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Abstract

Many fundamental low-rank optimization problems, such as
matrix completion, phase retrieval, and robust PCA, can be for-
mulated as the matrix sensing problem. Two main approaches
for solving matrix sensing are based on semidefinite program-
ming (SDP) and Burer-Monteiro (B-M) factorization. The
former suffers from high computational and space complex-
ities, whereas the latter may return a spurious solution due
to the non-convexity of the problem. The existing theoreti-
cal guarantees for the success of these methods have led to
similar conservative conditions, which may wrongly imply
that these methods have comparable performances. In this
paper, we shed light on some major differences between these
two methods. First, we present a class of structured matrix
completion problems for which the B-M methods fail with
an overwhelming probability, while the SDP method works
correctly. Second, we identify a class of highly sparse matrix
completion problems for which the B-M method works and
the SDP method fails. Third, we prove that although the B-M
method exhibits the same performance independent of the
rank of the unknown solution, the success of the SDP method
is correlated to the rank of the solution and improves as the
rank increases. Unlike the existing literature that has mainly
focused on those instances of matrix sensing for which both
SDP and B-M work, this paper offers the first result on the
unique merit of each method over the alternative approach.

1 Introduction
Low-rank matrix recovery problems have ubiquitous applica-
tions in machine learning and data analytics, including col-
laborative filtering (Koren, Bell, and Volinsky 2009), phase
retrieval (Candes et al. 2015; Singer 2011; Boumal 2016;
Shechtman et al. 2015), motion detection (Fattahi and So-
joudi 2020), and power system state estimation (Jin et al.
2020; Zhang, Madani, and Lavaei 2017; Jin et al. 2019). This
problem is formally defined as follows: Given a measure-
ment operator A(·) : Rm×n 7→ Rd returning a d-dimensional
measurement vector A(M∗) from a low-rank ground truth
matrix M∗ ∈ Rm×n with rank r, the goal is to obtain a ma-
trix with rank less than equal to r that conforms with the
measurements, preferably the ground truth matrix M∗. This

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem can be stated as the feasibility problem

find M ∈ Rm×n (1)
s.t. A(M) = A(M∗)

rank(M) ≤ r.

While the measurement operator A can be nonlinear as in the
case of one-bit matrix sensing (Davenport et al. 2014) and
phase retrieval (Shechtman et al. 2015), matrix sensing and
matrix completion that are widely studied have linear mea-
surement operators (Candès and Recht 2009; Recht, Fazel,
and Parrilo 2010). We focus on the matrix sensing and ma-
trix completion problems throughout this paper. Despite the
linearity of A, there are two types of problems depending on
the structure of the ground truth matrix M∗. The first type,
symmetric problem, consists of a low-rank positive semidef-
inite ground truth matrix M∗ ∈ Rn×n, whereas the second
type, asymmetric problem, consists of a ground truth matrix
M∗ ∈ Rm×n that is possibly sign indefinite and non-square.
Since each asymmetric problem can be converted to an equiv-
alent symmetric problem (Zhang, Bi, and Lavaei 2021a), we
study only the symmetric problem in this paper.

The matrix sensing and completion problems have lin-
ear measurements; hence, the first constraint in problem (1)
is linear. Therefore, the only nonconvexity of the problem
arises from the nonconvex rank constraint. Earlier works on
these problems focused on their convex relaxations by pe-
nalizing high-rank solutions (Candès and Recht 2009; Recht,
Fazel, and Parrilo 2010; Candès and Tao 2010). They utilized
the nuclear norm of a matrix as the convex surrogate of the
rank function. This led to semidefinite programming (SDP)
relaxations, which solve the original non-convex problems
exactly with high probability based on some assumptions
on the linear measurement operator and the ground truth
matrix, such as the Restricted Isometry Property (RIP) and
incoherence conditions. High computational time and stor-
age requirements of the SDP algorithms incentivized the
implementation of the B-M factorization approach (Burer
and Monteiro 2003). This approach factorizes the symmetric
matrix variable M ∈ Rn×n as M = XXT for some matrix
X ∈ Rn×r, which obviates imposing the positive semidef-
initeness and rank constraints. Although the dimension of
the decision variable reduces dramatically when r is small,
the problem is still nonconvex since its objective function is
nonconvex in terms of the factorized X.
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Problem Formulation
Formally, the SDP formulation of the matrix sensing problem
uses the nuclear norm of the variable, ∥M∥∗, to serve as a
surrogate of the rank, and replaces the rank constraint in (1)
with an objective to minimize ∥M∥∗. Due to the symmetricity
and positive semidefiniteness of the variable, the nuclear
norm is equivalent to the trace of the matrix variable M.
Hence, the SDP formulation can be written as

min
M∈Rn×n

tr(M) s.t. A(M) = b, M ⪰ 0, (2)

where b = A(M∗) = [⟨A1,M
∗⟩, . . . , ⟨Ad,M

∗⟩]T is given
and {Ai}di=1 ∈ Rn×n are called sensing matrices. Moreover,
the matrix completion problem is a special case of the matrix
sensing problem with each sensing matrix measuring only
one entry of M∗. We can represent the measurement operator
A as AΩ : Rn×n 7→ Rn×n for this special case, which is
defined as follows:

AΩ(M)ij :=

{
Mij if (i, j) ∈ Ω

0 otherwise,

where Ω is the set of indices of observed entries. We denote
the measurement operator as MΩ := AΩ(M) for simplicity.
Besides the SDP formulation, the B-M factorization formula-
tion of the matrix sensing (MS) and matrix completion (MC)
problems can be stated as

(MS) min
X∈Rn×r

g
[
A(XXT )− b

]
, (3a)

(MC) min
X∈Rn×r

g
[
(XXT −M∗)Ω

]
, (3b)

where g(·) : Rd 7→ R is some twice continuously differen-
tiable function such that 0n×n is its unique minimizer and the
Hessian of g(·) is positive definite at 0n×n. These assump-
tions are satisfied by the common loss functions considered in
the literature. The main objective of this paper is to compare
the SDP and B-M methods for the MC and MS problems.

Background and Related Work
SDP formulation (2) can be used to solve the matrix sensing
problem if the sensing matrices are sampled independently
from a sub-Gaussian distribution and the number of mea-
surements d is large enough (Recht, Fazel, and Parrilo 2010;
Recht, Xu, and Hassibi 2008). This is also a sufficient con-
dition for the sensing matrices to satisfy the RIP condition
with high probability, which is defined below:
Definition 1 (RIP). (Candès and Recht 2009) The linear
map A : Rn×n 7→ Rm is said to satisfy δp-RIP if there is a
constant δp ∈ [0, 1) such that

(1− δp)∥M∥2F ≤ ∥A(M)∥2 ≤ (1 + δp)∥M∥2F
holds for all matrices M ∈ Rn×n satisfying rank(M) ≤ p.

The RIP constant δp represents how similar the linear
operator A is to an isometry, and various upper bounds
on δp have been proposed to serve as sufficient conditions
for the exact recovery (meaning that one can recover the
ground truth M∗ by solving the SDP problem). A few no-
table ones include δ4r <

√
2− 1 in (Candes and Plan 2010),

δ5r < 0.607, δ3r < 0.472 in (Mohan and Fazel 2010), and
δ2r < 1/2, δ3r < 1/3 in (Cai and Zhang 2013). On the other
hand, when the sensing matrices are not sampled indepen-
dently from a sub-Gaussian distribution or when the RIP
condition is not met, the SDP formulation may still recover
the ground truth matrix with a high probability. This is the
case for MC problems for which RIP fails to hold while SDP
works as long as entries of observation follow a Bernoulli
model (Candès and Recht 2009; Candès and Tao 2010).

However, recent works have shown that if we use the B-M
method instead of the SDP approach, we can still recover
the ground truth matrix via first-order methods under similar
RIP or coherence assumptions in both the matrix sensing and
matrix completion cases (Ge, Jin, and Zheng 2017; Bhojana-
palli, Neyshabur, and Srebro 2016; Park et al. 2017; Zhang
et al. 2018; Zhu et al. 2018; Zhang, Sojoudi, and Lavaei 2019;
Zhang and Zhang 2020; Bi and Lavaei 2021; Ha, Liu, and
Barber 2020; Zhu et al. 2021; Zhang 2021; Zhang, Bi, and
Lavaei 2021b; Ma et al. 2022; Ma and Sojoudi 2022). Namely,
the state-of-the-art result states that as long as δr̃+r < 1/2
for the matrix sensing problem, there exists no spurious local
minima for an over-parametrized B-M formulation and the
gradient descent algorithm can recover M∗ exactly (Zhang
2021). Here, r̃ ≥ r is the search rank that we choose manu-
ally in the B-M formulation. If we know the value of r, we
can set r̃ to r, making the B-M approach enjoy the same
RIP guarantee as the SDP approach. Since the B-M approach
enjoys far better scalability, it has become an increasingly
popular tool for solving the matrix sensing problem.

Nevertheless, the B-M approach cannot be routinely used
without careful consideration since it could fail on easy (from
an information-theoretic perspective) instances of the prob-
lem as demonstrated in (Yalçın et al. 2022), especially in
cases when the RIP condition is not satisfied.

Thus, it is important to compare and contrast both the SDP
and B-M approaches to discover which method is superior
to the other one. This comparison is timely since specialized
sparse SDP algorithms have become more efficient in recent
years, making the SDP method more practical than before
(Zhang and Lavaei 2021; Yurtsever et al. 2017, 2021). In this
paper, we show that the SDP approach is more powerful than
the B-M method as far as the RIP measure is concerned. We
also discover that the B-M method is able to solve certain
instances for which the SDP approach fails. This means that
none of these techniques is universally better than the other
one and the best technique should be chosen based on the na-
ture of the problem. This work provides the first step towards
understanding the trade-off between a well-known convex
relaxation and first-order descent algorithms applied to the
B-M factorization formulation.

Our Motivation and Contributions
This research problem is motivated by the preliminary simu-
lations conducted. Our goal is to understand when the B-M
factorization and SDP formulation methods can successfully
recover the ground-truth matrix and delineate the instances
for which one would succeed whereas the other would fail.
The results are presented in Tables 1 and 2. We generated
synthetic matrix completion problems with symmetric pos-
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p %B-M Works
SDP Fails

%SDP Works
B-M Fails % Both Work

0.1 0 % 0 % 0 %
0.2 0 % 9 % 1 %
0.3 1 % 24 % 16 %
0.4 1 % 27 % 41 %
0.5 1 % 21 % 63 %
0.6 1 % 16 % 77 %
0.7 1 % 11 % 86 %
0.8 5 % 4 % 78 %
0.9 13 % 2 % 85 %

Table 1: Success Rate of the B-M and SDP Methods for
Random Observations for Rank-1 Ground Truth Matrices

p %B-M Works
SDP Fails

%SDP Works
B-M Fails % Both Work

0.1 0 % 0 % 0 %
0.2 0 % 0 % 0 %
0.3 0 % 6 % 0 %
0.4 0 % 22 % 9 %
0.5 0 % 23% 30 %
0.6 1 % 25 % 46 %
0.7 1 % 20 % 64 %
0.8 4 % 14 % 76 %
0.9 11 % 5 % 82 %

Table 2: Success Rate of the B-M and SDP Methods for
Random Observations for Rank-2 Ground Truth Matrices

itive semidefinite ground truth matrices with dimensions
n = 5, n = 10, and n = 20. An entry of the ground truth
matrix is observed independently with probability p. 1000
different instances are constructed for each p and n. The B-
M factorization problem is solved with a gradient descent
algorithm and SDP formulation is solved by using the CVX
solver. We report the percentage of times each method suc-
cessfully recovers the ground truth matrix and we take the
average of the success rate for various problem dimensions n.
As seen from the tables, there are various instances where one
method would work successfully while the other one fails.
Therefore, our goal is to understand why and when these
situations arise. We provide a comparative analysis between
the SDP approach and the B-M method. We first present the
advantages of the SDP approach over the B-M method:

1. First, we focus on an important class of MC problems
recently studied in (Yalçın et al. 2022). That paper has
shown that even though this class has low information-
theoretic complexity, the B-M method would utterly fail
and the probability of success via first-order methods is
almost zero. We prove that the SDP method successfully
solves this class and, therefore, SDP may not suffer from
the unusual behavior of B-M with regard to easy instances
of MC. This also implies that the information-theoretic
and optimization complexities are expected to be more
aligned for SDP than B-M.

2. We investigate a class of MS problems found in the recent
paper (Zhang et al. 2022). Each MS instance belonging to
this class satisfies δ2-RIP with r = 1 for some δ > 1/2

such that the B-M formulation leads to O((1 − δ)−1)
spurious solutions and this number goes to infinity as δ
approaches 1. We show that although each instance is
extremely non-convex based on the number of spurious
solutions, the SDP method successfully solves all of the
problems in this class. This implies that, unlike the B-M
method, the success of the SDP approach is not directly
correlated to the presence of many spurious solutions.

3. The recent paper (Zhang, Bi, and Lavaei 2021a) has shown
that the sharpest RIP bound for the success of the B-M
method on the MS problem is 1/2 and this is independent
of the rank r. This is an undesirable result since high-rank
problems have lower information-theoretic complexity
than low-rank problems. We derive a sufficient RIP bound
for the SDP method and show that it can increase from
1/2 to 1 as the rank r becomes larger. This implies that the
SDP approach does not suffer from a major shortcoming
of the B-M method.

Despite the above advantages, we show that the SDP ap-
proach is not universally better than the B-M method. To
prove this, we identify a class of MC problems with O(n)
observations in the rank-1 case for which B-M works while
SDP fails. It is clear from these comparisons that although
the B-M approach is known to be more powerful due to its
scalability property, the SDP approach enjoys some unique
merits and deserves to be revisited, especially in light of the
advancements of fast SDP solvers (Zhang and Lavaei 2021;
Yurtsever et al. 2017, 2021)

2 Notations
[n] represents the set of integers from 1 to n. Lower-case
bold letters, namely x, represent vectors and capital bold
letters, namely X, represent matrices. In and 0n×n refer to
the identity matrix and zero matrix of size n×n, respectively.
∥x∥ denotes the Euclidean norm of x, ∥X∥ and ∥X∥F are
the 2-norm and the Frobenius norm of X, respectively. For
x, [x]i denotes the i-th entry and [x]i:j denotes the subvector
of entries from index i to index j for i < j. For X, [X]i:j,k:l
denotes the submatrix with rows between i and j and columns
between k and l with i < j and k < l. Let ⟨A,B⟩ =
tr(ATB) be the inner product between matrices. For a matrix
X, vec(X) is the usual vectorization operation by stacking
the columns of the matrix X into a vector. For a vector x ∈
Rn2

, mat(x) converts x to a square matrix and matS(x)
converts x to a symmetric matrix, i.e., mat(x) = X and
matS(x) = (X +XT)/2, where X ∈ Rn×n is the unique
matrix satisfying x = vec(X). The notations X ⪰ 0 and
X ≻ 0 mean that the matrix X is positive semidefinite (PSD)
and positive definite (PD), respectively. We use ⌈·⌉ and ⌊·⌋
to denote the ceiling and floor operators, respectively. The
cardinality of a set S is shown as |S|.

3 Advantages of the SDP Approach
B-M Fails While SDP Succeeds
In this section, we focus on a class of MC instances that
was first proposed in (Yalçın et al. 2022) for which the B-M
factorization fails. We focus on the matrix completion prob-
lem since it is the most common special case of the matrix
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sensing problem that does not satisfy the RIP condition. We
show that while the B-M approach fails to recover M∗, the
SDP approach can provably find M∗.

We first give an introduction to this class of MC instances.
Consider a rank-r ground truth matrix M∗ ∈ Sn

+ with r ≥ 1
and n ≥ 2r. Let m := n/r and assume without the loss of
generality that n is divisible by r. We decompose the ground
truth matrix into blocks of dimension r × r; thus, M∗ is an
m × m block matrix whose block element at the position
(i, j) is denoted as M∗

i,j for i, j ∈ [m]. We require some
graph-theoretic notions before introducing the underlying
class of MC instances.

Definition 2 (Induced Measurements). Let G = (G1,G2) =
(V, E1, E2) be a pair of undirected graphs with the node set
V = [m] and the disjoint edge sets E1, E2 ⊂ [m] × [m],
respectively. The induced measurement set Ω(G) is defined as
follows: if (i, j) ∈ E1, then the entire block M∗

i,j is observed;
if (i, j) ∈ E2, then all nondiagonal entries of the block M∗

i,j
are observed; otherwise, none of the entries of the block is
observed. G is referred to as the block sparsity graph.

We represent the general problem (1) with the linear
measurement operator A and rank-r ground truth matrix
M∗ ∈ Rn×n as PM∗,A,n,r. If this is a matrix completion
problem with the measurement set Ω, then this special case
of the same problem is denoted as PM∗,Ω,n,r. Based on this
and Definition 2, a low-complexity class of MC instances
will be introduced. These instances have a low complexity
because graph-theoretical algorithms can solve them in poly-
nomial time in terms of n and r.

Definition 3 (Low-complexity class of MC instances). De-
fine L(G, n, r) to be the class of low-complexity MC instances
PM∗,Ω,n,r with the following properties:
i) The ground truth M∗ ∈ Sn

+ is rank-r.
ii) The matrix M∗

i,j ∈ Rr×r is rank-r for all i, j ∈ [m].
iii) The measurement set Ω = Ω(G) is induced by G =

(G1,G2), where G1 is connected, non-bipartite, and its
vertices have self-loops.

The next theorem borrowed from (Yalçın et al. 2022) illus-
trates the failure of the B-M factorization method.

Theorem 1. Consider a maximal independent set S(G1) of
G1 such that the induced subgraph by vertices in S , G2[S], is
connected. There exists an instance in L(G, n, r) for which
the problem (3b) has at least 2r|S(G1)|−2r spurious local min-
ima. In addition, the randomly initialized gradient descent
algorithm converges to a global minimum with probability at
most O(2−r|S(G1)|), while there is a graph-theoretical algo-
rithm that can solve the problem in O(n2/r2 + nr2) time.

The proof of Theorem 1 utilizes the Implicit Function The-
orem (IFT). Specifically, their work has generated ground
truth matrices M∗ for which the B-M method has 2r|S(G1)|

global solutions and only 2r of them correspond to the cor-
rect completion of the M∗. A generic small perturbation of
the problem results in a new instance of an MC problem
that belongs to the low-complexity class of MC instances.
The conditions on G1 guarantee that the perturbed problem
belongs to the low-complexity class, while the conditions

on G2 guarantee that the Hessian of the objective function
of the unperturbed problem is PD at the global solutions.
Since the instances in the low-complexity class are well de-
fined, the new perturbed problem has a unique completion
with 2r possible global solutions for the B-M method. On
the other hand, the other stationary points that correspond to
global solutions of the unperturbed problem must be spuri-
ous local minima of the new instance. This is concluded by
using the IFT. The perturbation that yields a new instance in
the low-complexity class of the MC problem is achieved
by perturbing the ground truth matrix M∗ = X∗(X∗)T

by a small and generic perturbation ϵ ∈ Rn×r. The new
ground truth matrix is M∗(ϵ) = X∗(ϵ)(X∗(ϵ))T , where
X∗(ϵ)i = X∗

i + ϵi if i ∈ S(G1) and X∗(ϵ)i = ϵi otherwise
and rank(X∗

i ) = rank(X∗
i + ϵi) = r, ∀i ∈ [m]. A generic

perturbation ϵ does not belong to a measure zero set in Rn×r.
It is desirable to study how the SDP method performs on

this low-complexity class of MC instances. We will present
the result for a larger class of problems that contains all
instances discussed in Theorem 1.
Theorem 2. Given G = (G1,G2) = (V, E1, E2), con-
sider any maximal independent set S(G1). Consider also
M∗(ϵ) = X∗(ϵ)(X∗(ϵ))T for any arbitrary ϵ ∈ Rn×r,
where X∗(ϵ)i = X∗

i + ϵi if i ∈ S(G1) and X∗(ϵ)i = ϵi
otherwise and rank(X∗

i ) = rank(X∗
i + ϵi) = r, ∀i ∈ [m].

The SDP formulation (2) with the observation set Ω induced
by G1 uniquely recovers the ground truth matrix M∗(ϵ).

Note that we do not require ϵ to be small or have access to
partial observations of blocks induced by edges in G2. Hence,
Theorem 2 shows that SDP solves all MC instances intro-
duced in Theorem 1 and beyond. As a result of Theorem 2,
the SDP approach is a viable choice for those MC instances
for which the preferable and faster B-M factorization method
fails to recover the ground truth matrix. Similar to perturbing
the ground truth matrix, one can perturb the linear measure-
ment operator of the matrix completion problem AΩ as

AΩ(ϵ)(M)ij :=

{
Mij , if (i, j) ∈ Ω

ϵMij , otherwise
, (4)

where ϵ > 0 is a sufficiently small real number (Zhang
et al. 2022). Note that AΩ(ϵ) satisfies the RIP condition with
δ = (1− ϵ)/(1 + ϵ).
Theorem 3. Suppose that g is the squared loss function, i.e
g(x) = ∥x∥2. Consider the measurement set Ω defined in
Theorem 1. For every sufficiently small ϵ > 0, there exists
a low-complexity instance of the MS problem PM∗,AΩ(ϵ),n,r

with O(2r|S(G1)|) spurious local minima.
The proof of the above theorem is similar to the proof of

Theorem 1. Hence, the proof is omitted. The above theorem
states that there are not only MC instances but also MS in-
stances that suffer from this undesirable behavior of the B-M
factorization approach. The ground truth matrix M∗ is gener-
ated as in Theorem 1 to have 2r|S(G1)| global solutions for the
unperturbed problem. Furthermore, the number of spurious
solutions for this scheme can be quantified as O((1− δ)−1)
for δ ≥ 1/2 in the rank-1 case (Zhang et al. 2022). Neverthe-
less, the SDP formulation approach trivially solves all these
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undesirable MS instances because the perturbed measure-
ment operator AΩ(ϵ) corresponds to observing all the entries.
Hence, the feasible set only contains the ground truth matrix.
Proposition 1. Given a measurement set Ω, the SDP formula-
tion (2) uniquely recovers the rank-r ground truth matrix M∗

for the MS instance PM∗,AΩ(ϵ),n,r, where AΩ(ϵ) is defined
in (4) and ϵ is an arbitrary nonzero number.

Hence, the SDP approach successfully solves all the in-
stances in Theorem 3 for which the RIP constant exists (while
greater than 1/2), unlike the B-M method. Consequently,
SDP could be the preferred method when sufficient condi-
tions on RIP for exact recovery by the B-M factorization are
not met. We will provide sharper sufficiency bounds for the
SDP approach next, which further corroborates its strength.

Sharper RIP bound for SDP
Since the SDP method is more powerful than the B-M fac-
torization for certain classes of MC and MS problems as
shown in the previous section and since specialized SDP al-
gorithms can solve large-scale MC and MS problems, it is
useful to further study the SDP method through the lens of
the well-known RIP notion. We will derive a strong lower
bound δlb on the RIP constant δ to guarantee convergence to
the ground truth solution by using a proof technique called
the inexistence of incorrect solution (Zhang, Sojoudi, and
Lavaei 2019). We aim to find a linear measurement operator
A with the smallest RIP constant such that the SDP formu-
lation converges to a wrong solution. To do so, we need to
solve the optimization problem

min
δ,A

δ

s.t. A(M) = A(M∗)

tr(M) ≤ tr(M∗)

A satisfies the δ2r-RIP property,

(5)

where M ̸= M∗. The condition tr(M) ≤ tr(M∗) guaran-
tees that SDP cannot uniquely recover M∗. Checking the
RIP constant for a linear measurement operator is proven
to be NP-hard (Tillmann and Pfetsch 2013). Therefore, it is
difficult to solve the problem (5) analytically. To simplify the
problem, we will introduce some notations. We use a matrix
representation of the measurement operator A as follows:

A = [vec(A1), vec(A2), . . . , vec(Ad)]
T ∈ Rd×n2

.

Then, A vec(M) = A(M) for every matrix M ∈ Rn×n. We
define H = ATA, which is the matrix representation of the
kernel operator H = ATA to simplify the last constraint
of the problem (5). To derive a RIP bound, we consider the
next optimization problem given M and M∗, where M is the
global solution of (2) and M∗ is the ground truth solution:

min
δ,H

δ

s.t. eTHe = 0

H is symmetric and satisfies the δ2r-RIP,

(6)

where e = vec(M∗ − M). For this fixed M and M∗, we
assume that M ̸= M∗ and that rank(M∗ −M) > 2r, since

if rank(M∗ −M) ≤ 2r, the relation M = M∗ holds auto-
matically by definition of δ2r-RIP for any δ since it implies
strong convexity. Denote the optimal value to (6) as δ(e),
which is a function of e. It is desirable to find

δ∗ := min
e:tr(M)≤tr(M∗)

δ(e).

By the logic of the in-existence of counterexample, we know
that if a problem H = ATA has δ2r-RIP with δ < δ∗, then
the solution to (2) will be M∗, which is the ground truth
solution. However, since the last constraint of (6) is non-
convex, it is useful to replace it with a surrogate condition
that allows solving the problem analytically. The following
problem helps to achieve this goal:

min
δ,H

δ

s.t. eTHe ≤ 2∥ec∥2 + 2(l − 3)δ∥ec∥2

(1− δ)In2 ⪯ H ⪯ (1 + δ)In2 .

(7)

Here, l = ⌈n/r⌉ and we define {ei}li=1 and ec in the fol-
lowing fashion. First, consider the eigendecomposition of
M∗−M and assume that the eigenvalues are ordered in terms
of their absolute values, namely, |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.
Let uk’s denote the corresponding orthonormal eigenvectors:

matS(e) = M∗ −M =
n∑

k=1

λkuku
T
k .

Then, we define:

ei = vec

 min{i∗r,n}∑
k=(i−1)∗r+1

λkuku
T
k

 ,

e2r = e1 + e2, and ec =
∑l

i=3 ei. The next proposition
allows us to replace (6) with (7) because the optimal value of
the (7), δlb(e), gives a lower bound on δ(e).
Proposition 2. The optimal objective value of the problem
(7), δlb(e), is always less than or equal to the optimal objec-
tive value of the problem (6), i.e., δlb(e) ≤ δ(e).

The proof of this proposition is central to the construction
of the sufficiency bound, which is based on using a convex
program to serve as an estimate of the non-convex problem.
After we extend the RIP2r constraint in (7) to be RIPn(thus
making it convex), it is necessary to somehow preserve the
information that the near isometric property of H should only
apply to low-rank matrices. This is achieved by changing the
first constraint so that e does not need to be completely in
the null space of H. (7) approximately requires that H only
maps a certain low-rank sub-manifold to 0. As a result of
Proposition 2, it immediately follows that

δlb = min
e:tr(M)≤tr(M∗)

δlb(e) ≤ δ∗.

In fact, we can obtain a lower bound on the value δlb by
solving the problem (7) analytically. The following lemma
quantifies a lower bound on δlb.
Lemma 1. It holds that

δlb ≥ 2r

n+ (n− 2r)(2l − 5)
.
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The best-known sufficiency bound presented in (Cai and
Zhang 2013) is independent of n and r. This sufficiency
lower bound presented in Lemma 1 can be tighter than 1/2
depending on the size of the problem n and the rank of the
ground truth matrix r. The SDP formulation converges to
ground truth solution whenever RIP constant δ is close to
1 as r −→ n/2. Conversely, whenever r/n is ratio is small,
e.g. rank-1 matrix sensing problem with large n, δ < 1/2 is
stronger for recovery of the ground truth. Combined with the
1/2 sufficiency bound that works for both the symmetric and
asymmetric cases, we obtain the following result:
Theorem 4. Let l = ⌈n/r⌉. The global solution of the SDP
formulation (2) will be the ground truth matrix M∗ if the
sensing matrix A satisfies the RIP condition with the RIP
constant δ2r satisfying the inequality:

δ2r < max

{
1/2,

2r

n+ (n− 2r)(2l − 5)

}
.

Compared with the existing sufficiency RIP bounds, this
new result has a striking advantage. The bound δ2r < 1/2
has already been proven to be the sharpest for the B-M formu-
lation, which is independent of the search rank. In contrast,
Theorem 4 shows that the RIP bound for SDP exceeds this
bound and approaches 1 as the rank r increases. As opposed
to the popular belief that B-M enjoys very similar RIP guaran-
tees as the SDP approach, there are real benefits to switching
to the SDP formulation, making it a more competitive option
since specialized SDP solvers are becoming more efficient in
recent years. However, we will next provide some problem
instances for which the SDP method fails to solve the prob-
lem while the B-M method contains no spurious solutions,
which balances the desirable properties of the SDP method.

4 Advantages of the B-M Method
We provide two classes of rank-1 matrix completion problems
for which the B-M factorization does not contain any spurious
solution while SDP fails to recover its ground truth matrix.
Throughout this section, the rank-1 PSD ground truth matrix
M∗ = x∗(x∗)T is assumed not to contain any zero entries,
meaning that x∗

i ̸= 0 for all i ∈ [n]. Before proceeding with
the results, we provide two small examples to highlight the
underlying ideas behind the main results.
Example 1. Consider a block sparsity graph G =
(V, E) with |V| = 3 nodes and the edge set E =
{(1, 1), (1, 2), (2, 3)}. It is a chain graph with 3 nodes and a
self-loop at the first node. We aim to show that only second-
order critical points are the global solutions of the B-M
factorization method. The objective with the squared loss
function can be explicitly written as minx∈R3 f(x), where

f(x) =
1

4

∑
(i,j)∈E
i=j

(x2
i − (x∗

i )
2)2 +

1

2

∑
(i,j)∈E
i̸=j

(xixj − x∗
i x

∗
j )

2.

The corresponding gradient and Hessian are:

∂f(x)

∂xi
=

∑
i,j∈E
i=j

(x2
i − (x∗

i )
2)xi +

∑
i,j∈E
i̸=j

(xixj − x∗
i x

∗
j )xj ,

∂2f(x)

∂x2
i

= 1[(i, i) ∈ E ](3x2
i − (x∗

i )
2) +

∑
i,j∈E

x2
j ,

∂2f(x)

∂xi∂xj
=

{
2xixj − x∗

i x
∗
j , if i ̸= j and (i, j) ∈ E

0, otherwise
.

Each second-order critical point x̂ must satisfy the conditions
∇f(x̂) = 0 and ∇2f(x̂) ⪰ 0. The third entry of the gradient
implies either x̂2 = 0 or x̂2x̂3 = x∗

2x
∗
3. Whenever x̂2 = 0,

the Hessian is not PSD since [∇2f(x̂)]2:3,2:3 ̸⪰ 0. Thus,
x̂2x̂3 = x∗

2x
∗
3 must hold. Following this, ∂f(x̂)/∂x2 implies

either x̂1 = 0 or x̂1x̂2 = x∗
1x

∗
2. However, if x̂1 = 0, then

∂f(x̂)/∂x1 gives −x∗
1x

∗
2x̂2 = 0, which implies x̂2 = 0, a

contradiction. Thus, each second-order critical point must
have the following properties:

x̂2
1 = (x∗

1)
2, x̂1x̂2 = x∗

1x
∗
2, x̂2x̂3 = x∗

2x
∗
3.

The solution to this system of equations proves the exact recov-
ery of the ground truth matrix M∗. Hence, the only second-
order critical points are the valid factors of the ground truth
solution, i.e ±x∗. The next step is to demonstrate the failure
of the SDP formulation (2) for some instances of the MC
problem with this given block sparsity matrix G. The problem
(2) is equivalent to the optimization

min
M∈R3×3

M2,2 +M3,3

s.t

(x∗
1)

2 x∗
1x

∗
2 M1,3

x∗
1x

∗
2 M2,2 x∗

2x
∗
3

M3,1 x∗
2x

∗
3 M3,3

 ⪰ 0.

Consider a feasible solution M̂ with M̂2,2 = M̂3,3 = |x∗
2x

∗
3|

and M̂1,3 = M̂3,1 = |x∗
1x

∗
2|. M̂ is feasible whenever |x∗

3| ≥
|x∗

2|. One can show that the feasible solution M̂ is strictly
better than the ground truth solution whenever |x∗

3| > |x∗
2|,.

Thus, SDP fails to recover the ground truth matrix.
This example clearly demonstrates the existence of MC

instances for which the B-M method successfully converges
to the ground truth solution while the SDP fails to find the
solution. One reason is that the number of measurements is
O(n), which is the minimum threshold for exact completion.
However, the statistical guarantees on SDP often need more
observations. Example 1 is generalized to any chain graph
with n nodes and a single self-loop at one of the ends.
Theorem 5. Consider the MC problem with a rank-1 PD
ground truth matrix M∗ ∈ Rn×n that can be factor-
ized as M∗ = x∗(x∗)T with x∗

i ̸= 0, ∀i ∈ [n]. Let
G = (V, E) be a block sparsity graph with |V| = n and
E = {(1, 1), (1, 2), (2, 3), · · · , (n − 1, n)}. Then, the B-M
method (3b) does not contain any spurious solutions.
Theorem 6. Consider the ground truth matrix M∗ ∈ Rn×n

satisfying the conditions in Theorem 5. Suppose that there
exist two indices j, k such that x∗

k > x∗
j and j, k > 2. Then,

the SDP problem (2) fails to recover the ground truth matrix.
In addition to the success of the B-M factorization, the

previous result establishes the failure of the SDP for the in-
stances described in the above theorem. As mentioned before,
SDP fails due to a lack of observations on the diagonal entries
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of the ground truth matrix. Note that the RIP condition is not
satisfied since these are MC problems. As a result, whenever
we do not have sufficient guarantees on linear measurement
operator, none of the methods are superior to the other one in
terms of exact recovery. The next example identifies another
class of problem instances that corroborates these findings.
Example 2. Consider a block sparsity graph G =
(V, E) with |V| = 3 nodes and the edge set E =
{(1, 2), (2, 3), (3, 1)}. Namely, it is a simple cycle with 3
nodes. The B-M factorization formulation (3b) with the
squared loss function can be written the same as in Example
1. We can show that each second-order critical point x̂ only
has nonzero entries, i.e., x̂i ̸= 0 for all i ∈ [n]. Without
loss of generality, suppose by contradiction that x̂1 = 0. For
stationarity, either x̂2x̂3 = x∗

2x
∗
3 or x̂2 = x̂3 = 0 should

be satisfied. The latter implies x̂ = 0 and ∇2f(x̂) ̸⪰ 0
in that case. Thus, x̂2x̂3 = x∗

2x
∗
3 must hold. Following

this, ∂f(x̂)/∂x1 yields −x∗
1x

∗
2x̂2 − x∗

1x
∗
3x̂3 = 0. Com-

bining these two yields (x̂3)
2 = −(x∗

2)
2, which does not

have any real solution. Hence, each second-order critical
point x̂ must have only nonzero entries. By the condition
∇f(x̂) = 0, whenever x̂ix̂j = x∗

i x
∗
j for some (i, j) ∈ E ,

then x̂ix̂j = x∗
i x

∗
j holds for every (i, j) ∈ E . This system

of equations yields the ground truth solution. Accordingly, a
spurious solution x̂ must have the following characteristics:
x̂ix̂j ̸= x∗

i x
∗
j , ∀(i, j) ∈ E and x̂i ̸= 0, ∀i ∈ {1, 2, 3}. Define

ai,j = xixj−x∗
i x

∗
j . Then, the stationarity condition becomes

∇f(x̂) =

[
â1,2x̂2 + â1,3x̂3

â1,2x̂1 + â2,3x̂3

â1,3x̂1 + â2,3x̂2

]
= 0.

Multiplying the first entry of the gradient by x̂1/x̂2 and sub-
stituting with the second entry gives â1,2x̂1 = −â2,3x̂3. Suc-
cessively, substituting this to the third entry of the gradient
results in

x̂3(â1,3x̂1 − â2,3x̂2) = 0.

Because we search for a solution with x̂i ̸= 0, we must have
â1,3x̂1 − â2,3x̂2 = 0. This condition combined with the last
entry of the gradient results in the condition â1,3x̂1 = 0,
which is a contradiction. As a result, all the second-order
critical points are global solutions that yield the ground
truth matrix completion. Our next goal is to show that the
SDP formulation (2) fails for this class of instances of MC
instances. Note that the SDP formulation of the matrix com-
pletion problem considered in this example is equivalent to
the formulation:

min
M∈R3×3

M1,1 +M2,2 +M3,3

s.t

[
M1,1 x∗

1x
∗
2 x∗

1x
∗
3

x∗
1x

∗
2 M2,2 x∗

2x
∗
3

x∗
1x

∗
3 x∗

2x
∗
3 M3,3

]
⪰ 0.

Without loss of generality, assume that x∗
1 ≤ x∗

2 ≤ x∗
3 by the

symmetry of the problem. Consider a feasible rank-2 solution
M̂ given as M̂1,1 = x∗

1(x
∗
3 − x∗

2), M̂2,2 = x∗
2(x

∗
3 − x∗

1)
and M3,3 = x∗

3(x
∗
1 + x∗

2). One can show that the feasible
solution M̂ is strictly better than the ground truth solution
if x∗

3 > x∗
1 + x∗

2. Hence, the SDP cannot recover the ground

truth solution for all the instances with a simple cycle block
sparsity graph.

Similar to Example 1, SDP fails in this example due to a
lack of diagonal observations. Next, we can generalize this
instance to any simple cycle block sparsity graph with an odd
number of vertices.
Theorem 7. Consider the MC problem with a rank-1 PD
ground truth matrix M∗ ∈ Rn×n with factorization M∗ =
x∗(x∗)T , x∗

i ̸= 0, ∀i ∈ [n]. Let G = (V, E) be a block
sparsity graph with |V| = |E| = n = 2k + 1 and
E = {(0, 1), (1, 2), . . . (2k − 1, 2k), (2k, 0)}. Then, the B-
M factorization problem (3b) does not contain any spurious
solutions.
Theorem 8. Consider the ground truth matrix M∗ ∈ Rn×n

satisfying the conditions in Theorem 7. Suppose that the
condition

∑k
t=1(x

∗
2t−1)

2 >
∑k

t=0(x
∗
2t)

2 holds for arbitrary
node 0. Then, the SDP problem (2) fails to recover the ground
truth matrix.

Note that we can choose any node as node 0 due to the
symmetry of the problem. Therefore, the condition stated in
Theorem 8 is not restrictive because this condition suffices
to hold for a chosen node 0 among 2k + 1 ones. Moreover,
we highlight that we proved that every stationary point with
a PSD Hessian must be the global solution, thereby also
implying that any stationary point that is not a global solution
(saddle points) has at least one negative eigenvalue in its
Hessian, which means that this optimization problem satisfies
the strict saddle property. This property is widely known in
the literature to lead to polynomial time convergence. As
a result, the B-M factorization can outperform the convex
relaxation approach.

5 Conclusions
We conducted a comparison between two main approaches
to the matrix completion and matrix sensing problems: a con-
vex relaxation that gives an SDP formulation and the B-M
factorization method. Both of these methods enjoy mathemat-
ical guarantees for the recovery of the ground truth matrix
whenever the RIP assumption is satisfied with a sufficiently
small δ. We offered the first result in the literature that com-
pares these two methods whenever the RIP condition is not
satisfied or only satisfied with a large constant. We discov-
ered classes of problems for which B-M factorization fails
while the SDP recovers the ground truth matrix. This inspired
us to investigate sharper bounds on sufficient conditions for
the SDP formulation. We provided RIP bounds for the SDP
formulation that depend on the rank of the solution and are
automatically satisfied for high-rank problems, unlike the
B-M method. Conversely, when the number of measurements
from the ground truth matrix is not high, we showed that SDP
fails drastically while the B-M method does not contain any
spurious solutions. As a result, we conclude that none of the
methods outperforms the other one whenever the sufficiency
guarantees are not met. The parameters of the problem, such
as dimension, rank, and linear measurement operator, deter-
mine which solution method performs better. Consequently,
it is prudent to apply both solution methods in case the RIP
and incoherence are not satisfied.
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