor exposures other than at residences) or indoor exposures. Although we were able to account for neighborhood- and individual-level (i.e., education) SES, we did not have information on other individual-level measures of SES (e.g., income) and did not evaluate other measures of structural and social determinants of health. In addition, we did not have detailed occupational information that could result in some residual confounding in our results. We had limited sample size for some subgroup analyses that may have reduced the power to detect heterogeneity in effects. We recognize the possibility of chance findings given the number of comparisons made, and the multiple comparison framework of Goldberg and Silbergerld (58) can be applied to evaluate our findings. Given the multiplicity of carcinogens in PM in outdoor air, a specific PM component is unlikely to be responsible for the carcinogenicity of PM (59). Nevertheless, further studies to evaluate additional PM25 species may be informative and refine our understanding of the pathogenesis related to air pollution.

We recognize the importance of measurement error in our exposure assessment of air pollutants, a well-recognized issue with model-based exposure estimates (60, 61). In a sensitivity analysis,

Satellite

ORIGINAL ARTICLE

we inversely weighted average exposures by the average standard error and found slightly larger effect sizes and narrower confidence intervals, indicating stronger associations after we took into consideration exposure measurement error (data not shown). In addition, we expect that measurement error would not be differential by case status. Stram and colleagues (62) showed that score tests for nonzero effects were not altered when corrected for nondifferential measurement error. Therefore, estimates significant before error correction will not be declared nonsignificant after error correction.

In conclusion, this study provides further evidence of the adverse effects of traffic-related air pollutants on lung cancer incidence in a large multiethnic population, with suggestive findings of greater harms in low-SES neighborhoods. This work calls for strengthening environmental regulations and focused studies of the underlying structural and social determinants of health contributing to environmental health inequities.

Author disclosures are available with the text of this article at www.atsjournals.org.

Acknowledgment: The authors are grateful to the study participants and research team of the MEC (Multiethnic Cohort Study).

References

- Loomis D, Huang W, Chen G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin J Cancer 2014;33:189–196.
- Ciabattini M, Rizzello E, Lucaroni F, Palombi L, Boffetta P. Systematic review and meta-analysis of recent high-quality studies on exposure to particulate matter and risk of lung cancer. *Environ Res* 2021;196: 110440.
- Coleman NC, Burnett RT, Ezzati M, Marshall JD, Robinson AL, Pope CA III. Fine particulate matter exposure and cancer incidence: analysis of SEER Cancer Registry data from 1992–2016. Environ Health Perspect 2020;128:107004.
- Hamra GB, Laden F, Cohen AJ, Raaschou-Nielsen O, Brauer M, Loomis D. Lung cancer and exposure to nitrogen dioxide and traffic: a systematic review and meta-analysis. *Environ Health Perspect* 2015; 123:1107–1112.
- Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. *JAMA* 2002;287:1132–1141.
- Jerrett M, Burnett RT, Beckerman BS, Turner MC, Krewski D, Thurston G, et al. Spatial analysis of air pollution and mortality in California. Am J Respir Crit Care Med 2013;188:593

 –599.
- Hystad P, Demers PA, Johnson KC, Carpiano RM, Brauer M. Long-term residential exposure to air pollution and lung cancer risk. *Epidemiology* 2013;24:762–772.
- Hajat A, Hsia C, O'Neill MS. Socioeconomic disparities and air pollution exposure: a global review. Curr Environ Health Rep 2015; 2:440–450.
- Turner MC, Krewski D, Pope CA III, Chen Y, Gapstur SM, Thun MJ. Longterm ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am J Respir Crit Care Med 2011;184: 1374–1381.
- 10. Wang B, Eurn KD, Kazemiparkouhi F, Li C, Manjourides J, Pavlu V, et al. The impact of long-term PM_{2.5} exposure on specific causes of death: exposure-response curves and effect modification among 53 million U.S. Medicare beneficiaries. *Environ Health* 2020;19:20.
- Kolonel LN, Henderson BE, Hankin JH, Nomura AM, Wilkens LR, Pike MC, et al. A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am J Epidemiol 2000;151:346–357.
- IQAir. 2019 World Air Quality Report Region & City PM2.5 Ranking v8. 2019 [accessed 2021]. Available from: https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2019-en.pdf.
- Marshall JD. Environmental inequality: air pollution exposures in California's South Coast Air Basin. Atmos Environ 2008;42:5499–5503.
- 14. Su JG, Morello-Frosch R, Jesdale BM, Kyle AD, Shamasunder B, Jerrett M. An index for assessing demographic inequalities in cumulative environmental hazards with application to Los Angeles, California. Environ Sci Technol 2009;43:7626–7634.
- Haiman CA, Stram DO, Wilkens LR, Pike MC, Kolonel LN, Henderson BE, et al. Ethnic and racial differences in the smoking-related risk of lung cancer. N Engl J Med 2006;354:333–342.
- Stram DO, Park SL, Haiman CA, Murphy SE, Patel Y, Hecht SS, et al. Racial/ethnic differences in lung cancer incidence in the multiethnic cohort study: an update. J Natl Cancer Inst 2019;111:811–819.

- Lewis DR, Check DP, Caporaso NE, Travis WD, Devesa SS. US lung cancer trends by histologic type. Cancer 2014;120:2883–2892.
- Yost K, Perkins C, Cohen R, Morris C, Wright W. Socioeconomic status and breast cancer incidence in California for different race/ethnic groups. Cancer Causes Control 2001;12:703–711.
- Yang J, Schupp CW, Harrati A, Clarke C, Keegan THM, Gomez SL. Developing an area-based socioeconomic measure from American Community Survey data. Fremont, California: Cancer Prevention Institute of California.; 2014.
- DeRouen MC, McKinley M, Shah SA, Borno HT, Aoki R, Lichtensztajn DY, et al. Testicular cancer in Hispanics: incidence of subtypes over time according to neighborhood sociodemographic factors in California. Cancer Causes Control 2020;31:713–721.
- Conroy SM, Shariff-Marco S, Koo J, Yang J, Keegan TH, Sangaramoorthy M, et al. Racial/ethnic differences in the impact of neighborhood social and built environment on breast cancer risk: the Neighborhoods and Breast Cancer Study. Cancer Epidemiol Biomarkers Prev 2017;26:541–552.
- DeRouen MC, Schupp CW, Koo J, Yang J, Hertz A, Shariff-Marco S, et al. Impact of individual and neighborhood factors on disparities in prostate cancer survival. Cancer Epidemiol 2018;53:1–11.
- Cheng I, Tseng C, Wu J, Yang J, Conroy SM, Shariff-Marco S, et al.
 Association between ambient air pollution and breast cancer risk: the multiethnic cohort study. Int J Cancer 2020;146:699–711.
- Wu AH, Wu J, Tseng C, Yang J, Shariff-Marco S, Fruin S, et al.
 Association between outdoor air pollution and risk of malignant and benign brain tumors: the Multiethnic Cohort Study. JNCI Cancer Spectr 2020;4:pkz107.
- Laurent O, Hu J, Li L, Kleeman MJ, Bartell SM, Cockburn M, et al. A statewide nested case-control study of preterm birth and air pollution by source and composition: California, 2001-2008. Environ Health Perspect 2016;124:1479–1486.
- Li L, Wu A, Cheng I, Chen J, Wu J. Spatiotemporal estimation of historical PM2.5 concentrations using PM10, meteorological variables, and spatial effects. Atmos Environ 2017;166:182–191.
- Meng J, Li C, Martin RV, van Donkelaar A, Hystad P, Brauer M. Estimated long-term (1981–2016) concentrations of ambient fine particulate matter across North America from chemical transport modeling, satellite remote sensing, and ground-based measurements. *Environ Sci Technol* 2019;53:5071–5079.
- Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, et al. A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol 2005;15: 185–204.
- Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, et al.; NASH CRN; GIANT Consortium; MAGIC Investigators; GOLD Consortium. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 2011;7:e1001324.
- Lunn M, McNeil D. Applying Cox regression to competing risks. Biometrics 1995;51:524–532.
- 31. Therneau TM, Grambsch P. Modeling survival data: extending the Cox model. New York: Springer-Verlag; 2001.
- Lin DY, Wei LJ. The robust inference for the Cox proportional hazard model. J Am Stat Assoc 1989;84:1074–1078.

- O'Neill MS, Jerrett M, Kawachi I, Levy JI, Cohen AJ, Gouveia N, et al.; Workshop on Air Pollution and Socioeconomic Conditions. Health, wealth, and air pollution: advancing theory and methods. Environ Health Perspect 2003;111:1861–1870.
- 34. Levy I, Mihele C, Lu G, Narayan J, Brook JR. Evaluating multipollutant exposure and urban air quality: pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. *Environ Health Perspect* 2014;122:65–72.
- Karner AA, Eisinger DS, Niemeier DA. Near-roadway air quality: synthesizing the findings from real-world data. *Environ Sci Technol* 2010;44:5334–5344.
- 36. International Agency for Research on Cancer. Agents reviewed by the IARC monographs. Lyon, France: International Agency for Research on Cancer; 2009 [accessed 2021]. Available from: https://monographs. iarc.fr/ENG/Classification/index.php. May 19, 2009.
- Colwill DM, Hickman AJ. Exposure of drivers to carbon monoxide. J Air Pollut Control Assoc 1980;30:1316–1319.
- 38. Harley RA, Hooper DS, Kean AJ, Kirchstetter TW, Hesson JM, Balberan NT, et al. Effects of reformulated gasoline and motor vehicle fleet turnover on emissions and ambient concentrations of benzene. *Environ Sci Technol* 2006;40:5084–5088.
- Eisinger DS, Dougherty K, Chang DP, Kear T, Morgan PF. A reevaluation of carbon monoxide: past trends, future concentrations, and implications for conformity "hot-spot" policies. *J Air Waste Manag Assoc* 2002;52:1012–1025.
- Armstrong B, Hutchinson E, Unwin J, Fletcher T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and metaanalysis. *Environ Health Perspect* 2004;112:970–978.
- Villeneuve PJ, Jerrett M, Brenner D, Su J, Chen H, McLaughlin JR. A case-control study of long-term exposure to ambient volatile organic compounds and lung cancer in Toronto, Ontario, Canada. Am J Epidemiol 2014;179:443–451.
- Sillman S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ 1999;33:1821–1845.
- 43. Hosgood HD III, Wei H, Sapkota A, Choudhury I, Bruce N, Smith KR, et al. Household coal use and lung cancer: systematic review and meta-analysis of case-control studies, with an emphasis on geographic variation. Int J Epidemiol 2011;40:719–728.
- 44. International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans: Working Group on Indoor Air Pollution from Solid Fuels and Cooking Oil Fume. Lyon, 2010; Volume 95.
- Kurmi OP, Arya PH, Lam KB, Sorahan T, Ayres JG. Lung cancer risk and solid fuel smoke exposure: a systematic review and meta-analysis. *Eur Respir J* 2012;40:1228–1237.
- Lin CK, Lin RT, Chen T, Zigler C, Wei Y, Christiani DC. A global perspective on coal-fired power plants and burden of lung cancer. *Environ Health* 2019;18:9.
- Lipfert FW, Wyzga RE. Longitudinal relationships between lung cancer mortality rates, smoking, and ambient air quality: a comprehensive review and analysis. Crit Rev Toxicol 2019;49:790–818.

- Vineis P, Husgafvel-Pursiainen K. Air pollution and cancer: biomarker studies in human populations. *Carcinogenesis* 2005;26: 1846–1855.
- 49. Singh R, Sram RJ, Binkova B, Kalina I, Popov TA, Georgieva T, et al. The relationship between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA adducts, antioxidant status and genetic susceptibility following exposure to environmental air pollution in humans. *Mutat Res* 2007;620:83–92.
- Demetriou CA, Raaschou-Nielsen O, Loft S, Møller P, Vermeulen R, Palli D, et al. Biomarkers of ambient air pollution and lung cancer: a systematic review. Occup Environ Med 2012;69:619–627.
- Palli D, Saieva C, Munnia A, Peluso M, Grechi D, Zanna I, et al. DNA adducts and PM(10) exposure in traffic-exposed workers and urban residents from the EPIC-Florence City study. Sci Total Environ 2008; 403:105–112.
- 52. Gyorffy E, Anna L, Gyori Z, Segesdi J, Minárovits J, Soltész I, et al. DNA adducts in tumour, normal peripheral lung and bronchus, and peripheral blood lymphocytes from smoking and non-smoking lung cancer patients: correlations between tissues and detection by 32P-postlabelling and immunoassay. Carcinogenesis 2004;25:1201–1209.
- Liu Q, Gu X, Deng F, Mu L, Baccarelli AA, Guo X, et al. Ambient particulate air pollution and circulating C-reactive protein level: a systematic review and meta-analysis. Int J Hyg Environ Health 2019; 222:756–764.
- 54. Yang W, Omaye ST. Air pollutants, oxidative stress and human health. *Mutat Res* 2009;674:45–54.
- 55. Tsai DH, Riediker M, Berchet A, Paccaud F, Waeber G, Vollenweider P, et al. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ Sci Pollut Res Int 2019;26:19697–19704.
- Li D, Zhang R, Cui L, Chu C, Zhang H, Sun H, et al. Multiple organ injury in male C57BL/6J mice exposed to ambient particulate matter in a realambient PM exposure system in Shijiazhuang, China. Environ Pollut 2019;248:874–887.
- Rider CF, Carlsten C. Air pollution and DNA methylation: effects of exposure in humans. Clin Epigenetics 2019;11:131.
- Goldberg M, Silbergeld E. On multiple comparisons and on the design and interpretation of epidemiological studies of many associations. *Environ Res* 2011;111:1007–1009.
- Straif K, Cohen A, Samet J, editors. IARC Scientific Publications No 161: air pollution and cancer. Lyon, France: International Agency for Research on Cancer; 2013.
- 60. Sheppard L, Burnett RT, Szpiro AA, Kim SY, Jerrett M, Pope CA III, et al. Confounding and exposure measurement error in air pollution epidemiology. Air Qual Atmos Health 2012;5:203–216.
- Szpiro AA, Paciorek CJ. Measurement error in two-stage analyses, with application to air pollution epidemiology. *Environmetrics* 2013; 24:501–517.
- Stram DO, Preston DL, Sokolnikov M, Napier B, Kopecky KJ, Boice J, et al. Shared dosimetry error in epidemiological dose-response analyses. PLoS One 2015;10:e0119418.