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In the first chapter of this work, we characterize the dynamics of cardiovascular event risk

trajectories for patients on dialysis while conditioning on survival status via multiple time

indices: (1) time since the start of dialysis, (2) time since the pivotal initial infection-related

hospitalization and (3) the patient’s age at the start of dialysis. This is achieved by using

a new class of generalized multiple-index varying coefficient (GM-IVC) models utilizing a

multiplicative structure and one-dimensional varying coefficient functions along each time

and age index. We develop a two-step estimation procedure for the GM-IVC models based on

local maximum likelihood, and report new insights on the dynamics of cardiovascular events

risk among the dynamic cohort of survivors using the United States Renal Data System

database, which collects data on nearly all patients with end-stage renal disease in the U.S.

In the second chapter of this work, we develop time-varying effects modeling tools in

order to examine the CV outcome risk trajectories during the time periods before and after

an initial infection-related hospitalization. For this, we propose partly conditional and fully

conditional partially linear generalized varying coefficient models (PL-GVCMs) for modeling

time-varying effects in longitudinal data with substantial follow-up truncation by death.

We compare and contrast partly and fully conditional PL-GVCMs in our aforementioned

application and develop generalized likelihood ratio tests.
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In the third chapter of this work, we introduce a time-varying standardized dynamic ratio

(SDR) to aid in the evaluation of a dialysis facility’s performance with respect to patient

readmission rates as a function of time that patients are on dialysis. The estimation of SDR

consists of two steps. First, we model the dependence of readmission events on facilities

and patient-level characteristics using a multilevel varying coefficient model (MVCM) with

fixed facility time-varying effects, with or without subject random effects. Second, using

results from the models, standardization is achieved by computing the ratio of the sum of

the predicted number of 30-day readmissions to the sum of the predicted number of 30-

day readmissions assuming a reference standard and given the case-mix in that facility. A

challenging aspect of our data application is that the number of model parameters is very

large, and the estimation of high-dimensional parameters is troublesome. To overcome this

problem, we propose a Newton Rhapson algorithm for the MVCM without the random

effects, and an approximate EM algorithm for the MVCM with random effects. We propose

a test statistic to facilitate in the identification of facilities whose outcomes are outside

of normal expectations, and obtain p-values using re-sampling and simulation techniques.

Finally, our method of identifying outlier facilities involves converting the observed p-values

to Z-statistics and using the empirical null distribution, which accounts for over dispersion

in the data.
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CHAPTER 1

Cardiovascular Event Risk Dynamics Over Time in Older Patients

on Dialysis: A Generalized Multiple-Index Varying Coefficient

Model Approach

1.1 Introduction

As of 2010, end-stage renal disease affected more than 570,000 adults in the United States.

Of these, more than 400,000 were on dialysis, a life-sustaining treatment (United States

Renal Data System Annual Data Report [USRDS ADR], 2012). End-stage renal disease is

associated with premature death, and cardiovascular disease is the leading cause of death

in this population (USRDS ADR, 2012). An area of particular interest is whether infection

contributes to the high risk of cardiovascular disease observed in this population, as infections

are relatively common in patients on dialysis (Dalrymple et al., 2010; USRDS ADR, 2012).

Previous studies have used an interval Poisson model, a Cox proportional hazards model

and case-series analysis to support the notion that infection may contribute to a higher

risk of cardiovascular disease in both the general population (Smeeth et al., 2004) and in the

dialysis population (Foley et al., 2004; Ishani et al., 2005; Dalrymple et al., 2011; Mohammed

et al., 2012). However, to date, studies have not fully elucidated how the risk (probability)

of cardiovascular events changes over time for patients on dialysis and furthermore how the

risk trajectory depends on individual characteristics.

Our primary objective is to understand how the risk of cardiovascular events dynamically

evolves over time, and, in particular, how the changes depend simultaneously on multiple

key time indices of: (a) time since the start of dialysis (vintage), (b) time since the initial

infection-related hospitalization during dialysis and (c) baseline age at dialysis. While the

dynamic cardiovascular risk trajectories as a function of the multiple time indices are of

main interest, it is also important to characterize the effects of baseline covariates, which
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may potentially depend on baseline age. Baseline covariates of interest include demographic

characteristics (sex, race), comorbidities (diabetes, coronary heart disease, congestive heart

failure, peripheral vascular disease), body mass index (BMI) and estimated glomerular fil-

tration rate (eGFR).

In addition to modeling risk trajectories over multiple indices, an important methodolog-

ical challenge in the analysis of longitudinal data from USRDS is follow-up truncated by

death. This is particularly relevant to the dialysis population because nationally, the annual

mortality in the dialysis population is 20-25% (USRDS ADR, 2012). For the analysis of

infection and cardiovascular risk in the dialysis population (USRDS data), the predominant

dropout is due to death and it is certainly related to cardiovascular events (outcome). A

cardiovascular event is defined as myocardial infarction, unstable angina, stroke, or transient

ischemic attack; for a more detailed description, see Section 1.4.1. When dropout is due to

death, analysis demands careful consideration of the relevant target of inference. Kurland

and Heagerty (2005) and Kurland et al. (2009) have considered truncation by death in lon-

gitudinal studies of geriatric populations, including studies examining disability or cognitive

function outcomes and have proposed a ‘partly conditional’ target of inference where the

analysis is conditional on being alive. Authors argue that an unconditional target of infer-

ence as is commonly used in drop-out or missing data literatures may not be a meaningful

target when the missing data is due primarily to truncation by death, since it concerns a

population where there are no deaths. Instead, more relevant scientific questions can be

addressed through a partly conditional model for the dynamic cohort of survivors. Some

overall questions of particular clinical relevance for our study include:

(a) What is the cardiovascular risk trajectory during the course of dialysis for the dynamic

cohort of survivors and how does it depend on baseline age or other baseline covariates?

(b) What is the cardiovascular risk at, for instance, 2 years after dialysis for patients who

survive at least 2 years on dialysis without an infection?

(c) What is the cardiovascular risk for patients who acquired an infection at 2 years after

2



dialysis and who survive 2 or more years?

To address the aforementioned modeling objectives, we propose generalized multiple-

index varying coefficient (GM-IVC) models for generalized outcome data that (a) accommo-

date several time indices, (b) utilize one dimensional varying coefficient functions along each

time index to facilitate ease of interpretability similar to standard varying coefficient mod-

els, (c) allow for multiple cross-sectional and longitudinal covariates and (d) target a partly

conditional inference, conditional on survival status. It is known that modeling time-varying

effects with multiple indices generally is unreasonably difficult because of the curse of dimen-

sionality. To address the curse of dimensionality, we utilize a multiplicative structure for the

multiple-index varying effects that is able to capture several time-dynamic cardiovascular

risk trajectories. As detailed in Section 1.2.1, the proposed GM-IVC models are adaptive

to the time period before and after the pivotal initial infection-related hospitalization. That

is, the cardiovascular risk is modeled as a function of vintage for patients who never expe-

rience the pivotal infection and for patients who do experience the pivotal infection before

their initial infection-related hospitalization. The GM-IVC models then shift to the time

period after the initial infection-related hospitalization to estimate the cardiovascular risk

as a function of time since the initial infection. Furthermore, since the cardiovascular risk

as a function of these two time indices (vintage and time since infection) is associated with

baseline age at dialysis, the models allow for baseline age as a third index.

We note that the literature on the standard varying coefficient models (Cleveland et

al., 1991; Hastie and Tibshirani, 1993), generalized varying coefficient models (Cai et al.,

2000; Zhang et al., 2004; Qu and Li, 2006), and their adaptations for analyzing longitudinal

data (e.g., see Hoover et al., 1998; Wu et al., 2000; Chiang et al., 2001; Fan et al., 2000;

2003; Huang et al., 2002; Huang et al., 2004; and references therein) are limited to a single

time index for the varying coefficient functions due to the curse of dimensionality. When

understanding how the response trajectory changes with respect to each index is not of

interest, a dimension reduction approach where a linear combination of several indices serve

as a one-dimensional index of the varying coefficient model was proposed by Fan et al. (2003).
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Although these approaches are very useful in their respective areas of applications, they are

not directly applicable to our objective of modeling/understanding cardiovascular risk over

multiple indices.

We also note that although the proposed GM-IVC models are motivated by our goal to

better understand the dynamics of cardiovascular risk over several time and age indices for

patients on dialysis with the initial infection-related hospitalization as the pivotal exposure,

the models are sufficiently general for a variety of other potential applications. In many

longitudinal investigations, a pivotal exposure of interest marks the shift to a new ‘time’ index

for modeling the response trajectory. The remainder of this paper is organized as follows. We

introduce our proposed generalized multiple-index varying coefficient model along with model

interpretation and assumptions in Section 1.2. Section 1.3 outlines the proposed estimation

algorithm based on local maximum likelihood. In Section 1.4, we examine the aforementioned

cardiovascular risk trajectories in older patients on dialysis with data from the USRDS.

Section 1.5 contains simulation studies to demonstrate the efficacy of the proposed estimation

method, followed by concluding remarks in Section 1.6.

1.2 Proposed Generalized Multiple-Index Varying Coefficient

Model

1.2.1 Model Specification

Let ai denote the age of the ith patient at the initiation of dialysis and Si denote the

survival time of the ith patient. While ti will be used to denote overall follow-up times

after initiation of dialysis, t0i and t1i will specifically track follow-up times before and after

the potential infection-related hospitalization, respectively. Hence for patients who had

a pivotal initial infection-related hospitalization at time Zi, we note that ti = t0iIfti <

Zig+(Zi+t1i)Ifti � Zig, where IfAg denotes the indicator function for event A. For patients

who do not experience a pivotal infection during follow up time, Zi = 0 and ti = t0i. To
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examine the changes in cardiovascular event probability (risk) while conditioning on survival

status over these time indices, we model the binary indicator of having a cardiovascular event

within a three month follow-up interval. We consider a binary outcome instead of a count

outcome in our modeling, since having more than one cardiovascular event in a three month

interval is very rare; it is less than 0.1% in our data. The goal is to model the expected

outcome, denoted

�i � �i(ai; ti; t0i; t1i) = EfYi(ai; ti; t0i; t1i)jZi; Xi; IPi
(ti); Si > tig;

where Yi(ai; ti; t0i; t1i) is the indicator of a cardiovascular event for subject i in a three month

time interval centered around a fixed value of t0i or t1i; Zi is the vintage till first infection-

related hospitalization given that the ith patient has at least one infection-related hospi-

talization (Zi = 0 for patients who do not experience an infection-related hospitalization);

IPi
(ti) denotes a subject-specific time-varying indicator of infection-related hospitalization

prior to time ti (i.e. equals 1 for Zi > ti and zero otherwise); Xi is a vector of p � 1 ad-

ditional baseline covariates. A link (transformation) function, denoted g(�i), connects the

conditional expected outcome (cardiovascular event risk) to the time-varying effects and age-

varying effects corresponding to the multiple time indices and the covariates. More precisely,

our proposed generalized multiple-index varying coefficient model has the form:

g(�i) = 0(ai)�0(t0i)f1�IPi
(ti)g+1(ai)�1(t1i)IPi

(ti)+�1(ai)ZiIPi
(ti)+

pX
r=2

�r(ai)Xri; (1.1)

where the term 0(ai)�0(t0i) jointly captures vintage- and age-varying effects; the term

1(ai)�1(t1i) captures the age- and time-varying effects since the initial infection-related

hospitalization; the age-varying coefficient functions �r(ai), r = 1; : : : ; p, correspond to vin-

tage prior to the first infection-related hospitalization and baseline covariates. For formality,

the supports for the varying coefficient functions in (1.1) are: t0i 2 [0; T0i], t1i 2 [0; T1i],

T0i � T; T1i � T and ai 2 [A0; A1], where T is the maximum follow-up duration along each

time axis. In our application, we model the cardiovascular event risk during a maximum

follow-up period along each time axis with T = 5 years, both after the initiation of dialysis

and after the initial infection-related hospitalization. We estimate the age-varying effects
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for ai 2 [65; 90] = [A0; A1]. The target population is older patients on dialysis since the

cardiovascular event probability is expected to be higher in this cohort.

Note that for our application, the outcome Yi(ai; ti; t0i; t1i) is binary so that �i = PrfYi(ai;

ti; t0i; t1i) = 1jZi; Xi; IPi
(ti); Si > tig and we use the logit link function, logit(�i) = logf�i=(1�

�i)g. Finally, we note that a classical generalized varying coefficient model with a single time

index is a special case of our proposed GM-IVC model (1.1). More specifically, when �0(t0i)

and �1(t1i) are constant functions, model (1.1) reduces to a standard generalized baseline

age-varying coefficient model with cross-sectional covariates (Xri’s) and longitudinal covari-

ates (namely, IPi
(ti) and ZiIPi

(ti)),

g(�i) = �0(ai) + f�1(ai)� �0(ai)gIPi
(ti) + �1(ai)ZiIPi

(ti) +

pX
r=2

�r(ai)Xri:

Other simplifications such as parametric forms can be considered for the varying coefficient

functions. The proposed model is given for the most general setting for potentially complex

features of the varying coefficient functions in diverse applications allowing for nonparametric

forms along each time index.

1.2.2 Model Interpretation and Assumption

The proposed GM-IVC model (1.1) adapts to the follow-up time periods of patients before

and after a potential infection-related hospitalization in order to model changes in the car-

diovascular event risk over several time and age indices. This aspect is illustrated in Figure

A.1. With respect to vintage, model (1.1) reduces to

g(�i) = 0(ai)�0(t0i) +

pX
r=2

�r(ai)Xri: (1.2)

Note that for modeling infection-free vintage, times from subjects who had no infection-

related hospitalization during their entire follow-up and times prior to the initial infection-

related hospitalization for patients with at least one infection-related hospitalization con-

tribute to model (1.2). Hence, before a potential infection-related hospitalization, the risk

of a cardiovascular event is modeled as a function of baseline age ai (at the start of dialysis),
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vintage t0i and baseline covariates, whose effects are allowed to vary with baseline age. On

the other hand, for those subjects with at least one infection-related hospitalization, after

their initial infection-related hospitalization, model (1.1) shifts to

g(�i) = 1(ai)�1(t1i) + �1(ai)Zi +

pX
r=2

�r(ai)Xri: (1.3)

Therefore, after the initial infection-related hospitalization, we model the cardiovascular

event risk primarily as a function of baseline age ai and time since the initial infection-related

hospitalization t1i (along with baseline covariates). Thus, the infection-related hospitaliza-

tion introduces an additional time index, namely time since the initial infection-related hos-

pitalization. Note that model (1.3) also accounts for vintage till the initial infection-related

hospitalization (Zi). The time varying indicator, namely IPi
(ti), in model (1.1) allows the

switch between models (1.2) and (1.3) determined by the time of the initial infection-related

hospitalization during a patient’s course of dialysis. This flexibility will allow us to study

the longitudinal effects of a pivotal initial infection-related hospitalization on the cardiovas-

cular event risk and also compare these effects with the longitudinal effects along the time

since dialysis index. In this respect the proposed model does have similarities with a change

point varying coefficient model with subject specific change points at the potential initial

infection-related hospitalizations. However the main innovation of the proposed GM-IVC

model remains in that it can accommodate multiple time indices which is also novel in the

change point models for survival or longitudinal data.

Model (1.1) addresses the curse of dimensionality from accommodating multiple time

indices via the multiplicative forms 0(a)�0(t0) and 1(a)�1(t1). Hence, effects along the

two time indices and age are modeled through one-dimensional coefficient functions, rather

than bivariate varying coefficient functions (e.g., h0(a; t0) and h1(a; t1)); this leads to easier

interpretation and more straight forward comparisons along different time indices. The

proposed multiplicative forms in model (1.1) are not identifiable without restrictions, hence

we assume the following identifiability conditions:Z T

0

�2
0(t0)dt0 = 1;

Z T

0

�2
1(t1)dt1 = 1; �0(0) > 0 and �1(0) > 0: (1.4)
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These identifiability conditions imply that the estimated effects along the time indices, t0 and

t1, are normalized and that the estimated coefficients, �0(�) and �1(�), carry the shapes of the

regression effects, while the magnitude and the sign of the effects are reflected through the

coefficient functions, 0(a) and 1(a). We note that the assumed multiplicative forms along

with the proposed identifiability conditions imply that the cardiovascular risk probabilities as

a function of vintage and time since the initial infection-related hospitalization, for patients

initiating dialysis at different ages, share a common shape captured by �0(t0) and �1(t1),

respectively. Also, the magnitude of these trajectories are allowed to change as functions of

baseline age at dialysis. We will illustrate in the analysis of the USRDS data in Section 1.4

that the plausibility of the assumed multiplicative forms can be easily assessed graphically

during the implementation of the proposed estimation algorithm.

1.3 Two-Step Estimation Via Local Maximum Likelihood

For estimation in the GM-IVC model, we propose a two-step estimation algorithm that

utilizes an extension of the local maximum likelihood estimator of Cai et al. (2000) to

longitudinal data. In the first step, we target �0(t0) and �1(t1) based on the observation

that for fixed a, the proposed model reduces to a generalized varying coefficient model

in t0 and t1, both indexing the longitudinal follow-up of each subject. We bin patients

according to baseline age a and obtain stratified estimates of the varying coefficient functions

within each bin. This is equivalent to estimating slices of the two dimensional surfaces

h0(a; t0) = 0(a)�0(t0) and h1(a; t1) = 1(a)�1(t1) at fixed a values. Hence we estimate

features of the two-dimensional surfaces by estimation in one dimension. Since the stratified

estimates share a common shape according to our identifiability conditions (1.4), we combine

and normalize the stratified estimates to obtain our final estimators for �0(t0) and �1(t1).

The second step of the proposed estimation algorithm utilizes the observation that for known

�0(t0) and �1(t1), the proposed model reduces to a baseline age-varying coefficient model

in a with longitudinal and cross-sectional covariates. Thus, using the estimated �0(t0) and
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�1(t1) from the first step, we estimate 0(a), 1(a) and f�r(a); r = 1; : : : ; pg of the baseline

age-varying coefficient model in the second step of the estimation algorithm.

1.3.1 Step I: Estimation of �0(t0) and �1(t1)

We begin by binning the subjects according to their baseline age ai. In our application to

the USRDS data, we use two year intervals. Denote by fAj; j = 1; : : : ; Jg the disjoint sets

of patient indices that partition the cohort. Next, in each age bin Aj, we partition each

patient’s follow-up period into disjoint three month intervals both after the start of dialysis

and after the initial infection-related hospitalization if the patient has at least one infection-

related hospitalization. For time since dialysis, patients are followed up to their initial

infection-related hospitalization or to the end of follow-up (for patients with no infection-

related hospitalization). For time since the initial infection-related hospitalization, patients

are followed to the end of their follow-up.

In our application we consider five year maximum follow-up periods, T = 5 in model

(1.1), both after the start of dialysis and after the initial infection-related hospitalization,

since the median follow-up in the entire cohort is approximately 2 years. Define t0ik and t1ik0

to be the midpoints of the kth and k0th three month time intervals since dialysis start and

time since the initial infection-related hospitalization intervals, respectively. Also, let i(j)

denote the ith patient in the age bin Aj. We define the binary response variable Y0;ijk �

Yi(j)(ai; ti(j) = t0i(j) = t0i(j)k) = 1, if the ith patient in baseline age bin Aj had at least one

cardiovascular event in the kth three month interval after the start of dialysis. Similarly,

Y1;ijk0 � Yi(j)(ai; ti(j) = Zi(j) + t1i(j); t1i(j) = t1i(j)k0) = 1 if the ith patient in age bin Aj had

at least one cardiovascular event in the k0th three month interval after the initial infection-

related hospitalization. In addition, we denote by Xri(j) and Zi(j) the value of the rth baseline

covariate and the vintage until the initial infection-related hospitalization of patient i in age

bin Aj, respectively.

We note that for a fixed age a, for patients within the age stratum/bin Aj, the proposed

9



GM-IVC model (1.1) reduces to the following varying coefficient model in the longitudinal

follow-up time (ti(j), t0i(j) and t1i(j) all tracking longitudinal time),

g(�i(j)) = �0j(t0i(j))f1� IPi(j)
(ti(j))g+�1j(t1i(j))IPi(j)

(ti(j)) + b1jZi(j)IPi(j)
(ti(j)) +

pX
r=2

brjXri(j);

(1.5)

where �i(j) � EfYi(j)(ai(j); ti(j); t0i(j); t1i(j))jZi(j); Xri(j); IPi(j)
(ti(j)); Si(j) > ti(j)g, g(�) is a

known link function, �0j(t0i(j)) � 0(ai(j))�0(t0i(j)), �1j(t1i(j)) � 1(ai(j))�1(t1i(j)), b1j �
�1(ai(j)) and fbrj � �r(ai(j)); r = 2; : : : ; pg. The data available for estimation is f(t0i(j)k; t1i(j)k0 ;
Xri(j); Zi(j); Y0;i(j)k; Y1;i(j)k0); i 2 Aj; j = 1; : : : ; J; k = 1; :::; N0i(j); k

0 = 1; :::; N1i(j)g, where

N0i(j) and N1i(j) are the number of three month intervals since the start of dialysis and

since the initial infection-related hospitalization, in the follow-up period of patient i 2 Aj,
respectively. Using this data we fit model (1.5) by local maximum likelihood. Assuming

�0j(t0) and �1j(t1) have continuous second derivatives, we approximate each function locally

by �0j(t0) � c0j + c1j(t0� s0) and �1j(t1) � d0j + d1j(t1� s0) for t0 and t1 in a neighborhood

of the fixed time point s0. Note that higher degree approximations can be accommodated

easily in the proposed framework, however local linear approximations are usually enough

to capture complex local features. Maximizing the local log-likelihood ‘n(cj), defined by

‘n(cj) =
1P

i∈Aj
Ni(j)

X
i∈Aj

�N0i(j)X
k=1

‘

�
g−1

�
c0j + c1j(t0i(j)k � s0) +

pX
r=2

brjXri(j)

�
; Y0;ijk

�
Kh(t0i(j)k � s0)

+

N1i(j)X
k′=1

‘

�
g−1

�
d0j + d1j(t1i(j)k′ � s0) + b1jZi(j) +

pX
r=2

brjXri(j)

�
; Y1;ijk′

�
Kh(t1i(j)k′ � s0)

�
;

results in the local maximum likelihood estimators for the varying coefficient functions,

namely b�0j(t0) = bc0j, b�1j(t1) = bd0j and bbrj. The terms in the above local log-likelihood,

‘n(cj), are: Kh(�) = K(�=h)=h, where K(�) denotes a kernel function and h is the bandwidth;

cj � (c0j; c1j; d0j; d1j; b1j; : : : ; bpj)
T; Ni(j) = N0i(j)+N1i(j) and ‘(�; �) denotes the log-likelihood

function. Note that the above likelihood only includes data from subjects who are still alive

at t0 and t1. This equivalent to including a survival status indicator in the likelihood in

the estimation of the partly conditional models as was proposed by Kurland and Heagerty

(2005). The maximization can be implemented using the Newton-Raphson algorithm, with

the m+ 1 iteration update given by

bcj;m+1 = bcj;m +

�X
i2Aj

XT
ijW1ij(bcj;m)Xij

��1 X
i2Aj

XT
ijW2ij

eYij(bcj;m);
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where

Xij =

266666666666664

1 (t0i(j)1 � s0) 0 0 0 X2i(j) : : : Xpi(j)

...
...

...
...

...
...

...

1 (t0i(j)N0i(j)
� s0) 0 0 0 X2i(j) : : : Xpi(j)

0 0 1 (t1i(j)1 � s0) Zi(j) X2i(j) : : : Xpi(j)

...
...

...
...

...
...

...

0 0 1 (t1i(j)N1i(j)
� s0) Zi(j) X2i(j) : : : Xpi(j)

377777777777775

is the predictor matrix of size Ni(j) � (p+ 4),

bp0;ijk = g�1fbc0j;m + bc1j;m(t0i(j)k � s0) +

pX
r=2

bbrj;mXri(j)g;

bp1;ijk0 = g�1fbd0j;m + bd1j;m(t1i(j)k0 � s0) +bb1j;mZi(j) +

pX
r=2

bbrj;mXri(j)g;

W1ij(bcj;m) = diagfKh(t0i(j)1�s0)bp0;ij1(1�bp0;ij1); : : : ; Kh(t0i(j)N0i(j)
�s0)bp0;ijN0i(j)

(1�bp0;ijN0i(j)
),

Kh(t1i(j)1 � s0)bp1;ij1(1 � bp1;ij1); : : : ; Kh(t1i(j)N1i(j)
� s0)bp1;ijN1i(j)

(1 � bp1;ijN1i(j)
)g, W2ij = diag

fKh(t0i(j)1 �s0); : : : ; Kh(t0i(j)N0i(j)
�s0); Kh(t1i(j)1�s0); : : : ; Kh(t1i(j)N1i(j)

�s0)g and eYij(bcj;m) =

(Y0;ij1�bp0;ij1; : : : ; Y0;ijN0i(j)
�bp0;ijN0i(j)

; Y1;ij1�bp1;ij1; : : : ; Y1;ijN1i(j)
�bp1;ijN1i(j)

)T, for a Bernoulli

distributed response. For modeling a Poisson distributed response, W1ij(bcj;m) = diagfKh(

t0i(j)1 � s0)bp0;ij1; : : : ; Kh(t0i(j)N0i(j)
� s0)bp0;ijN0i(j)

, Kh(t1i(j)1 � s0)bp1;ij1; : : : ; Kh(t1i(j)N1i(j)
� s0)bp1;ijN1i(j)

g. For subjects who do not have any infection-related hospitalization, the predictor

matrix reduces to size N0i(j) � (p+ 4) and sizes of the above quantities adjust accordingly.

Note that the stratified estimators from different Aj’s target �0j(t0) � 0(aj)�0(t0) and

�1j(t1) � 1(aj)�1(t1), and that they share the same shape as �0(t0) and �1(t1), respectively.

Hence, to arrive at our final estimators for �0(t0) and �1(t1), we aggregate the stratified

estimators coming from different age strata using the identifiability conditions via

b�0(t0) =

P
j

b�0j(t0)

[
R 5

0
f
P
j

b�0j(t0)g2dt0]1=2
(�1)I0 ; b�1(t1) =

P
j

b�1j(t1)

[
R 5

0
f
P
j

b�1j(t1)g2dt1]1=2
(�1)I1 ;
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where I0 and I1 denote the indicator functions for
P
j

b�0j(0) < 0 and
P
j

b�1j(0) < 0.

Note that the number of bins selected does not need to be large as long as there is enough

sample size to obtain stable estimates from the fitted generalized varying coefficient models

in each age bin. There are a couple of factors that play a role in determining adequate

sample size for fitting a generalized varying coefficient model: 1) nature of the response (e.g.

continuous or binary), 2) number of predictors in the model, 3) amount of truncation by

death. For a more detailed discussion of selection of number of bins, readers are referred to

Appendix B.1.

1.3.2 Step II: Estimation of 0(ai), 1(ai) and �r(ai)

For estimation of the ’s and �’s, we observe that for known �0(t0) and �1(t1), the proposed

GM-IVC model reduces to a varying coefficient model in the single age index a. Therefore,

we use the estimators of �0(t0) and �1(t1) from step I to target the ’s and the �’s in the

baseline age-varying coefficient model

g(�i) = 0(ai)b�0(t0i)f1�IPi
(ti)g+1(ai)b�1(t1i)IPi

(ti)+�1(ai)ZiIPi
(ti)+

pX
r=2

�r(ai)Xri; (1.6)

in the second step of the estimation algorithm.

We aggregate the indicator responses proposed in step I of the estimation algorithm

across the age groups, to obtain the binary indicators Y0;ik � Yi(ai; ti = t0i = t0ik) and

Y1;ik0 � Yi(ai; ti = Zi + t1i; t1i = t1ik0) that will equal one if the ith patient has at least one

cardiovascular event during the kth three month interval for time since dialysis or the k0th

three month interval for time since the initial infection-related hospitalization, respectively,

and equal zero otherwise. We estimate the ’s and and �’s in model (1.6) using the aggregate

data f(ai; Y0;ik; Y1;ik0 ; b�0ik; b�1ik0 ; Zi; Xri); k = 1; : : : ; N0i; k
0 = 1; : : : ; N1ig on all subjects whereb�0ik � b�0(t0ik) is the value of b�0 at the midpoint of the kth three month interval for time

since dialysis, and b�1ik0 � b�1(t1ik0) is the value of b�1 at the midpoint of the k0th three month

interval for the potential time since the initial infection-related hospitalization. Assuming

0(a), 1(a) and �r(a) have continuous second derivatives, we approximate each function
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locally by 0(a) � e0 + e1(a� a0), 1(a) � f0 + f1(a� a0) and �r(a) � br0 + br1(a� a0) for

a in a neighborhood of the fixed time point a0.

Similar to the local maximization in step I, maximizing the local log-likelihood, ‘n(e),

defined by

‘n(e) =
1Pn
i=1 Ni

nX
i=1

�N0iX
k=1

‘

�
g�1

�
(e0 + e1ai)b�0ik +

pX
r=2

(br0 + br1ai)Xri

�
; Y0;ik

�
Kh(ai)

+

N1iX
k0=1

‘

�
g�1

�
(f0 + f1ai)b�1ik0 + (b10 + b21ai)Zri +

pX
2=1

(br0 + br1ai)Xri

�
; Y1;ik0

�
Kh(ai)

�
;

results in the local maximum likelihood estimators for the varying coefficient functionsb0(a) = be0, b1(a) = bf0 and b�r(a) = bbr0. In the above local likelihood, Kh(�) = K(�=h)=h,

K(�) denotes a kernel function, h is the bandwidth, e � (e0; e1; f0; f1; b10; b11; : : : ; bp0; bp1)T,

Ni = N0i + N1i, ai = (ai � a0) and ‘(�; �) denotes the log-likelihood function. Similar to

step I, the maximization can be implemented using the Newton-Raphson algorithm, with

the m+ 1 iteration update given by

bem+1 = bem +

� nX
i=1

XT
i W1i(bem)Xi

��1 nX
i=1

XT
i W2i

eYi(bem);

but with the following changes. The Ni � (2p+ 4) predictor matrix Xi is equal to266666666666664

b�0i1 aib�0i1 0 0 0 0 X2i aiX2i : : : Xpi aiXpi

...
...

...
...

...
...

...
...

...
...b�0iN0i

aib�0iN0i
0 0 0 0 X2i aiX2i : : : Xpi aiXpi

0 0 b�1i1 aib�1i1 Zi aiZi X2i aiX2i : : : Xpi aiXpi

...
...

...
...

...
...

...
...

...
...

0 0 b�1iN1i
aib�1iN1i

Zi aiZi X2i aiX2i : : : Xpi aiXpi

377777777777775
;

bp0;ik = g�1

�
(be0;m + be1;mai)b�0ik +

pX
r=2

(bbr0;m +bbr1;mai)Xri

�
;

bp1;ik0 = g�1

�
( bf0;m + bf1;mai)b�1ik0 + (bb10;m +bb11;mai)Zi +

pX
r=2

(bbr0;m +bbr1;mai)Xri

�
;
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W1i(bem) = diagfKh(ai)bp0;i1(1 � bp0;i1); : : : ; Kh(ai)bp0;iN0i
(1 � bp0;iN0i

), Kh(ai)bp1;i1(1 � bp1;i1);

: : : ; Kh(ai) bp1;iN1i
(1 � bp1;iN1i

)g, W2ij = diagfKh(ai); : : : ; Kh(ai)g and eYi(bem) = (Y0;i1 �bp0;i1; : : : ; Y0;iN0i
� bp0;iN0i

; Y1;i1 � bp1;i1; : : : ; Y1;iN1i
� bp1;iN1i

)T, for binary response. For mod-

eling a Poisson distributed count response, W1i(bem) = diagfKh(ai)bp0;i1; : : : ; Kh(ai)bp0;iN0i
,

Kh(ai)bp1;i1; : : : ; Kh(ai)bp1;iN1i
g. For subjects who do not have any infection-related hospi-

talization, the predictor matrix reduces to size N0i � (2p + 4) and sizes of above quantities

adjust accordingly.

1.4 Multiple-Index Cardiovascular Event Risk Trajectories in

Older Patients on Dialysis

1.4.1 Description of the Study Cohort

We use data from the United States Renal Data System (USRDS), which collects data on

nearly all patients with end-stage renal disease in the U.S. The USRDS is a national database

that collects and maintains standard analytic files, including data on inpatient hospitaliza-

tions submitted to Medicare, patient demographics, dialysis modality, comorbidities and

laboratory measures at the start of dialysis (USRDS, 2011). The defined population of infer-

ence in our study are patients aged 65 and older who newly initiated dialysis between January

1, 2000 and December 31, 2007 without a prior history of renal transplant. Patients were

eligible for inclusion if (a) they survived the first 90 days of dialysis and did not recover renal

function or receive a kidney transplant during this interval, (b) had Medicare as the primary

payer on day 91 of dialysis, and (c) were receiving hemodialysis or peritoneal dialysis on

day 91 of dialysis. Thus, the observation period began on day 91 of dialysis. The follow-up

period for an individual ended at death (78.5%) or study end on December 31, 2009 or after

5 years of observation (from the start of dialysis or after the initial infection-related hospi-

talization, 21.5%). In our analysis, we exclude 1.3% of the cohort that had renal function

recovery and 3.0% of the cohort that received kidney transplantation, since the evaluation

of candidates for transplantation relates to overall health and benefit. We include patients
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whose follow-up was administratively censored, since there are no differences expected in co-

horts initiating dialysis at different times. A follow-up sensitivity analysis run on the entire

cohort that included patients with renal function recovery and kidney transplantation lead

to very similar findings and hence results are not reported here.

A cardiovascular event was defined as myocardial infarction, unstable angina, stroke, or

transient ischemic attack, determined from primary discharge diagnosis and based on the In-

ternational Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) codes.

An infection-related hospitalization was ascertained from discharge diagnoses, also based

on ICD-9-CM classification (categories include bacteremia, candidemia and viremia; central

nervous system; cardiovascular; peritonitis and peritoneal abscess; gastrointestinal and hep-

atobiliary; genitourinary; pulmonary; skin and soft tissue; bone and joint; dialysis access

and central venous catheters; device, procedure and surgery-related.) Baseline covariates of

interest include demographic characteristics (sex, race), comorbidities (diabetes, coronary

heart disease, congestive heart failure, peripheral vascular disease), body mass index (BMI)

and MDRD eGFR (estimated glomerular filtration rate based on the 4-variable Modification

of Diet in Renal Disease (MDRD) equation from the National Kidney Foundation (2002)).

Our assessment of the cardiovascular risk trajectories will focus on older patients on dialysis

with baseline age ai 2 (65; 90); however, we conservatively include in our estimation proce-

dure patients aged 59 to 96 years at the start of dialysis to reduce boundary effects. Table

A.1 summarizes the baseline covariates for n = 294; 511 patients used in fitting the GM-IVC

model, of which 245; 874 patients were aged 65 to 90.

1.4.2 Results: Cardiovascular Event Risk Trajectories

We begin our proposed estimation procedure for the GM-IVC model (1.1) by obtaining the

age-stratified �0j and �1j estimates. For this, we bin patients into 2 year baseline age strata,

where bins are a little wider at 3 years for strata above age 84, to obtain stable estimates at

very high ages, yielding a total of 11 bins. A sensitivity analysis has been run where the total

number of bins were selected as 8 and 14; data analysis results were very similar and readers
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are referred to Appendix B.1 for details. The age-stratified estimates (b�0j’s and b�1j’s) are

plotted as a function of vintage and time (years) since the pivotal initial infection-related

hospitalization in Figure A.2(a) and (b), respectively. The plotted age-stratified estimates

roughly share a similar increasing pattern, indicating that the multiplicative assumption of

model (1.1) is reasonable in our application.

The final estimated time-varying coefficient functions over the two time indices, namelyb�0(t0) and b�1(t1), along with the age-varying coefficient functions b0(a) and b1(a) are dis-

played in Figure A.2(c) and (d), respectively. Also provided along with the cardiovascu-

lar event risk trajectories are percentile bootstrap confidence intervals based on 200 boot-

strap replications formed by resampling from subject trajectories with replacement. The

bandwidths used (h = 1:5 years for fb�0(t0); b�1(t1)g in the first step and h = 4 years for

fb0(a); b1(a); b�r(a)g in the second step of the local maximum likelihood estimation proce-

dure) were chosen by the 20-fold cross-validation, similar to Cai et al. (2000). To reduce

boundary effects, a bandwidth of h = 2:5 years was used at grid points close to 5 years

in estimation of �̂1(t1). Recall (from Section 1.2.2) that in assessing the estimated varying

coefficient functions, b�0 and b�1 do not carry the sign or the magnitude of the regression

effects, and they should be compared based on their shapes. Because b0 and b1 are negative

(Figure A.2(d)), the general increasing patterns of b�0 and b�1 (in Figure A.2(c)), with respect

to both time indices (t0 and t1), imply decreasing cardiovascular event probabilities after the

start of dialysis and after the initial infection-related hospitalization for the dynamic cohort

of survivors. Consistent with the slight convex pattern of b�1, around 0, we estimate a faster

decrease in cardiovascular event probabilities after the start of dialysis compared to follow-up

after the initial infection-related hospitalization. From Figure A.2(d), it can be seen that

the estimated age-varying coefficient function b1(a) is greater than b0(a); this implies that

cardiovascular event risk is nominally higher across all ages conditional on survival status

after the initial infection-related hospitalization compared to after the start of dialysis. Fur-

thermore, both b1(a) and b0(a) are increasing with age a and converging together as age a

approaches 90; this suggests, not surprisingly, that cardiovascular event risk increases with
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age generally.

To compare the cardiovascular event risk trajectories directly, as a function of vintage,

time since the initial infection-related hospitalization and patient age at dialysis, Figure

A.3 provides the cardiovascular event probabilities and their respective bootstrap confidence

intervals over both time indices for baseline ages of 65, 78 and 90. The following observations

can be made about the cardiovascular risk trajectories from the results in Figure A.3.

1. The risk is significantly greater across the five year follow-up time after the pivotal

initial infection-related hospitalization compared to the time after the start of dialysis

conditional on survival of the patient.

2. The highest risk is near the time of dialysis start and the time of the initial infection-

related hospitalization and declines with both time indices.

3. The risks over both time indices increase with increasing baseline age.

4. The effect of baseline age on the risk of cardiovascular event is much more pronounced

for time after the start of dialysis compared to the time after the initial infection-related

hospitalization. Furthermore, from Figure A.2(d), the increasing cardiovascular event

probability among the dynamic cohort of survivors after the initial infection-related

hospitalization plateaus after baseline age 72.

5. However, the di�erence in risks for time since dialysis and time since the initial

infection-related hospitalization declines with increasing baseline age at dialysis.

The later two points are made transparent by Figure A.3(d), which overlays the estimated

cardiovascular event probabilities across baseline ages. To illustrate the pattern of cardiovas-

cular risk dynamics above, we selected the estimates for white male patients with diabetes

and average levels of eGFR and BMI to display in Figure A.3.

Figure A.4 displays the estimated cardiovascular event risk trajectories for both time

indices simultaneously, with the initial infection-related hospitalization occurring at 3, 2
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and 1 year(s) after the start of dialysis; similar to Figure A.3, the risk trajectories are

provided with bootstrap confidence intervals for individuals with baseline ages of 65, 78 and

90 (Figure A.4: left, middle and right column, respectively). The increased cardiovascular

event probabilities remain elevated and do not decrease to their original levels; for example,

even after one year from the initial infection-related hospitalization. This appears to hold

independent of when the initial infection related-hospitalization occurred (1, 2 or 3 years

after the start of dialysis). Also, consistent with impact of baseline age at dialysis described

above, the sustained elevated risks are particularly pronounced for relatively younger patients

at the start of dialysis (e.g., age 65 and 78 compared to age 90).

The effects of baseline covariates (potentially modified by baseline age) and vintage on

the cardiovascular event probability are presented in Figure A.5. We find significant neg-

ative associations between vintage until the initiating infection, male gender, eGFR and

BMI. Comorbidities, namely congestive heart failure, coronary heart disease, peripheral vas-

cular disease and diabetes, were significantly associated with increased cardiovascular event

risk. The effects of coronary heart disease and diabetes on cardiovascular risk decline with

increasing baseline age.

1.5 Simulation Studies

We carry out simulation studies to examine the efficacy of the proposed estimation procedure

to target the true time- and age-varying coefficient functions when there is truncation by

death. Similar to the model used for the data analysis of Section 1.4, we consider the

following GM-IVC model

g(�i) = 0(ai)�0(t0i)f1�IPi
(ti)g+1(ai)�1(t1i)IPi

(ti)+�1(ai)ZiIPi
(ti)+�2(ai)X2i+�3(ai)X3i;

for t0i 2 [0; T0i], t1i 2 [0; T1i], T0i � T;T1i � T , T = 5, ai 2 [65; 90] and g(�) the logistic link

function. For the age index, the ith subject’s age, ai, is generated from a uniform random

variable between 59 and 96. The longitudinal binary indicator of whether the ith subject

experiences a pivotal exposure (that effects the time-varying indicator variable IPi
(ti)) in their
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total follow-up time is determined according to a Bernoulli random variable with probability

0:67 to mimic the rate of infections in our data application. X2i is a Bernoulli random

variable with mean :52 and X3i is a Gamma random variable with shape 4 and rate 6.

The response and the survival time are generated jointly where binary Y0;ik � Yi(ai; ti =

t0i = t0ik) and Y1;ik0 � Yi(ai; ti = Zi + t1i; t1i = t1ik0), defined in Section 1.3.1, are generated

as indicators for (Y �0;ik > 0) and (Y �1;ik0 > 0), respectively. For subjects who did not expe-

rience a pivotal exposure, we generate (Y �0;i1; : : : ; Y
�

0;i21; Si)
T according to a 22 dimensional

multivariate normal distribution with mean vector [(��0;i1; : : : ; �
�
0;i21)T; E(Si) = 4]T where

��0;i = (��0;i1; : : : ; �
�
0;i21)T represents the mean vector EfYi(ai; ti; t0i; t1i)jZi; Xi; IPi

(ti)g of the

ith subject unconditional on survival status. We include a maximum of 21 repeated mea-

sures per subject on the outcome similar to the outcome in USRDS data measured every

three months for a maximum of 5 year follow-up. The covariance matrix of the 22 dimen-

sional multivariate normal distribution is Σ = [Σ11;Σ12; Σ21;Σ22], Σ11 has dimension 21� 21

with ones down the diagonal and .25 off the diagonal, Σ12 = ΣT
21 has dimension 21� 1 with

.25 in every position, and Σ22 has dimension 1 � 1 with element .50. Unconditional means

��0;i = (��0;i1; : : : ; �
�
0;i21) are found through the following correspondence:

�0;ik = E[Y0;ikjSi > t0ik] = P (Y �0;ik > 0jSi > t0ik) =
P (Y �0;ik > 0; Si > t0ik)

P (Si > t0ik)
: (1.7)

In other words, we have that P (Y �0;ik > 0; Si > t0ik) = �0;ik �P (Si > t0ik) and we find ��0;i =

(��0;i1; : : : ; �
�
0;i21)T using the bisection method (similar to Kurland and Heagerty, 20005),

where �0;ik = g�1f0(ai)�0(t0ik) + �2(ai)X1i + �3(ai)X2ig. The generated (Y0;i1; : : : ; Y0;i21)T

vector is truncated such that t0;ik � Si to create the observed outcomes for k = 1; : : : ; N0i.

For subjects who experienced a pivotal exposure during follow up, we generate Zi = 1
4
b4Wic

whereWi � N(3; :5) and b�c denotes the floor function. We consider Zi observed and generate

(Y �0;i1; : : : ; Y
�

0;iN0i
; Y �1;i1; : : : ; Y

�
1;i20; Si)

T � NN0i+20([��0;i1; : : : ; �
�
0;iN0i

; ��1;i1; : : : �
�
1;i20; E(Si) = 4+

Zi]
T;Σ) where N0i = 4Zi+1, Σ = [Σ11;Σ12; Σ21;Σ22], Σ11 has dimension (N0i+20)�(N0i+20)

with ones down the diagonal and .25 off the diagonal, Σ12 = ΣT
21 has dimension (N0i+20)�1

with .25 in every position, and Σ22 has dimension 1� 1 with element :50. The unconditional

means (��0;i1; : : : ; �
�
0;iN0i

) are found as described in equation (1.7) and (��1;i1; : : : ; �
�
1;i20) are
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found similarly by the bisection method using P (Y �1;ik0 > 0; Si > Zi + t1ik0) = �1;ik0 �P (Si >

Zi+t1ik0) where �1;ik0 = g�1f1(ai)�1(t1ik0)+�1(ai)Zi+�2(ai)X1i+�3(ai)X2ig. The generated

(Y1;i1; : : : ; Y1;i21)T vector is truncated such that Zi+t1;ik0 � Si to create the observed outcomes

after the pivotal exposure for k0 = 1; : : : ; N1i.

The shape time-varying coefficient functions are taken to be �0(t0) = 0:0148t20�0:0083t0+

0:3333 and �1(t1) = 0:0250t21 � 0:0167t1 + 0:2500; both functions satisfy the identifiability

conditions (4). The age-varying effects before and after the pivotal exposure are 0(a) =

�0:003a2 + 0:58a� 29 and 1(a) = 0:002a2 � 0:22a+ 2. The baseline age-varying covariate

effects are �1(a) = 0:025a�1:6, �2(a) = � sin(0:02�a�4�) and �3(a) = �0:0012a2+0:14a�5.

To study the performance of the proposed estimation procedure for the GM-IVC, we

utilize a relative mean squared deviation error (MSDE) defined as

MSDE�0 =

�Z T

0

f�0(t0)� b�0(t0)g2dt0

�.Z T

0

�2
0(t0)dt0

for the time-vary function �0(t0). The MSDEs for the other time- and age-varying coeffi-

cient functions, namely MSDE�1 , MSDE0 , MSDE1 , MSDE�1 , MSDE�2 and MSDE�3 , are

defined similarly. Table A.2 gives the median, first quartile and third quartile of the esti-

mated MSDE values in percentage for the varying coefficient functions over 200 Monte Carlo

runs. Results are presented at two sample sizes n = 3000 and 5000 with bandwidth chosen

by 20-fold cross-validation as described in Cai et al. (2000). Bandwidths used were chosen

in a preliminary simulation study yielding h = (1:5; 1:5) for �̂0(t0); �̂1(t1) and h = (3:75; 2:5)

for �̂0(a); �̂1(a); �̂2(a) for n = 3000 and n = 5000, respectively. Overall, the MSDE values

reported are small and get smaller with increased sample size. In addition, Figure A.6 dis-

plays the estimated median, 5th and 95th percentile varying coefficient functions overlaying

the true curves at the sample size n = 3000. The estimated functions track the true varying

coefficient functions. Overall, the simulation studies illustrate that the proposed estimation

procedure for the GM-IVC models is effective in capturing the true time- and age-varying

dynamics for data truncated by death.
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1.6 Discussion

Infection and cardiovascular disease remain the leading causes of hospitalization and death

in patients on dialysis in the United States (USRDS 2011). Understanding the complex

cardiovascular risk trajectories is important for potential strategies to target cardiovascular

risk reduction, including implementation of overall infection control or prevention strategies.

The results highlight the significant impact of the first infection-related hospitalization on

cardiovascular event risk and the dependence of this effect on age at the start of dialysis. An

important finding is that the infection-related hospitalization results in sustained increases in

cardiovascular event risk among the dynamic cohort of survivors; for instance, even one year

after the infection-related hospitalization, the cardiovascular event probability is still higher

than the cardiovascular risk at the start of dialysis, a time of high cardiovascular risk with

respect to vintage. This pattern of cardiovascular risk dynamics, with respect to vintage (t0)

and time since the pivotal initial infection-related hospitalization (t1), holds for most older

patients starting dialysis, although the difference in cardiovascular event probabilities before

and after the infection declines with increasing baseline age at dialysis. The difference in

cardiovascular risk converges (equalizes) only for very elderly patients starting dialysis, near

90 years of age.

From a technical perspective, the proposed GM-IVC models add important and necessary

flexibility to the current varying coefficient modeling toolkit by the introduction of additional

time (and age) indices. We achieved this by employing a sensible multiplicative structure to

capture the multiple time- and age-varying effects, and at the same time, avoiding the curse

of dimensionality, a known limiting factor in modeling dynamic, varying effects. The multi-

plicative structure assumption can be assessed in the first step of the proposed estimation

algorithm via assessing whether the binned estimators of �0(t0) and �1(t1) share a common

shape. If this does not seem to be a plausible assumption, the more general two dimensional

regression surfaces h0(a; t0) and h1(a; t1) need to be targeted. Also, as illustrated with our

USRDS data application, the GM-IVC models provide natural graphical displays of time-
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and age-varying dynamics that are fairly easy to interpret; thus, retaining a popular feature

of standard/classical varying coefficient models. We believe the proposed GM-IVC models

are widely applicable since characterizing the outcome trajectories over multiple indices,

including time since a pivotal exposure event is often of interest in longitudinal analysis. Fi-

nally due to a large percent of truncation by death, we developed a model targeting a partly

conditional inference target, conditional on the survival status of the patients. Partly condi-

tional models was originally proposed for generalized linear models (Kurland and Heagerty,

2005); the current work extends them to varying coefficient models incorporating multiple

indices. Investigation of the theoretical properties of the proposed estimators is an open

problem. We provide R codes for our GM-IVC model at http://dsenturk.bol.ucla.edu/.
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CHAPTER 2

Time-Varying Effect Modeling with Longitudinal Data Truncated

by Death: Conditional Models, Interpretations and Inference

2.1 Introduction

As of 2011, more than 430,000 adults in the United States were on dialysis, a life-sustaining

treatment (United States Renal Data System Annual Data Report [USRDS ADR], 2013).

Cardiovascular (CV) disease and infection remain the leading causes of mortality and hos-

pitalization in patients on dialysis (USRDS ADR, 2013). Our recent studies (Dalrymple et

al., 2011; Mohammed et al., 2012; 2013; Estes et al., 2014) found that infection or infection-

related hospitalization was associated with increased risk of CV outcomes in older patients

on dialysis. Understanding the time-dynamic changes in patients’ CV outcome trajectories

over time to allow for identification of time frames of increased CV risk (probability) is an

important step towards exploring effective approaches to disease management. Hence, the

main goal of the manuscript is to develop conditional modeling approaches to model the

time-varying effects of risk factors including the initial infection-related hospitalization and

baseline co-existing illnesses on patients’ CV outcome trajectories over time, from the start

of dialysis. We consider a time-variant binary indicator outcome of having a CV event within

a 3 month follow-up interval where a CV event is defined as a myocardial infarction, un-

stable angina, stroke, or transient ischemic attack, determined from hospitalization primary

discharge diagnosis.

Our study uses longitudinal hospitalization data from the United States Renal Data

System Annual Data Report (USRDS) for patients aged 65 and older who newly initiated

dialysis between January 1, 2000 and December 31, 2007 without a prior history of renal

transplant. The follow-up on 80% of the patients through the end of 2009 have been truncated

by death. Hence a major challenge in the time-varying effects modeling is the high mortality
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in the dialysis population. Under such high level of mortality and when death is related

to the outcome variable, one must be careful in selecting statistical models that have useful

targets of inference. For instance, information from an estimate of the CV outcome trajectory

based on an unconditional model, ignoring truncation by death (which implicitly assumes

an immortal population), would be of limited practical use.

Thus, a primary focus of the current paper is to develop conditional time-varying effects

models for handling truncation by death. More precisely, we will present developments for

partially linear generalized varying coefficient models (PL-GVCMs) to model time-varying

effects, where the expected outcome trajectory is modeled by conditioning on (a) the dynamic

cohort of survivors (\partly conditional" approach) and (b) the actual death time (\fully

conditional" approach). Second, we will apply these conditional PL-GVCM approaches to

assess the time-varying effect of infection on CV outcome trajectory. And in this process,

we will contrast the targets/goals of inference (i.e., their interpretations) for partly and

fully conditional models to provide practical guidance on their applications in the context

of longitudinal data with substantial truncation by death. Third, we will present studies

evaluating the proposed estimation methods as well as efficacy of generalized likelihood ratio

tests (GLRTs) on the varying coefficient functions in the presence of follow-up truncation

by death.

We now provide a summary of the relevant literature and an introductory illustration

of the partly conditional, fully conditional and unconditional targets of inference for time-

varying effects. Standard varying coefficient models (VCMs; Cleveland et al., 1991; Hastie

and Tibshirani, 1993) for continuous outcomes and generalized varying coefficient models

(GVCMs) for generalized outcomes, including binary and count data (Cai et al., 2000; Zhang

et al., 2004; Qu and Li, 2006; Senturk and Mueller, 2009; Senturk et al., 2013), have been

adapted for analyzing longitudinal data (e.g., see Hoover et al., 1998; Wu et al., 2000;

Chiang et al., 2001; Fan et al., 2000; 2003; Huang et al., 2002; 2004; Senturk and Mueller,

2010; Senturk and Nguyen, 2011; and references therein). Lu (2008) proposed PL-GVCMs

where some regression coefficients vary with time and others remain constant. PL-GVCM
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is an extension of the partially linear varying coefficient models (Zhang et al., 2002; Xia et

al., 2004; Ahmad et al., 2005; Fan and Huang, 2005) for generalized outcomes, where the

covariates are time-invariant. In our current work, we consider the following PL-GVCM,

containing both time-invariant and time-variant predictors, necessary for our application:

g[EfY (t)jX;U(t)g] =

pX
r=1

�rXr +

qX
s=1

�s(t)Us(t);

where Y (t) is the outcome trajectory, g(�) is a known link function, X = (X1; : : : ; Xp)
T

is the vector of time-invariant covariates, and U(t) = fU1(t); : : : ; Uq(t)gT is the vector of

time-variant covariates. The coefficients, � = (�1; : : : ; �p)
T, describe constant effects cor-

responding to time-invariant factors and the time-varying regression coefficients, �(�) =

f�1(�); : : : ; �q(�)gT, capture the dynamic effects of the time-variant predictors.

Despite the aforementioned rich literature on modeling time-varying effects, limited works

have dealt with the consequences of longitudinal data truncated by death. In particular,

when death is related to the outcome variable, the statistical modeling requires careful

consideration of the relevant targets of inference. For instance, methods based on imputation

from the nonignorable dropout and missing data literatures targeting an unconditional mean

trajectory model, specifically � � EfY (t)jX;U(t)g, would have limited relevance because the

imputation of longitudinal data after death implicitly assumes a population where nobody

dies. Alternatively, a relevant target of inference is to condition on the cohort of individuals

still alive at time t (i.e., all individuals with death time S, where S > t), and target the

partly conditional mean trajectory �P � EfY (t)jX;U(t); S > tg (Estes et al., 2014). A

second relevant target of inference in the presence of substantial truncation by death is to

target the fully conditional mean trajectory, �F � EfY (t)jX;U(t); S = tg, which conditions

on the actual death time (i.e., S = t). Note that the fully conditional model is not intended

for the purpose of prediction since it conditions on the time of death. However, it is a useful

modeling tool to explore association of risk factors and characterizing trends in response

trajectories in retrospective population-based studies.

We note that the ideas of conditioning on the survival and on actual death time, namely
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partly and fully conditionals, were introduced in Kurland and Heagerty (2005) and Kurland

et al. (2009) for standard generalized linear models and that Estes et al. (2014) is the

only work extending the partly conditional model to the varying coefficient models. How-

ever, Estes et al. (2014) does not fully explore partly conditional model interpretations or

comparisons with other conditional approaches. The current paper is the first in literature

to contrasts the targets/goals of inference (including related interpretations) for partly and

fully conditional time-varying effects models in the context of PL-GVCMs and to provide

guidance on their applications in the context of longitudinal data with substantial truncation

by death. In addition, this work is also the first in literature to study efficacy of inference

procedures (generalized likelihood ratio tests) for the conditional time-varying effects models.

As a prelude to the more general conditional models considered in this paper, we first

illustrate the difference between partly and fully conditional models using a simple GVCM,

where about 3 of 4 subjects die during follow-up (simulation study detailed in Appendix

C.1). Figure A.7 displays the partly conditional and fully conditional (along with the uncon-

ditional) estimates of the varying coefficient function targets. We could imagine a scenario

where t denotes years on treatment which reduces relapse probability of a disease condition

in patients. The partly conditional model, which conditions on the cohort alive at time t

(years), characterizes time-varying regression relationships for the dynamic cohort of sur-

vivors. It is relevant to addressing questions such as, \What is the expected relapse risk

trajectory during the �rst two years of treatment among patients who survive at least two

years on dialysis?" In Figure A.7, it can be seen that the partly conditional trajectory

diverges from the unconditional trajectory around year 3 because, by then, the cohort of

individuals still alive have critically changed; this reflects the fact that �P (t) 6= �(t), par-

ticularly for high level of mortality during follow-up. In contrast, a fully conditional model

conditions on a specific time of death t and, thus, the inferential interest focuses on the

time-varying trajectory for the stratum of patients who died at time t. Typically, a series of

fully conditional models, conditioned on a sequence of death times (as illustrated in Figure

A.7 for death times t = 3; 4, and 5 years) are estimated to compare trends in the expected
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outcome trajectories for the death strata. The fully conditional model approach would allow

one to compare the relapse risk trajectories for a series of patient cohorts who die around for

example 1, 2, and 3 years.

The paper is organized as follows. Conditional PL-GVCM models formulation, estima-

tion, and generalized likelihood ratio tests (GLRTs) for analyzing time-varying effects of

infection on CV outcome risk using USRDS data are described in Section 2.2. Section 2.3

provides modeling results and interpretations, followed by simulation studies in Section 2.4

and a discussion in Section 2.5.

2.2 Partly and Fully Conditional Time-Varying Effect Modeling

2.2.1 Model Specification: Conditional PL-GVCM

As introduced in Section 2.1, our primary interest is to determine the course of CV risk

over time, from the start of dialysis, and assess how the CV risk trajectory changes over

time after a pivotal initial infection-related hospitalization. To specify the conditional PL-

GVCMs for this purpose, let Si be the death time and ti be the overall follow-up time index

of patient i. We divide the time axis, ti, into two parts, t0i and t1i, to track the follow-

up time before and after the initial pivotal infection-related hospitalization, respectively.

Also, let Zi mark the time of the first infection-related hospitalization. Thus, for patients

who experienced a pivotal initial infection-related hospitalization during follow up, note that

ti = Zi+t1i after infection, and for patients who do not experience a pivotal infection-related

hospitalization during follow up and for those who do experience infection, before their initial

infection, ti = t0i. To study the time-variant CV event probability (risk), we model the time-

variant binary indicator of having a CV event within a 3 month follow-up interval. Since the

probability of having more than one CV event in a three month interval is less than 0.1%

in our data, we use a binary (rather than a count) outcome in our modeling. Hence, let

Yi(ti; t0i; t1i) be the indicator of a CV event for subject i in a 3 month time interval centered

around a fixed value of t0i or t1i. The proposed partly conditional PL-GVCM targets the
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CV risk, conditioned on being alive:

�i;P � �i;P (ti; t0i; t1i) = EfYi(ti; t0i; t1i)jZi; Xi; IGi
(ti); Si > tig;

where IGi
(ti) denotes a time-variant indicator of infection-related hospitalization prior to

time ti; Zi is the vintage till the initial infection-related hospitalization if patient i has at

least one infection-related hospitalization; Xi = (X2i; : : : ; Xpi)
T are time-invariant covariates.

We use the logit link function, denoted g(�i;P ) = logf�i;P=(1� �i;P )g, to connect the partly

conditional mean to the time-varying effects of the covariates:

g(�i;P ) = �0;P (t0i)f1� IGi
(ti)g+ �1;P (t1i)IGi

(ti) + �1;PZiIGi
(ti) +

pX
r=2

�r;PXri; (2.1)

where �0;P (t0i) captures the vintage-varying effects; �1;P (t1i) captures the time-varying ef-

fects after the initial infection-related hospitalization; the coefficients f�r;Pgpr=1, correspond

to the effects of vintage prior to the initial infection and time-invariant covariates. The

supports for the varying coefficient functions in (2.1) are: t0i 2 [0; T0i], t1i 2 [0; T1i],

T0i � T; T1i � T , where T is the maximum study follow-up duration; T = 5 years in

our USRDS data application.

The time-variant indicator, IGi
(ti), in the PL-GVCM (2.1) allows for a natural tran-

sition between the model components before and after the pivotal initial infection-related

hospitalization. That is, for the time period before the initial infection-related hospitaliza-

tion among patients with infection-related hospitalization(s) and for the entire follow-up

time period among patients with no infection-related hospitalization, the CV risk model

is �i;P = g�1f�0;P (t0i) +
Pp

r=2 �r;PXrig. For patients with at least one infection-related

hospitalization, we see from (2.1) that the CV risk model after the initial infection-related

hospitalization transitions to �i;P = g�1f�1;P (t1i) + �1;PZi +
Pp

r=2 �r;PXrig. Note that this

model appropriately accounts for vintage till the initial infection-related hospitalization,

namely Zi.

The proposed model can be characterized as a segmented nonparametric regression model

where the time of the initial infection-related hospitalization acts as an observed change
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point and the CV risk trajectory before and after this observed change point is allowed be a

nonparametric function of time. For simplicity we concentrate on the initial infection-related

hospitalization, since the initial hospitalization leads to the largest increase in CV risk in our

preliminary findings. However the model can be extended to incorporate multiple infection-

related hospitalizations with multiple change points or a change point with multiple states

than only two. The latter extension would require the same number of varying coefficient

functions as the levels of the states of the change point variable.

In contrast, for the fully conditional model, instead of conditioning on survival status,

we condition on time of death. For this, we partition the overall follow-up time into disjoint

3 months intervals/bins, where the left endpoint of the first bin is 0, and the right endpoint

of the last bin is T . Denote the jth death bin by Dj. The CV risk within bin Dj is

�ij;F � �ij;F (ti; t0i; t1i) = EfYi(ti; t0i; t1i)jZi; Xi; IGi
(ti); Si 2 Djg;

and the fully conditional PL-GVCM for the CV risk is

g(�ij;F ) = �0j;F (t0i)f1� IGi
(ti)g+ �1j;F (t1i)IGi

(ti) + �1j;FZiIGi
(ti) +

pX
r=2

�rj;FXri: (2.2)

The parameters and varying coefficient functions in (2.2) above are analogously defined as

in the partly conditional model (2.1).

2.2.2 Estimation

Estimation procedures for partially linear VCMs and PL-GVCMs usually contain several

main steps, where the regression coefficients of the linear part are targeted first, followed

by estimation of the varying coefficient functions (VCFs) using coefficient estimates of the

linear part from the initial step (Zhang et al., 2002; Xia et al., 2004; Fan and Huang,

2005). For example, Lu (2008) proposed local quasi-likelihood for estimation of the �s’s

first, then targeting the �r’s via maximum likelihood using the estimated VCFs, followed

by re-estimation of the VCFs using the estimated �r’s. To fit the proposed conditional PL-

GVCMs, we will extend the method of Lu (2008) to the context of longitudinal data and
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allow for longitudinal covariates where follow-up is truncated by death. The proposed 3-step

estimation algorithm is provided next for the partly conditional model. We note that for the

fully conditional PL-GVCM, this estimation method is applied to data from death bin Dj,

instead of the entire cohort.

2.2.2.1 Step 1: Initial Estimation of �0;P (t0) and �1;P (t1)

We begin by partitioning each patient’s follow-up period into disjoint 3-month intervals

after initiation of dialysis and after the initial infection-related hospitalization if the patient

has at least one infection-related hospitalization. Let N0i denote the number of 3-month

intervals in the ith patient’s follow-up after initiation of dialysis until the initial infection-

related hospitalization or to the end of follow-up (for a patient without an infection-related

hospitalization). Similarly, let N1i be the number of 3-month intervals since the initial

infection-related hospitalization to the end of follow-up for patient i. Further, define t0ik

and t1ik0 to be the midpoints of the kth and k0th 3-month time intervals since initiation of

dialysis and since the initial infection-related hospitalization, respectively. We define the

binary response variable Y0;ik � Yi(ti = t0i = t0ik) = 1, if the ith patient had at least

one CV event in the kth 3-month interval after initiation of dialysis. Similarly, Y1;ik0 �

Yi(ti = Zi + t1i; t1i = t1ik0) = 1 if the ith patient had at least one CV event in the k0th

3-month interval after the initial infection-related hospitalization. Hence, the available data

is f(t0ik; t1ik0 ; Xri; Zi; Y0;ik; Y1;ik0) : i = 1; : : : ; n; k = 1; : : : ; N0i; k
0 = 1; : : : ; N1ig, where n is

the total number of subjects.

We utilize three month intervals to facilitate obtaining stable fits for both the partly and

fully conditional models, allowing comparisons. Note that there are multiple factors that

effect the stability of the PL-GVCM fit in general: 1) nature of the response (continuous,

binary, etc.), 2) number of predictors in the model, and 3) amount of truncation by death.

A binary response with a small probability of success, increasing number of predictors and

larger amount of truncation by death would require a larger sample size for a stable fit,

especially towards the end of follow-up, which would require larger partitions.
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The first step of the estimation algorithm targets the VCFs, �0;P (t0) and �1;P (t1), via local

maximum likelihood (ML). Assuming that the VCFs have continuous second derivatives, we

approximate each function locally by �0;P (t0) � c0 +c1(t0�s0) and �1;P (t1) � d0 +d1(t1�s0)

for t0 and t1 in the neighborhood of the fixed time point s0. Maximizing the local log-

likelihood ‘1(c), defined by

‘1(c) =
1Pn
i=1 Ni

nX
i=1

�N0iX
k=1

‘

�
g�1

�
c0 + c1(t0ik � s0) +

pX
r=2

brXri

�
; Y0;ik

�
Kh(t0ik � s0)

+

N1iX
k0=1

‘

�
g�1

�
d0 + d1(t1ik0 � s0) + b1Zi +

pX
r=2

brXri

�
; Y1;ik0

�
Kh(t1ik0 � s0)

�
; (2.3)

provides the initial local ML estimators for the VCFs, namely b�0;P (t0) = bc0 and b�1;P (t1) = bd0.

In the above local log-likelihood, Kh(�) = K(�=h)=h, K(�) denotes a kernel function and h

is the bandwidth; c � (c0; c1; d0; d1; b1; : : : ; bp)
T; Ni = N0i + N1i and ‘(�; �) denotes the

log-likelihood function.

Let bp0;ik = g�1fbc0 + bc1(t0ik � s0) + b�ig and bp1;ik0 = g�1fbd0 + bd1(t1ik0 � s0) + bb1Zi + b�ig,
where b�i =

Pp
r=2
bbrXri. Also, define f�v;ij � Kh(tvij � s0)gNvi

j=1, fepv;ij � bpv;ij(1 � bpv;ij)gNvi
j=1,

and fe�v;ij � �v;ijepv;ijgNvi
j=1, for v = 0; 1. Then the Newton-Raphson update at iteration m+ 1

is given by bcm+1 = bcm +

� nX
i=1

XT
1iW1i(bcm)X1i

��1 nX
i=1

XT
1iW2i

eYi(bcm);

where

X1i =

266666666666664

1 (t0i1 � s0) 0 0 0 X2i : : : Xpi

...
...

...
...

...
...

...

1 (t0iN0i
� s0) 0 0 0 X2i : : : Xpi

0 0 1 (t1i1 � s0) Zi X2i : : : Xpi

...
...

...
...

...
...

...

0 0 1 (t1iN1i
� s0) Zi X2i : : : Xpi

377777777777775
is the predictor matrix of size Ni�(p+4), W1i(bcm) = diagfe�0;i1; : : : ; e�0;iN0i

; e�1;i1; : : : ; e�1;iN1i
g,

W2i = diagf�0;i1; : : : ; �0;iN0i
; �1;i1; : : : ; �1;iN1i

g and eYi(bcm) = (Y0;i1 � bp0;i1; : : : ; Y0;iN0i
� bp0;iN0i

;

Y1;i1�bp1;i1; : : : ; Y1;iN1i
�bp1;iN1i

)T, for a Bernoulli distributed response. For modeling a Poisson
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distributed response, W1i(bcm) = diagf�0;i1bp0;i1; : : : ; �0;iN0i
bp0;iN0i

; �1;i1bp1;i1; : : : ; �1;iN1i
bp1;iN1i

g.

For subjects who do not have any infection-related hospitalization, the predictor matrix

reduces to size N0i � (p+ 4) and sizes of the above quantities adjust accordingly.

Note that the local likelihood only includes data from subjects who are still alive at t0 and

t1. We also point out that the formulation for the local log-likelihood ‘1(c) in (2.3) tacitly

utilizes local working independence for repeated values within a subject. This is motivated

by two points. First, the within-subject correlation for the response is quite weak in our

data application (� 0:02). Second, and more generally, Kurland and Heagerty (2005) found

that standard likelihood based methods will not target the partly conditional mean, and

generalized estimating equations with independence weights provides unbiased estimation in

a generalized linear model of longitudinal data. The authors report that when the working

correlation is non-diagonal, the variance inverse terms depend on the specific value of the

death time, which leads to biased estimation in targeting the partly conditional target.

2.2.2.2 Step 2: Estimation of �r;P

In the second step, we target �r;P , by using the VCF estimators b�0;P (t0ik) and b�1;P (t1ik0)

obtained in step 1 in the global likelihood,

‘2(e) = 1Pn
i=1 Ni

Pn
i=1

�PN0i

k=1 ‘

�
g�1

�b�0;P (t0ik) + LCi

�
; Y0;ik

�
+

PN1i

k0=1 ‘

�
g�1

�b�1;P (t1ik0) + e1Zi + LCi

�
; Y1;ik0

��
;

resulting in the ML estimators b�r;P = ber for r = 1; : : : ; p, where LCi denotes
Pp

r=2 erXri. The

maximization is carried out using the Newton-Raphson algorithm with the m + 1 iteration
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update given by

bem+1 = bem+

(
nX
i=1

X T2iWi(bem)X2i

)�1( nX
i=1

X T2i eYi(bem)

)
where X2i =

266666666666664

0 X2i X3i : : : Xpi

...
...

...
...

...

0 X2i X3i : : : Xpi

Zi X2i X3i : : : Xpi

...
...

...
...

...

Zi X2i X3i : : : Xpi

377777777777775
is the predictor matrix of size Ni � p, bp0;ik = g�1fb�0;P (t0ik) +

Pp
r=2 ber;mXrig, bp1;ik0 =

g�1fb�1;P (t1ik0) +be1;mZi +
Pp

r=2 ber;mXrig, Wi(bem) = diagfep0;i1; : : : ; ep0;iN0i
; ep1;i1; : : : ; ep1;iN1i

g,

and eYi(bem) = (Y0;i1�bp0;i1; : : : ; Y0;iN0i
�bp0;iN0i

; Y1;i1�bp1;i1; : : : ; Y1;iN1i
�bp1;iN1i

)T, for a Bernoulli

distributed response. For modeling a Poisson distributed response, Wi(bem) = diag(bp0;i1; : : : ;bp0;iN0i
; bp1;i1; : : : ; bp1;iN1i

).

2.2.2.3 Step 3: Final Estimation of �0;P (t0) and �1;P (t1)

In step 3, we use the final global estimates for �r;P , to arrive at the final VCF estimators.

For this, we maximize the local likelihood given in step 1, where br are replaced with b�r;P ,

r = 1; : : : ; p from step 2. Hence, the Ni� 4 design matrix X1i uses the first 4 columns of the

design matrix defined in step 1 and bp0;ik and bp1;ik0 are redefined as g�1fbc0 + bc1(t0ik � s0) +Pp
r=2
b�r;PXrig and g�1fbd0 + bd1(t1ik0 � s0) + b�1;PZi +

Pp
r=2
b�r;PXrig, respectively.

2.2.3 Generalized Likelihood Ratio Test Under Follow-up Truncation by Death

The proposed PL-GVCM aims to characterize the time-varying CV outcome trajectories

from the start of dialysis and to compare patterns of CV outcome risk before and after an

infection. These time-varying effects are described by the VCFs, �0(t0) and �1(t1), for the

time periods before and after infection, respectively. Thus, we consider hypothesis tests on

the VCFs. The first hypothesis of interest involves whether the VCFs are constant over

time (before and after infection), i.e., H0 : �0(t0) = c0 and �1(t1) = c1, as illustrated in

Figure A.12(a). This hypothesis encompasses the case where the infection event induces a
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constant change (shift) in the CV outcome risk (i.e., whenc0 6= c1). A second hypothesis

of interest involves a comparison of time-varying e�ects before and after an initial infection-

related hospitalization, speci�cally H0 : � 0(t0) = � 1(t1), as illustrated in Figure A.12(b).

This hypothesis examines whether the infection event leads to a transient change (e.g. an

increase) in CV risk, but the CV risk pattern over time after infection parallels the CV risk

trajectory before the infection event.

In the �rst hypothesis test for constancy of the varying coe�cient functions, the null hy-

pothesis is parametric, while the alternative is nonparametric. In the second hypothesis test,

both null and alternative hypotheses are nonparametric. Fan et al. (2001) extended GLRTs

for nonparametric inferences in a variety of models. More speci�cally, they showed that the

Wilks phenomenon that the asymptotic null distributions of the GLRTs are independent of

nuisance parameters holds for a variety of nonparametric problems for i.i.d. data. Based on

these ideas, we consider the GLRTs for the above two hypotheses in the PL-GVCM with

longitudinal data substantially truncated by death. Because the within-subject correlation

for the response is quite weak in our data application (� 0:02), we consider extensions of the

(Fan et al., 2001) i.i.d. framework to longitudinal data where the test statistic de�ned via

log-likelihoods and the bootstrap data generation under the null hypotheses assume inde-

pendence for repetitions within a subject. We study the validity and power of the proposed

GLRTs using simulations in Section 2.4, where high follow-up truncation by death ranges

from 40-80%.

The GLRT statistic, denoted T, is of the form T = r k f `(H1) � `(H0)g where r k =

f K (0) � 0:5
R

K 2(u)dug=[
R

f K (u) � 0:5(K � K )(u)g2du], K � K denoting the convolution of

K with itself and `(H0) and `(H1) denoting the log-likelihoods under the null and alternative

hypothesis, respectively. The form of the log-likelihoods,`(�), are given by

nX

i =1

� N0iX

k=1

f Y0;ik log(p0;ik )+(1 � Y0;ik ) log(1� p0;ik )g+
N1iX

k0=1

f Y1;ik 0 log(p1;ik 0)+(1 � Y1;ik 0) log(1� p1;ik 0)g
�
:

(2.4)

In our application, we use the Epanechnikov kernel wherer k = 2:1153. Fan et al. (2001)

showed that the GLRT statistic follow a � 2-distribution asymptotically; however, the level
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of the test may not be achieved consistently. To alleviate this issue, we will adopt the

approach in Cai et al. (2000) by using a conditional bootstrap procedure which provides

an improved estimate of the null distribution with moderate sample size for GVCMs. More

precisely, we will use a nonparametric bootstrap method to estimate the null distribution.

The main steps of the GLRT algorithm are: (i) estimate the PL-GVCM parameters under

the null and alternative hypothesis, using̀ (H0) and `(H1); (ii) compute the GLRT statistic

T = 2:1153f `(H1) � `(H0)g; (iii) generate a bootstrap sample of response values conditional

on the estimates of the model parameters under the null hypothesis; (iv) compute the test

statistic T based on the bootstrap sample by repeating steps (i)-(ii); denote this bootstrap

statistic by T � ; (v) use the distribution of the bootstrap test statistic, T � , to approximate

the distribution of T under the null.

For the �rst test H0 : � 0(t0) = c0 and � 1(t1) = c1, the proposed model in (2.1) reduces to

the generalized linear modelg(� i;P ) = c0f 1� IG i (t i )g+ c1IG i (t i )+ � 1;P Z i IG i (t i )+
P p

r =2 � r;P X ri

under the null hypothesis. Parameters� r;P can be estimated by maximizing the global

likelihood in step 2 of the proposed estimation algorithm (Section 2.2.2) whereb� 0;P (t0i ) and

b� 1;P (t1i ) would be replaced byc0 and c1 speci�ed in the null, respectively. To obtain the

parameter estimates of the partly conditional PL-GVCM under the alternative, we utilize

the proposed 3-step �tting algorithm detailed in Section 2.2.

Next, the test statistic is computed using the log-likelihoods given in (2.4) under the null

and alternative hypotheses; where under the nullbp0;ik = g� 1(c0 + b� i ) and bp1;ik = g� 1(c1 +

b� 1;P Z i + b� i ) with b� i =
P p

r =2
b� r;P X ri . Similarly, under the alternative bp0;ik = g� 1f b� 0(t0i ) +

b� i g and bp1;ik = g� 1f b� 1(t1i ) + b� 1;P Z i + b� i ), all evaluated using parameter estimates under

respective hypotheses. The response values (Y �
0;i 1; Y �

0;i 2; : : : ; Y �
0;iN 0i

; Y �
1;i 1; Y �

1;i 2; : : : ; Y �
1;iN 1i

)T in

the bootstrap sample are generated using parameter estimates under the null according to

Y �
0;ik � Bernoulli f g� 1(c0 + b� i )g and Y �

1;ik � Bernoulli f g� 1(c1 + b� 1;P Z i + b� i )g. After B

bootstrap test statistics are obtained based onB bootstrap samples, the� 2-distribution of

T under the null is approximated via estimating the degrees of freedom of the distribution

based on the distribution of the bootstrap test statistics. B is taken to be 500 in our
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applications.

For the second testH0 : � 0(t0) = � 1(t1), model (2.1) reduces tog(� i;P ) = � (t0i )f 1 �

IG i (t i )g + � (t i 1)IG i (t i ) + � 1;P Z i IG i (t i ) +
P p

r =2 � r;P X ri under the null, where� (�) denotes the

common varying coe�cient function under the equality � 0(t0) = � 1(t1). An adaptation

of the proposed estimation algorithm is used to estimate the parameters under the null

hypothesis, whered0 and d1 are replaced withc0 and c1, respectively in (2.3),X1i in step

1 of Section 2.2.2 reduces down to aN i � (p + 2) matrix with second to fourth columns

replaced with (t0i 1 � s0; : : : ; t0iN 0i � s0; t1i 1 � s0; : : : ; t1iN 1i � s0)T and similar adjustment are

made in step 3. For the unrestricted partly conditional PL-GVCM under the alternative,

parameters are targeted with the proposed 3-step estimation algorithm Section 2.2. Similar

to the the �rst hypothesis test, the test statistic is computed using the likelihood in (2.4)

under the null and alternative hypotheses, where under the nullbp0;ik = g� 1f b� (t0i ) + b� i g and

bp1;ik = g� 1f b� (t1i ) + b� 1;P Z i + b� i g; under the alternative bp0;ik = g� 1f b� 0(t0i ) + b� i g, bp1;ik =

g� 1f b� 1(t1i ) + b� 1;P Z i + b� i g using parameter estimates under respective hypotheses. The

bootstrap response (Y �
0;i 1; Y �

0;i 2; : : : ; Y �
0;iN 0i

; Y �
1;i 1; Y �

1;i 2; : : : ; Y �
1;iN 1i

)T is generated under the null

according toY �
0;ik � Bernoulli [g� 1f b� (t0i ) + b� i g] and Y �

1;ik � Bernoulli [g� 1f b� (t1i ) + b� 1;P Z i +

b� i g]. The bootstrap test statistics are used to approximate the distribution ofT under the

null similar to the �rst test.

2.3 Applications to Infection-Cardiovascular Risk Modeling

2.3.1 Description of the Study Cohort

We use data from the USRDS, a national data system that collects information on nearly

all patients with end-stage renal disease in the US, including data on inpatient care patient

demographics and baseline patient factors prior to the start of dialysis. The population of

inference are adults aged 65 to 90 who newly initiated dialysis between January 1, 2000 and

December 31, 2007 without a prior history of renal transplant. Eligibility criterion included

(a) having survived the �rst 90 days of dialysis and did not recover renal function or receive

36



a kidney transplant during this interval, (b) having Medicare as the primary payer on day

91 of dialysis, and (c) receiving hemodialysis or peritoneal dialysis on day 91. Thus, the

observation period began on day 91 and subjects were followed-up until death (80%), study

end on December 31, 2009 or after 5 years of observation (from the initiation of dialysis or

the initial infection-related hospitalization). We exclude 1.3% of the cohort that recovered

renal function and 2.1% of the cohort that received a kidney transplant, since the evaluation

of candidates for transplant relates to overall health.

The outcome, CV events were de�ned as a myocardial infarction, unstable angina, stroke,

or transient ischemic attack, determined from primary discharge diagnosis and based on

the International Classi�cation of Disease, 9th Revision, Clinical Modi�cation (ICD-9-CM)

codes. An infection-related hospitalization was determined from discharge diagnosis, also

based on ICD-9-CM codes, and included the following types of infection: blood stream

infections and sepsis; central nervous system; cardiovascular; peritoneal; gastrointestinal and

hepatobiliary; genitourinary; pulmonary; skin and soft tissue; bone and joint; dialysis access

and central venous catheters; device, procedure and surgery-related. Table A.3 summarizes

the baseline covariates included in the study.

2.3.2 Cardiovascular Outcome Risk Trajectories

2.3.2.1 Partly and Fully Conditional Time-Varying Models without Covariates

To explore partly and fully conditional time-varying e�ects, we �rst consider the CV outcome

risk trajectories over time from the initiation of dialysis without covariates. For this, the

partly conditional GVCM is g[Ef Yi (t i )jSi > t i g] = � P (t i ), where the model �ts to 3 cohorts

are shown in Figure A.8(a): (i) patients who die, (ii) patients followed to the end of study

(EOS), and (iii) all patients combined. Also, given are 90% bootstrap percentile con�dence

intervals (CIs) based on 200 bootstrap samples where entire subject trajectories are sampled

with replacement. The VCF estimates (the CV risk trajectories) have generally increasing

trends over time after dialysis, both in the cohort of patients (i) whose death is observed
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and (ii) followed to the EOS. As expected, the CV risk over time is lower for the cohort of

patients alive at the EOS compared to the cohort of patients who die during follow-up; and

due to the high mortality of patients on dialysis, the ratio of sample sizes of cohort (i) over

cohort (ii) is sharply decreasing with follow-up time (Figure A.8(a), solid gray line). Even

though CV risk trajectories are increasing in cohorts (i) and (ii), for the combined cohort

of all patients (iii) the CV risk trajectory has an overall decreasing trend, especially within

the �rst 2 years after starting dialysis. This is related to the fact that the partly conditional

model describes di�erent (dynamic) cohorts at each time point in the follow-up. That is,

while the CV risk is high at the initiation of dialysis because the dynamic cohort of survivors

consists mostly of patients with observed death and higher CV risk, this CV risk decreases

over time as the ratio of the number of patients who die relative to patients alive at the end

of follow-up declines in the dynamic cohort of survivors. This is illustrated in Figure A.8(a),

where the combined cohort VCF estimate (dashed line) represents a weighted average of the

estimates for cohorts (i) and (ii), which depends on the changing sample size ratios (gray

line) over time.

Figure A.8(b) displays 4 fully conditional model �ts to data from 4 death bins (strata)

with midpoints 1.125, 2.125, 3.125, and 4.12 years (time of death). These fully conditional

analyses can be interpreted simply as strati�ed analyses. As expected, we also see an overall

global increasing CV trajectory for each death bin and CV risk is substantially higher for

early death stratum. We emphasize that while the partly conditional model is �tted to the

entire cohort, the fully conditional model can only be �tted in a subset of the cohort for

patients whose death is observed since it conditions on death time. Thus, the estimated

VCFs should be interpreted accordingly. We note that the phenomenon of opposing trends

observed in the partly and fully conditional models was replicated in a simulation study

(details deferred to Appendix (C.2)). A key aspect in replicating this phenomenon is the

inclusion of a high proportion of subjects with observed mortality early on near the start of

dialysis where this proportion gradually decreases with follow-up time (Figure A.8(c)-(d)).
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2.3.2.2 Time-Varying CV Risks Before and After Infection, and Baseline Fac-

tors

We next turn to the main study objectives, which are to examine the CV risk trajectories

during the time periods before and after an initial infection-related hospitalization and to

assess the association of vintage and patient baseline characteristics, including comorbidities,

on CV outcome. For this, we �t the partly and fully conditional PL-GVCMs described

in Section 2.2.1 with covariates demographic characteristics (age, sex, race), comorbidities

(diabetes, coronary heart disease, congestive heart failure, peripheral vascular disease), body

mass index (BMI) and estimated glomerular �ltration rate (eGFR). Selected kernel and

bandwidth values are given in Appendix (C.3).

The estimated partly conditional VCFs before and after infection, namelyb� P (t0) and

b� P (t1), and the corresponding CV risk trajectories, along with 90% bootstrap CIs are given

in Figures A.9(a) and A.9(b), respectively. We formally tested whether the partly condi-

tional VCFs characterizing CV risks are constant over time (Test I) and whether they are

equal to each other (Test II) using the GLRTs described in Section 2.2.3. There is strong

evidence indicating that there is di�erential time-varying e�ects before and after infection

(both null hypotheses rejected with p-value< : 0001). As evident from Figures A.9(a)-(b),

both VCFs (and corresponding CV outcome risk trajectories) are decreasing in time for the

dynamic cohort of survivors. Furthermore, the initial infection-related hospitalization marks

a signi�cant increase in CV risk with non-overlapping CIs for� 0;P (t0) and � 1;P (t1). Figures

A.9(c)-(f) show the estimated CV risk trajectories where the initial infection-related hospi-

talization occurs at 1-4 years after starting dialysis. Note that modeling e�ects of vintage

prior to initial infection-related hospitalization (Z i ) allows the trajectories in (c)-(f) to be

di�erent; nevertheless the estimated �ts do not di�er too much due to the small estimated

value of � 1;P . Results indicate asustainedincrease in CV risk across the duration of follow-

up after infection, in the sense that the CV risk levels after infection do not return to the

levels observed at initiation of dialysis. In addition, the CV risk declines at a faster rate

within the �rst year after initiation of dialysis compared to the linear decrease after the
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initial infection-related hospitalization.

Results for the fully conditional model �ts, strati�ed by death bins, show that CV risk has

a general decreasing trend as survival of the patients in the bins increase (with bin midpoints

or time of death at 1.125, 2.125, 3.125, and 4.125 years); this pattern of results (omitted)

is similar to Figure A.8(b). Figures A.10(a)-(c) show the typical pattern of increased CV

risk after the initial infection in the fully conditional model �ts, consistently across death

bins/strata. Note that the CV risk decreases for subjects in larger death bins as expected

and that due to the additional strati�cation of the data into death bins, the sample size

used in the �ts is smaller leading to larger CIs, especially after the initial infection-related

hospitalization. While the partly conditional model provides information about the dynamic

cohort of survivors, the fully conditional model provides an opportunity to compare estimated

e�ects across cohorts with di�erential death strata directly.

The estimated e�ects of baseline covariates,f b� F;P g, on CV risk for a sequence of fully

conditional models are summarized in Figure (A.11). Being male is associated with lower

CV risk in both the fully and partly conditional model ( b� 3;P = � :125, 95% bootstrap CI

[95% bCI]: (� :143; � :110)). Baseline comorbidities, including coronary heart disease (b� 7;P =

:201, 95% bCI: (:185; :218)) and diabetes (b� 9;P = :179, 95% bCI: (:164; :198)) are associated

with higher CV outcome risk in both the partly and fully conditional models. Several

comorbidities, speci�cally congestive heart failure (b� 6;P = :045, 95% bCI: (:026; :065)) and

peripheral vascular disease (b� 8;P = :093, 95% bCI: (:070; :115)), in addition to baseline age

( b� 2;P = :009, 95% bCI: (:007; :010)), are found to be associated with increased CV risk in

the partly conditional model. But once conditioned on death time, are not found signi�cant

in most of the death bins (A.11). This may be related to some comorbidities and age being

related to CV risk via their e�ect on survival in the entire cohort, where once conditioned on

death time may no longer be associated with CV risk, while others such as coronary heart

disease and diabetes having a more direct e�ect on CV across di�erential survival. Among

those who survive longer, higher BMI is associated with lower CV outcome risk, and among

those who die within 3 years of dialysis, higher eGFR is associated with lower CV risk,
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consistent with the general trends observed in the partly conditional model (b� 10;P = � :008,

95% bCI: (� :010; � :006) for BMI; b� 11;P = � :009, 95% bCI: (� :011; � :008) for eGFR).

Finally, the particular infection time does not seem to have a strong association with CV

risk in either the partly ( b� 1;P = � :021, 95% bCI: (� :030; � :010)) or the fully conditional

models (Figure A.11(a)).

2.4 Simulation Studies

As described in Section 2.2.2, the fully conditional estimation involves �tting the PL-GVCM

within each death bin, where subjects with similar death times are grouped together. Thus,

the issue of truncation by death is handled by strati�cation by death time (death bins) and

the model �ts within each death bin follow a standard estimation algorithm for PL-GVCM.

In contrast, the partly conditional PL-GVCM is �tted based on subjects who have di�eren-

tial follow-up, where many individuals' follow-up times are truncated by death. Thus, our

simulation studies, here will focus on the �nite sample properties of the proposed estimation

method for the partly conditional PL-GVCM; similarly we will examine the validity and

power of the proposed GLRTs in Section 2.2.3.

2.4.1 Simulation Model and Design

To study the e�cacy of the estimation method under truncation by death, we consider a

model for the partly conditional outcome mean,� i;P = Ef Y(t i ; t0i ; t1i )jZ i ; X 1i ; X 2i ; IG i (t i );

Si > t i g, through the following PL-GVCM:

logf � i;P =(1� � i;P )g = � 0;P (t0i )f 1� IG i (t i )g+ � 1;P (t1i )IG i (t i )+ � 1;P Z i IG i (t i )+ � 2;P X 1i + � 3;P X 2i ;

where� 0;P (t) = � :05t2 + :025t � 1:25, � 1;P (t) = � :03t2 � :05t, (� 1;P ; � 2;P ; � 3;P ) = ( � :5; :5; 1),

and the time support is tvi 2 [0; Tvi ], Tvi � T = 5 (for v = 0; 1). X 1i is generated from

a Gamma distribution with rate parametersf 4; 6g and X 2i � Bernoulli (:52). In order to

generate the time-varying indicator variable,IG i (t i ), we �rst generate a binary indicator
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of whether or not a subject experiences an infection-related hospitalization according to a

Bernoulli distribution with probability :68 to mimic the infection rate in our data application.

For those subjects who experience an infection-related hospitalization, we generateZ i =

1
4b4Wi c whereWi � N (1:25; :25) and b�c denotes the oor function.

The response vector and survival time are generated jointly using the bisection algo-

rithm, similar to Estes et al. (2014) and Kurland and Heagerty (2005). The simula-

tion design mimics the real data in that within-subject correlation of the response is low

(� 0:04) and truncation by death is high during the 5-year follow-up, ranging from 40-

80%. The response vector and survival time are generated jointly using the bisection algo-

rithm. The binary responseY0;ik and Y1;ik 0, are generated as indicators for (Y �
0;ik > 0) and

(Y �
1;ik 0 > 0), respectively. For subjects who do not experience an infection-related hospital-

ization, we generate (Y �
0;i 1; : : : ; Y �

0;i 21; Si )T according to a 22-dimensional normal distribution

with mean vector [� � T
0;i ; E(Si ) = 3 :38]T where � �

0;i = ( � �
0;i 1; : : : ; � �

0;i 21)
T is the mean vector

Ef Yi (t i ; t0i ; t1i )jZ i ; X i ; IG i (t i )g of the i th subject, unconditional on survival status. We in-

clude a maximum of 21 repeated measures per subject on the outcome similar to the outcome

in USRDS data measured every 3 months for a maximum of 5 years of follow-up. The co-

variance matrix of the 22-dimensional normal distribution is � =
�
I 21; � :05� 21; � :05� T

21; :5
�
,

where I a is an identity matrix of dimension a by a and � a is a vector of ones of sizea.

Elements of the unconditional mean vector,� �
0;i , are computed through the correspondence:

� 0;ik = E[Y0;ik jSi > t 0ik ] = P(Y �
0;ik > 0jSi > t 0ik ) = P(Y �

0;ik > 0; Si > t 0ik )=P(Si > t 0ik );

where � 0;ik = g� 1f � 0;P (t0ik ) + � 2;P X 1i + � 3;P X 2i g. Through (2.4.1) P(Y �
0;ik > 0; Si > t 0ik )

is computed via� 0;ik � P(Si > t 0ik ) and we �nd f � �
0;il g

21
l=1 using the bisection method. The

generated (Y0;i 1; : : : ; Y0;i 21)T vector is truncated such that t0;ik � Si to create the observed

outcomes fork = 1; : : : ; N0i .

For subjects who experience an infection-related hospitalization, based on the previously

generatedZ i , we generate (Y �
0;i 1; : : : ; Y �

0;iN 0i
; Y �

1;i 1; : : : ; Y �
1;i 20; Si )T � NN0i +20 ([� �

0;i 1; : : : ; � �
0;iN 0i

;

� �
1;i 1; : : : � �

1;i 20; E(Si ) = 3 :38+ Z i ]T ; �) where N0i = 4Z i +1, � =
�
I a; � :05� a; � :05� T

a ; :5
�

with

42



a = N0i + 20. The unconditional means (� �
0;i 1; : : : ; � �

0;iN 0i
) are calculated as described above

and (� �
1;i 1; : : : ; � �

1;i 20) are calculated similarly by the bisection method usingP(Y �
1;ik 0 > 0; Si >

Z i + t1ik 0) = � 1;ik 0 � P(Si > Z i + t1ik 0) where � 1;ik 0 = g� 1f � 1;P (t1ik 0) + � 1;P Z i + � 2;P X 1i +

� 3;P X 2i g. The generated (Y1;i 1; : : : ; Y1;i 21)T vector is truncated such thatZ i + t1;ik 0 � Si to

create the observed outcomes after the pivotal exposure fork0 = 1; : : : ; N1i .

2.4.2 Simulation Results

2.4.2.1 Estimation

We generated 200 datasets at sample sizes ofn = 500 and 2000. For the estimation, we

utilized a Epanechnikov kernel and chose bandwidths by 20-fold cross-validation as described

in Cai et al. (2000). Bandwidths utilized were chosen in a preliminary simulation study

yielding h = (1 :5; 1:5) for �̂ 0;P (t0), �̂ 1;P (t1) at n = (500; 2000), respectively. To study

the performance of the proposed estimation procedure, we utilize a relative mean squared

deviation error (MSDE) de�ned as

MSDE� v =
� Z T

0
f � v;P (tv) � b� v;P (tv)g2dtv

� . Z T

0
� 2

v;P (tv)dtv

for the VCFs, v = 0; 1, and mean squared error MSE� r for the constant coe�cients f � r;P g3
r =1 .

The median and �rst and third quartiles of the estimated MSDE and MSE measures over 200

Monte Carlo runs are presented in Table (A.4). The MSDE and MSE values are relatively

small and decrease with increasing sample size, indicating the overall e�ectiveness of the

estimation in targeting partly conditional PL-GVCMs using longitudinal data truncated by

death (at 80%; results are similar for other levels of truncation by death). In addition, Figure

(A.13) displays the estimated median and 5th and 95th percentiles of the VCF estimates

along with the true curves forn = 2000. The estimated functions track the true VCFs.
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2.4.2.2 Hypothesis Tests

We also examine the validity and power of the two proposed GLRTs, namely Test I:H0 :

� 0;P (t0) = c0 and � 1;P (t1) = c1 and Test II: H0 : � 0;P (t0) = � 1;P (t1) (illustrated in Figure

A.12(a)-(b), respectively) for longitudinal data under high levels of truncation by death,

similar to our data application (ranging from 40-80%).

We �rst study the Wilks phenomenon under the high level of truncation by death (at

80%), that the null distribution of the test statistic approximately follows a � 2-distribution

and does not depend on the speci�c null values considered. For Test I, we consider 5 dif-

ferent sets of null values: (c0; c1) 2 f (� 1; 1); (� 1; 0); (0; � 1); (0; 1); (1; 0)g. The parametric

bootstrap procedure (Section 2.2.3) is used forn = 500 to estimate the null distribution of

the test statistic under these 5 settings. The estimated densities of the GLRT statistic,T,

based onB = 500 bootstrap samples are given in Figure A.12(c) along with the density of

the � 2-distribution. The degrees of freedom of the� 2-distribution is chosen to be close to the

sample mean of the bootstrap test statistic values across null con�gurations. The plotted

densities ofT are close to the� 2 density, indicating that the Wilks phenomenon holds for

the partly conditional PL-GVCMs under substantial truncation by death.

Next, we study the power and validity of the two proposed hypothesis tests. For Test I,

the power is evaluated at a sequence of alternatives indexed by� : H1 : � 0;P (t0) = c0(1 �

� ) + �� 0
0(t0) and � 1;P (t1) = c1(1 � � ) + �� 0

1(t1) where � 0
0(t) = � :05t2 + :025t � 1:25, � 0

1(t) =

� :03t2 � :05t, � 2 [0; 1], c0 = E[� 0(t0)] and c1 = E[� 1(t1)]. Similarly, for Test II, we consider

the alternative H1 : � 0;P (t0) = (1 � � )� 0
0(t0) + �� 0

0(t0) and � 1;P (t1) = (1 � � )� 0
0(t1) + �� 0

1(t1)

where � 0
0(t) = � :05t2 + :025t � 1:25, � 0

1(t) = � :03t2 � :05t and � 2 [0; 1]. Note that in

both cases, larger values of� correspond to further deviations from the null. Figure A.12(d)

gives the 3 power curves, at level:05, for 80%, 60% and 40% truncation by death for Test I.

Results are presented based on 200 replications atn = 500. Similarly Figure A.12(e) gives

the 3 power curves for Test II. As expected, the power increases with e�ect size (� " ) and

the power degrades with increasing level of truncation by death. The validity of a test is
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indicated by the empirical power under the null (� = 0, Type I error), which should coincide

approximately with the level of the test. For Test I at signi�cance levels (.05, .1, .2, .5), the

corresponding empirical Type I errors are (.06, .13, .23, .56) for 80% truncation by death.

The results are similar for 60% and 40% truncation by death: (.04, .12, .24, .51) and (.06,

.11, .19, .53). Similarly, validity of Test II holds, indicated by the following empirical Type

I error rates: (.04, .1, .19, .48), (.04, .11, .19, .47) and (.04, .09, .17, .48) for 80%, 60% and

40% truncation by death.

2.5 Discussion

In this work, we proposed partly and fully conditional approaches to modeling time-varying

e�ects for longitudinal data with substantial truncation by death. We provided an in-depth

comparative study of these conditional modeling approaches with applications to further

understand the time-varying e�ect of infection on patients' CV outcome trajectories over

time, from the start of dialysis. While the partly conditional approach provides information

on an evolving/dynamic cohort of survivors, the fully conditional approach conditions on

the actual death time where the analysis involves �tting a sequence of stratum-speci�c time-

varying e�ect models (within death bins). Thus, the later approach enables direct comparison

of time-varying e�ects for each death bin/stratum as well as variation in baseline covariate

e�ects on outcome across death bins.

We note that other modeling approaches to the current problem of addressing truncation

by death include modeling the times to CV events (multiple events per subject) using the

counting process formulation of a time-varying e�ect Anderson-Gill survival model. An-

other alternative approach is the joint modeling of survival and the longitudinal outcome

of CV risk. Nevertheless, implementing these approaches for a data set of the size of the

USRDS data is a major computational challenge since survival modeling is commonly built

on likelihood based approaches that use the entire data. Time-varying extensions of survival

modeling with time-varying coe�cients modeled through basis expansions require that the
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data be rearranged into a repeated measures format. Hence a data set with 5; 000 CV events

can lead to an expanded dataset with more than 12 million records. The joint modeling

approaches similarly do not scale up to the current USRDS data size. The proposed esti-

mation procedure for PL-GVCM modeling addresses this computational challenge by using

a local likelihood approach where only data from a small neighborhood in time is used in

maximizing the likelihood. This local log-likelihood approach is key in handling the big data

size in our application. In addition, while for most joint modeling approaches the interest

is on modeling both the survival and the longitudinal outcome, our focus is primarily on

studying the e�ects of infections on CV risk, hence the proposed approach is a more direct

one in addressing this goal without the need to explicitly model survival.

For inference via hypothesis testing, we proposed an extension of the GLRT statistic to

longitudinal data with substantial truncation by death, like the dialysis population. Mo-

tivated by our data application with low within-subject correlation, we have shown the

e�cacy of the proposed test through studying the empirical estimates of power and validity

via simulations in cases with low within-subject correlation. Preliminary works of Li et al.

(2015) show that Wilks phenomenon hold for longitudinal data if a working independence

correlation structure is assumed in the test statistic and that it does not hold when the

working variance function is misspeci�ed. In addition they point to the fact that incorporat-

ing the correlation into the test statistic does not necessarily improve the power of the test.

Further research is needed for incorporation of the within-subject correlation in estimation

of partly conditional models as well as extensions of generalized likelihood ratio tests for

semiparametric modeling of longitudinal data.

We provide R codes for the proposed partly conditional and fully conditional PL-GVCM

at http://dsenturk.bol.ucla.edu/PLVCM algorithm.pdf.
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CHAPTER 3

Time-Dynamic Dialysis Facility Pro�ling

3.1 Introduction

As of 2011, end-stage renal disease (ESRD) a�ected more than 615,000 adults in the U.S. Of

these, more than 430,000 were on dialysis, a life-sustaining treatment (United States Renal

Data System Annual Data Report [USRDS ADR], 2013). On average, dialysis patients are

admitted to a hospital nearly twice a year and hospitalizations account for approximately

38% of total Medicare expenditures for dialysis patients [USRDS ADR, 2013]. An unplanned

hospital readmission is de�ned as any unplanned hospital admission that occurs within 30

days of discharge from a previous admission. Approximately 30% of patients with end

stage renal disease (ESRD) discharged from a hospital have an unplanned readmission, and

previous studies have shown that a good portion of unplanned readmissions are preventable

[USRDS ADR, 2013]. In this paper our objective is to propose a time-dynamic measure

of unplanned hospital readmissions at dialysis facilities to identify potential facility speci�c

problems that contribute to rising costs in health care of dialysis patients.

This objective relates to a broader national e�ort under the new health care legisla-

tion (A�ordable Care Act), care provider monitoring (`pro�ling'), which aims to evaluate a

provider's quality of care to a reference standard (e.g., overall `national' average standard)

with the main goal of identifying providers that deviate in important ways in the delivery

of patient care (Ash et al. 2011; Normand et al. 1997; He et al. 2013; Horwitz et al. 2011;

Kalbeisch and Wolfe 2013). Care provider performance indices are usually tied to regulation

and payment, and have largely been time-static, summarized by a single numeric measure.

Examples include medical care provider pro�ling using standardized mortality ratios (e.g.,

among U.S. hospitals or coronary artery bypass graft surgery (Ash et al. 2011; Normand

et al. 1997; Krumholz et al. 2011; Normand and Shahian 2007; Lin et al. 2009; Liu et al.
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2003; Paddock et al. 2006; Yang et al. 2014)) and standardized hospital readmission ratios

(e.g., hospitals, dialysis facilities (He et al. 2013, Horwitz et al. 2011; Kalbeisch and Wolfe

2013; CMS 2014)). The only time-varying performance metrics in the literature are the

risk-adjusted CUmulative SUMmation (CUSUM and observed-expected CUMSUM) tech-

niques (Biswas and Kalbeisch 2008; Sun and Kalbeisch 2013), although these are tailored

to survival time outcomes.

As a novel departure from prior literature, we introduce time-dynamic pro�ling to provide

a continuous metric for monitoring performance over time for generalized patient outcomes

(hospital readmission rates). Our objective is to evaluate a facility's performance as a func-

tion of time that patients are on dialysis, relative to a national standard, accounting for

di�erences in patient-level characteristics prior to starting dialysis (case-mix). The proposed

approach is particularly relevant for chronic conditions, such as ESRD, where it is critical

to understand the outcome trajectories throughout the time period that patients are on

dialysis. In addition it provides more informative feedback to care providers for quality im-

provement since it can identify speci�c time periods of under- or over-performance during

dialysis relative to a reference standard.

Our proposal of time-dynamic pro�ling is based on the proposed multilevel varying co-

e�cient model (MVCM) with �xed facility time-varying e�ects and subject speci�c random

e�ects to accommodate the multilevel data structure of the data with patients nested within

dialysis facilities, and observations over time nested within patients. Inclusion of �xed versus

random facility e�ects have been studied in the time-static pro�ling literature. While the

average absolute error in estimation is typically smaller overall for random e�ects models,

this average gain is likely achieved mostly in the center of the distribution of the outcomes.

When the interest is on inference for the more extreme facilities deviating from a standard

norm, as in pro�ling, �xed e�ects models have been reported to be e�ective in identifying

outliers in dialysis facility pro�ling (Kalbeisch and Wolf 2013). An additional advantage of

�xed e�ects models is that they do not have the inherent problem of confounding of patient

and facility-level e�ects in multilevel modeling for dialysis facility pro�ling. To accommo-
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date time dependence among the repeated measures obtained on the same individuals, we

introduce subject speci�c random e�ects. He et al. (2013) also evaluates the impact of

discharging hospitals on static pro�ling of dialysis facilities based on hospital readmissions.

Authors propose an additional hospital level random e�ect, but report minimal changes in

dialysis facility pro�ling results in applications to USRDS data; hence we opt out of this ad-

ditional level of complexity in the proposed extension to the time-dynamic pro�ling setting.

Standard hierarchical methods, designed to provide inference and prediction in the set-

ting of multilevel longitudinal data, have proven to be indispensible for modeling time-static

e�ects (�xed coe�cients) (Gelman 2006, refs. therein). However, for modeling multilevel

time-dynamic/time-varying coe�cients the available methods are limited in scope and appli-

cability. An important tool in exploring time-dynamic patterns is varying coe�cient models

(VCMs) (Cleveland et al. 1991; Hastie and Tibshirani 1993) which are natural extensions

of parametric models with a diverse array of applications in biomedical science, epidemiol-

ogy, ecology, and economics (Fan and Zhang 2008). The literature on the standard VCMs,

generalized VCMs (GVCMs) (Cai et al. 2000; Qu and Li 2006; Senturk et al. 2013), and

their adaptations for analyzing longitudinal data (Hoover et al. 1998; Estes et al. 2014) have

largely been for `single-level' data. Limited works have considered mixed VCMs (Zhang 2004;

Li et al. 2012; Liang et al. 2003; Rice and Wu 2001; Wu and Liang 2004; Wu and Zhang

2002), mostly for the analysis of regular longitudinal data (i.e., without the higher-level unit).

Recently there is growing literature on multilevel functional linear models and Crainiceanu

et al. (2009) considered functional predictors but in modeling a scalar response. A mul-

tilevel VCM for a space and time varying response and space and time varying predictors

was proposed in (Serban 2011). The model was proposed for modeling service accessibility

outcomes identi�ed by location and time and was not proposed for analysis of patient-level

longitudinal data, which is a key necessity in modeling multilevel patient outcome data.

Another work examined marginal regression models in a randomized clinical trial (Chen and

Wang 2010) for multilevel functional data via penalized spline estimating equations.

The proposed MVCM and time-dynamic facility performance index, standardized dy-
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namic ratio (SDR), are developed in Section 3.2. We also develop a hypothesis testing

procedure in Section (3.2.3) suitable for pro�ling goals. Novel studies based on USRDS data

to determine the time-dynamic facility performance index for dialysis facilities in the U.S.

and simulation studies are given in Sections 3 and 4, respectively. We also include compar-

isons of the performance of the proposed model to one ignoring within subject correlation

and conclude with a brief discussion section.

3.2 Multilevel Varying Coe�cient Modeling With Subject Spe-

ci�c Random E�ects

Let i = 1; : : : ; I index dialysis facilities, j = 1; : : : ; Ni index subjects belonging to thei th

facility having N i total subjects, andk = 1; : : : ; Nij index hospitalizations for thej th subject

belonging to thei th facility having N ij total hospitalizations. Let the outcomeYijk � Yij (t ijk )

equal 1 if the kth index hospitalization of the j th patient within facility i results in a

readmission within 30 days, and equal 0 otherwise. There are several important aspects

in building e�ective models for the outcome of hospital readmissions for the goal of time-

dynamic dialysis facility pro�ling. First, the model needs to respect the multilevel structure

of the data and needs to allow for time-varying e�ects of facilities. Second, longitudinal

subject-level predictors or post-dialysis cross-sectional covariates (such as adverse events

during dialysis or patient health attributes after dialysis which might be the result of care)

needs to be excluded to avoid confounding with the time-dynamic facility-level e�ects, the

main quantity of interest. Third, the extent to which the proposed modeling will be useful

will depend on having a set of rich baseline covariates (Z ij = ( Z1ij ; : : : ; Zrij )T for the j th

patient within facility i ) that together captures patient heath characteristics prior to dialysis

(case-mix).

Hence, to achieve the above goals we propose the logistic MVCM

g
�
E

�
Yij (t) j Z ij ; bij

	�
= gf pij (t)g =  i (t) + bij + Z T

ij �; (3.1)
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whereg is the logit link function, the parameters i (t) correspond to the �xed time-varying

facility level e�ects, bi = ( bi 1; : : : ; biN i )
T correspond to subject speci�c random e�ects within

the i th facility, � = ( � 1; : : : ; � r )T is a vector of regression parameters, andpij (t) � E
�

Yij (t) j

Z ij ; bij
	

= g� 1
�

 i (t)+ bij + Z T
ij �

	
. The MVCM in (3.1), to which we will refer to as Model 1,

extends the standard �xed e�ects logistic regression model of He et al. (2013) for time-static

dialysis facility pro�ling, to model time-dynamic e�ects via facility-level varying coe�cient

functions.

3.2.1 Standardized Dynamic Ratio (SDR)

To capture the performance of thei th facility relative to a reference standard accounting for

patient case-mix, we introduce the standardized dynamic ratio

SDR i (t) =

N iP

j =1
pij (t)

N iP

j =1
pij;M (t)

; (3.2)

where pij (t) = g� 1f  i (t) + bij + Z T
ij � g and pij;M = g� 1f  M (t) + bij + Z T

ij � g with  M (t)

denoting the cross-sectional median off  1(t); : : : ;  I (t)g. In (3.2), the facility performance

(numerator) is obtained from the patient-level risk model de�ned in (3.1), referred to as the

facility-speci�c model. The national standard (denominator) for the types of patients treated

at the dialysis facility (its case-mix) is obtained from the national-level model with M (t).

The SDR is the ratio of the sum of the expected number of 30-day readmissions at facilityi

at time t over the subjects treated at the facility to the sum of the expected readmissions of

a counterfactual median facility at timet again over the case-mix of facilityi . To produce a

fair assessment, both the facility-speci�c and national models will account for case-mix prior

to dialysis. These adjustments for di�erences in patients' health at baseline are required

to ensure that variations in reported performance apply to facility's contributions to their

patients outcomes rather than to the intrinsic di�culty of the patients they treat. This

is also the reason why adjustments are not made for longitudinal subject level predictors

post-initiation of dialysis, since they are on the pathway to the outcome and adjusting for
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them would reduce the magnitude of the facility e�ects.

In (3.2), SDR i (t) = 1 would indicate typical performance for a given case-mix, where

each facility performance is compared to a population having the same case-mix. This feature

protects against extrapolation outside of the facility's treated case-mix; importantly, pair-

wise comparisons ofSDR i (t) with SDR i 0(t) would only be meaningful to the extent that

the distributions of Z ij and Z i 0j overlap and are balanced.

A natural estimator of the proposedSDR i (t) is [SDR i (t) =
N iP

j =1
bpij (t)=

N iP

j =1
bpij;M (t) where

bpij (t) = g� 1f b i (t) + bbij + Z T
ij

b� g, bpij;M = g� 1f b M (t) + bbij + Z T
ij

b� g and bbij are predicted

subject speci�c random e�ects obtained from the means of the posterior distributions ofbij .

Estimators of the model parameters� ,  1(t); : : : ;  I (t) and predicted random e�ects, will be

obtained via an approximate EM algorithm due to the large number of facilities, alternating

between the estimation of i (t), � , and the predicted random e�ects until convergence as

outlined in the next section.

3.2.2 Estimation

To develop the intuition behind the proposed estimation algorithm, �rst consider a simpler

logistic MVCM without subject speci�c random e�ects,

g
�
E

�
Yij (t) j Z ij

	�
= gf pij (t)g =  i (t) + Z T

ij �; (3.3)

with the likelihood function

Lf  1(t); : : : ;  I (t); � g =
IY

i =1

N iY

j =1

N ijY

k=1

exp
��

 i (t ijk ) + Z T
ij �

	
Yijk

�

1 + expf  i (t ijk ) + Z T
ij � g

: (3.4)

We will utilize this model in comparisons to the proposed Model 1 with subject speci�c

random e�ects, and will refer to this model as Model 2 throughout the paper. Facility

speci�c �xed e�ect functions  i (t) can be approximated locally and derived parameters can be

estimated via maximization of the local likelihoods. However, when the number of facilities

are high (nearly 4000 dialysis facilities in our data application), maximizing local likelihoods

poses a serious computational challenge. Nevertheless, the likelihood in (3.4) is separable
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through the outmost product over facilities into I components where thei th component

depends only onf  i (t); � g. Hence, given� ,  i (t) can be estimated by maximizing the

local likelihood based on data only from thei th facility; and given f  1(t); : : : ;  I (t)g, � can

be estimated based on a global likelihood without the need for localization. Therefore a

sequential approach can easily be implemented.

Now consider the proposed logistic MVCM with subject speci�c random e�ects given

in (3.1). Let b � (bij : i = 1; : : : ; I ; j = 1; : : : ; Ni )T denote the vector of independent

and identically distributed subject speci�c random e�ects with mean zero and variance� 2
b.

Viewing the subject speci�c random e�ects as missing data, we propose an approximate EM

algorithm. The complete likelihood corresponding to Model 1 is

Lf b; � b;  1(t); : : : ;  I (t); � g =
IY

i =1

N iY

j =1

�� N ijY

k=1

exp
��

 i (t ijk ) + bij + Z T
ij �

	
Yijk

�

1 + exp
�

 i (t ijk ) + bij + Z T
ij �

	
�

expf� b2
ij =(2� 2

b)g
q

2�� 2
b

�
:

(3.5)

The incomplete (or observed) likelihood that is available for the estimation off � b;  1(t); : : : ;

 I (t); � g is

Lf � b;  1(t); : : : ;  I (t); � g =
IY

i =1

N iY

j =1

� Z 1

�1
L ij f bij ; � b;  i (t); � g dbij

�
(3.6)

where

L ij f bij ; � b;  i (t); � g �
� N ijY

k=1

exp
��

 i (t ijk ) + bij + Z T
ij �

	
Yijk

�

1 + exp
�

 i (t ijk ) + bij + Z T
ij �

	
�

expf� b2
ij =(2� 2

b)g
p

2�� 2
b

:

Further, let Y be the vector of all outcomesYijk , i = 1; : : : ; I , j = 1; : : : ; Ni , k = 1 : : : ; Nij .

The posterior distribution of bij given the data andf  i (t); �; � bg is

D ij f bij j Y; � b;  i (t); � g =
L ij f bij ; � b;  i (t); � g

R1
�1 L ij f bij ; � b;  i (t); � g dbij

:

Hence the posterior mean and variance ofbij arebij 0 � C � 1
ij

R1
�1 bij L ij f bij ; � b;  i (t); � gdbij and

vij 0 � C � 1
ij

R1
�1 (bij � bij 0)2L ij f bij ; � b;  i (t); � gdbij , respectively, whereCij =

1R

�1
L ij f bij ; � b;

 i (t); � gdbij : We use a Gauss-Hermite quadrature calculation with 20 quadrature points to

numerically approximatebij 0 and vij 0 (Lange, 1999).
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The E-step of the proposed approximate EM algorithm pertains to the calculation of

the conditional expectation of the complete log-likelihood. Because the closed form for

E[logLf b; � b;  1(t); : : : ;  I (t); � g j Y; � �
b;  �

1(t); : : : ;  �
I (t); � � ] =

N iP

i =1

N ijP

j =1
E[` ij f bij ; � b;  i (t); � g j

Y; � �
b;  �

i (t); � � ] is not available wheref � �
b;  �

1(t); : : : ;  �
I (t); � � g are the current estimates of the

parameters and̀ ij f bij ; � b;  i (t); � g � logL ij f bij ; � b;  i (t); � g, we approximate` ij f bij ; � b;  i (t);

� g using a second order Taylor's expansion aboutb�
ij 0 to obtain the approximate expected

log-likelihood

N iP

i =1

N ijP

j =1
E

h
` ij f bij ; � b;  i (t); � g

�
�
� Y; � �

b;  �
i (t); � �

i
�

N iP

i =1

N ijP

j =1

� N ijP

k=1

�
Yijk

�
 �

i (t ijk ) + b�
ij 0 + Z T

ij � �
	

+ log
�
q�

0;ijk

�
�

v�
ij 0
2 p�

0;ijk q�
0;ijk

�
�

(b�
ij 0 )2+ v�

ij 0
2(� �

b )2 � 1
2 log

�
2� (� �

b)2
	

�

(3.7)

wherep�
0;ijk = g� 1f  �

i (t ijk ) + b�
ij 0 + Z T

ij � � g, q�
0;ijk = 1 � p�

0;ijk , b�
ij 0 and v�

ij 0 are the posterior

mean and variance ofbij given the current parameter estimates. Detailed derivations are

deferred to Appendix D.1.

The M-step maximizes the expectation of the complete log-likelihood utilizing the ap-

proximation in (3.7). A key observation is that the approximation to the expected value of

the complete log-likelihood is again separable through the outmost sum over facilities into

I components where thei th component depends only onf  �
i (t); � � ; � �

bg and the posterior

meanb�
ij 0 and variancev�

ij 0, similar to the likelihood in (3.4). Hence while joint maximization

with respect to all model parameters is a big computational challenge for a large number

of facilities, a sequential approach similar to the one discussed for Model 2 can be easily

implemented. We begin with the estimation of� b by maximizing the approximation of the

expected global log-likelihood with respect to� b. In the next step, we estimate i (t) by max-

imizing the approximation of the expected local log-likelihood using data from only thei th

facility, given the current estimates� � ; � �
b, and f b�

ij 0; v�
ij 0g via a one-step Newton-Raphson

iteration. Finally, � is estimated by maximizing the approximation of the expected global

log-likelihood using all estimated quantities again utilizing a one-step Newton-Raphson it-

eration. The proposed estimation algorithm is summarized by the following steps.
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(1) Set initial values for � (0) ,  (0)
i (t), � (0)

b .

(2) Estimate the posterior meansb(m)
ij 0 and variancesv(m)

ij 0 of the subject speci�c random

e�ects in the mth iteration step using  i (t) =  (m� 1)
i (t), � = � (m� 1), and � b = � (m� 1)

b

from the previous iteration step. Use the estimated posterior means and variances of

the random e�ects to approximate the expected value of the complete log-likelihood.

(3) Maximize the approximation of the expected log-likelihood with respect to� b to derive

at the estimator

� (m)
b =

� � IX

i =1

N i

� � 1 IX

i =1

N iX

j =1

n
(b(m)

ij 0 )2 + v(m)
ij 0

o� 1=2

:

(4) Approximate  i (t) locally via  i (t) �  0i +  1i (t � t0) for t in the neighborhood of a

�xed t0 leading to the part of the approximate local expected complete log-likelihood

which depends on only data from thei th facility given by

N iP

j =1

N ijP

k=1

�
Yijk

�
 0i +  1i (t ijk � t0) + b�

ij 0 + Z T
ij � �

	
+ log( q�

0;ijk ) �
v�

ij 0

2 p�
0;ijk q�

0;ijk

�
(b�

ij 0 )2+ v�
ij 0

2N ij (� �
b )2 � 1

2N ij
log

�
2� (� �

b)2
	

�
K h(t ijk � t0)

where p�
0;ijk = g� 1f  0i +  1i (t ijk � t0) + b�

ij 0 + Z T
ij � � g, q�

0;ijk = 1 � p�
0;ijk and K h(�) =

K (�=h)=h with K (�) denoting a kernel function andh the bandwidth. Estimate  (m)
i (t)

by a one-step Newton Raphson algorithm maximizing the above approximate local

likelihood with respect to ( 0i ;  1i ) based on data from only thei th facility and current

estimates of the other parameters.

(5) Estimate � (m) by a one-step Newton Raphson algorithm maximizing the approximate

expected global log-likelihood using estimated quantities from the above steps.

(6) If max
i;j;k

jp(m)
ijk � p(m� 1)

ijk j > � , where� is some tolerance level andp(m)
ijk = g� 1f  (m)

i (t ijk ) +

b(m)
ij 0 + Z T

ij � (m)g, setm = m+1 and go back to Step 2. The stopping rule is motivated by
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our de�nition of SDR which directly uses predicted probabilities that can be sensitive

to change (compounding e�ect) had tolerance levels been speci�ed for each parameter

estimate individually.

Explicit expressions of the estimators and derivations are deferred to Appendix D.1. More

information on the selection of the bandwidths in Step 4 are deferred to Sections 3.3.2 and

3.4.1.

3.2.3 Hypothesis Testing

Making statistical inference about our proposed time-dynamic facility performance index,

SDR i (t), is challenging given its de�nition and the high-dimensional nature of the �xed

parameters. A particular clinical interest, motivated by rising costs and e�ective health

care, is to identify facilities that deviate from the national reference facility, a hypothetical

facility whose e�ect  M (t) is de�ned by taking cross-sectional median facility e�ects across

time. For facilities whose performance across time coincides with the national reference

facility, SDR i (t) will be a constant function equal to 1 across time. Time intervals at which

SDR i (t) < 1 would indicate that the facility's predicted readmission rates are less than

expected based on national rates. Time intervals at whichSDR i (t) > 1 would indicate that

the facility's predicted readmission rates are greater than expected based on national rates.

Thus, H0 : SDR i (t) = 1 for all t is a hypothesis test of interest. We note thatSDR i (t) = 1

implies
N iP

j =1
pij (t) =

N iP

j =1
pij;M (t) which also implies i (t) =  M (t). Thus, we de�ne our test

statistic to be

Ri =
� Z � N iX

j =1

bpij (t) �
N iX

j =1

bpij;M (t)
� 2

dt
� 1=2

;

which quanti�es the departure of
N iP

j =1
bpij (t) from

N iP

j =1
bpij;M (t) using theL2� norm. For facilities

whose performance across time coincides with the national reference facility,Ri will be equal

to 0 and otherwise it will be positive. We use a resampling procedure to estimate the

distribution of the test statistic, and hence a nominalp-value described as follows.
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(i) We �x � ,  M (t) and � b at their estimated valuesb� , b M (t), and b� b (using the proposed

estimation algorithm given in Section 3.2.2) in the steps below since their estimation

uses the entire data set which will be large in our data application.

(ii) Approximate bij 0 and vij 0 under the null H0 :  i (t) =  M (t) using the posterior dis-

tribution D ij f bij j Y;b� b; b M (t); b� g de�ned in Section 3.2.2. Then generate subject

random e�ects from the subject-speci�c posterior distribution approximated by a nor-

mal distribution with mean and variancebij 0 and vij 0 respectively. Thus, we draw an

independent sample of size S,

bs
ij � N (bij 0; vij 0); s = 1; : : : ; S;

for each subjectj = 1; : : : ; Nij within facility i .

(iii) Draw S samplesf Y s
ijk : j = 1; : : : ; Ni ; k = 1; : : : ; Nij g where each observation is gener-

ated under the null, independently from a Bernoulli distribution

Y s
ijk j bs

ij � Ber
�

expf b M (t ijk ) + bs
ij + Z T

ij
b� g

1 + expf b M (t ijk ) + bs
ij + Z T

ij
b� g

�
:

(iv) Calculate the value of the test statisticRi for each sample in (iii) by iterating between

steps 2, 4, and 6 of the proposed estimation algorithm given in Section 3.2.2 with

 i (t) = b M (t), � = b� , and � b = b� b. We skip steps 1, 3, and 5 since we are �xing� ,

 M (t) and � b at the large sample estimatesb� , b M (t), and b� b (and therefore do not

require these parameters to be estimated) and denote the observed test statistics for

each resampled data byr s
i . We note that this reduced resampled estimation procedure

only relies on data from thei th facility, and does not require the entire data set. This

leads to major computational savings in implementation.

(v) We use (1=S)
SP

s=1
I f r s

i > r i g to approximate the nominalp-valueP(Ri � r i j H0), where

I f Ag is the indicator function for eventA.
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3.3 Applications to USRDS Data

3.3.1 Description of the Study Cohort

We use data from the USRDS, a national data system that collects information on nearly

all patients with end-stage renal disease in the US, including data on inpatient care, patient

demographics and baseline patient factors prior to the start of dialysis. The de�ned popu-

lation of inference in our study are dialysis facilities who service patients aged 18 and older

who newly initiated dialysis between January 1, 2006 and December 31, 2009. Patients were

eligible for inclusion if they survived the �rst 90 days of dialysis. Thus, the observation

period began on day 91 of dialysis. Our study cohort consisted of 615,251 discharges nested

within 189,943 patients nested within 3,901 dialysis facilities. Of these discharges, 189,309

resulted in an unplanned hospital readmission within 30 days of discharge yielding an overall

readmission rate of 30.8%. The number of subjects per facility varied from 20 to 192, with

a mean of 49 and a median of 43 patients. The inclusion/exclusion rules included reducing

the cohort based on facility size, availability of baseline covariates and sparsity (less than 10

discharges per year per facility) of follow-up data to facilitate the time-varying e�ects estima-

tion. We also truncated follow-up after a patient switches dialysis facilities. For a complete

ow chart of inclusion/exclusion rules, we refer the reader to Figure A.16. The maximum of

follow-up was three years where 57% of the initial cohort was observed throughout the full

three years.

3.3.2 Results

We used Models 1 and 2 to estimate the time-dynamic facility performance indexSDR i (t)

for each facility using the patient-level adjustments for age, sex, body mass index at incidence

of ESRD, diabetes as cause of ESRD, and an additional thirty-two past-year comorbidities

(from day 91 on dialysis) and discharge diagnoses that are rare but have a high rate of

readmission. We selected a separate bandwidth for each facility using 10-fold cross-validation

with candidate bandwidths ranging from .8 to 1.3 (in years). The cross-validation compared

58



observed outcomes to the predicted probabilitiesg� 1f b i (t ijk ) + Z T
ij

b� g estimated without the

random e�ects using the entire data set excluding data from the left out subjects as similarly

de�ned in Wu and Zhang 2002. In Model 1, the variance of the random e�ects was estimated

to be b� 2
b = :68. Thus, the estimated time-dynamic facility performance indices[SDR i (t) were

di�erent between the two models. These di�erences, strati�ed by facility size, are displayed

in Figure A.14 using the L2-norm ratio [
R3

0 f [SDR1i (t) � [SDR2i (t)g2dt]1=2=[
R3

0
[SDR

2

1i (t)dt]1=2

as a di�erence measure where[SDR1i (t) is the estimate of SDR i (t) under Model 1 and

[SDR2i (t) is the estimate ofSDR i (t) under Model 2. The �gure shows that the di�erences

decrease with increasing facility size which is due to the fact that larger facilities contain

more subjects.

Next we perform the test SRD i (t) = 1 for each facility i = 1; : : : ; 3901 using both

Models 1 and 2 to identify a subset of facilities as deviating from a national standard across

time. There are three cases to consider: (a) the agged facility consistently overperforms

( \SDR i (t) < 1 for all t), (b) the agged facility consistently underperforms (\SDR i (t) > 1 for

all t), and (c) the agged facility under or over performs during a subset of the observation

period. In case (c), further investigation will need to be conducted. One can easily extend

the proposed hypothesis testing procedure to provide insights into facility performance over

speci�c time regions of follow up instead of the follow up. Table A.8 presents the pairwise

comparison of the number and percentage of outlier facilities identi�ed by the nominal p-

values calculated under Models 1 and 2. For example, 118 out of 532 facilities agged

signi�cantly worse (or other) than the national standard under Model 1 were not agged

under Model 2. On the other hand, 172 out of 583 facilities agged signi�cantly worse (or

other) than the national standard under Model 2 were not agged under Model 1. This shows

that adjusting for subject speci�c random e�ects has some inuence on the classi�cation of

facility outlier status, and this inuence is directly attributable to the estimation of the

time-dynamic SDRs (as displayed in Figure A.14). We also note that further investigations

(not included in this paper) revealed a higher proportion of agreement between Models 1

and 2 in agging outlier facilities among large facilities due to the fact that larger facilities
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contain more subjects.

To adjust for simultaneously testing a large number of facilities, we employ the method

discussed in Kalbeish and Wolfe (2013) which accounts for unexpected over dispersion in

the data based on the empirical null (Efron 2004, 2007). We start by converting the nominal

p-value for each facility to a Z-score using the inverse cumulative distribution function �� 1(�)

of a standard normal random variable. Then, the z-scores are strati�ed into three groups

(small: 20 - 34 patients; medium: 35 - 54 patients; large: 55 - 192 patients) based on facility

size were cut-o�s are determined by the tertiles of the distribution of the number of patients.

To rank facility test statistics with an estimated p-value of 0, we utilize the z-scores of their

test statistics from the hypothesis testH0 : SDR i (t) = 1. The probability density function of

a standard normal random variable is then superimposed onto each of the three histograms

of the strati�ed z-scores. We then �t a normal curve to the center of the histograms using

a robust M-estimation method implemented using the rlm function of the MASS library

belonging to the R statistical package. These histograms, displayed in Figure A.15, show

that the over dispersion of the Z-scores is substantial in facilities with a larger number of

patients. This is consistent with the �ndings in Kalbeisch and Wolfe (2013) who considered

a time-invariant modeling approach, and motivates the strati�cation used in the empirical

null method to identify a small percentage of outlying facilities. We also see in Figure A.15

that the central location of the normal curve resulting from the robust M-estimation method

lies to the left of zero, the central location of the superimposed standard normal curve,

resulting in the empirical method to ag less facilities than when using the nominal p-value.

This is consistent with Table A.9 which shows that 13.6% of facilities were agged using the

nominal p-value and 4.5% using the empirical null method. In Table A.9, we see that 9.9%,

12.3%, and 18.9% of small, medium, and large facilities were agged using the nominal p-

value respectively. This imbalance is due to the over dispersion mentioned above. However,

the empirical null method reduced these proportions considerably to 3.0%, 4.1%, and 6.5%

respectively, a more manageable proportion of facilities to further investigate.
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3.4 Simulation Studies

As described in Section 3.2.2, we use an approximate EM algorithm to estimate the parame-

ters in Model 3.1. Thus, our simulation studies here will focus on the �nite sample properties

of the proposed estimation algorithm for the proposed multilevel varying coe�cient model

and our standard dynamic readmission ratio. Similarly we will examine the validity of the

proposed hypothesis tests in Section 3.2.3. Finally, we will investigate consequences of ig-

noring within subject correlation via comparisons to Model 2.

3.4.1 Simulation Model and Design

To study the e�cacy of the proposed estimation algorithm and our standard dynamic read-

mission ratio, we simulate data under Model 1

g
�
E

�
Yij (t) j Z ij ; bij

	�
=  i (t) + bij + Z T

ij �

whereZ ij = ( Z1ij ; Z2ij )T and � = ( � 1; � 2)T = (0 :5; � 0:5)T . We generateZ ij from a bivariate

normal distribution with mean (0; 0)T and covariance matrix [:125; :0625;:0625; :125];bij are

independent and identically distributed normal random variables with mean 0 and variance

.70 (similar to our data application); N ij is generated from a discrete random variable with

support f 1; 2; 3; 4; 5; 6g and corresponding probabilitiesf :02; :03; :05; :20; :30; :40g. One third

of the facilities are �xed to be small, one third to be medium, and one third to be large,

and their sizesN i are generated from one of three discrete uniform random variables putting

equal weights over their supportsf 20; 21; : : : ; 34g, f 35; 36; : : : ; 54g, and f 55; 56; : : : ; 120g

respectively where the cuto�s mimic values in from our data application. We generate

f t ij 1; : : : ; t ijN ij g by taking a random sample from the setf 0; 1=35; : : : ; 1g, and de�ne one

third of the facility e�ects  i (t) to be log(3=7), one third to be �
p

t � 0:3, and one third to

be (� t � 0:5)2 � 0:75. The response variablesYijk are generated from a Bernoulli distribution

with mean g� 1f  i (t ijk ) + bij + Z T
ij � g. We generated 200 datasets using this set up for

both I = 100 and I = 1000 to study the e�cacy of the proposed estimation algorithm for

varying facility size, and then compare the results when the within subject correlations are
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ignored. We selected a separate bandwidth for each facility using 10-fold cross-validation as

previously described in Section 3.3.2. The candidate bandwidths utilized were chosen in a

preliminary simulation study ranging from .32 to .44 (in years). To study the performance

of the estimators of i (t) and SDR i (t), we utilize a relative mean squared deviation error

(MSDE)

MSDEb� =
� Z � b� (t) � � (t)

	 2
dt

� . Z
� 2(t)dt;

and to study the performance of the time-invariant parameters we utilize mean squared error

(MSE). The estimated bias, standard error, MSE, and the quartiles of the MSDE (strati�ed

by facility size and function shape) are given in Tables A.5 and A.6.

The estimated bias, standard error, and MSE values are relatively small and decrease

when the number of facilities increase indicating the e�ectiveness in the estimation of the

time-invariant parameters in the model. The MSDEs of the time-varying function estimates

also decrease when facility size increases (small to large), which is expected since larger

facilities will have more data available in the estimation of i (t). While increasing facility

number reduces the estimated MSE of the time-invariant model parameters, it is not expected

to change the MSDEs of i (t) and SDR i (t) since the estimation of these quantities depend

largely on data within facilities (hence facility size). Ignoring the within subject correlation

in the estimation severely biasesb� , where this bias increases with increasing the within

subject variation in our simulation. Furthermore, the MSDEs ofb i (t) and [SDR i (t) are

similar but slightly reduced when the within subject correlation is ignored. This is expected

since ignoring the random e�ects targets a marginal model drawing inference on population

averages leading to attenuation. This is consistent with what is observed in the estimated

mean square errors of the facility e�ect estimates in a reduced setting utilizing a mixed e�ects

logistic regression model (under the same simulation set up) where the facility e�ects are

time-invariant constants. Finally, we note that we do not expect di�erences among the error

in estimations of the three di�erent time-varying functions (at, square root, and quadratic)

used in this simulation. Thus, the trend in the MSDEs forb i (t) and [SDR i (t) with respect to

facility shape follows from the numerical order of the integrals of the squared true underlying

62



functions.

3.4.2 Hypothesis Test: Validity

We study the level of the proposed hypothesis testing procedure by focusing on one outlier

facility and performing the test for �ve di�erent null hypothesis indexed by � . We con-

sider H0� :  1(t) =  0� (t) for � = 0; :25; :50; :75; 1 with three di�erent facility sizes (small,

medium and large) using the median number of subjects (with respect to facility size) in our

data application: small (27 subjects), medium (43 subjects), and large (69 subjects) where

 0� (t) = (1 � � ) (t) + � 0(t),  (t) = �
p

x � 0:3, and  0(t) = ( � x � 0:5)2 � 0:75. We note

that when � = 0,  0� (t) =  (t), and as� increases to 1, 0� (t) becomes closer to 0(t). The

data is generated similar to the simulation set up in Section 3.4.1 forI = 100; 1000 where

we �x the �rst facility to be either small, medium, or large and de�ne  1(t) =  0� (t) and

 i (t) =  (t) + � i with � i � i.i.d N (0; :22), i = 2; : : : ; I . We then calculate the observed test

statistic r1, de�ned in Section 3.2.3, replacingb M (t1jk ) with  0� (t1jk ). To obtain a p-value,

we perform steps (ii) - (v) from Section 3.2.3 replacingb M (t ijk ) with  0� (t ijk ) for i = 1; : : : ; I .

This process is repeated 500 times yielding an estimate of the level of the test by looking at

the proportion of the 500 runs resulting in a rejection of the null hypothesis.

The results of the hypothesis testing simulation are summarized in Table A.7 where it

is seen that the acceptance probability is consistently slightly above the nominal value .95

under Model 1 in both cases whenI = 100 and whenI = 1000. When the within subject

correlation is ignored, the acceptance probability is consistently below the nominal value of

.95, and is worse with larger facilities.

3.5 Discussion

In this work, we developed a method for time-dynamic pro�ling of dialysis facilities in the

U.S. Our proposed multilevel varying coe�cient model with �xed facility time-varying e�ects

and subject speci�c random e�ects accommodates the multilevel data structure, and our in-

63



clusion of a rich set of patient baseline covariates adjusts for the patient heath characteristics

prior to dialysis. The use of �xed facility e�ects (rather than random facility e�ects) was

to provide more precise estimation of the true time-varying e�ects for those facilities with

extreme outcomes. We developed an approximate EM algorithm to estimate the param-

eters in our MVCM, and proposed a time-dynamic facility performance index suitable for

pro�ling goals. Adjustments for multiple testing to control the overall type I error rate and

the overall agging rate were made through the use of the empirical null method. In our

data application, the nominal p-value agged roughly 15% of facilities compared to roughly

5% when using the empirical null method. One purpose of instituting a SDR measure for

dialysis facilities is to identify potential facility speci�c problems over regions of time that

contribute to rising costs in health care of dialysis patients.
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APPENDIX A

Table A.1: Baseline characteristics ofn = 294; 511 patients aged 59 to 96 used in Section

1.4.1. Data presented are mean� standard deviation (SD) for continuous variables or count

(percent) for categorical variables.

Variable Mean � SD/ Count (%)

Baseline age 73.90� 7.845

Male 151,847 (52)

Race

Black 70,020 (24)

White 207,515 (70)

Other 16,976 (6)

Congestive heart failure 120,201 (41)

Coronary heart disease 102,009 (35)

Peripheral vascular disease 55,165 (19)

Diabetes 174,223 (59)

Estimated glomerular �ltration rate 10.820 � 5.436

Body mass index 27.331� 7.064
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Table A.2: Relative mean squared deviation error of the estimated varying coe�cient func-

tions from simulation studies in Section 1.5. Median and 25th and 75th percentiles of the

deviation measures are presented based on 200 Monte Carlo runs.

n = 3000 n = 5000

Median 25th Percent 75th Percent Median 25th Percent 75th Percent

MSDE� 0 .0037 .0016 .0068 .0017 .0006 .0030

MSDE� 1 .0078 .0038 .0157 .0039 .0022 .0076

MSDE 0 .0127 .0080 .0190 .0109 .0082 .0152

MSDE 1 .0242 .0118 .0545 .0160 .0093 .0338

MSDE� 1 .0348 .0165 .0735 .0251 .0130 .0481

MSDE� 2 .0085 .0051 .0140 .0083 .0055 .0111

MSDE� 3 .0090 .0060 .0134 .0076 .0057 .0105
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Table A.3: Baseline characteristics ofn = 243; 730 patients aged 65 to 90 used in Section

2.3.1. Data presented are mean� standard deviation (SD) for continuous variables or count

(percent) for categorical variables.

Variable Mean � SD/ Count (%)

Baseline age 75.78� 6.25

Male 125,875 (52)

Race

Black 53,704 (22)

White 176,780 (73)

Other 13,246 (5)

Congestive heart failure 100,896 (41)

Coronary heart disease 87,532 (36)

Peripheral vascular disease 46,357 (19)

Diabetes 138,682 (57)

Estimated glomerular �ltration rate 10.923 � 5.445

Body mass index 26.973� 6.783
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Table A.4: Summaries of the relative mean squared deviation error of the estimated varying

coe�cient functions and estimated mean squared error of the regression coe�cients in Section

2.4. Median and 25th and 75th percentiles of the deviation measures are presented based on

200 Monte Carlo runs.

n = 500 n = 2000

Median 25% 75% Median 25% 75%

MSDE� 0 .0123 .0057 .0282 .0033 .0014 .0059

MSDE� 1 .1280 .0598 .2438 .0309 .0161 .0588

MSE� 1 .0082 .0017 .0182 .0013 .0003 .0037

MSE� 2 .0011 .0003 .0030 .0002 < : 0001 .0006

MSE� 3 .0022 .0005 .0062 .0007 .0001 .0015

Table A.5: Estimated bias, standard error (SE), and mean squared error (MSE) of the

estimated parameters from simulation studies of Section 3.4.1 based on 200 Monte Carlo

runs.

I = 100 I = 1000

Model 1 Model 2 Model 1 Model 2

Estimate Bias SE MSE Bias SE MSE Bias SE MSE Bias SE MSE

b� 1 .009 .063 .004 -.057 .055 .006 .007 .021 < : 001 -.052 .018 .003

b� 2 -.008 .064 .004 .059 .057 .007 -.006 .020 < : 001 .053 .018 .003

b� 2
b -.009 .042 .002 � � � -.008 .013 < : 001 � � �
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Table A.6: Relative mean squared deviation error of the estimated time-varying facility e�ect

functions and standard dynamic readmission ratios strati�ed by facility size and facility e�ect

shape from simulation studies of Section 3.4.1 based on 200 Monte Carlo runs.

I = 100 I = 1000

b (t) Model 1 Model 2 Model 1 Model 2

MSDE 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

All .051 .106 .214 .049 .097 .184 .050 .105 .214 .049 .097 .185

Small .093 .185 .356 .081 .160 .289 .092 .185 .353 .082 .159 .290

Medium .056 .109 .202 .053 .100 .174 .056 .111 .206 .053 .101 .179

Large .032 .061 .112 .033 .060 .106 .031 .060 .110 .033 .060 .105

Flat .050 .100 .196 .047 .093 .172 .048 .098 .195 .046 .091 .170

Sqrt .037 .075 .148 .038 .074 .140 .037 .075 .146 .038 .075 .137

Quadratic .081 .158 .315 .068 .136 .250 .079 .160 .313 .070 .136 .256

[SDR(t) Model 1 Model 2 Model 1 Model 2

MSDE 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

All .011 .023 .045 .009 .020 .038 .011 .022 .045 .009 .019 .038

Small .018 .038 .071 .016 .033 .060 .018 .037 .070 .016 .032 .060

Medium .011 .023 .043 .010 .020 .037 .012 .023 .044 .010 .020 .037

Large .007 .014 .026 .006 .013 .023 .007 .014 .025 .006 .012 .022

Flat .015 .029 .053 .013 .025 .045 .015 .029 .053 .013 .025 .046

Sqrt .016 .031 .057 .014 .027 .048 .016 .031 .057 .014 .026 .049

Quadratic .007 .013 .024 .006 .011 .021 .006 .012 .023 .005 .011 .020
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Table A.7: Performance of[SDR i (t) in testing H0� :  1(t) =  0� (t) from Section 3.4.2 where

increasing values of� indicate deviating further from the null. We provide the median MSDE

of [SDR i (t) and the estimated acceptance probability (AP) strati�ed by � , facility size, and

model.

I = 100

Small Facility Medium Facility Large Facility

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

� MSDE AP MSDE AP MSDE AP MSDE AP MSDE AP MSDE AP

0 .054 .972 .052 .856 .031 .966 .039 .812 .022 .958 .034 .766

.25 .043 .970 .035 .868 .024 .972 .020 .880 .017 .970 .016 .816

.50 .031 .974 .029 .910 .018 .974 .017 .894 .013 .978 .012 .882

.75 .025 .964 .022 .904 .015 .976 .015 .902 .010 .960 .010 .884

1 .018 .972 .017 .876 .012 .972 .011 .878 .008 .966 .007 .864

I = 1000

Small Facility Medium Facility Large Facility

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

� MSDE AP MSDE AP MSDE AP MSDE AP MSDE AP MSDE AP

0 .051 .974 .055 .894 .034 .966 .039 .812 .023 .958 .023 .766

.25 .043 .960 .035 .862 .024 .972 .025 .880 .017 .970 .017 .816

.50 .031 .986 .029 .906 .018 .974 .017 .894 .013 .978 .013 .882

.75 .025 .972 .022 .896 .015 .976 .015 .902 .010 .960 .010 .884

1 .018 .978 .017 .928 .011 .972 .010 .878 .008 .966 .008 .864
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Table A.8: Number and percent of signi�cant outlier facilities in our data application in

Section 3.3.2 determined by nominal p-value< : 025.

Model 2 Model 1

Non-sig Sig-better Sig-worse Other Row-sum

Non-sig 3112 (79.8%) 26 (0.7%) 36 (0.9%) 82 (2.1%) 3256 (83.5%)

Sig-better 9 (0.2%) 46 (1.2%) 0 (0%) 7 (0.2 %) 62 (1.6%)

Sig-worse 49 (1.3%) 0 (0%) 153 (3.9%) 7 (0.2%) 209 (5.4%)

Other 123 (3.2%) 4 (0.1%) 18 (0.5%) 229 (5.9%) 374 (9.6%)

Column-sum 3293 (84.4%) 76 (1.9%) 207 (5.3%) 325 (8.3%) 3901 (100%)

Table A.9: Number and percent (with respect to facility size) of total facilities agged as

signi�cantly worse or other than the national standard across time in our data application

in Section 3.3.2.

Model 1 Model 2

Number of Subjects Nominal p-value Empirical null Nominal p-value Empirical null

[20; 34] 128 (9.9%) 39 (3.0%) 130 (10.1%) 44 (3.4%)

[35; 54] 166 (12.3%) 56 (4.1%) 185 (13.7%) 63 (4.7%)

[55; 192] 238 (18.9%) 82 (6.5%) 268 (21.3%) 119 (9.5%)

Overall 532 (13.6%) 177 (4.5%) 583 (14.9%) 226 (5.8%)
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Figure A.1: Example of follow-up data for a subject (a) without and (b) with an infection-re-

lated hospitalization along with the proposed models for cardiovascular risk before (light

gray) and after (dark gray) the infection-related hospitalization. Note that the model for

cardiovascular risk after the initial infection-related hospitalization appropriately accounts

for vintage until the infection-related hospitalization (term � 1(ai )Z i ). See Section 1.2 for

details.
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Figure A.2: Baseline age-strati�ed varying coe�cient function estimates after the (a) start of

dialysis (vintaget0) and (b) initial infection-related hospitalization (t1). Final varying coe�-

cient function estimates as a function of (c) vintage and time since the initial infection-related

hospitalization and (d) baseline age at dialysis. 90% bootstrap con�dence intervals are given

as dashed lines in (c) and (d).

73



Figure A.3: Estimated probabilities of cardiovascular (CV) events for white male patients

with diabetes and with average levels of eGFR and BMI (with the vintage until the �rst

infection-related hospitalization ofZ = 1:4 years) with baseline ages (a) 65, (b) 78 and (c)

90. Plot (d) overlays/combines the estimated probability trajectories from the three baseline

ages. 90% bootstrap con�dence intervals are given as dashed lines in (a), (b), and (c).
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Figure A.4: Estimated probabilities of cardiovascular (CV) events during the course of dial-

ysis for patients experiencing the pivotal initial infection-related hospitalization at 3, 2 and

1 year after the start of dialysis with baseline ages of 65, 78 and 90 (columns left, middle

and right, respectively). 90% bootstrap con�dence intervals are given dashed.
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Figure A.5: Age-varying e�ects of baseline covariates. Given are estimated baseline age{

varying coe�cient functions for (a) vintage up to �rst infection, (b) sex - male, (c) race -

black, (d) race - other, (e) congestive heart failure, (f) coronary heart disease, (g) peripheral

vascular disease, (h) diabetes, (i) eGFR, and (j) BMI. 90% bootstrap con�dence intervals

are given as dashed lines. The reference horizontal line at zero indicates no e�ects.
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Figure A.6: Simulation results for n = 3000. The cross-sectional median curves of the

proposed estimates are given along with 5% and 95% cross-sectional percentiles (dotted)

overlaying the true varying coe�cient functions (solid).
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Figure A.7: Illustration of partly conditional, fully conditional and unconditional model

estimates of the varying coe�cient function targets in a simple generalized varying coe�cient

model.
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Figure A.8: (a) Fits from a simple partly conditional GVCM, g[Ef Yi (t i )jSi > t i g] = � P (t i )

along with 90% bootstrap CIs, using 3 USRDS cohorts. Also displayed (gray line) is the sam-

ple size ratio for the cohort whose death is observed over the cohort who were followed to the

end of the study. (b) Fits from a fully conditional GVCM, g[Ef Yi (t i )jSi 2 D j g] = � j;F (t i ),

for subjects in 3-month death bins with midpoints 1:125; 2:125; 3:125, and 4.125 years. (c

and d) Fits from simulated data under the simple partly and fully conditional GVCMs. Pre-

sented are the time-invariant median varying coe�cient function estimates over 200 Monte

Carlo runs.
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Figure A.9: (a) Estimated varying coe�cient functions from partly conditional PL-GVCM

�ts b� 0;P (t0) (black), b� 1;P (t1) (gray). (b) Estimated CV risk since initiation of dialysis (black)

and since the initial infection-related hospitalization (gray) for a white diabetic male who

initiated dialysis at age 75:5 with a median levels of eGFR and BMI (9:83 and 25:81, re-

spectively). (c)-(f) Estimated CV risk trajectories for an adult described above where the

patient experiences the initial infection-related hospitalization at 1� 4 years after initiation

of dialysis. 90% bootstrap con�dence intervals given as dashed lines.
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Figure A.10: (a)-(h) Estimated CV risk based on the fully conditional PL-GVCM �ts from

3-month death bins with midpoints 1.125, 2.125, 3.125 and 4.125, respectively, for a white

male diabetic initiating dialysis at age 75:25 with a median levels of eGFR and BMI (9:79

and 26.05, respectively). Time of the initial infection-related hospitalization (vintage) was

selected as the median value within each death bin at 0.90., 1.62, 2.06 and 2.43, respectively.

90% bootstrap con�dence intervals given as dashed lines.
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Figure A.11: Estimated coe�cients for baseline covariates (a) vintage, (b) age, (c) gender{

male, (d) congestive heart failure, (e) coronary heart disease, (f) peripheral vascular disease,

(g) diabetes, (h) eGFR, and (i) BMI for a sequence of fully conditional PL-GVCMs from

death bins with midpoints D j =1.125, 1.625, 2.125, 2.625, 3.125, 3.625, 4.125, 4.625 years,

respectively from left to right. 90% bootstrap con�dence intervals are displayed as whiskers.

The gray horizontal line at zero (no e�ect) is included for reference. The x-axiss denotes

the midpoints of the death binsD j .
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