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Abstract

Contrary to common intuition, groups of people recalling in-
formation together remember less than the same number of in-
dividuals recalling alone (i.e., the collaborative inhibition ef-
fect). To understand this effect in a free recall task, we build
a computational model of collaborative recall in groups, ex-
tended from the Context Maintenance and Retrieval (CMR)
model which captures how individuals recall information alone
(Polyn, Norman, & Kahana, 2009). We propose that in col-
laborative recall, one not only uses their previous recall as an
internal retrieval cue, but also listens to someone else’s recall
and uses it as an external retrieval cue. Attending to this cue
updates the listener’s context to be more similar to the context
of someone else’s recall. Over an existing dataset of individ-
ual and collaborative recall in small and large groups (Gates,
Suchow, & Griffiths, 2022), we show that our model success-
fully captures the difference in memory performance between
individual recall and collaborative recall across different group
sizes from 2 to 16, as well as additional recall patterns such as
recency effects and semantic clustering effects. Our model fur-
ther shows that the contexts of collaborating individuals con-
verge more than the contexts of individuals who recall alone.
We discuss the contributions of our modeling results in relation
to previous accounts of the collaborative inhibition effect.

Keywords: collaborative inhibition; group recall; memory
search; computational modeling

Introduction

In daily life, we often rely on others to help us remember
things. Consider, for instance, when recalling scenes from a
movie with a friend, listening to their memories can help re-
mind you of more plot details. Yet surprisingly, a collabora-
tive group recalls less information than a nominal group — the
same number of individuals recalling alone (the collabora-
tive inhibition effect, Weldon & Bellinger, 1997). This effect
has been robustly observed across a range of empirical situ-
ations (for a review, see Marion & Thorley, 2016), including
in-person and online settings, small and large groups (Gates
et al., 2022), for multiple memory tasks (free recall, Weldon
& Bellinger, 1997; cued recall, Kelley, Reysen, Ahlstrand, &
Pentz, 2012; and recognition tasks, Andersson & Ronnberg,
1996), and with various study material of words (Gates et al.,
2022), stories and pictures (Weldon & Bellinger, 1997), and
film (Wessel, Zandstra, Hengeveld, & Moulds, 2015).

Why does a collaborative group recall less information
than a group recalling individually? Multiple accounts have
been proposed to explain this counter-intuitive effect. For
one, the account of retrieval disruption theorizes that each

individual has an idiosyncratic retrieval strategy that is dis-
rupted when listening to others’ recalls, giving rise to non-
optimal recalls (B. H. Basden, Basden, Bryner, & Thomas,
1997; Weldon & Bellinger, 1997). Alternatively, the retrieval
inhibition account argues that an additional mechanism oper-
ates whereby when a group member recalls an item, as-yet-
retrieved items are suppressed in listeners’ memory, making
the remaining items less likely to be retrieved (Barber, Harris,
& Rajaram, 2015). Hyman, Cardwell, and Roy (2013) pro-
posed the account of limited exploration in which members of
a collaborative group constrain other members’ exploration of
memory, as they found that collaborative dyads — consisting
of two members recalling together— reached fewer categories
than nominal dyads when recalling categorized lists.

How can these multiple accounts be understood together?
In the current work, we propose context as a unifying theory
across individuals and groups. Past work has recognized the
important role of context in the encoding and retrieval of in-
formation (Anderson & Bower, 1972; Bower, 1967; Estes,
1955; Murdock, 1997). Computational models of memory
search built upon context, such as the Context Maintenance
and Retrieval (CMR) Model, have successfully captured vari-
ous behavioral patterns during a free recall task including pri-
macy effects, recency effects, and contiguity effects (Howard
& Kahana, 2002a; Lohnas, Polyn, & Kahana, 2015; Polyn et
al., 2009). The goal of our current work is to extend CMR,
a context-based model of individual recall, to a model of col-
laborative recall in a free recall task. We will show that the
collaborative inhibition effect naturally emerges from the in-
teraction of individuals’ mental contexts as they recall infor-
mation together. In a free recall task, participants study a
list of items and are later asked to recall as many items as
possible from the list in any order (Murdock, 1962; Roberts,
1972). In CMR, as an individual searches their memories to
recall items one after another, each new recall is driven by
the context induced by the last recall. For example, when
recalling items on a shopping list, having recalled the item
‘apple’ will induce a fruit-related context in our mind, so that
the next recall is likely to be a related item, like ‘pear’ or ‘ba-
nana’. To extend individual recall to collaborative recall, we
only introduce one additional process to describe how listen-
ing to others’ recall affects one’s own recall: each new recall
is now driven by the context induced by either the last recall
from the same individual or the last recall from other individ-
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uals, controlled by the probability p.,.. In other words, when
recalling items on a shopping list with other individuals, lis-
tening to someone else recall the item ‘apple’ has a similar
effect as recalling the item ‘apple’ oneself in which a fruit-
related context is induced in one’s mind and leads to the next
recall likely being another fruit-related item.

Formulated this way, we will demonstrate in our model
simulations that individuals in the nominal condition search
their memories independently; in the collaborative group, as
recall unfolds, each member’s recall starts to converge to
the contexts of others’ recalls. Intuitively, consider mem-
ory search in a context space to be analogous to foraging
mushrooms in a forest. When individuals explore their mem-
ory (or a forest) alone, only their own retrieval of memories
(or mushrooms) guides their search. When people explore
collaboratively, they guide each other’s search and constrain
where one might otherwise be able to explore. This context-
based account also helps unify previous accounts. Given the
way recall is affected by others in the collaborative group,
the trajectory of items recalled in the context space is altered
or disrupted compared to that of the nominal condition, sim-
ilar to what is described in the retrieval disruption account
(B. H. Basden et al., 1997). We mathematically formulate
where the disruption comes from as well as simulate its ef-
fect on recall performance. Additionally, the way contexts
converge in our simulations captures the idea that members
in a collaborative group constrain other members’ exploration
of memory (Hyman et al., 2013). Compared with the retrieval
inhibition account (Barber et al., 2015), we provide a simpler
account that captures the effect of inhibition without intro-
ducing an additional inhibition mechanism that directly sup-
presses the memory strengths of items.

To test our hypothesis that a context-based account can ex-
plain the collaborative inhibition effect, we build a compu-
tational model of individual recall and a model of collabo-
rative recall, and we compare their behavior to an existing
dataset of nominal and collaborative recall in small and large
groups (Gates et al., 2022, Exp. 2). Critical to our mod-
eling approach, we assume that the model of collaborative
recall inherits the same parameter values from individual re-
call (which we obtain from fitting our model to participants in
the nominal condition). To account for memory behavior in
the collaborative condition, we only have one free parameter,
Pcues Which describes the probability of listening to others’
recalls. This way, it is guaranteed that any differences we
observe between the nominal condition and the collaborative
condition are not a result of differences in how members in
the two conditions encode and recall information from their
mental context, but from the way contexts interact with each
other in a group. The fundamental memory processes of how
one searches their memories remain the same across individ-
uals whichever condition they are in.

To foreshadow our results, our model successfully captures
the difference in memory performance between the nominal
and collaborative conditions — the collaborative inhibition ef-

fect — across different group sizes from 2 to 16. Our model
also captures additional recall patterns such as recency effects
(enhanced recall of items from the end of the list; Murdock,
1962) and semantic clustering effects (semantically similar
items are recalled successively; Howard & Kahana, 2002b).

Method

In this section, we first provide an overview of the Gates et al.
(2022) study of collaborative recall. We then review the Con-
text Maintenance and Retrieval model upon which we build
our model of collaborative recall (CMR; Polyn et al., 2009;
Howard & Kahana, 2002a; Lohnas et al., 2015). CMR was
developed to explain behavioral patterns observed in a free
recall task. As this is the same task that the nominal con-
dition completed, we simply simulate recall in the nominal
condition by using multiple CMR models simultaneously. To
model collaborative recall, we propose an extension to the re-
trieval phase of CMR by introducing a probabilistic external
cuing mechanism to capture how group members are affected
by each others’ recalls.

Gates et al. (2022)’s Study of Collaborative Recall

Gates et al. (2022) conducted a group recall study through
Amazon Mechanical Turk. We use their experiment 2 dataset
(N = 1,076) with groups ranging from size 2 to 16. Partici-
pants were assigned to either a nominal or collaborative con-
dition and were not allowed to repeat the task. For each con-
dition, there were 48 groups of size 2, 32 groups of 3; 24
groups of 4, and 12 groups of 8 and 16.

Their experiment consisted of two phases: study and re-
call. During the study phase, participants individually viewed
60 uncategorized words. Each group saw a different list and,
within a group, the presentation order was randomized for
each participant. A 30-second long arithmetic filler task then
followed. During the subsequent recall phase, in the nomi-
nal condition, participants were placed alone in a chatroom
and told to type as many words as they could recall from
the list into a textbox. In the collaborative condition, par-
ticipants within a group were placed in a chatroom together
and took turns recalling. Recall proceeded in “rounds” dur-
ing which each participant, in a randomized order, was given
5 seconds to recall a word from the list by typing it into the
chatroom. If a participant recalled a not-yet-submitted word,
a computerized voice read it aloud to other participants; oth-
erwise, participants could continue attempting to recall a new
list item, wait for time to elapse, select a ‘pass’ option, or
select a ‘I can’t recall anymore’ option (which ended their
participation). There was no time limit for either condition.

Our Proposed Model: Extending CMR to
Collaborative Recall

Study Phase (nominal and collaborative conditions) Dur-
ing the study phase, participants in nominal and collaborative
conditions individually studied 60 words. To model this, we
follow the exact processes of CMR and assume that simulated
members of both nominal and collaborative groups encode
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a list of items in the same way. When an individual stud-
ies an item from the list, their current context drifts towards
the memory representations of the recently encountered item.
The state of the context at time ¢ is given by

Cr =pPC—1+ BenCCIN (1

where 'V is the retrieved context induced by the encountered
item, parameter B, € [0, 1] determines the rate at which con-
text drifts toward that presented item’s context ¢!V, and p is a
normalizing scalar that renders || ¢; ||= 1. The presented list

item activates its pre-experimental context ¢/V:

N =Myofi )

where M,f,ce stores item-to-context associations that existed
prior to the experiment, and f; is a binary vector that is all ze-
ros except at the presented item’s position. Therefore, M [frce fi
is the context previously associated with the presented item.
In addition to these fixed pre-experimental item-to-context
associations held in Mgg there are also experimental item-
to-context and context-to-item associations held in ML¢ and
Mgf; that capture new learning in the experiment. These ma-
trices are initialized to zero and are updated during the study
phase. Specifically, when an item is presented, a new associ-
ation is formed via the Hebbian outer-product learning rule:

AMyg, =AM, = ficl (3)
The overall effect of having context drift slowly towards each
newly presented item, together with the process of associative
learning, is that items presented nearby in the study list tend
to be associated with similar context states.

Recall Phase (nominal condition) During the recall
phase, participants in the nominal condition recalled items
separately while participants in the collaborative condition
recalled items together. The recall process for individuals in
the nominal condition follows the same recall process as the
CMR model. Specifically, during recall, the current context
¢;—1,;j of a simulated participant j drifts towards the retrieved

context of the just recalled item c!%.:

Cj=PCr—1,j+ Breccﬁ,\i )

Here, context continues to drift during recall following the
same process during study (Equation 1), but at a different
rate as determined by B, € [0,1] and with ¢!V expressed
differently. During study, an item only retrieves its pre-
experimental context when it is presented; however, when
an individual recalls an item, its retrieved context activates
both its pre-experimental context (Mgrg f¢) and its experimen-
tal context formed during study (M£Sf;). The extent of re-
trieving an item’s pre-experimental versus experimental con-
text is determined by a parameter, Yy, € [0, 1], such that:

= (L =Yg )MLS fi + Y5 MES f; 5)

Once context drifts towards this retrieved context, which
items are likely to be recalled? The support (or activation)
a'V at time ¢ for recalling different items depends on both how
much the current context ¢; matches with items’ experimental
contexts (stored in Mecxf,) as well as items’ pre-experimental

contexts (stored in M[C,f;; see description below). The relative
activation of these associations is determined by a parameter,

Yer € [0,1], such that:
'™ = Yo QiMhc + (1= Yo ) Mppecs (©)

Here, Mgf; is a matrix representing pre-experimental context-
to-item associations. To capture semantic clustering effects
observed at recall, Mgf; begins as an identity matrix and each

element in Mgf;, with indices m and n, is additionally incre-
mented by a semantic association between items m and n,
determined by taking the cosine similarity of the two items’
GloVe model embeddings (Pennington, Socher, & Manning,
2014). Each entry of the semantic association is additionally
raised to the power of A before being scaled by the constant
S¢f to match with human semantic representations.

To simulate which item to recall next based on items’ sup-
port in @V, the model also needs a retrieval rule and a stop-
ping rule. We use the softmax function as the retrieval rule,
pi= ekai” /¥ ekag'N, where a!V is the support to retrieve item i
and the parameter k determines the amount of noise. Once an
item is retrieved, the context state drifts again, towards that
item’s retrieved context following Equation (5); cuing with
this updated context state supports the retrieval of new items.
This retrieval and context updating processes continue until
what is determined by a stopping rule: the probability of stop-
ping at each time point is expressed as pyop = e~ Edan | “ﬁN,
where a/V indicates the summed support for already-recalled
items, a/) indicates the summed support for not-yet-recalled
items, and g, is a scaling factor (Cornell, Norman, Griffiths,
& Zhang, 2024; Kragel, Morton, & Polyn, 2015; Zhang,
Griffiths, & Norman, 2023). Overall, because items studied
nearby in the list are tied to similar context states during en-
coding, subsequent recalls are likely to be nearby items in
the list; they are additionally likely to be items semantically
similar to the current context.

Recall Phase (collaborative condition) While individu-
als in the nominal condition update their context using only
their own recalls, individuals in the collaborative condition
additionally can listen to recalls of other members in their
group. In Gates et al. (2022), collaborative recall proceeds
in “rounds” in which each group member was randomly se-
lected and given a chance to recall. Thus for every recall
round in our model, we randomly selected a simulated partic-
ipant to recall an item. When a simulated participant j recalls
an item in our model, their own context drifts towards that
item’s retrieved context following Equation (5). Because ev-
eryone else in the chatroom could hear this recalled item, we
let all other simulated participants i # j have the chance to
use this item as a retrieval cue under probability p.y. € [0, 1]
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by drifting their internal context ¢;—1; towards the cue’s re-
trieved context ¢,,;. Under probability 1 — p,., participants
ignored this item and maintained their current context, ¢;_ ;:

Cr i — { pct—l.i"l‘BrecccueJa
i =

W.D- Pcue
7
Ct—1,is ( )

w.p. (1= Ppeue)

Notice that the same parameter B,.. governs how much one’s
context drifts towards someone else’s recall compared with
that towards one’s own recall in Equation (5). Intuitively,
consider the shopping list example. The context of an individ-
ual in the nominal condition updates only according to their
own recalls — recalling ‘apple’ from the shopping list induces
a fruit-related context so that their next recall will likely be
another fruit-related item. In contrast, a collaborative group
member’s context updates either according to their own re-
call or the recall of someone else in their group — recalling
‘apple’ but then listening to another group member’s recall of
‘stapler’ induces a context related to office supplies leading
the next recall to likely be an office item like ‘paper’.

For the nominal condition model parameters, we used
Bayesian optimization (Mockus, 1998) to search the space of
parameters to minimize the normalized root-mean-square er-
ror between our model simulations and the nominal condition
data. For the collaborative condition model parameters, crit-
ically, we assume that the model of collaborative condition
inherits the same parameter values from the nominal condi-
tion, as the fundamental memory processes (i.e., items’ orga-
nization in the context space, the retrieval rule, the stopping
rule) stay the same across participants in both conditions. The
collaborative model additionally has one parameter, p,,, de-
scribing the probability of listening to others’ recall.

Results

Nominal Condition Recall Behavior To simulate the exper-
iment in Gates et al. (2022) with our proposed model, we
first fit our model parameters to the free recall behavior in
the nominal condition across three sets of behavioral patterns:
(1) how well on average words are retrieved for each position
in the study list (serial position curve; Murdock, 1962), (2)
where in the serial position recall is initiated from (probabil-
ity of the first recall; Murdock, 1962), (3) how likely it is to
recall semantically similar words at adjacent (lag 1) versus
far-apart recall positions (lag 2, 3, 4). Semantic similarity is
computed by finding the average cosine similarity between
every pair of recalled items at different lags for their output
positions (Cornell et al., 2024).

Figure 1 compares the observed patterns in the data and the
model (nRMSE = -6.80). The serial position curve (Figure
1A) and probability of first recall (Figure 1B) in the nomi-
nal condition displayed recency effects — enhanced recall of
items from the end of the list (Murdock, 1962). The model
was able to capture recency effects because one’s context at
the start of recall is most similar to the contexts of the last few
studied items. There are also semantic clustering effects in
the nominal condition (Figure 1C), as we observed higher se-
mantic similarity at a small lag 1 than at a large lag 4 in both
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Figure 1: Behavioral recall patterns of individuals in the nom-
inal condition and the model fit. These patterns are (A) serial
position curve, (B) first recall probability, and (C) semantic
similarity by lag. The shaded error represents the standard
error of the mean. The parameter set was: Be,. = 0.594,
Brec = 0.871, Ype = 0.297, Yoy = 0.344, 55 = 0.685, k =
2.693,¢, =0.585, A = 1.751.

participant data (¢(8803) = 5.585, p < .001) and the model
(1(49227) = 6.074 p < .001). The model was able to capture
semantic clustering effects because retrieving an item ‘apple’
updates the current context to make it easier to retrieve a se-
mantically related item ‘pear’. Note that some typical free
recall behaviors were not observed in the data such as pri-
macy and temporal contiguity effects, potentially due to the
long list length of sixty in the human experiment. For the rest
of the analyses, we focus on modeling behavioral patterns of
the observed recency effects, semantic clustering effects, and
memory performance.

Collaborative Condition Recall Behavior Our model
could capture the recall behavior of individuals in the nom-
inal condition. We next tested if the same set of parameters
could also capture the recall behavior of individuals in the
collaborative condition. The collaborative condition inherits
its parameter set from the nominal condition as we hypoth-
esized that the fundamental memory search processes (i.e.,
how context is used to encode and later retrieve items from
the context space) are the same in nominal and collaborative
conditions. The collaborative condition additionally has only
one parameter, p.,., describing the probability of listening to
others’ recall. To fit p.,., we searched for a value from O to 1
in 0.1 increments that minimized the normalized root-mean-
square error between our model simulations and the collab-
orative condition data. The fitting was done across the same
behavioral patterns as in the nominal condition (Figure 2A-
C) as well as an additional behavioral pattern (Figure 2D)
that characterizes the process of listening to the recalls of oth-
ers. While Figure 2C illustrates how a recall is semantically
related to previous recalls of the same individual (as partici-
pants in the collaborative condition may attend to their own
recalls), Figure 2D illustrates how a recall is semantically re-
lated to previous recalls of the entire group (as participants
may attend to others’ recall in addition to their own recalls).

Participants in the collaborative condition showed typical
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Figure 2: Behavioral recall patterns for individuals in the col-
laborative condition and the model fit. These patterns are (A)
the serial position curve, (B) the probability of first recall, and
semantic similarity by lag related to (C) previous recalls of
the same individual versus (D) the entire group. The shaded
error represents the standard error of the mean. p., = 0.2,
with the rest of the model parameters inherited from the nom-
inal condition.

free recall behaviors similar to that of the nominal condition,
demonstrating recency effects (Figure 2A-B) and semantic
clustering effects (Figure 2C). Participants not only tend to
retrieve items that are semantically related to their own recall
(Figure 2C), with higher semantic similarity at lag 1 than at
lag 4 (participant data: ¢(4235) = 4.009, p < .001; model:
t(17307) = 3.292, p < .001), but also retrieve items that are
semantically related to others’ recall (Figure 2D; participant
data: £(5504) = 2.143, p = .03; model: £(28582) = 2.680,
p = .007). Our model was able to capture these patterns with
its parameters fit to the recall behavior of individuals in the
nominal condition. These results support our hypothesis that
one not only uses their previous recall to drive their recall
context but also listens to someone else’s recall.

Next, we test the key hypothesis of the present work and
examine if our context-based model can capture the collabo-
rative inhibition effect. We examined this under multiple val-
ues of pce, instead of just the best-fit value, to determine if
the collaborative inhibition effect can emerge as long as there
is some context interaction between individuals (pcue > 0).
Figure 3A shows the effect of group size on the amount of
collaborative inhibition in Gates et al. (2022), whereby as
group size increases, inhibition first increases and then de-
creases. Our model was able to capture this qualitative trend
under different values of p.,. > 0 (Figure 3B). These results
support that the performance difference between the collab-
orative and the nominal condition arose naturally from our
model’s collaborative mechanism and was not sensitive to the
values of the parameter we introduced to model collaborative
recall.
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Figure 3: The context-based model of collaborative recall
captures the increase and subsequent decrease in inhibition
by group size. (A) Collaborative inhibition observed in Gates
et al. (2022), computed as performance difference between
the nominal condition and the collaborative condition. (B)
Collaborative inhibition predicted by the model under differ-
ent values of p.,.. The shaded error represents the standard
error of the mean.

Context Dynamics Our model captured the collaborative
inhibition effect at different group sizes. Why and how does
the collaborative inhibition effect arise in the model? We hy-
pothesized that when individuals interact in a collaborative
setting, they listen to each other’s recall, and their mental
contexts become synchronized over time. Compared with the
nominal condition where individuals use diverse and unique
contexts, synchronized contexts in the collaborative group
may constrain one’s ability to recall. To evaluate if listen-
ing more to others’ recall (increasing pc,e) gives rise to more
synchronized contexts in a group, we measured context sim-
ilarity in a group by computing the average cosine similar-
ity between context vectors of all possible pairs of simulated
members per group after each recall. Figure 4 plots the con-
text similarity across recall outputs during the recall phase for
both nominal and collaborative groups of sizes 3 and 16. Con-
sistent with our hypothesis, our model simulations show that
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Figure 4: The model shows increasing context similarity in
collaborative groups during recall. Average cosine similar-
ity between simulated group members’ context states during
recall for parameter values p.,. > 0 increased more in the
collaborative groups than in the nominal condition for group
sizes (A) 3, and (B) 16. The shaded error represents the stan-
dard error of the mean.
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participants in the collaborative condition increased context
similarity more quickly and maintained greater context simi-
larity than in the nominal condition. We performed a two-way
ANOVA to examine if the change in context similarity from
early to late recalls (0, 10) is different across nominal and
collaborative (p.4e = 0.3) conditions, and there was a signifi-
cant interaction between recall condition and recall output for
group size 3 (F(1,396) = 193.689, p < .001) and group size
16 (F(1,396) = 1052.515,p < .001). Similarly, we also ob-
served greater context similarity with larger values of p., as
there was a significant interaction between different collab-
orative conditions (pcye = 0.3, peye = 0.7, peye = 1.0) and
recall output for group size 3 (F(1,1196) = 584.980,p <
.001) and group size 16 (F(1,1196) = 3178.810,p < .001).
When p.,. = 0, context similarity in nominal and collabora-
tive conditions is similar as collaborative group members are
no longer affected by others’ recalls. These results support
that listening to each others’ recalls in a collaborative setting
guides individuals to reach more similar areas of the memory
space, giving rise to more synchronized mental contexts.

General Discussion

Multiple accounts have been proposed to explain why col-
laborative groups recall less information than nominal groups
(Barber et al., 2015; B. H. Basden et al., 1997; Hyman et
al., 2013). We proposed a context-based account to unify
these accounts; specifically, in collaborative recall, the con-
text of an individual not only evolves on its own but is also
influenced by the context of others in the group. To test our
account, we built a computational model of collaborative re-
call in groups, extended from the Context Maintenance and
Retrieval (CMR) model which captures how individuals re-
call information alone (Polyn et al., 2009). By comparing our
model’s simulations to an empirical dataset of nominal and
collaborative group recall (Gates et al., 2022, Exp. 2), we
found it is able to capture the collaborative inhibition effect
across different group sizes as well as the recency effects and
the semantic similarity effects. We also found that collabo-
rative group members’ context convergences in the context
space more than in the nominal condition. These results sup-
port our proposed account of collaborative inhibition: Minds
within a collaborative group become aligned or synchronized
with each other, thus missing opportunities to recall unique
information that others may not have considered.

Our proposed context-based model could be extended in
the future to account for a related paradigm in external cuing
literature, namely — part-set cuing (Slamecka, 1968), given
the similarity between a part-set cuing paradigm and a col-
laborative recall paradigm. In collaborating recall, external
retrieval cues are provided by the recalls of other group mem-
bers; in part-set cuing, individuals complete a free recall task
in which, after studying a list of items, some participants are
provided a subset of list items by the experimenters as re-
trieval cues. These cued participants recall fewer of the non-
cue items than participants who did not receive any cues (for

reviews, see Bauml, 2007; Nickerson, 1984). Part-set cuing
has also been explained by similar accounts as collaborative
inhibition, namely retrieval disruption (D. R. Basden, Basden,
& Galloway, 1977) as well as retrieval inhibition (Bduml &
Aslan, 2004; Bauml & Aslan, 2006). However, context may
also account for the reduced recall performance observed in
cued individuals. Following a context-based account, an item
(whether externally provided or internally generated) updates
the location of one’s current context to be more like the item.
Cues may disrupt one’s context, making it more similar to the
context of cue items than non-cue items. This, in turn, may
limit one’s ability to recall non-cue items. This would pro-
vide a more parsimonious account by not assuming additional
mechanisms such as inhibition (for a related context-based
account for the effect of a single, experimenter-provided cue,
see Cornell et al., 2024).

There have been two other computational models of collab-
orative recall. One is Luhmann and Rajaram (2015)’s agent-
based model in which when one group member recalls an
item, it reduces the activations of other items based on their
similarity to that recalled item (i.e., following the retrieval in-
hibition account). A second model extended the Search of
Associative Memory (SAM) model (Raaijmakers & Shiffrin,
1981) and proposed that group members listen to the recall of
whoever recalls first, and this item is then used to cue their
next recall (Mannering, Rajaram, & Jones, 2021). Although
this model does not include an inhibitory mechanism, some
of the parameters are fit separately for the nominal condition
and collaborative condition, which could directly explain the
difference in memory performance between the two condi-
tions (i.e., the collaborative inhibition effect). In our proposed
model, we do not include inhibition, and we assume that col-
laborative recall inherits the same memory processes (model
parameters) from individual recall in the nominal condition.
Therefore, the collaborative inhibition effect captured by the
model is not a result of how participants in two conditions
encode and recall information differently, but a result of the
interaction among participants’ mental contexts in the collab-
orative group.

Our computational modeling work offers unique contribu-
tions to collaborative memory research. We provide a strong
test of our proposed context-based account by demonstrating
its ability to capture key recall patterns in collaborative re-
call without directly fitting parameters to the participant data
in the collaborative condition. We simulate the collaborative
group behavior based on model parameters obtained from the
participant data in the nominal condition. Our model of col-
laborative recall is able to capture the collaborative inhibi-
tion effect, as listening to others’ recall constrains where one
could otherwise be able to search in the context space. More-
over, our model can account for detailed patterns of collab-
orative recall behavior including the recency effects and the
semantic clustering effects. Taken together, our results sup-
port the important role of context in explaining a range of
memory findings across individuals and groups.
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