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A holistic platform for accelerating sorbent- 
based carbon capture

Charithea Charalambous1,8, Elias Moubarak2,8, Johannes Schilling3,8, Eva Sanchez Fernandez4, 
Jin-Yu Wang1, Laura Herraiz1, Fergus Mcilwaine1, Shing Bo Peh1, Matthew Garvin1, 
Kevin Maik Jablonka2, Seyed Mohamad Moosavi2, Joren Van Herck2, Aysu Yurdusen Ozturk5, 
Alireza Pourghaderi6,7, Ah-Young Song6,7, Georges Mouchaham5, Christian Serre5, 
Jeffrey A. Reimer6,7, André Bardow3, Berend Smit2 ✉ & Susana Garcia1 ✉

Reducing carbon dioxide (CO2) emissions urgently requires the large-scale deployment 
of carbon-capture technologies. These technologies must separate CO2 from various 
sources and deliver it to different sinks1,2. The quest for optimal solutions for specific 
source–sink pairs is a complex, multi-objective challenge involving multiple 
stakeholders and depends on social, economic and regional contexts. Currently, 
research follows a sequential approach: chemists focus on materials design3 and 
engineers on optimizing processes4,5, which are then operated at a scale that impacts 
the economy and the environment. Assessing these impacts, such as the greenhouse 
gas emissions over the plant’s lifetime, is typically one of the final steps6. Here we 
introduce the PrISMa (Process-Informed design of tailor-made Sorbent Materials) 
platform, which integrates materials, process design, techno-economics and life-cycle 
assessment. We compare more than 60 case studies capturing CO2 from various 
sources in 5 global regions using different technologies. The platform simultaneously 
informs various stakeholders about the cost-effectiveness of technologies, process 
configurations and locations, reveals the molecular characteristics of the top- 
performing sorbents, and provides insights on environmental impacts, co-benefits 
and trade-offs. By uniting stakeholders at an early research stage, PrISMa accelerates 
carbon-capture technology development during this critical period as we aim for a 
net-zero world.

Solid adsorbent-based carbon capture can leverage modern reticular 
chemistry to synthesize millions of possible adsorbents7, including 
around 100,000 metal–organic frameworks (MOFs)8,9. To fully explore 
this potential, we must move beyond the conventional sequential, 
time-consuming trial-and-error approach. Computational groups 
have initiated material genomics to accelerate discovery, generat-
ing materials in silico and predicting their adsorption properties 
through molecular simulations10–13. Although these predictions 
are promising, their impact has been limited because they often 
assume that a few basic adsorption properties (for example, Henry 
selectivity or carbon dioxide (CO2) capacity) suffice to evaluate 
material’s performance. The optimal material depends on specific 
process requirements, scale-up, location and life-cycle assessment 
(LCA)4,5,14–20. The lack of system-level contextualization has hin-
dered stakeholder engagement in materials discovery. A holistic 
approach is needed to link material properties with process design 
and techno-economic analysis (TEA). An LCA further evaluates 
environmental impacts beyond climate change, ensuring that the 
carbon-capture plant’s construction and operation do not result in 

higher CO2-equivalent (CO2e) emissions than it mitigates over its  
lifetime21.

The PrISMa platform for carbon capture
The PrISMa (Process-Informed design of tailor-made Sorbent Mate-
rials) platform (Fig. 1) allows for the interrogation and screening of 
materials for a given case study, which is defined by the CO2 source, 
the destination of the CO2 (sink), the capture technology, the avail-
able utilities and the geographical region (Extended Data Table 1).  
In the materials layer, we use experimental data or crystal structures 
to predict the adsorption thermodynamics of flue gas components 
(CO2, nitrogen (N2) and water (H2O)) through molecular simula-
tions. These thermodynamic data and process and equipment data 
serve as input for the process layer, where we compute parameters 
such as purity, recovery, productivity and energy requirements. 
In the TEA layer, we assess the economic and technical viability. 
The LCA layer then evaluates the environmental impacts over the  
plant’s lifetime.
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Following this holistic approach, the platform identifies top- 
performing materials for further study. These materials can then 
undergo more detailed process modelling and investigation (for exam-
ple, sorbent durability and manufacturing) to advance the technology 
to pilot and demonstration scales.

Informing stakeholders’ perspectives
The PrISMa platform’s modular structure allows us to consider vari-
ous stakeholders’ perspectives. For any combination of source, sink, 
technology, utilities and region, we compute a list of 50 key perfor-
mance indicators (KPIs; Supplementary Table 5). A Spearman analysis 
(Extended Data Fig. 1) helped us identify six reference KPIs that capture 
the most important trends (Extended Data Table 2).

Let us first focus on one case study: capturing CO2 using a tempera-
ture vacuum swing adsorption (TVSA) process (with a vacuum pres-
sure of 0.6 bar) from a cement plant located in the UK. The captured 
CO2 is compressed and sent for geological storage. In Fig. 2, we com-
pare the performance of the materials with the monoethanolamine 
(MEA) benchmark22 (Supplementary Information Section 4); many 

materials outperform the benchmark for the different process, TEA 
and LCA KPIs.

The net carbon avoidance cost (nCAC) is the KPI that quantifies the 
cost of avoiding CO2 emissions into the atmosphere over the plant’s 
life cycle. The nCAC is not the only criterion, and evaluating materials 
across all KPIs and from all stakeholders’ perspectives is important. 
Figure 3 highlights the top-performing materials for a given KPI and 
their ranking on the other KPIs across the platform. The comparison 
of the material rankings in Fig. 3 illustrates the complexity of select-
ing an optimal material; the top ten for a given KPI do not necessarily 
perform well for the other KPIs.

From an engineering perspective, we are interested in identifying 
the best technology. Figure 4a compares the nCAC of the 20 top- 
performing materials for the 3 process configurations and 3 CO2 
sources. For all three technologies, we find materials that outperform 
the benchmark for coal and cement. For cases with a low CO2 concen-
tration in the feed stream (for example, natural gas combined cycle 
(NGCC) power plants), the vacuum step in the process configuration 
reduces the cost, but no materials are identified with a lower nCAC 
than the MEA benchmark.
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Fig. 1 | The PrISMa platform screens solid sorbents for CO2-capture 
applications. The data flowchart of the four layers of the platform. The figure 
illustrates the links between the LCA, the TEA, process evaluation and material 
characterization. On the basis of the crystal structure of a sorbent material, we 
evaluate its performance for a specific carbon-capture process, connecting  
a CO2 source with a CO2 sink in a region of the world, using a total of 50 KPIs.  

The platform integrates databases on material properties, process design 
parameters, utilities data, economic data, life-cycle impact assessment (LCIA) 
data and life-cycle inventory (LCI) data. A detailed description of the methods 
used in each layer can be found in Supplementary Information Section 3. Our 
interactive visualization tool provides access to all KPIs for all case studies and 
more than 1,200 materials25.
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The vacuum step increases the purity of the product stream. This 
increase is achieved by rapidly purging the weakly adsorbed compo-
nents from the column’s gas phase after the adsorption step but at the 
expense of a lower recovery than a temperature swing adsorption (TSA) 
process. Figure 4b shows that with the vacuum step, most materials 
exceed 96% purity, whereas for TSA, only a few materials meet this 
requirement for geological storage. Therefore, we focus on operating 
TVSA with 0.6 bar for the cement and coal and the TVSA with 0.2 bar 
for the NGCC.

After optimization, many more materials meet the purity require-
ment (Supplementary Information Section 10.3.3). Optimization lowers 
the nCAC by about €7 tCO2

−1 (about 12%) for a TVSA process (cement in 
the UK) and about €9 tCO2

−1 (about 14%) for a TSA process and reduces 
the differences between the various process configurations. Impor-
tantly, we see that the ranking of the top-performing materials has not 
been impacted significantly.

Running a carbon-capture plant inherently produces emissions 
of CO2 and other greenhouse gases owing to an increased demand 
for energy and materials. The environmental manager’s perspective 
focuses on maximizing the captured CO2 while simultaneously mini-
mizing these associated CO2e emissions and other possible environ-
mental impacts.

The effective recovery (Fig. 4d) adjusts the process recovery for the 
CO2e emissions associated with building and operating the carbon- 
capture plant, using the climate change KPI (Fig. 4c). For some materi-
als, we find that the climate change KPI is >1 kgCO2e per kgCO2 cap-
tured (Extended Data Fig. 2a). This indicates that the capture process 
with these materials emits more CO2e over the plant’s lifetime than 
the total amount of CO2 captured. Several factors can contribute to 
this result. For example, some materials have a very low CO2 work-
ing capacity, resulting in high material and energy demands. Some 
others, with relatively good working capacities and moderate heat 
demands, contain metals such as gold or rhodium. The climate change 
impact of synthesizing such materials is so significant that it leads 
to a climate change KPI >1 kgCO2e per kgCO2 captured. An impor-
tant environmental KPI is the material resources:metals/minerals 
(MR:MM), which relates to the use of minerals and metals resources. 
In Extended Data Fig. 3, we compare the ranking of materials based on 
their constituent metals, focusing on some abundant metals (mag-
nesium, zinc and manganese) and rare metals (copper, lutetium and 
silver). The MR:MM ranking will be poorer if a greater amount of the 
corresponding MOF is required to remove a unit of CO2 or if the total 
energy demand is higher. The abundant metals rank better, whereas 
the rank drops for the rather rare metals. If a MOF scores poorly on 
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Fig. 2 | Materials performance for a TVSA carbon-capture process at 0.6 bar 
added to a cement plant in the UK. a, The nCAC versus recovery, with colour 
coding the specific electrical energy consumption. b, The nCAC versus purity, 
with colour coding the specific thermal energy consumption. c, Specific 
thermal energy consumption for heating versus productivity, with colour 
coding the recovery. d, MR:MM versus climate change, with colour coding the 

nCAC. Sbe, antimony equivalent. Our visualization tool25 gives an interactive 
version of this graph. The dotted lines in a, c and d show the MEA benchmark 
(Supplementary Information Section 4). In b, the vertical orange dotted line 
gives the purity required for geological storage (>96%) and in a, the blue shaded 
area gives the uncertainty. Each dot represents the corresponding KPI of a 
material.
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MR:MM, it may inspire chemists to explore similar structures with 
more abundant metals.

Another important factor in MOF synthesis is solvent selection. The 
PrISMa platform identifies the greenest solvent from a list of frequently 
used ones. Supplementary Information Section 8.2.3 pinpoints antici-
pated environmental hotspots related to solvent selection.

The platform provides additional KPIs related to the process’s envi-
ronmental impacts (Extended Data Fig. 2b), for example, impact on 
ecosystem quality, human health and the use of resources (land, water, 
materials and non-renewable energy), and allows us to flag materials 
that impact the environment.

The CO2-producer perspective seeks the most cost-effective cap-
ture technology. For instance, a cement producer can select different 

utilities based on their impact on the plant’s environmental footprint 
and cost. In Switzerland, CO2e emissions can be reduced using electric 
boilers instead of natural-gas-fired ones. This change significantly 
lowers the climate change KPI owing to the low carbon intensity of 
Switzerland’s electricity grid, resulting in nearly 100% effective recov-
ery. However, this improvement comes with a cost increase of approxi-
mately €16 tCO2

−1 (about 20%) owing to the high operating costs in 
Switzerland (Supplementary Information Section 8.2.2).

If one needs to perform large-scale carbon capture tomorrow, 
the default choice is often the well-established MEA technology. 
However, from an investor’s perspective, our platform shows that 
solid-sorbent-based capture processes can outperform the MEA 
benchmark. The cost reductions increase with CO2 concentration; 
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Fig. 3 | Comparison of materials ranking for a TVSA carbon-capture process 
at 0.6 bar added to a cement plant in the UK. Rankings according to Henry 
selectivity (S), purity (Pu), productivity (P), nCAC, climate change (CC) and 
MR:MM for a TVSA carbon-capture process added to a cement plant in the UK. 
In these graphs, the top-performing material is ranked number one. Coloured 

lines represent the top ten performers for the six reference KPIs. The same 
colour is used to highlight the KPI of interest. Every line illustrates how the 
ranking of a specific material ( y axis) changes across all other KPIs (x axis).  
Our visualization tool25 gives an interactive version of this graph.
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for cement, the nCAC is about a factor of two lower than the benchmark 
(Fig. 4a). Investors are also interested in understanding the economics 
of deploying carbon-capture plants in different parts of the globe. The 
large cost differences and electricity grid characteristics will make 
specific regions economically more beneficial than others. Figure 4e 
highlights this region’s dependence on the carbon-capture cost (CCC). 
For the cement case, electricity and natural-gas costs are low in the USA, 
which makes it favourable in CCC, whereas it is highest in Switzerland. 
The region dependency of coal costs is rather small, whereas for natural 
gas, it is more substantial.

However, the CCC does not account for the CO2e emissions associ-
ated with operating the carbon-capture plant and the product loss (for 
example, electricity). The nCAC corrects the system-based CCC by the 
climate change KPI (Fig. 4f). The largest impact is observed in the NGCC 
case. The high CO2e emissions of the electricity grid owing to the many 
coal power plants in China, particularly in Shandong province, lead to 
the highest nCAC. In contrast, Switzerland has the lowest because its 
grid is dominated by hydroelectricity. The low energy cost and CO2e 
emissions of the electricity grid mix make the USA beneficial for coal 
and cement.

The route from the first synthesis of a new material to its implemen-
tation into a commercial process can take many years. It is, therefore, 
important, from a chemist’s perspective, to provide some guidance 
on how molecular characteristics impact the material’s performance 
at the very early material’s design stage. An interesting practical ques-
tion is whether one can synthesize materials that work well for any CO2 

source. Extended Data Fig. 4a compares the nCAC ranking for NGCC, 
coal-fired power plants and cement plants. We observe a significant 
change in ranking when we go from the NGCC to coal. The changes are 
smaller but still considerable when we move from coal to cement. This 
indicates the need for tailored materials for different capture applica-
tions (see Supplementary Information Section 8.5.1 for more details).

Extended Data Fig. 4b shows the increase in nCAC with wet versus dry 
flue gases. As the value of α, indicating water penetration in the bed, 
increases, costs rise substantially, following exponential trends after a 
certain threshold. For cement, the increase in nCAC is at least €5.0 tCO2

−1 
(8%), and €26.7 tCO2

−1 (22%) for NGCC. This underscores the necessity 
of managing moisture at lower feed-CO2 partial pressures to maintain 
cost competitiveness. In Supplementary Information Section 9, we 
discuss the limits of our (ideal) model. Under non-ideal mass-transfer 
conditions, about 60–70% of the materials remain top performers. 
However, for materials with high water affinity (for example, zeolite 
13X), moisture slippage into the dry part of the bed can significantly 
undermine their capacity and shift their ranking.

Screening more than a thousand materials enables us to use 
data-driven methods to identify the molecular characteristics of 
the top-performing materials. For cement, we demonstrate that by 
retaining the descriptor related to pore geometry (that is, persistence 
images), we can accurately predict whether a material has a lower nCAC 
than the MEA benchmark (Supplementary Information Section 8.5.3). 
These persistence images also rank the importance of each atom in 
these predictions, with the collection of these atoms characterizing 
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structures. a, The nCAC jointly with the MEA benchmark (black dashed lines).  

b, The purity for three CO2 sources depending on the technologies (TSA and 
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purity of the CO2 sink (red dashed line). c,d, The climate change (c) and effective 
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regions. CN-GD, China Guangdong region; CN-SD, China Shandong region; CH, 
Switzerland. See Supplementary Information Section 8 for the data.
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the molecular features that define the adsorbaphore23. A common 
feature among materials outperforming MEA is a geometrical rod of 
metal atoms (highlighted in Extended Data Fig. 5). These features are 
often associated with stacked delocalized systems (aromatic rings) 
separated by 6 Å to 11 Å (see also Supplementary Fig. 62).

Extending the chemical design space
Identifying more top-performing materials increases the likelihood 
of advancing some to the next technological readiness level. We use 
density functional theory and molecular simulations to predict mate-
rial properties. Although these predictions are accurate and applicable 
across case studies, they require substantial central-processing-unit 
resources and do not scale to millions of materials. To address this, 
we leverage platform outcomes and implement a machine-learning 
feedback loop to screen a much larger chemical design space.

Our machine-learning model uses the crystal structure to predict 
whether a material yields an nCAC above or below a given threshold. 
We have limited top-performing materials, so we perform the training 
in steps. We start using an nCAC threshold corresponding to the MEA 
benchmark and use this model to screen a larger database. The most 
promising materials are added to the platform (round 1, in Extended 
Data Fig. 6a). We now have more top-performing materials, which allows 
us to retrain the model with a lower threshold and perform the next 
round. Extended Data Fig. 6a,c shows that in each round, we decrease 
the average nCAC. Extended Data Fig. 6d–f shows the evolution of the 
predictions of our machine-learning model in the chemical design 
space. Interestingly, there is not one single cluster of top-performing 
materials but several clusters of chemically different materials. This 
model needs to be trained for each case study. Indeed, Extended Data 
Fig. 6b shows that the added top-performing materials for cement do 
not similarly reduce the nCAC for the NGCC case.

Experimental testing
The impact of our in silico screening is limited if it cannot reflect the 
experimental performance of the material. As an example, we uploaded 
the crystal structure of a new material, MIP-212 (Extended Data Fig. 7a). 
Extended Data Fig. 8 shows this is a promising material, and we studied 
the performance in detail (Supplementary Information Section 12.1). 
The experimental breakthrough curves (Extended Data Fig. 7b) show 
the separation between the column’s predicted wet and dry fronts. 
The significant lapse between the breakthrough times of CO2 and H2O 
indicates moisture penetration below 5% of the bed length, which is in 
good agreement with our predictions (Supplementary Information 
Section 12.1.3).

We also ranked CALF-20 in Extended Data Fig. 8, which gives an nCAC 
of €72 tCO2

−1.
CALF-20 is being commercialized, and the estimated CO2 capture 

cost for the Svante process is €50 tCO2
−1 (ref. 24). A head-to-head com-

parison is, however, difficult as the two processes fundamentally differ.

Outlook
The PrISMa platform’s holistic approach identifies promising sorbent 
materials for carbon-capture applications. This modular platform 
extends beyond carbon capture, allowing for additional modules, for 
example, other gas separations and hydrogen or methane storage. 
Bridging fundamental research and large-scale deployment acceler-
ates the successful implementation of innovations.
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Data availability
All the results obtained by the platform for all case studies presented 
in this work have been deposited on Zenodo at https://doi.org/10.5281/
zenodo.11244258 (ref. 26). On this website, one can also find the crystal 
structure (cif files) of all materials studied in this work, together with 
the simulated isotherms, values of the heat capacity and the data that 
characterize the materials. The results of this work can also be accessed 
through our visualization tool on the Materials Cloud at https://prisma.
materialscloud.io/ (ref. 25). This tool allows users to inspect all case 
studies and all KPIs. In addition, the Materials Cloud provides interac-
tive versions of the graphs presented in this work. Updates and new 
case studies will be made available through the Materials Cloud. This 
tool also allows the crystal structure of materials to be uploaded and 
analysed across various case studies.

Code availability
The code for the analysis of the persistence images and the interactive 
visualization tool can be found at https://github.com/kjappelbaum/
prisma-adosorbaphore and https://github.com/ElMouba/PrISMa_ 
VisTool, respectively. The software to run the different layers of the plat-
form can be obtained from the corresponding authors upon request.
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Extended Data Fig. 1 | Spearman’s rank correlation matrix for the cement 
case in the UK with TVSA process at 0.6 bar. Spearman’s rank correlation 
matrix of the rankings considering one material KPI, eight process KPIs, eight 
TEA KPIs, and 16 LCA KPIs. Dark blue represents very strong correlations, while 

dark red represents lower correlations. The size of the circle is proportional to 
the absolute value of the correlation. The diagonal circles in the matrix have,  
by definition, a Spearman’s correlation coefficient of 1. A more detailed 
description can be found in Supplementary Information Section 7.
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Extended Data Fig. 2 | Materials ranking for LCA-KPIs for cement in the UK 
with TVSA process at 0.6 bar. (a) The materials that are colored red have a 
Climate Change KPI larger than 1, which implies that the total CO2-eq. emissions 
of the capture plant using this material are larger than the amount of CO2 that is 
captured. Note that we changed nCAC to the Carbon Capture Cost (CCC) (see 
Supplementary Information Section 6.3.6) because the nCAC is not defined for 
these materials. (b) Material ranking for all 16 main LCA KPIs: Climate Change 
(CC), Water Use (WU), Energy Resources: Non-Renewable (ER:NR), Material 
Resources: Metals/Minerals (MR:MM), Land Use (LU), Acidification (A), 

Ecotoxicity: Freshwater (EcoT:F), Eutrophication: Freshwater (Eut:F), 
Eutrophication: Marine (Eut:M), Eutrophication: Terrestrial (Eut:T), Human 
Toxicity: Carcinogenic (HT:C), Human Toxicity: Non-Carcinogenic (HT:NC), 
Particulate Matter Formation (PMF), Ozone Depletion (OD), Photochemical 
Ozone Formation: Human Health (POF:HH), and Ionising Radiation: Human 
Health (IR:HH). The blue lines show the top 20 materials for the nCAC; the one 
material showing significant environmental hotspots in 10/16 impact categories 
contains silver).
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Extended Data Fig. 3 | Ranking of the two classes of metals for the cement 
case in the UK with TVSA process at 0.6 bar. Top: abundant metals (Mg, Zn, 
Mn), and Bottom: more rare metals (Cu, Lu, Ag). Some MOFs contain more than 
one type of metal. All these metals are considered in the KPI MR:MM and can 

lower the ranks significantly. A combination of two or three metals is, for 
example, contained in the worst-performing Manganese (Mn) materials, 
leading to their bad performance in MR:MM compared to the other materials 
containing the same metal.



(a) (b)
Extended Data Fig. 4 | Ranking of materials and comparison between wet 
and dry flue gasses. (a) Ranking of materials for NGCC power plant (TVSA at 
0.2 bar), coal power plant (TVSA at 0.6 bar), and cement plant (TVSA at 0.6 bar). 
The materials are ranked using the preferred technology according to the Net 
Carbon Avoidance Cost (nCAC). The color coding of the lines shows the number 

of ranks a material change ranking. (b) Scatter plots of the increase in nCAC 
from dry to wet conditions as a function of the fraction of bed that is moisture- 
loaded. (top) Cement plant (TVSA at 0.6 bar), (middle) coal power plant (TVSA 
at 0.6 bar), (bottom) NGCC power plant (TVSA at 0.2 bar).
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Extended Data Fig. 5 | Identifying the adsorbaphore for the cement Case 
Study (TVSA, 0.6 bar) in the UK. The top figures illustrate the methodology; 
the crystal structure is converted into a persistence image. We extract the  
most relevant pixels of the persistence images from a model trained to predict 
whether the nCAC is lower than the MEA-based benchmark. We then identify 
representative cycles, which are collections of atoms that generate a 

corresponding topological feature (i.e., birth/persistence pair). The bottom 
figure shows examples of the top-performing structures’ recurring molecular 
features (adsorbaphores). Supplementary Information Section 8.5.3 provides 
more examples of these top-performing structures, and it gives the details of 
the methods that are used.
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Extended Data Fig. 6 | Iterative material discovery. The PrISMa platform was 
used to train a series of ML models to predict an nCAC below a set of thresholds 
(105, 80, and 70 €t−1

CO2) for the cement Case Study in the UK (TVSA, 0.6 bar).  
(a) shows the nCAC versus purity for the different rounds. (b) shows how these 
materials perform for the other Case Studies. (c) shows the distribution of the 

nCAC per round. (d)–(f) visualize the screening of the chemical space through 
dimensionality reduction (UMAP embedding, see Supplementary Information 
Section 11). Each data point corresponds to one MOF. In (d)-(f), the colored dots 
are MOFs with an nCAC better than the threshold and the 30,000 grey dots are 
from the large database.
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Extended Data Fig. 7 | MIP-212. Panel (a) shows the structure of MIP-212. MIP-212 has 1D channels constructed from an alternation of chains of Al hydroxy- 
carboxylates and Cu pyrazolates. Panel (b) shows the breakthrough curve under a dry and wet flue gas and conditions corresponding to the cement Case Study.



(a)                                                           (b)

(c)                                                           (d)
Extended Data Fig. 8 | Materials performance for a TVSA carbon capture 
process at 0.6 bar added to a cement plant in the UK using experimental 
data. The dotted lines in (a), (c), and (d) show the MEA benchmark, in (b), the 
vertical orange dotted line gives the purity required for geological storage  
(> 96 %), and in (a), the blue-shaded area gives the uncertainty. Each dot 
represents the corresponding KPI of a material. The triangles are the 
structures for which experimental property data is used directly in the 

platform (see Supplementary Information Section 12). (a) Net Carbon Avoidance 
Cost (nCAC) versus recovery (R) with color coding the specific electrical energy 
consumption, (b) nCAC versus purity (Pu) with color coding the specific thermal 
energy consumption, (c) Specific thermal energy consumption for heating 
versus productivity (P) with color coding the recovery, and (d) Material 
Resources: Metals/Minerals (MR:MM) versus Climate Change (CC) with color 
coding the nCAC.
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Extended Data Table 1 | Available case studies in the PrISMa platform

Source Sink Technology Utility Region

NGCC Geological storage TSA Natural gas boiler UK
Coal TVSA - 0.6 bar Electric boiler US
Cement TVSA - 0.2 bar From host plant China (Guangdong)

China (Shandong)
Switzerland (CH)

Any source, sink, technology, utility, and region in the platform can be combined. Switzerland has no coal-fired power plants, so this combination of source and region is not considered. Three 
technologies are available: temperature swing adsorption (TSA) and temperature vacuum swing adsorption (TVSA) with two vacuum levels, 0.2 and 0.6 bar. We have a total of 66 Case Studies. 
The complete input parameters defining these Case Studies are in Supplementary Information Table S2.



Extended Data Table 2 | The six reference key performance indicators (KPIs)

KPI Description Definition (SI)

Materials layer

S Ratio of the CO2 and N2 Henry’s coefficients. (6.1.2)

Process layer

Pu The molar fraction of CO2 in the product stream. (6.2.1)
P The amount of captured CO2 per kg adsorbent dur-

ing a process cycle.
(6.2.5)

Techno-economic analysis (TEA) layer

nCAC Quantifies the cost of avoiding emitting CO2 into
the atmosphere over the plant’s life cycle. For
power generation Case Studies, the nCAC is calcu-
lated from the levelized cost of electricity and the
net carbon intensity of the plant. For cement, the
nCAC is calculated from the costs of carbon cap-
ture and the Climate Change (CC), as we assume
that the capture plant does not affect cement pro-
duction.

(6.3.4)

Life-cycle assessment (LCA) layer

CC Gives the total Global Warming Potential (GWP)
due to greenhouse gas emissions from the capture
process to the air and CO2 uptake from the atmo-
sphere.

(6.4.1)

MR:MM Indicates the use of non-renewable, non-fossil nat-
ural resources (i.e., minerals and metals) and con-
siders the availability of a mineral or metal on earth
and the current mining rate. The use of natural re-
sources like minerals and metals is measured using
antimony (Sb) as reference material.

(6.4.2)

Henry selectivity (S), Purity (Pu), Productivity (P), Net Carbon Avoidance Cost (nCAC), Climate Change (CC), and Material Resources: Metals/Minerals (MR:MM). Based on Spearman analysis, we 
have identified six key performance indicators that describe the most important trends in each layer of the PrISMa platform (see Supplementary Information Section 7). A description of all KPIs 
and data generated by the platform can be found in Supplementary Information Section 6.
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