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Abstract. Vegetation plays an important role in regulating
global carbon cycles and is a key component of the Earth
system models (ESMs) that aim to project Earth’s future cli-
mate. In the last decade, the vegetation component within
ESMs has witnessed great progress from simple “big-leaf”
approaches to demographically structured approaches, which
have a better representation of plant size, canopy structure,
and disturbances. These demographically structured vege-
tation models typically have a large number of input pa-
rameters, and sensitivity analysis is needed to quantify the
impact of each parameter on the model outputs for a bet-
ter understanding of model behavior. In this study, we con-
ducted a comprehensive sensitivity analysis to diagnose the
Community Land Model coupled to the Functionally Assem-
bled Terrestrial Simulator, or CLM4.5(FATES). Specifically,
we quantified the first- and second-order sensitivities of the
model parameters to outputs that represent simulated growth
and mortality as well as carbon fluxes and stocks for a trop-
ical site with an extent of 1× 1◦. While the photosynthetic
capacity parameter (Vc,max25) is found to be important for

simulated carbon stocks and fluxes, we also show the impor-
tance of carbon storage and allometry parameters, which de-
termine survival and growth strategies within the model. The
parameter sensitivity changes with different sizes of trees and
climate conditions. The results of this study highlight the im-
portance of understanding the dynamics of the next gener-
ation of demographically enabled vegetation models within
ESMs to improve model parameterization and structure for
better model fidelity.

1 Introduction

Earth system models (ESMs) are abstract representations of
nature used to simulate physical, chemical, and biological
processes across the interacting domains of the Earth sys-
tem to estimate past, present, and future climate (Claussen
et al., 2002; Dunne et al., 2012; Arora et al., 2013; Hurrell
et al., 2013). Land surface models (LSMs), the land com-
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ponent of ESMs, are capable of representing vegetation dy-
namics through the use of dynamic global vegetation models
(Foley et al., 1996; Cox et al., 2000; Krinner et al., 2005;
Friedlingstein et al., 2006; Sato et al., 2007; Arora et al.,
2013). The first-generation dynamic vegetation models rep-
resent plant communities and their competition using a sin-
gle area-averaged representation of plant functional types
(PFTs) within each land grid cell (Cox et al., 2000; Pan et al.,
2002; Hickler et al., 2004). Recently, a number of vegeta-
tion models that can represent plant demographic processes
have emerged to better capture coexistence and competition
driven by light competition between different sizes of trees
within a vertical canopy structure at different successional
stages (Moorcroft et al., 2001; Thonicke et al., 2001; Sitch
et al., 2003; Hickler et al., 2004; Fisher et al., 2010; Scheiter
et al., 2013; Fisher et al., 2018). These demographic mod-
els allow comparison with many more observed vegetation
processes than first-generation models but also contain more
degrees of freedom leading to great complexity.

LSMs typically contain a suite of different parameters to
resolve the carbon, water, and energy fluxes and pools at
the land–atmosphere interface (Noilhan and Planton, 1989;
Bastidas et al., 1999; Gupta et al., 1999; Masson et al., 2003;
Sargsyan et al., 2014). Many of these parameters can be es-
timated directly in the field, but others are difficult or im-
possible to measure due to various complications such as
the abstract representation of processes, technological limita-
tions, or spatial/temporal aggregation (Entekhabi and Eagle-
son, 1989; Kumar et al., 2006). Parameters that are observ-
able in the field are also often subject to large natural variabil-
ity, including changes through space and time (Wood et al.,
1992; Masson et al., 2003; Fisher et al., 2015). For exam-
ple, vegetation parameters can be used to describe different
root profiles (Vrugt et al., 2001; Zeng, 2001; Massoud et al.,
2019a) or photosynthetic capacities (Leuning, 2002; Rogers,
2014); however, model parameter values are often taken from
literature publications or databases, and may not represent
local variation or capture seasonal or ontogenetic changes.
For parameters of critical importance, even a small difference
can lead to significant divergence for multi-model ensemble
projections or uncertainty in model predictions from differ-
ent models (Sitch et al., 2008; Dietze et al., 2014; McDowell
et al., 2016; Rogers et al., 2017). Since parameters are often
defined in simulations with limited prior knowledge of their
mean values and variation (O’Hagan and Leonard, 1976; Ki-
tanidis, 1986; Geromel, 1999), model uncertainty or sensitiv-
ity analyses are typically required to adequately quantify the
uncertainty in model outputs and importance of parameters
to guide model calibration and improvement.

There are two types of uncertainty and sensitivity analysis
studies. One type of study aims to understand the model be-
haviors by exploring the baseline sensitivity of model outputs
to parameter changes, which is normally an equal amount of
deviation from the mean values of default parameters. This is
commonly referred to as model sensitivity or elasticity anal-

ysis (e.g., Benton and Grant, 1999; Pappas et al., 2013; Men-
berg et al., 2016; Collalti et al., 2019). Another type of study
aims to quantify the amount of uncertainty in model out-
puts and the corresponding contributions to this uncertainty
by different sources, which is commonly referred to as un-
certainty quantification (e.g., Xu et al., 2010; Dietze et al.,
2014). It is possible that a model output is very sensitive to
a particular parameter in the sensitivity analysis study, but
the parameter could contribute to a small amount of uncer-
tainty in the model output if this parameter contains a low
level of variation (Dietze et al., 2014). Both types of studies
are useful for model development and applications with sen-
sitivity analysis studies focusing on understanding the base-
line of model behaviors and uncertainty quantification stud-
ies focusing on guiding field and laboratory measurements.
Despite the need for such studies, systematic investigation
of the parameter sensitivity and output uncertainty of LSMs
is not standard practice, potentially on account of the high
dimensionality involved (although see Zaehle et al., 2005;
Fisher et al., 2010; Pappas et al., 2013).

Today, many uncertainty and sensitivity analysis tech-
niques are available (Sobol’, 1990; Helton, 1993; Saltelli
et al., 2000; Razavi and Gupta, 2016). Some of these meth-
ods examine the response of the outputs by varying input
parameters one at a time and holding other parameters at
their default values (Saltelli et al., 2000). However, the sen-
sitivity index derived by this type of assessment depends
on the default values of the other parameters, and the as-
sumption that these values are satisfactory is questionable
(e.g., Da Rocha et al., 1996; Sen et al., 2001; Groenendijk
et al., 2011; Schwalm et al., 2010) since the LSM predictions
are strongly tied (through feedbacks of momentum, energy,
mass, and biogeochemistry) to the differences in their repre-
sentation of the land surface (Crossley et al., 2000; Rosolem
et al., 2013). Therefore, it is desirable to use more extensive
sensitivity analysis techniques that examine the response of
model outputs averaged over the variation of all the param-
eters. These “global” methods are generally preferred when
computing power is not a limiting factor, as they require a rel-
atively large number of ensemble runs. A sensitivity analysis
is considered to be global when all the input factors are var-
ied simultaneously and the sensitivity is evaluated over their
entire range of interest (McRae et al., 2001; Xu and Gertner,
2008; Zhou et al., 2008). For sensitivity analysis studies, the
entire range of interest could be a certain percentage devia-
tion of default values of parameters. For uncertainty quan-
tification studies, the entire range of interest could be the
distributions of parameters estimated from laboratory mea-
surements, field observations, and expert knowledge. Cam-
polongo et al. (2000) suggested classifying local and global
sensitivity analysis based largely on the extent of the input
variable range that the technique assesses; however, this clas-
sification is ambiguous, as it depends on whether the range
is sufficiently large to be perceived as global (Song et al.,
2015).
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The goal of this study is to conduct a comprehen-
sive sensitivity analysis for a land surface model (Com-
munity Land Model) coupled to a demographic vegetation
model (Functionally Assembled Terrestrial Simulator), or
CLM4.5(FATES), at a tropical site with an extent of 1× 1◦

to (1) understand the baseline model behaviors of vegetation
carbon stocks and fluxes and vegetation demography in rela-
tion to different model parameters, and (2) provide directions
for improved model parameterization toward a better model
fit to observations. Specifically, we aim to answer the follow-
ing question: what are the main parameter controls on vege-
tation processes such as growth and mortality and on the re-
sulting dynamics of carbon fluxes and stocks? Based on our
understanding of simulated processes in CLM4.5(FATES),
we propose to test three hypotheses. Our first hypothesis is
related to photosynthetic capacity. The carbon input for veg-
etation growth is through photosynthesis and in most LSMs,
it is simulated based on the Farquhar model (Farquhar, 1989)
with the photosynthetic capacity represented by the maxi-
mum carboxylation rate at 25 ◦C (Vc,max25) and maximum
electron transport rate at 25 ◦C (Jmax25). Jmax25 is simulated
in proportion to Vc,max25 in many models, and previous sen-
sitivity analysis studies (Pappas et al., 2013; Sargsyan et al.,
2014; Dietze et al., 2014) have shown that Vc,max25 is gen-
erally an important parameter that affects simulated carbon
fluxes. Therefore, we hypothesize that the photosynthetic ca-
pacity parameter, Vc,max25, is a key control on simulated
carbon fluxes in CLM4.5(FATES) (H1). Second, for demo-
graphic models, the allometry of trees determines the amount
of carbon input to different tissues (e.g., leaf, root, and stem).
If more carbon is allocated to leaf compared to stem, the tree
will have a higher productivity but this can also lead to lower
stem growth and thus less height growth for light compe-
tition. Thus, we hypothesize that allometry parameters are
important for vegetation growth and long-term carton stocks
(H2), as they will determine plant’s growth strategies. Fi-
nally, the carbon stock for vegetation is affected not only by
the input of carbon through photosynthesis but also by the
loss of carbon through mortality. We hypothesize that the pa-
rameters determining mortality are important drivers of the
long-term vegetation carbon stocks (H3), as they will control
carbon turnover time.

2 Materials and methods

2.1 CLM4.5(FATES)

CLM4.5(FATES) is an open-source land surface model cou-
pled with a demographically structured dynamic vegetation
model designed to predict climate–vegetation interactions.
The land surface Community Land Model (CLM) represents
surface heterogeneity and simulates land biogeophysics, the
hydrologic cycle, biogeochemistry, human dimensions, and
ecosystem dynamics (Oleson et al., 2013). It is used within

various Earth system modeling frameworks, including the
Community Earth System Model (CESM) and the Norwe-
gian Earth System Model (NorESM) (Lawrence et al., 2011;
Bonan et al., 2011). It is also the baseline of the land com-
ponent within the Exascale Energy Earth System Model
(E3SM) (Golaz et al., 2019). The vegetation model FATES
is developed from the ecosystem demography (ED) model,
which scales up the behavior of forest ecosystems by ag-
gregating individual trees into representative “cohorts” based
on their size and PFT, and by aggregating groups of cohorts
into representative “patches” (conceptually similar to a for-
est plot) that explicitly tracks the time between disturbances
(Moorcroft et al., 2001). The main property of the ED con-
cept that differs from most commonly used “big-leaf” mod-
els is the capacity to predict distribution, structure, and com-
position of vegetation directly from their given physiolog-
ical traits described by the model parameterization (Fisher
et al., 2015). This is achieved via the means of trait filtering,
whereby plant traits affect plant growth and survival, growth
in turn affects the acquisition of light resources, and feeds
back onto growth, survival, and reproduction. Differences in
growth, survival, and reproduction rates thus directly con-
trol the relative distributions of vegetation types and their
traits as well as the overall carbon stocks. See supplementary
model description in Fisher et al. (2015) for details on spe-
cific components of the model structure. FATES represents
vegetation using size-structured groups of plants (cohorts)
which coexist on various successional trajectory-based land
units. FATES simulates growth by integrating photosynthesis
across different leaf layers for each cohort. The model allo-
cates photosynthetic carbon to different tissues such as leaf,
root, and stem based on the allometry of different vegetation
types. Mortality is an important driver for the simulated for-
est dynamics in FATES. FATES includes five modes of mor-
tality: (1) fixed background mortality, (2) hydraulic failure
based on a threshold of very low soil moisture; (3) carbon
starvation resulting from the depletion of carbon storage in
plants (see Appendix C for details); (4) impact mortality re-
sulting from the falling of big trees; and (5) fire (Fisher et al.,
2015). CLM and FATES are coupled to exchange carbon and
water between vegetation and soil through a common inter-
face. FATES is designed to be modular and currently can
be turned on within two land surface models: the CLM and
E3SM land model (ELM). Depending on the purpose of dif-
ferent studies, CLM4.5(FATES) can be simulated with differ-
ent modes including point mode for individual sites, regional
mode for watershed or regional scales, and global mode for
the global scale.

In this original version of CLM4.5(FATES), there are two
challenges for the model to simulate tropical forests. First,
it is difficult for the model to represent the coexistence of
PFTs due to the dominance of growth and reproductive feed-
backs and potentially the absence of additional stabilizing
mechanisms (Fisher et al., 2010, 2018); therefore, in this ini-
tial analysis, we focus only on a single broadleaf evergreen
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tree PFT, which is a typical vegetation type for the study re-
gion (the Amazon). We want to point out that, because of the
high species diversity in the tropics, it is always a challenge
for models to capture diverse traits with a limited number
of PFTs in typical ESMs. By limiting our sensitivity anal-
ysis to one PFT in this study, our sensitivity analysis will
help us understand the main control on demographic rates of
growth and mortality that will essentially affect the outcome
of competition for multiple PFTs. Thus, we expect that our
sensitivity analysis can be used to guide the selection of traits
for the representation of trait trade-off for diverse tropical
forests and to improve the simulation of PFT coexistence for
model calibration and improvement. Second, the model gen-
erally underestimates leaf area index (LAI). We expect that
our sensitivity analysis will be used as a guidance to adjust
identified key model parameters in order to better fit model
predictions to the observations.

The CLM4.5(FATES) tracks different size classes of
plants (generally > 10 size classes) through time. To fa-
cilitate our analysis, we aggregate cohorts into three size
categories: small (< 10 cm), medium (10–50 cm), and large
trees (> 50 cm). For sensitivity analysis of each size cate-
gory (small, medium, and large trees), we choose to aver-
age the outputs over 30-year intervals. This is done with the
view that a large amount of variability in model outputs could
be caused by the transient and abrupt changes across size
classes, and thus only a small amount of variability is af-
fected by parametric variations. Our analysis shows that the
identified key parameters and the corresponding magnitude
of sensitivity are similar with averaging over different num-
bers of years from 20 to 40 years (Fig. D1).

2.2 Sensitivity analysis: the FAST method

Global sensitivity analysis aims at quantifying the contri-
butions of input variables to the variability of the outputs
of a physical model by simultaneously sampling values of
parameters from their corresponding statistical distributions.
There are many methods for global sensitivity analysis. Two
popular variance-based approaches are the Sobol method
(Sobol’, 1990) and the Fourier amplitude sensitivity test
(FAST) (Cukier et al., 1973). The Sobol method has received
much attention since it provides a clear description of the
importance index of model parameters based on variance de-
composition. However, the full description requires the eval-
uation of 2n Monte Carlo integrals (Sudret, 2008), which is
not practically feasible unless n is low (n here represents the
dimensionality of the model or the number of active param-
eters). Compared to Sobol’s method, FAST is more compu-
tationally efficient. It can be used effectively for nonlinear
and nonmonotonic models (Sudret, 2008; Xu and Gertner,
2011a). FAST uses a periodic sampling approach to draw
samples from the parameter space defined by probability dis-
tributions with a characteristic periodic signal for each pa-
rameter. These samples will then be fed into the model for

ensemble simulations. Finally, a Fourier transformation is
applied to decompose the variance of a model output into
partial variances contributed by different model parameters
based on the characteristic periodic signal assigned for each
parameter. Only the first-order sensitivity indices referring
to the “main effect” of parameters were calculated in the
original method. In the 1990s, an extended FAST method
able to calculate sensitivity indices referring to “total effect”
was developed (Sobol’, 1990; Archer et al., 1997; Saltelli
et al., 1999). This “total effect” of a parameter’s sensitiv-
ity refers to the sum of a parameter’s individual contribution
(first-order sensitivity) and the contribution from its interac-
tion with other parameters (higher-order sensitivity) on the
overall variance of the model output; that is, the total effect
includes all the higher-order interactions. Xu and Gertner
(2011a) further derived equations within the FAST frame-
work to calculate specific higher-order interactions for dif-
ferent sampling approaches. The FAST method has found
widespread use in many different fields of study including
sensitivity analysis of the parameters of models that repre-
sent the land surface (Collins and Avissar, 1994), chemical
reaction (Haaker and Verheijen, 2004), nuclear waste dis-
posal (Lu and Mohanty, 2001), erosion (Wang et al., 2001),
hydrologic systems (Francos et al., 2003), atmospheric sys-
tems (Kioutsioukis et al., 2004), crop growth (Wang et al.,
2013), or matrix population and forest landscape models (Xu
and Gertner, 2009; Xu et al., 2009).

In this study, we quantify both the first- and second-order
sensitivities of the model parameters using FAST. It is possi-
ble to identify higher-order interactions with FAST; however,
because of the sample size limitations for a larger trivariate
parameter space, the FAST-based estimation of third-order
sensitivity indices would be less reliable (Xu and Gertner,
2011a). Specifically, the first-order sensitivity is used to mea-
sure the importance of the variations in one parameter to the
model outputs. If one parameter xi is important to a model
output y at time t (i.e., y(t)), we expect that the mean value
of y(t) will change substantially with different values of xi .
Statistically, we expect to see a large variance of the expected
value of y(t) given xi (i.e., large V

(
E

(
y(t)|xi

))
, whereE

(
·
)

is the expected value of the output, V
(
·

)
is the variance cal-

culated in the parameter space). Similarly, if the combined
impact of xi and xj is important, we expect to see a large
variance of the expected value of y(t) given xi and xj (i.e.,

large V
(
E

(
y(t)|xi,xj

))
). Therefore, we calculate the first-

and second-order sensitivities, αxi and αxixj , respectively, of
the model parameters for each output of interest and at each
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time step as follows:

αxi (t)=
V

(
E

(
y(t)|xi

))
V (y(t))

(1)

αxi ,xj (t)=

V
(
E

(
y(t)|xi,xj

))
−V

(
E

(
y(t)|xi

))
−V

(
E

(
y(t)|xj

))
V

(
y(t)

) ,

i 6= j, (2)

where V
(
y(t)

)
is the total variance of model output y(t).

In FAST, the variances are estimated through periodic sam-
ples in the θ space between 0 and 2π , which are linked to
the samples in the parameter space through a search func-
tion. Further details on the FAST toolbox used for this study
can be found in Xu and Gertner (2007, 2009, 2011a) or
Xu et al. (2009). We are aware that FAST can provide ro-
bust estimates of the sensitivity coefficients in high dimen-
sions (Wang et al., 2013), especially since the CPU demands
of CLM4.5(FATES) mandates application of a method like
FAST due to its ability to derive sensitivity values with sparse
sampling. Due to the random parametric sampling, there will
be errors in the estimates of sensitivity indices. In this study,
we estimate the standard error of FAST-based sensitivity in-
dex derived by Xu and Gertner (2011b), with lower errors for
a larger sample size.

To better understand how parameters affect specific
CLM4.5(FATES) output variables (i.e., the relationship be-
tween model parameters and outputs), we also fitted cubic
splines to the scatterplots between samples of parameters
identified as important by FAST and the corresponding out-
put variable of interest using the R SemiPar package (Rup-
pert et al., 2003).

2.3 Parameter selection

In total, there are more than 200 parameters for all land sur-
face processes including surface energy exchange, hydrol-
ogy, biogeochemistry, plant physiology, and demographic
processes within CLM4.5(FATES). In this study, we focus
solely on vegetation components and select 87 parameters
that are relevant to vegetation processes, including parame-
ters for photosynthetic processes, temperature response, al-
lometry description, radiative transfer, recruitment, turnover,
and mortality. See Tables D1–D4 in the Appendix for a com-
plete list of the parameters used in this study, with cor-
responding description, units, default values, and applied
ranges. Refer to Appendix A for the allometry equations, Ap-
pendix B for the temperature response curve (photosynthe-
sis) equations, and Appendix C for the carbon storage equa-
tions used in CLM4.5(FATES).

To conduct the sensitivity analysis, we have extracted
many parameters in the model that were “hard-wired” in
CLM4.5(FATES). The FAST algorithm requires valid ranges

Figure 1. Recycled climate drivers for the study area including an-
nual mean precipitation, relative humidity, and air temperature for
the years 1948–1972. The annual radiation and air pressure are not
plotted as they are quite stable across years.

to be chosen for each parameter, which creates the possible
parameter space to sample from. In theory, each parameter
has a corresponding observational distribution that produces
the ideal space for sampling (LeBauer et al., 2013). How-
ever, in this study, there are both a large parameter set and
a scarcity of appropriate data sources for Amazonian forests
for many of the relevant quantities; therefore, obtaining a ro-
bust data-supported distribution for each parameter was dif-
ficult. Because we only aim to understand the baseline model
structure, the parameter ranges in this study were generated
by applying a uniform distribution over a range that spans
±15 % of the default parameter values of CLM4.5(FATES)
(i.e., default parameter values for tropical evergreen trees).
We choose a rather conservative range of ±15 % of the de-
fault CLM4.5(FATES) values so that global sensitivity in-
dices can be estimated in the reasonable vicinity of the de-
fault parameters. We suggest that a more robust uncertainty
analysis based on realistic parameter ranges is needed for
guidance on additional field measurements.

Using FAST, 5000 parameter combinations are sampled
from the parameter space. The sample size was determined
using the heuristic method of Xu and Gertner (2011a), where
it is appropriate to use 100 times the number of effective (im-
portant) parameters. The 5000 model runs cost about 32 CPU
hours for each simulation, and thus we ran our simulations
for a total of 160 000 CPU hours on the Los Alamos National
Laboratory (LANL) Conejo supercomputer.

www.geosci-model-dev.net/12/4133/2019/ Geosci. Model Dev., 12, 4133–4164, 2019



4138 E. C. Massoud et al.: Parametric sensitivity analysis for CLM4.5(FATES)

Figure 2. Simulated temporal dynamics in diameter at breast height (dDBH; cm yr−1 tree−1) and the corresponding first-order parametric
sensitivity indices. The left panels show the simulated ranges of dDBH for (a) all, (b) small (diameter < 10 cm), (c) medium (10 cm <

diameter < 50 cm), and (d) large trees (diameter > 50 cm). Shown is the mean simulation (black line) with 95 % spread of the simulation
ensemble. Right panels show the sensitivity for the top six most important parameters for (e) density of all trees, (f) small tree density,
(g) medium tree density, and (h) large tree density, in order of importance based on the mean parametric sensitivity across years (red is the
most important and blue is the least important). The jumps seen in 10, 40, 70, and 100 years for small, medium, and large trees are due to
the temporal averaging mentioned in the materials and methods section. The figures also show sensitivities of the remaining parameters in
light grey (first-order sensitivity index for all other parameters) as well as the sensitivity of parameter interactions in dark grey (higher-order
sensitivity index for all parameters).

In this analysis, we assume the majority of
CLM4.5(FATES) parameters to be non-correlated with
uniform probability because our study is focused on the
model parametric sensitivity for model behaviors and there
is a limitation of data for estimating covariance among
the 80+ parameters. However, we do need to take care
of the correlation among parameters in the temperature
response functions (Appendix B) in order to generate
realistic temperature response curves. These parameters are
tested for correlation using a published dataset (Leuning,
2002), which showed that the photosynthetic parameters for
activation energy (e.g., Vc,max,ha) are not necessarily corre-
lated with the other photosynthetic parameters. However,
the parameters for deactivation energy (e.g., Vc,max,hd) and
those related to entropy terms (e.g., Vc,max,se) are highly
correlated, as expected (correlation of 0.99+). Thus, each
of these parameters’ samples are generated from the same
location in their relative parameter spaces, which maintains
their correlation.

2.4 Data and model setup

In this study, the CLM4.5(FATES) model simulations are set
up for a 1◦ by 1◦ grid in a moist-tropical forest in the state
of Pará, the Amazon, Brazil (7◦ S, 55◦W), which is a default
tropical setup for CLM. The climate conditions for this site
are from Qian et al. (2006), representative of data from 1948
to 1972 and recycled for the 130-year simulations (Fig. 1).
The CO2 concentration is set as 284.7 ppm. No nitrogen de-
position is simulated, as FATES currently does not have the
nutrient limitation yet. We initialized the runs with a near-
bare ground or a state with no vegetation but available seeds,
and simulated the forest dynamics for 130 years, which we
determined was enough time for the ecosystem to reach equi-
librium because simulated outputs and corresponding sen-
sitivity values for biomass, basal area, and various carbon
fluxes had stabilized by this time. By choosing to start from
near-bare ground and running the model until it reaches a
quasi-steady-state size distribution, rather than by examin-
ing short runs initialized from observed initial forest size dis-
tributions (e.g., Dietze et al., 2014), we are deliberately al-

Geosci. Model Dev., 12, 4133–4164, 2019 www.geosci-model-dev.net/12/4133/2019/
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Figure 3. Simulated temporal dynamics in tree density (NPLANT; N ha−1) and the corresponding first-order parametric sensitivity indices.
The left panels show the simulated ranges of tree density for all trees (a) and the corresponding fraction of (b) small (diameter < 10 cm),
(c) medium (10 cm < diameter < 50 cm), and (d) large trees (diameter > 50 cm). Right panels show the sensitivity for the top six most
important parameters for (e) all, (f) small, (g) medium, and (h) large trees, in order of importance. See Fig. 2 for details on legends.

lowing the ecosystem demographic structure itself to be an
outcome of the parametric variance rather than a separate,
possibly non-self-consistent, initial condition variance. The
fire component is turned off in view that the study site has
limited fire disturbances.

3 Results

In this section, we highlight the outputs of CLM4.5(FATES)
from the 5000 simulations obtained for the FAST analysis
and then show the important parameters that control vari-
ance in the outputs. We first investigate the forest demo-
graphic dynamics, diagnosing the growth and mortality pro-
cesses simulated in CLM4.5(FATES), i.e., outputs represent-
ing the change in diameter at breast height (dDBH), the mor-
tality rate, and the resulting basal area (BA). Then, we an-
alyze the carbon fluxes and stocks in the model simulations
including gross primary production (GPP), net primary pro-
duction (NPP), LAI, and total forest biomass.

3.1 Forest demographic dynamics: growth and
mortality

One of the key properties of CLM4.5(FATES) is that vegeta-
tion is represented as cohorts of varying sizes for more real-
istic simulation of light competition in the canopy. To illus-

trate how different parameters impact different size classes
of trees, we group various cohorts of trees into three size
classes for analysis purposes: small, medium, and large trees.
Since the model runs are initialized from a near-bare-ground
state, all simulated plants are considered “small” with an ini-
tial density of half-centimeter diameter saplings.

For the stem growth (dDBH averaged per tree; Fig. 2a–d),
small trees have lower rates of growth compared to medium
or large trees as they are mostly in the understory and thus
have a lack of light for photosynthesis. However, the frac-
tion of overall stem diameter growth is dominated by the
small trees (Fig. D2) due to their high densities (Fig. 3b).
The trees grow faster at the beginning of the simulation when
the canopy has not reached full closure. Correspondingly, the
parametric sensitivities tends to vary at the beginning of the
simulation and then become stable through time. The most
sensitive parameters for tree growth are the target storage car-
bon and stem allometry parameters; however, the importance
magnitude varies with time and sizes of trees (Fig. 2e–h). The
stem allometry is the most sensitive parameter at the begin-
ning of simulation (< 20 years), but the target carbon stor-
age parameter becomes dominant after simulation year 70
(Fig. 2a). We observe that the stem allometry coefficient c is
the dominant parameter that controls dDBH for medium and
large trees, and the target carbon storage is the most impor-
tant parameter for small trees. A higher value of stem allome-
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try coefficient c, or a higher allocation of carbon to stem, will
lead to a faster growth of diameter at breast height (DBH) in
the initial life stage of small trees (Fig. D3a). However, for
medium and large trees, a higher allocation of carbon to stem
can lead to lower proportion of carbon allocated to leaves
for productivity and thus a slower DBH growth (Fig. D3b,
c). This outcome supports hypothesis H2, which states the
importance of allometric parameters. The target carbon stor-
age determines the target amount of carbon for the plant to
store relative to the leaf biomass (see Appendix C for details).
Smaller trees have less stem biomass and are less impacted
by the stem allometry coefficient c parameter. Furthermore,
small trees are vulnerable to changes in the amount of tar-
get carbon storage which affects carbon allocation to growth
(see Eq. C3 in Appendix C). Our sensitivity analysis also
shows specifically important parameters for different sizes
of trees. For example, leaf allometry is important for small
trees, Vc,max25 for medium trees, and seed allocation for large
trees.

In this analysis, carbon starvation emerged as the main
driver for tree mortality (Fig. D4). The carbon-starvation-
based mortality uses a threshold of carbon storage to trigger
mortality (see Appendix C). Under shaded conditions, lower
carbon stores caused by the balance of NPP, respiration, and
tissue growth/maintenance should lead to a higher mortality
rate. As expected, the smaller tree size classes have much
higher mortality rates (Fig. 4b–d). The first-order sensitiv-
ity analysis of predicted mortality rate (percentage of mor-
tality per year) shows that the dominant parameter for pre-
dicting mortality of large trees is the target carbon storage
(Fig. 4h); however, for small and medium trees, other param-
eters such as allometric and photosynthetic parameters that
could potentially determine their height growth and compet-
itive advantages in the canopy are also important (Fig. 4f, g).
Specifically, for medium-sized trees, the mortality rate is
affected by both the stem allometry coefficient c and tar-
geted carbon storage (Fig. 4g). For the small trees, impor-
tant parameters include the photosynthetic capacity param-
eter (Vc,max25), stem allometry coefficient c, mortality rate
under stress, and maintenance respiration, with the target car-
bon storage having high sensitivity for small trees in the early
years (Fig. 4f).

The simulated basal area (BA) of the forest, which is the
total stem cross-sectional area per ground surface area, re-
sults from the combination of both DBH growth and mortal-
ity. The BA reaches equilibrium for different sizes of trees
around year 70 (Fig. 5a). Our FAST analysis shows that a
key parameter that controls BA in different tree size classes
is the stem allometry coefficient c (Fig. 5e–h), which is a
major parameter that determines the DBH growth (Fig. 2).
We also found that the target carbon storage parameter that
dominantly controls mortality is an important parameter for
the simulated BA (Fig. 5e–h). Different from parameters im-
portant for DBH growth at the individual tree level and mor-
tality rate, a new parameter that becomes important for BA

of small and medium trees is the minimum crown spread,
which determines the ratio of crown radius to DBH. A larger
crown spread can lead to a smaller number of trees in the
canopy and thus a lower BA (Fig. D5). The identified impor-
tant parameters for the simulated tree density and fraction
of trees are very similar to those identified for the simulated
BA, except that the leaf allometry coefficient b becomes very
important for simulated small tree densities (Fig. 3e–h) and
minimum height for fraction of trees (Fig. D6).

For the second-order sensitivity analysis, parametric in-
teractions between stem allometry coefficient c and the pro-
portion of carbon for seed allocation, and target carbon stor-
age are found to be important for the prediction of total BA
(Fig. D7). For trees of different sizes, parametric interactions
between stem allometry coefficient c and minimum crown
spread, target carbon storage, and maximum DBH are im-
portant for small, medium, and large trees, respectively. For
the prediction of dDBH and mortality, the contributions of
most parametric interactions are relatively small except for
large trees (Fig. D8). The interactions between stem allom-
etry coefficient c and the proportion of carbon for seed allo-
cation, maximum DBH, and stem allometry coefficient b are
important for the prediction of dDBH for large trees. With
respect to large tree mortality, the interaction between stem
allometry coefficient c and target carbon storage is found to
be important (Fig. D9).

3.2 Forest carbon cycles: carbon fluxes and stocks

To investigate the key parametric control on carbon fluxes
and stocks, we specifically investigate parameter sensitivi-
ties for GPP, NPP, LAI, and total forest biomass. Our results
show that GPP and NPP increased consistently for the first
10 years of the simulations, which is expected for a forest
growing from bare ground (Fig. 6). However, within a fairly
short period of 5–10 years, GPP, NPP, and LAI and their
variance reached a quasi-stable rate. This amount of time to
reach equilibrium is much shorter compared to the basal area
(Fig. 6a) and the total biomass accumulations (Fig. 6d).

The first-order sensitivity analysis based on FAST shows
that, for carbon fluxes of GPP and NPP, the photosynthetic
capacity parameter (Vc,max25) is the most sensitive parame-
ter (Fig. 6e, f), which supports hypothesis H1. Furthermore,
specifically for NPP, the respiration parameters such as the
growth respiration fraction and leaf maintenance respiration
rate show high sensitivity (Fig. 6f). For LAI, the leaf allom-
etry coefficient b is the most important, as it determines car-
bon allocation for leaves (Fig. 6g). The stem allometry coef-
ficient c is the most important for total biomass (Fig. 6h), as it
determines carbon allocation to the stem, which supports hy-
pothesis H2. See Fig. D10 for an easier comparison of para-
metric sensitivities for different model outputs. A common
sensitive parameter is the target carbon storage, which is im-
portant for GPP, NPP, LAI, and total biomass. This results
from the fact that the target carbon storage is a key driver
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Figure 4. Simulated temporal dynamics in tree mortality rates (fraction yr−1) and the corresponding first-order parametric sensitivity indices.
The left panels show the mortality rate for (a) all, (b) small (diameter< 10 cm), (c) medium (10 cm< diameter< 50 cm), and (d) large trees
(diameter> 50 cm). Right panels show the sensitivity for the top six most important parameters for (e) all, (f) small, (g) medium, and (h) large
trees, in order of importance. See Fig. 2 for details on legends.

for mortality especially for medium and large trees in the
simulations (Fig. 4e–h), which account for a large proportion
of total biomass (Fig. D11) and GPP (Fig. D12). This result
supports hypothesis H3. For the second-order sensitivity, the
contributions of most parametric interactions are relatively
small (Fig. D13), as the first-order sensitivity accounts for a
majority of the total variance in model outputs (Fig. 6e–h).

To understand how climate will impact sensitivity results,
we also calculated the Spearman rank correlation coefficients
between the first-order sensitivity index and the correspond-
ing climate drivers. Our results show that the sensitivity of
target carbon storage and maintenance respiration rate is neg-
atively correlated with annual mean precipitation and relative
humidity but is positively correlated with annual mean air
temperature. This suggests that they are more important dur-
ing the period of stressed conditions comprised of low pre-
cipitation, low humidity, and high temperature (Fig. 7). Sen-
sitivity to the leaf allometry coefficient b is positively cor-
related with annual mean precipitation and relative humid-
ity. This suggests the leaf carbon allocation is more impor-
tant under favorable environmental conditions for growth. In
general, our results suggests the climate has a larger impact
on the parametric sensitivities for short-term carbon fluxes
(GPP and NPP) and vegetation status (LAI) but has a smaller

impact on parametric sensitivities for long-term vegetation
carbon stocks.

Our bivariate spline analysis (Wahba, 1990) shows that,
for Vc,max25 and target storage carbon, an increase in either
of these parameters will cause an increase in the output of
GPP, NPP, LAI, and biomass (Fig. 8). For the parameters re-
lated to leaf and stem allometry, however, the relations may
differ depending on the output and the year of interest. At
year 130, the higher leaf allocation normally leads to higher
fluxes (NPP and GPP) but less biomass. Meanwhile, higher
stem allocation leads to higher biomass but smaller fluxes
(NPP and GPP). This suggests that the trade-offs between
carbon allocation to stem vs. leaf tissues leads to a corre-
sponding trade-off between carbon stocks and productivity
in the model predictions.

4 Discussion

4.1 Comparing parameter sensitivities to other models

While second-generation vegetation demographic models
such as CLM4.5(FATES) provide new opportunities to pre-
dict the global carbon cycle, the larger number of parame-
ters also creates challenges for identifying key processes for
further investigation. In this study, we apply a global sensi-
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Figure 5. Simulated temporal dynamics in basal area (BA, m2 ha−1) and the corresponding first-order parametric sensitivity indices. The
left panels show the simulated ranges of BA for (a) all, (b) small (diameter< 10 cm), (c) medium (10 cm< diameter< 50 cm), and (d) large
trees (diameter > 50 cm). Right panels show the sensitivity for the top six most important parameters for (e) all, (f) small, (g) medium, and
(h) large trees, in order of importance. See Fig. 2 for details on legends.

tivity analysis to determine the influential parameters over a
specified region of the parameter space. So far, several uncer-
tainty and sensitivity analyses have been conducted for size-
structured land surface models (Pappas et al., 2013; LeBauer
et al., 2013; Wang et al., 2013; Dietze et al., 2014; Collalti
et al., 2019). In comparison with previous sensitivity anal-
yses of size-structured models, our study considers a much
larger number of parameters, i.e.,> 80 compared with∼ 20–
35 parameters (Pappas et al., 2013; LeBauer et al., 2013;
Wang et al., 2013; Dietze et al., 2014), the difference in para-
metric sensitivity for different tree sizes, and the interactions
among the key parameters. In general, our analysis shows
similar results to sensitivity analysis on first-generation “big-
leaf” vegetation models (e.g., Sargsyan et al., 2014), which
show the importance of photosynthetic capacity, Vc,max25, for
predicting GPP and NPP. However, we do show important
parameters that are unique to LSMs with second-generation
vegetation demography. Specifically, results shown here in-
dicate the importance of leaf and stem allometry parameters,
which control dynamic carbon allocation strategies based on
size, and thus control the general vegetative state and size
structure of the forest (Waring et al., 1998; Waring and Run-
ning, 2010). Importantly, a significant amount of variabil-
ity in allometry is reported for different species and regions
of the world (Feldpausch et al., 2011; Dietze et al., 2008),

and thus it is critical to achieve an accurate parameterization
of allometry for second-generation vegetation demographic
models within LSMs. The importance of allometric parame-
ters could result from the fact that the relationship between
allometric coefficients and carbon allocation is highly non-
linear based on a power function (see Appendix A for de-
tails). This result is in agreement with the results from a re-
cent sensitivity analysis study using a size-structured vegeta-
tion model (Collalti et al., 2019). Our sensitivity analysis also
shows the importance of carbon storage for the prediction of
mortality rate and thus the total biomass. This is in agree-
ment with other sensitivity analyses of CLM which show the
plant mortality rate as a key parameter for the prediction of
total biomass (Sargsyan et al., 2014). However, we do want to
point out that there could be a potential bias as carbon starva-
tion is the main mechanism that kills trees in the simulations
in our study; however, in reality, there could be many other
causes of mortality such as wind, insects, and fire (see Mc-
Dowell et al., 2018 for a review). The current implementation
of hydraulic failure in CLM4.5(FATES) is only based on very
low soil moisture thresholds and more mechanistic repre-
sentation of plant hydrodynamics (e.g., Christoffersen et al.,
2016) could result in the importance of hydraulic traits for
mortality and vegetation dynamics. By exploring parametric
sensitivity for small, medium, and large trees, we show that
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the ranking of parameter importance changes with the size of
plants (e.g., Fig. 2). This result is in agreement with a recent
study that showed the influence of certain functional traits
varied with size (Falster et al., 2018).

In our analysis, we observed a number of key similarities
in model response to parameter variations in photosynthetic
capacity, mortality, and respiration parameters (Pappas et al.,
2013; LeBauer et al., 2013; Wang et al., 2013; Dietze et al.,
2014); however, there are differences in the order of param-
eter importance. For example, Dietze et al. (2014) showed
that growth respiration fraction was the most important pa-
rameter for the simulation of NPP, and Vc,max25 only ranked
as the seventh most important parameter. For our analysis,
Vc,max25 and growth respiration fraction are the first and sec-
ond most important parameters. This difference in parameter
sensitivity rank may result from the fact that Dietze et al.
(2014) used variable parameter ranges based on data (i.e., an
uncertainty quantification study), while our sensitivity anal-
ysis uses equal percentage variations (see details in the dis-
cussion “limitation of methods” subsection). We also found
that some parameters that are identified as important in other
studies are not found to be important in our analysis. For ex-
ample, Dietze et al. (2014) showed that water conductance
that determines the upper boundary of transpiration is the
second most important parameter for simulated NPP, but a
similar parameter (smpso; Table D2) that defines soil water
potential for opening stomata is not important in our analysis.
This could be related to the fact that our site is much wetter
than the temperate forests simulated by Dietze et al. (2014).
Pappas et al. (2013) showed that the root distribution param-
eter that determines the fraction of fine roots in the upper soil
layer is one of the top five parameters for the simulations of
vegetation carbon fluxes and stocks; however, in our sensitiv-
ity analysis, the two root distribution parameters (roota and
rootb; Table D2) are not important for both vegetation car-
bon fluxes and stocks. This difference could also result from
a wider range of variations (∼±30 %) in the study of Pappas
et al. (2013) compared to our 15 % variations of the default
parameters. Finally, our analysis shows the importance of al-
lometry parameters, which are not considered in many previ-
ous studies (Pappas et al., 2013; LeBauer et al., 2013; Wang
et al., 2013; Dietze et al., 2014).

4.2 Comparing simulations with observations

The goal of our study is not to reproduce the observations
but instead to identify important parameters that can be bet-
ter estimated for the model to fit observations. Thus, we lay
out potential parameter estimation improvements to achieve
this goal. We do want to highlight three caveats. First, im-
proved estimation of the most sensitive parameters may not
be most efficient if they have relatively small uncertainty
or variability across different species and locations. Second,
even if the estimates for most sensitive parameters are per-
fect, we may still not be able to fit model predictions to ob-

servations if there is deficiency in the representation of key
processes in the model. Third, the recycled climate drivers
from 1948 to 1972 may not match the observational periods.
Given observation data limitations for our site, we conduct a
qualitative comparison of our model simulations to ranges
reported in the literature for the tropics. Not surprisingly,
our model results show a variation of model–data mismatch
for key vegetation states. For LAI (Fig. 6c), our simulated
range is between ∼ 1.9 and 6.0 m2 m−2, which is lower than
the observed range of ∼ 3.0–6.9 m2 m−2 based on LAI esti-
mated from MODIS (Knyazikhin et al., 1999) during 2000–
2016 within a 0.5◦ window around our site. Our sensitivity
analysis showed that leaf allometry coefficient b and target
carbon storage are two key parameters for simulated LAI
(Fig. 6g), and we expect that a better estimation of these
parameters with data could potentially improve the model
simulations. For GPP (Fig. 6a), the simulated range is be-
tween ∼ 1.0 and 3.0 kg C m−2 yr−1, which is also lower than
the observed range of ∼ 2.4–3.7 kg C m−2 yr−1 based on ex-
trapolation from eddy flux tower observations and climate
during 1981–2010 (Jung et al., 2009). Our analysis suggests
that photosynthetic capacity, as represented by Vc,max25, tar-
get carbon storage, and top-of-canopy specific leaf area, is an
important parameter (Fig. 6a), and an improved estimation
of them could help improve model simulations of GPP. We
are not able to access on-site data for other model outputs.
Therefore, we compare our model outputs with ranges from
multiple tropical sites to evaluate their validity. For biomass
(Fig. 6d), the simulated range of ∼ 2.5–12.5 kg C m−2 is
lower than the observed range of ∼ 7.3–21.3 kg C m−2 from
21 transects within three tropical sites (Hunter et al., 2013).
For BA (Fig. 5a), the simulated range of∼ 5.0–30.0 m2 ha−1

is also lower than the observed range of∼ 17.1–35.2 m2 ha−1

from five tropical sites (Hunter et al., 2013). Our results show
that stem allometry coefficient c is the most important con-
trol on BA and biomass, and an improved parameterization
on stem allometry could help improve the model simula-
tions. For the DBH growth, there are large variances in the
observed values across different sites with the range of 0–
3 cm yr−1 (Lieberman et al., 1985; Worbes, 1999; Adams
et al., 2014). The simulated average DBH growth is be-
tween 0 and 0.4 cm yr−1 but could be as high as 4 cm yr−1

for medium and large trees (Fig. 2). Based on our sensitiv-
ity analysis (Fig. 2), we expected an improved parameteriza-
tion of both allometry coefficient c and target carbon storage
could help fit the model predictions to data.

We compare our mortality simulations with an extensive
dataset of observed mortality of 1781 species from 14 pan-
tropical large-area ForestGEO forest dynamics plots (John-
son et al., 2018). For this study, the forest plots ranged from
2 to 52 ha each, with 371 ha in total, in which all recorded
stems are ≥ 1 cm diameter at breast height. Our compari-
son shows that the CLM4.5(FATES) simulations of medium
and large tree mortality (Fig. 4c, d) are close to the 95 %
confidence interval of observed values, which is about ∼
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Figure 6. Simulated temporal dynamics in carbon fluxes and stocks, and the corresponding first-order parametric sensitivity indices. The
left panels show the simulated ranges for (a) GPP (kg C m−2 yr−1), (b) NPP (kg C m−2 yr−1), (c) LAI (m2 m−2), and (d) total biomass
(kg C m−2). Right panels show the sensitivity for the top six most important parameters for (e) all, (f) small, (g) medium, and (h) large trees,
in order of importance. See Fig. 2 for details on legends.

0.5 %–5.7 % per year. However, for small and medium trees
(Fig. 4b, c), the simulated mortality rate of∼ 15 %–30 % and
∼ 1 %–10 % is high when compared to the observed 95 %
confidence interval of mortality rate of ∼ 0.6 %–11.3 % and
∼ 0.8 %–3.0 % for small and medium trees, respectively. The
high predicted mortality rate of small trees could result from
the fact that the model predicts a very high mortality rate for
very small trees (< 1 cm), as they cannot survive after es-
tablishment due to low light conditions in the simulations.
Since the small trees have such a large fraction of the pop-
ulation in our simulations (Fig. 3b), the overall mortality
rate (Fig. 4a) of ∼ 15 %–30 % is also high when compared
to observations (∼ 0.6 %–11.3 %); however, if we separate
the mortality rate of very small trees from the calculation
of the overall mortality, then the simulated mortality rates
of 1 %–10 % (Fig. D14b) are in the range of observations.
The very high mortality rate range of smaller trees (∼ 10 %–
30 %; Fig. D14a) spans the reported seedling/sapling mor-
tality rate, e.g., ∼ 15 %–21 % per year from 1- to 20-year-
old tropical forest stands in Costa Rica (Dupuy and Chaz-
don, 2006). However, there is potential for improvement for
site-level simulations as the current recruitment algorithm
within CLM4.5(FATES) depends only on the availability of
seed bank but not on the density, light, and water availability.
The relatively high mortality rate of small and medium trees

could also be linked to the fact that CLM4.5(FATES) uses
the perfect plasticity approximation (PPA) to simulate the
canopy light availability for understory trees (Fisher et al.,
2018), which may create canopy closure too fast for the
small- and medium-sized trees to survive under low light
conditions. We expect that future improvements in recruit-
ment and representation of the light environment within the
PPA could be helpful for a better prediction of tree mortality
for small- and medium-sized trees. It is also possible that the
observed mortality rate for small trees could potentially be
underestimated if all the trees in a certain size classes died at
a shorter time frame than the census intervals. Our sensitiv-
ity analysis indicates that key model parameters that can be
better estimated for improved mortality predictions include
stem allometry parameters, Vc,max25, target carbon storage,
and mortality rate under stress (Fig. 4).

Another reason for the data–model discrepancy could
result from the limited representation of diverse tropical
species or traits with the simulation of a single PFT. This is a
limitation of many LSMs, as they typically only have two to
three PFTs for tropical forests (e.g., only evergreen and de-
ciduous for tropical trees within CLM). CLM4.5(FATES) has
the potential to better represent the trait diversity through trait
filtering under different environmental conditions (Fisher
et al., 2010, 2015). One critical component to incorporate
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Figure 7. Spearman’s correlation coefficients between climate drivers and six most important parameters identified for (a) GPP, (b) NPP,
(c) LAI, and (d) biomass.

traits into the model is to represent the trait trade-off and co-
ordination for different PFTs. Through our sensitivity analy-
sis, we have identified key parameters for vegetation dynam-
ics, which can be targeted for the representation of trait trade-
off and coordination in the tropics. For example, our study
shows that a higher stem carbon allocation could reduce the
GPP and a higher Vc,max25 could increase GPP (Fig. 8). The
potential exploration of trade-off and coordination between
these two parameters could be critical to resolve different
PFTs and represent the trait variations. Even though the sim-
ulated ranges of the model outputs are different than the ob-
servations, our sensitivity analysis should still be valid in
view that a primary end goal of this research is to identify im-
portant parameters that can be better estimated for the model
to better fit observations. For example, Holm et al. (2019) uti-
lized results from our study to implement their tropical forest
parameterization, specifically by increasing their target car-
bon storage parameter to obtain higher survival and lower
growth.

In addition to directly comparing the model outputs to ob-
servations, we want to highlight that the sensitivity analysis
will also allow us to explore the functional relationships be-
tween model parameters and outputs. Future synthesis stud-
ies that show these functional relationships using data across
different sites could be very useful to evaluate the fidelity of

model structure to represent the key processes that control
these relationships.

4.3 Limitation of methods

Our study is the first global sensitivity analysis for
CLM4.5(FATES); however, it is subjected to several limi-
tations that could be improved for future studies. First, our
study uses an arbitrary choice of parameter ranges (±15 %),
which determines the variance in the model outputs and the
corresponding results of the sensitivity analysis. However,
we expect that our analysis can reveal the importance of
parameters given equal percentage of variations, which can
help us gain a better understanding of the model structure.
We do acknowledge that uncertainty analysis studies that
specifically consider the potential ranges of values in trop-
ical forests based on observations could provide insights on
which additional measurements are needed to explain vari-
ance in the model prediction.

Second, we only consider the correlation in pairs of pa-
rameters that determine temperature responses for deactiva-
tion energy and entropy in photosynthesis. We do want to
point out that the potential correlation among other param-
eters (Díaz et al., 2016), such as the trade-off between mor-
tality and growth parameters and the correlation among co-
efficients for allometric equations, could affect the simulated
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Figure 8. Relations between outputs of CLM4.5(FATES), including GPP, NPP, LAI, and biomass (units shown in Fig. 6), and the most
sensitive parameters, i.e., Vc,max25 (units are µmolCO2 m−2 s−1), target storage carbon (unit is the ratio of leaf biomass), leaf and stem
allocation (unitless parameters) for simulation year 10 (red) and 130 (blue). Shown are the mean relations with the 95 % confidence intervals
in grey envelopes. These figures show how an output will generally increase or decrease when a given parameter is changed.

model output ranges and the sensitivity results. However, our
exploration of parameter sensitivity assuming their indepen-
dence could still help us understand the baseline parameter
control on model behaviors (Xu and Gertner, 2009). The
exploration of trade-offs and coordination among different
parameters requires data analysis for multiple traits of the
same species. The Predictive Ecosystem Analyzer (PEcAn)
framework (LeBauer et al., 2013) could be a useful tool to
synthesize plant trait data to estimate model parameter dis-
tributions. The challenge is that, even though there are great
efforts in the research community to compile plant trait data
across the globe (Kattge et al., 2011a, b), there are still lim-
ited datasets with observations of multiple traits for the same
species. Future uncertainty analysis studies that explicitly
consider the prior distributions and correlations for all the pa-
rameters can build on this analysis and gain further insights
on where the uncertainty in the model predictions comes
from.

Third, it is possible that the parameter sensitivity could
be different if we use different model inputs, different sites,
and different structures of subcomponents within the model.
For example, using site-level climate drivers, instead of the
reanalysis meteorological drivers used in this study (Qian
et al., 2006), could lead to different sensitivity values since
our analysis showed that parameter importance is quite sen-
sitive to different climate conditions. Furthermore, there are

ongoing development activities to improve different com-
ponents of the models. For example, there are current ef-
forts to incorporate different representations of tree allom-
etry within CLM4.5(FATES), which have different formula-
tions between size and biomass, e.g., Chave et al. (2014),
or the current formulation of the photosynthetic process in
the CLM4.5(FATES) can be replaced with a model that more
accurately represents the allocation of nitrogen and thus the
photosynthetic process (see Xu et al., 2013; Ali et al., 2016).
Therefore, model improvements such as these can affect cor-
responding sensitivity analysis results. To understand the im-
pact of site-level variations on model dynamics, similar sen-
sitivity analysis across different sites can be conducted to
understand how climate variability will affect the sensitivity
analysis results.

Finally, although the FAST method presented in this study
can provide a comprehensive analysis of the parameters that
control vegetation demography, it is mostly built on statisti-
cal relationships (e.g., Fig. 8). A complementary approach is
to use more tractable theoretical ecology models (e.g., Far-
rior et al., 2016 and Falster et al., 2018) to approximate the
underlying model input–output relationships, which can pro-
vide more mechanistic understanding of model behaviors.
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5 Conclusions

LSMs have many parameters that could potentially affect
the outcome of their simulations. In this study, we use the
FAST analysis to conduct a high-dimensional global sensi-
tivity analysis on CLM4.5(FATES). We use an intermediate
complexity of simulation: runs are sufficiently long to per-
mit short-term physiological variance to propagate into the
long-term forest demographic structure. Even though we do
not explore competitive dynamics between different PFTs,
our sensitivity analysis will guide us on the selection of
key plant traits for the consideration of trait trade-off and
coordination in order to improve PFT coexistence within
CLM4.5(FATES).

Our analyses show that the target carbon storage and stem
allometry parameters are important for the simulation of
DBH growth for individual trees and tree mortality. The pho-
tosynthetic parameter,Vc,max25, is the most important for the
simulation of carbon fluxes including GPP and NPP. The
combination of stem allometry, target carbon storage, and
Vc,max25 dominantly control the simulation of total BA and
long-term carbon stocks. These identified growth and sur-
vival parameters will help us better understand the key con-
trol of fast and slow carbon and vegetation dynamics within
the next generation of demographically enabled LSMs to-
ward improved model parameterization and model structure.

The results of the sensitivity analysis presented here can
be utilized to construct the parameter-output response sur-
face for the CLM4.5(FATES) model, which can assist fu-
ture efforts for model calibration or diagnosis. These find-
ings may help us better understand the overall model struc-
ture and guide the estimation of key model parameters with
significant control over vegetative processes in these models
for better model fitting to data. The FAST analysis provides
a promising means of analyzing complex LSM components
and can be a powerful tool in understanding the necessar-
ily high-dimensional representation of living systems within
Earth system models.

Code and data availability. To access the FATES source code,
visit https://github.com/NGEET/fates (last access: 15 May 2018).
The FAST methodology described herein is available at
https://sites.google.com/site/xuchongang/uasatoolbox (last ac-
cess: 15 May 2018). The version of the model codes used in
this paper and the corresponding model simulations from all
5000 parameter combinations as well as simulation of the default
parameter set are available at the NGEE tropics data archive
(https://doi.org/10.15486/ngt/1497413, Massoud et al., 2019b) and
also upon request from the corresponding authors.
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Appendix A: Allometry equations

The following equations are cohort-based calculations for al-
lometry in CLM4.5(FATES). Interested readers are referred
to Fisher et al. (2015) for more information. The parameters
used for the allometry equations include dbh2hm, dbh2hc,
dbh2bda , dbh2bdb, dbh2bdc, and dbh2bdd (all are unitless
variables). Specifically, the dead wood biomass (BD; kg C)
is calculated as a function of diameter (DBH; cm), height (h;
meter), and wood density (g cm−3):

BD= (dbh2bda)(hdbh2bdb )(DBHdbh2bdc )(densitydbh2bdd
wood ).

(A1)

The height (m) is calculated based on DBH (cm) as fol-
lows:

H = 10dbh2hc (DBHdbh2bdm). (A2)

Appendix B: Temperature response curve

The parameters used for the temperature response curve
equations include the equation to calculate the maximum car-
boxylation rate, Vc,max25, the maximum electron transport
rate, Jmax, and the triose phosphate use (TPU) limited car-
boxylation rate, TPU (also all parameters here are unitless)
(Fisher et al., 2015). The temperature response equations for
Vc,max,z, Jmax,z, and TPUz are

Vc,max,z =Vc,max,25(e
vcmaxha

(0.001rgas)(tfrz+25) )(1−
tfrz+ 25
tveg

)

(
vcmaxc

1+ e−vcmaxhd+(vcmaxse)(tveg)
) (B1)

Jmax,z =Jmax,25(e
jmaxha

(0.001rgas)(tfrz+25) )(1−
tfrz+ 25
tveg

)

(
jmaxc

1+ e−jmaxhd+(jmaxse)(tveg)
) (B2)

TPUz =tpu25(e
tpuha

(0.001rgas)(tfrz+25) )(1−
tfrz+ 25
tveg

)

(
tpuc

1+ e−tpuhd+(tpuse)(tveg)
), (B3)

where tfrz is the freezing point of water in Kelvin (273.15 K).

Appendix C: Carbon storage in CLM4.5(FATES)

The target carbon storage is the cushion parameter shown
in Table D3. Specifically, a higher value of this parameter
will lead to a higher allocation of carbon to storage and thus
a lower allocation to growth at the specific time step. Also,
carbon storage plays an important role for the simulated mor-
tality through the parameter that controls the mortality rate
under stress, stress_mort in Table D3. The tree will be un-
der stress when it has low carbon storage (< leaf biomass).

Therefore, the target carbon storage parameter and the mor-
tality rate under stress parameter play a large role in deter-
mining the level of mortality that occurs in the simulations.

Carbon storage, bstore (in kg C/cohort), plays a very im-
portant role in both growth and mortality (Fisher et al.,
2015). Specifically, CLM4.5(FATES) assumes a target car-
bon storage determined by the multiplication of leaf biomass
(bleaf) and the target carbon storage parameter (i.e., the tar-
get amount of carbon plants store relative to leaf biomass;
Scushion, variable cushion in Table D3). At the specific time,
the carbon balance for growth and storage is calculated as
follows:

C = NPP− Tmdfmd,min, (C1)

where Tmd is the maintenance respiration and fmd,min is the
minimum fraction of the maintenance demand (storage pri-
ority parameter in Table D1) that the plant must meet each
time step, which represents a life-history-strategy decision
concerning whether leaves should remain on in the case of
low carbon uptake (a risky strategy) or not be replaced (a
conservative strategy).

The fraction of the carbon balance for each cohort allo-
cated to the carbon storage pool (fstore) will be determined
by the following equations:

fstore = e
(−ftstore)

4
, (C2)

where

ftstore =max
(
0,

bstore

Scushionbleaf

)
. (C3)

Thus, the target carbon storage parameter, Scushion, can af-
fect carbon allocations. Specifically, a higher value of Scushion
will lead to a higher allocation of carbon to storage and thus
lower allocation to growth at the specific time step.

Carbon storage also plays an important role for the mor-
tality. Specifically, carbon starvation mortality (Mcs) is cal-
culated as follows:

Mcs = Smmax
(
0,1−

bstore

bleaf

)
, (C4)

where Sm is the stress mortality factor (i.e., stress_mort in
Table D3).
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Appendix D: Appendix figures and tables

Figure D1. Comparison of first-order parametric sensitivity for medium (10 cm < diameter < 50 cm) tree density averaged over 20, 30, and
40 years.

Figure D2. Simulated total change in diameter at breast height (dDBH) from CLM4.5(FATES) for all trees and its fractional distribution for
small (diameter < 10 cm), medium (10 cm < diameter < 50 cm), and large trees (diameter > 50 cm). Shown is the mean simulation (black
line) with 95 % spread of the simulation ensemble.
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Figure D3. Impacts of stem allometry on the change in diameter at breast height (dDBH) averaged over the simulation years 100–130 for
trees of different sizes. The shaded area shows the 95 % confidence interval of these relations.

Figure D4. Mortality outputs from CLM4.5(FATES), including the mechanisms of M1 – background mortality, M2 – hydraulic failure, M3
– carbon starvation, and M4 – impact mortality. The bottom panel shows the total mortality, which is the sum of M1–M4. Shown is the 95 %
(light grey) spread of the simulation ensemble, along with the mean simulation (black lines).
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Figure D5. Impacts of minimum crown spread on the basal area (BA) averaged over the simulation years 100–130 for trees of different sizes.
The shaded area shows the 95 % confidence interval of these relations.

Figure D6. First-order parametric sensitivity indices for tree density of all trees (a) and the corresponding fraction of (b) small (diameter
< 10 cm), (c) medium (10 cm < diameter < 50 cm), and (d) large trees (diameter > 50 cm). See Fig. 2 for details on legends.
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Figure D7. Second-order sensitivity index of the model parameters for the basal area (BA) outputs from CLM4.5(FATES) for (a) all trees,
(b) small trees, (c) medium trees, and (d) large trees. Shown are the top eight most important parameter interactions in order of importance
based on the mean parametric sensitivity across years (red is the most important and blue is the least important)

Figure D8. Second-order sensitivity index of the model parameters for the change in diameter at breast height (dDBH) outputs from
CLM4.5(FATES) for (a) all trees, (b) small trees, (c) medium trees, and (d) large trees. Shown are the top eight most important param-
eter interactions in order of importance based on the mean parametric sensitivity across years (red is the most important and blue is the least
important).
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Figure D9. Second-order sensitivity index of the model parameters for the mortality outputs from CLM4.5(FATES) for (a) all trees, (b) small
trees, (c) medium trees, and (d) large trees. Shown are the top eight most important parameter interactions in order of importance based on
the mean parametric sensitivity across years (red is the most important and blue is the least important).

Figure D10. Comparisons of parametric sensitivities and the corresponding 95 % confidence intervals for different model outputs at year
130. Shown are the identified four most important parameters for (a) GPP, (b) NPP, (c) LAI, and (d) total biomass.
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Figure D11. Fraction of total biomass for trees of different sizes, including small (diameter< 10 cm), medium (10 cm < diameter< 50 cm),
and large trees (diameter > 50 cm).

Figure D12. Fraction of total GPP for trees of different sizes, including small (diameter < 10 cm), medium (10 cm < diameter < 50 cm),
and large trees (diameter > 50 cm).
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Figure D13. Second-order sensitivity index of the model parameters for the GPP, NPP, LAI, and biomass outputs from CLM4.5(FATES).
Shown are the top eight most important parameter interactions in order of importance based on the mean parametric sensitivity across years
(red is the most important and blue is the least important).

Figure D14. Mortality outputs from CLM4.5(FATES) for trees with DBH smaller than 5 cm (a) and all trees with DBH between 5 and
10 cm (b). Shown is the 95 % (light grey) spread of the simulation ensemble, along with the mean simulation (black lines).
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Table D1. Parameter sets used in this study – part 1.

Name Variable name Units Default Lower Upper

Allocation and allometry parameters

Height allometry coefficient m dbh2hm (–) 0.64 0.54 0.74
Height allometry coefficient c dbh2hc (–) 0.37 0.31 0.43
Leaf allometry coefficient a dbh2bla (–) 0.042 0.036 0.048
Leaf allometry coefficient b dbh2blb (–) 1.56 1.33 1.79
Leaf allometry coefficient c dbh2blc (–) 0.55 0.47 0.63
Leaf allometry SLA scaler dbh2bl_slascaler (–) 0.03 0.025 0.035
Stem allometry coefficient a dbh2bda (–) 0.069 0.059 0.079
Stem allometry coefficient b dbh2bdb (–) 0.57 0.49 0.66
Stem allometry coefficient c dbh2bdc (–) 1.94 1.65 2.23
Stem allometry coefficient d dbh2bdd (–) 0.93 0.79 1.07
SAI scaler SAI scaler (–) 0.05 0.043 0.058
Ratio of sapwood to leaf area sapwood-ratio (m−1) 0.001 0.00085 0.00115
Fraction of root to leaf biomass froot_leaf (g C g C−1) 1 0.85 1.15
Seed allocation seed_alloc (0–1) 0.1 0.085 0.115
Fraction of aboveground stem ag_biomass (0–1) 0.6 0.51 0.69
Crown depth crown (0–1) 0.5 0.43 0.58
Maximum crown spread max spread (cm m−2) 0.3 0.25 0.35
Minimum crown spread min spread (cm m−2) 0.18 0.15 0.21
Root distribution coefficient a roota (m−1) 7 5.95 8.05
Root distribution coefficient b rootb (m−1) 1 0.85 1.15
Maximum DBH max_dbh (cm) 68 57.8 78.2
Wood density wood_density (–) 0.7 0.60 0.80
Clone allocation clone_alloc (0–1) 0.75 0.64 0.86
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Table D2. Parameter sets used in this study – part 2.

Name Variable name Units Default Lower Upper

Regrowth parameters

Initial seedling density initd (m−2) 0.8 0.68 0.92
Seed rain seed_rain (kg C m−2 yr−1) 0.28 0.24 0.32
Minimum height hgt_min (m) 1.25 1.06 1.44

Photosynthetic and respiration parameters

Stomata conductance slope bb_slope (–) 9 7.65 10.35
Vc,max25 fnitr (µmolCO2 m−2 s−1) 60 51 69
Leaf C : N leafcn (g C g N−1) 30 25.5 34.5
Storage priority leaf_stor_priority (0–1) 0.8 0.68 0.92
Top-of-canopy SLA slatop (m2 g C−1) 0.012 0.010 0.014
Growth respiration fraction grperc (–) 0.3 0.26 0.34
Maintenance respiration lmr25top (µmolCO2 m−2 s−1) 0.71 0.60 0.82
Soil water potential for stomata closure smpso (mm) −2.55×104

−2.93×104
−2.16×104

Soil water potential for opening stomata smpso (mm) −6.60×104
−7.59×104

−5.61×104

Temperature response parameters

Vc,max temperature coefficient ha vcmaxha (–) 6.53×104 5.55×104 7.51×104

Jmax temperature coefficient ha jmaxha (–) 4.35×104 3.70×104 5.00×104

TPU temperature coefficient ha tpuha (–) 5.31×104 4.51×104 6.10×104

Maintenance respiration coefficient ha lmrha (–) 4.63×104 3.94×104 5.33×104

Vc,max temperature coefficient hd vcmaxhd (–) 14.92×104 12.68×104 17.16×104

Jmax temperature coefficient hd jmaxhd (–) 15.20×104 12.92×104 17.48×104

TPU temperature coefficient hd tpuhd (–) 15.06×104 12.80×104 17.32×104

Maintenance respiration coefficient hd lmrhd (–) 15.06×104 12.80×104 17.32×104

Vc,max temperature coefficient se vcmaxse (–) 485 412 558
Jmax temperature coefficient se jmaxse (–) 495 420 570
TPU temperature coefficient se tpuse (–) 490 416 564
Maintenance respiration coefficient se lmrse (–) 490 416 564
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Table D3. Parameter sets used in this study – part 3.

Name Variable name Units Default Lower Upper

Mortality parameters

Background mortality b_mort (yr−1) 0.014 0.012 0.016
Target carbon storage cushion ratio of leaf biomass 1.2 1.02 1.38
Mortality rate under stress stress_mort (yr−1) 0.6 0.51 0.69
Understory mortality rate understory_death (–) 0.56 0.48 0.64
Seed mortality rate sd_mort (yr−1) 0.98 0.83 1.0
Hydraulic failure threshold hf_sm_threshold (–) 1.00×10−6 8.5×10−7 1.15×10−6

Turnover parameters

Leaf longevity leaf_long (years) 1.5 1.28 1.72
Root longevity root_long (years) 1 0.85 1.15
Stem Turnover alpha_stem (years) 0.01 0.0085 0.0115

Radiation parameters

Leaf reflectance: near IR rholnir (0–1) 0.45 0.38 0.52
Leaf reflectance: visible rholvis (0–1) 0.1 0.085 0.115
Stem reflectance: near IR rhosnir (0–1) 0.39 0.33 0.45
Stem reflectance: visible rhosvis (0–1) 0.16 0.14 0.18
Leaf transmittance: near IR taulnir (0–1) 0.25 0.21 0.29
Leaf transmittance: visible taulvis (0–1) 0.05 0.043 0.058
Stem transmittance: near IR tausnir (0–1) 1.00×10−3 8.5×10−4 1.15×10−3

Stem transmittance: visible tausvis (0–1) 1.00×10−3 8.5×10−4 1.15×10−3

Leaf orientation index xl (−0.4< xl< 0.6) 0.1 0.085 0.115

Competition parameters

Competitive exclusion parameter comp_excln (–) 0.1 0.085 0.115

Geosci. Model Dev., 12, 4133–4164, 2019 www.geosci-model-dev.net/12/4133/2019/



E. C. Massoud et al.: Parametric sensitivity analysis for CLM4.5(FATES) 4159

Table D4. Parameter sets used in this study – part 4.

Name Variable name Units Default Lower Upper

Phenology parameters

Drought deciduous threshold ed_phdrought−threshold (0–1) 0.15 0.13 0.17
Phenology coefficient a ed_pha (–) −68 −78.2 −57.8
Phenology coefficient b ed_phb (–) 638 542.3 733.7
Phenology coefficient c ed_phc (–) −1.00×10−3

−1.15×10−3
−8.5×10−4

Chilling day temperature ed_phchiltemp
◦C 5 4.25 5.75

Cold day temperature ed_phcoldtemp
◦C 7.5 6.4 8.6

Cold days for leaf drop-off ed_phncolddayslim days 5 4.3 5.8
Minimum days before leaf on ed_phmindayson days 30 25 35
Minimum days before leaf drops ed_phdoff−time days 100 85 115
Seed turnover seed_turnover (yr−1) 0.51 0.43 0.59
Germination rate germination_timescale (yr−1) 0.5 0.43 0.58

Aerodynamic parameters

Leaf dimension dleaf (m) 0.04 0.034 0.046
Momentum roughness length z0mr (–) 0.075 0.064 0.086
Displacement height ratio displar (m) 0.67 0.57 0.77

Additional parameters

Freeze-tolerant temperature freezetol (–) 1000 850 1150
Respiration response factor to drought resp_drought_response (–) 0.5 0.43 0.58
Soil moisture factor for growth soilbeta (–) 2000 1700 2300
Maximum leaf water potential leafwatermax (–) 0.1 0.085 0.115
Root water resistance rootresist (–) 200 170 230
Dispersal distance dispersal (–) 0.5 0.43 0.58
Cohort fuse tolerance profile_tol (–) 0.7 0.60 0.80
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