
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Exploring Visual Perception with Transformers and World Model Representation

Permalink
https://escholarship.org/uc/item/03g534f0

Author
Xu, Yifan

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03g534f0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Exploring Visual Perception with Transformers and World Model Representation

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Cognitive Science

by

Yifan Xu

Committee in charge:

Professor Zhuowen Tu, Chair
Professor Benjamin Bergen
Professor Andrea Chiba
Professor Virginia De Sa
Professor Xiaolong Wang

2023

Copyright

Yifan Xu, 2023

All rights reserved.

The dissertation of Yifan Xu is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically

University of California San Diego

2023

iii

DEDICATION

To my family and their unwavering support.

iv

EPIGRAPH

All truths are easy to understand once they are discovered;

the point is to discover them.

—Galileo Galilei

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . x

List of Tables . xi

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Visual Attention . 3

1.1.1 Human Visual Attention and Its Mechanisms 3
1.1.2 The Rise of Self-Attention and Transformer Models 4
1.1.3 Relationship between Self-Attention and Visual Attention . 7

1.2 World Models . 9
1.2.1 Internal Model Theory for Human Perception 9
1.2.2 Renaissance of Model-Based Reinforcement Learning . . . 10
1.2.3 Connection Between Human Internal Model and Model-Based

RL . 11
1.3 Overview . 12

Chapter 2 Line Segment Detection Using Transformers without Edges 14
2.1 Introduction . 15
2.2 Related Works . 17

2.2.1 Line Segment Detection 17
2.2.2 Transformer Architecture 19

2.3 Line Segment Detection with Transformers 20
2.3.1 Motivation . 20
2.3.2 Overview . 21
2.3.3 Coarse-to-Fine Strategy 23
2.3.4 Line Segment Prediction 24
2.3.5 Line Segment Losses . 25

2.4 Experiments . 26

vi

2.4.1 Datasets . 26
2.4.2 Implementation . 28
2.4.3 Evaluation Metric . 29
2.4.4 Results and Comparisons 30

2.5 Ablation Study . 31
2.6 Visualization . 33
2.7 Conclusion . 34

Chapter 3 Co-Scale Conv-Attentional Image Transformers 36
3.1 Introduction . 37
3.2 Related Works . 39
3.3 Revisited Scaled Dot-Product Attention 41
3.4 Conv-Attention Module . 43

3.4.1 Factorized Attention Mechanism 43
3.4.2 Convolution as Position Encoding 44

3.5 Co-Scale Conv-Attentional Transformers 49
3.5.1 Co-Scale Mechanism . 49
3.5.2 Model Architecture . 51

3.6 Experiments . 53
3.6.1 Experiment Details . 53
3.6.2 CoaT for ImageNet Classification 55
3.6.3 Object Detection and Instance Segmentation 55
3.6.4 Ablation Study . 55

3.7 Conclusion . 57

Chapter 4 Attentional Constellation Nets for Few-Shot Learning 58
4.1 Introduction . 59
4.2 Related Work . 60
4.3 Few-shot learning . 62
4.4 Constellation Model . 64

4.4.1 Cell Feature Clustering . 64
4.4.2 Cell Relation and Spatial Configuration Modeling 67
4.4.3 Integrate Constellation Model with CNNs 68
4.4.4 Why clustering and self-attention (clustering map + positional

encoding)? . 69
4.5 Experiment . 70

4.5.1 Datasets . 70
4.5.2 Network with Multi-Branch 70
4.5.3 Results on Standard Benchmarks 70

4.6 Model Analysis . 71
4.6.1 Architecture alternatives 71
4.6.2 Modules Analysis . 74
4.6.3 Visualization . 74

vii

4.7 Conclusion . 77
4.8 Appendix . 77

4.8.1 Few-Shot Learning Framework 77
4.8.2 Datasets . 79
4.8.3 Network Backbone . 79
4.8.4 Constellation Module Configuration 80
4.8.5 Self-attention settings . 80
4.8.6 Training Details . 80
4.8.7 Ablation Study on the Number of Clusters 81
4.8.8 Additional Experiments with Negative Margin 81
4.8.9 Clarification on Clustering Procedure 82
4.8.10 Multi-Branch Details . 83
4.8.11 Connection with Capsule Networks 83

Chapter 5 On the Feasibility of Cross-Task Transfer with Model-Based Reinforcement
Learning . 85
5.1 Introduction . 86
5.2 Background . 88
5.3 Model-Based Cross-Task Transfer 90

5.3.1 Offline Multi-Task Pretraining 90
5.3.2 Online Finetuning on a Target Task 92

5.4 Experiments . 93
5.4.1 Results & Discussion . 96

5.5 Related Work . 100
5.6 Conclusion . 102
5.7 Appendix . 103

5.7.1 XTRA/EfficientZero Objectives 103
5.7.2 Task Weights Computation 103
5.7.3 Distillation vs. Multi-Game Offline RL 105
5.7.4 Scores for Individual Seeds 105
5.7.5 Additional Evaluation curves of XTRA on Atari100k benchmark106
5.7.6 Offline Data Preparation 107
5.7.7 Pretraining + Finetuning in Model-free RL 107
5.7.8 XTRA Ablations for Tasks with Diverse Game Mechanics . 108
5.7.9 Effects of Number of Tasks in Pretraining and Cross-Tasks in

Finetuning . 108
5.7.10 Architectural Details . 109
5.7.11 Hyper-parameters . 112
5.7.12 Effect of Mini-Batch Size 113
5.7.13 Game Information . 113
5.7.14 Behavioral Cloning Baseline 114

viii

Chapter 6 Discussion and Future Directions . 117

Bibliography . 119

ix

LIST OF FIGURES

Figure 2.1: Pipeline comparison . 15
Figure 2.2: Schematic illustration of our LETR pipeline 19
Figure 2.3: Bounding box representation . 20
Figure 2.4: Line entity representation . 21
Figure 2.5: Qualitative evaluation of line detection methods 27
Figure 2.6: Precision-Recall (PR) curves . 29
Figure 2.7: Ablation Studies . 32
Figure 2.8: Visualization of LETR coarse-to-fine decoding process 34

Figure 3.1: Model Size vs. ImageNet Accuracy . 38
Figure 3.2: Illustration of the conv-attentional module 42
Figure 3.3: CoaT model architecture . 43
Figure 3.4: Schematic illustration of the serial block in CoaT 47
Figure 3.5: Schematic illustration of the parallel group in CoaT 48

Figure 4.1: Illustration of our ConstellationNet pipeline 63
Figure 4.2: Modules analysis . 74
Figure 4.3: Visualization of cluster centers . 75
Figure 4.4: Visualization of the cells assignment and attention maps 76

Figure 5.1: Illustration of our XTRA pipeline . 86
Figure 5.2: Illustration of our Concurrent Cross-Task Learning strategy 91
Figure 5.3: Visualization of Concurrent Cross-Task Learning 94
Figure 5.4: Effectiveness of Task Relavance, Frozen Representation, Model Size, and

Environment Steps . 97
Figure 5.5: Effectiveness of model components . 99
Figure 5.6: Visualization of periodic task re-weighting with similar pretraining tasks . 104
Figure 5.7: Visualization of periodic task re-weighting with diverse pretraining tasks . 104
Figure 5.8: Distillation vs. multi-game offline RL . 105
Figure 5.9: Atari100k benchmark training progress with similar pretraining tasks . . . 106
Figure 5.10: Atari100k benchmark training progress with diverse tasks 107
Figure 5.11: Effect of mini-batch size . 113

x

LIST OF TABLES

Table 2.1: Comparison to prior work on Wireframe and YorkUrban benchmarks 29
Table 2.2: Comparison with object detection baselines 31
Table 2.3: Effectiveness of modules . 32
Table 2.4: Effectiveness of upsampling . 33
Table 2.5: Effectiveness of pretraining . 33

Table 3.1: Architecture details of CoaT-Lite and CoaT models 49
Table 3.2: CoaT performance on ImageNet-1K validation set 52
Table 3.3: Object detection and instance segmentation results based on Mask R-CNN on

COCO val2017 . 53
Table 3.4: Object detection and instance segmentation results based on Cascade Mask

R-CNN on COCO val2017 . 53
Table 3.5: Object detection results based on Deformable DETR on COCO val2017 . . 53
Table 3.6: Effectiveness of position encodings . 56
Table 3.7: Effectiveness of co-scale . 56
Table 3.8: ImageNet-1K validation set results . 57

Table 4.1: Comparison to prior work on mini-ImageNet 72
Table 4.2: Comparison to prior work on FC100 and CIFAR-FS 73
Table 4.3: Effectiveness of modules . 73
Table 4.4: Ablation study on the number of clusters for random and similar classes . . 81
Table 4.5: Additional experiments with the use of negative margin 82

Table 5.1: Atari100k benchmark results similar pretraining tasks) 95
Table 5.2: Atari100k benchmark results (diverse pretraining tasks) 98
Table 5.3: Scores for individual seeds . 106
Table 5.4: Comparison to the model-free method with diverse pretraining tasks 108
Table 5.5: Comparison to the model-free method with similar pretraining tasks 109
Table 5.6: XTRA ablation with diverse pretraining tasks 110
Table 5.7: XTRA ablation with different number of tasks in pretraining 110
Table 5.8: XTRA Hyper-parameters . 115
Table 5.9: Atari Game information . 116

xi

ACKNOWLEDGEMENTS

I am profoundly grateful for the privilege of pursuing my Ph.D. under the expert guidance

of Professor Zhuowen Tu. His unwavering support, encouragement, and mentorship have been

pivotal in shaping my academic journey. Professor Tu’s comprehensive understanding of AI

and cognitive science has consistently inspired me to explore cutting-edge research areas and

examine the intricate aspects of intelligent systems and human cognitive processes. His direction

has not only sharpened my research skills but also instilled a profound appreciation for these

interdisciplinary fields, propelling my passion for studying their complexities. I am particularly

indebted to Professor Tu for his steadfast encouragement to venture into unexplored territories

and embrace challenges throughout my Ph.D. experience. Under his mentorship, my research

interests have broadened to encompass computer vision, natural language understanding and

reinforcement learning, all of which are integral components of human intelligence. This diverse

exposure has been vital to my development as a young researcher and has empowered me to make

positive contributions to the field.

I would like to express my sincere appreciation to my dissertation committee members

and the entire Cognitive Science Department at UC San Diego for cultivating an engaging and

research-oriented atmosphere. The liberty to explore a myriad of AI domains and the open,

cooperative setting have been crucial to both my academic and personal development. I am

especially thankful to my dissertation committee members, Professors Virginia de Sa, Benjamin

Bergen, Andrea Chiba, and Xiaolong Wang, for their invaluable insights and guidance throughout

the process. Moreover, I am grateful to Professor Marcelo Matta for his thoughtful discussions

as a member of my advancement committee. In addition, I would like to convey my gratitude

to Professors Marta Kutas and Douglas A. Nitz from the UC San Diego Cognitive Science

Department. Their commitment and enthusiasm for supporting young researchers, including

myself, have consistently been a tremendous source of inspiration.

I want to express my gratitude to my colleagues at UC San Diego, Weijian Xu, Nicklas

xii

Hansen, Xiang Zhang, Huaijing Wang, Tyler Chang, and David Cheung, whose passion for

research and collaborative efforts have played an important role in my research achievements. I

am also thankful for the valuable input provided by Kownjoon Lee, Zheng Ding, Justin Lazarow,

Sainan Liu, Wenlong Huang, Ke Li, and Shijie Wang, whose collaboration have also been

invaluable to my academic and personal growth.

Finally, I would like to extend my deepest appreciation to my parents, whose steadfast

support, love, and encouragement have been the driving force behind my academic journey. Last,

I would like to extend my heartfelt thanks to my wife, whose unrelenting faith in my abilities has

been a constant source of motivation and inspiration.

Chapter 2 is based on the material “Line Segment Detection Using Transformers without

Edges" by Yifan Xu*, Weijian Xu*, David Cheung, and Zhuowen Tu, which appears in Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.

The dissertation author is the primary investigator and author of this material.

Chapter 3 is based on the material “Co-Scale Conv-Attentional Image Transformers" by

Weijian Xu*, Yifan Xu*, Tyler Chang, and Zhuowen Tu, which appears in Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV) 2021. The dissertation author

is the primary investigator and author of this material.

Chapter 4 is based on the material “Attentional Constellation Nets for Few-Shot Learning"

by Weijian Xu*, Yifan Xu*, Huaijin Wang*, and Zhuowen Tu, which appears in the International

Conference on Learning Representations (ICLR) 2021. The dissertation author is the primary

investigator and author of this material.

Chapter 5 is based on the material “On the Feasibility of Cross-Task Transfer with Model-

Based Reinforcement Learning" by Yifan Xu*, Nicklas Hansen*, Zirui Wang, Yung-Chieh

Chan, Hao Su, and Zhuowen Tu, which appears in the International Conference on Learning

Representations (ICLR) 2023. The dissertation author is the primary investigator and author of

this material.

xiii

VITA

2018 B. S. in Computer Science, University of California San Diego

2023 Ph. D. in Cognitive Science, University of California San Diego

PUBLICATIONS

Yifan Xu*, Nicklas Hansen*, Zirui Wang, Yung-Chieh Chan, Hao Su, and Zhuowen Tu. “On the
Feasibility of Cross-Task Transfer with Model-Based Reinforcement Learning" In Proceedings
of the Eleventh International Conference on Learning Representations (ICLR), 2023. (* equal
contribution)

Weijian Xu*, Yifan Xu*, Tyler Chang and Zhuowen Tu. “Co-Scale Conv-Attentional Image
Transformers" , In Proceddings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. (* equal contribution)

Yifan Xu*, Weijian Xu*, David Cheung and Zhuowen Tu. “Line Segment Detection Using
Transformers without Edges" In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. (*equal contribution)

Weijian Xu*, Yifan Xu*, Huaijin Wang* and Zhuowen Tu. “Attentional Constellation Nets
for Few-Shot Learning" In Proceedings of the Ninth International Conference on Learning
Representations (ICLR), 2021. (*equal contribution)

xiv

ABSTRACT OF THE DISSERTATION

Exploring Visual Perception with Transformers and World Model Representation

by

Yifan Xu

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2023

Professor Zhuowen Tu, Chair

This research explores the development of generalized representations in artificial intelli-

gence by leveraging visual attention and world models. The primate visual system processes vast

amounts of sensory data through bidirectional visual pathways, utilizing top-down influence, such

as visual attention, from high-level cognitive processes to affect early-stage visual processing.

Drawing inspiration from this, attention-based visual systems, with the transformer model as

the most prominent example, have significantly advanced computer vision by incorporating

top-down information, which enables them to exhibit adaptability and versatility when processing

a wide range of complex visual tasks. Concurrently, the concept of world models connects

visual perception to higher-level cognitive processes and has led to a renaissance in model-based

xv

reinforcement learning. Deepening our understanding of visual attention and world models is an

essential step towards achieving general artificial intelligence capable of performing a wide range

of visual tasks and following complex instructions.

The thesis begins by focusing on designing transformer-based attention mechanisms in

visual representation learning for diverse computer vision tasks. First, The research explores the

application of these attention mechanisms to develop a geometry perception framework for line

segment detection. Next, It presents a novel transformer-based visual system capable of handling

multi-scale and contextual information. Furthermore, the thesis highlights the use of attention

mechanisms in modeling spatial relationships among object parts in few-shot classification tasks.

Lastly, it explores the potential of model-based reinforcement learning algorithms for efficient

task transfer, introducing a framework that leverages learned world models to accelerate learning

in new and distinct tasks. Through these works, we contribute to ongoing efforts to develop AI

systems that closely resemble the flexibility and versatility of the human brain.

xvi

Chapter 1

Introduction

The primate visual system is responsible for processing vast amounts of sensory data,

with about 55% of the neocortex dedicated to vision [FVE91]. Early views of visual processing

suggested a hierarchical feedforward process in the cortex, involving sequential progression

through cortical areas [FVE91, Mar82]. However, this perspective evolved with evidence pointing

to the significance of "top-down" processing [DD95, UN96, DL02]. Current consensus indicates

that visual pathways in the primate brain operate bidirectionally where high-level cognitive

processes can influence early-stage visual processes through feedback connections [GL13]. This

bidirectional processing is evident in various forms of visual attention, including spatial and

feature attention [AEC13, RP95].

Early computer vision approaches for visual processing, such as David Marr’s influential

stages of vision framework, focused on a hierarchical computational framework [Mar82]. Despite

its early promise, Marr’s approach faced challenges due to the error-prone nature of its stages

under complex scenarios [Lee03]. The deep learning era led to a great success in computer vision

with the development of end-to-end system with convolutional neural networks (CNNs) that

were inspired by the connectivity patterns in the visual cortex [LBBH98]. CNNs facilitated great

advancements in computer vision and related fields [HZRS16, HGDG17, GPAM+14, SHM+16a].

1

However, these approaches did not account for top-down feedback mechanisms, such as attention

[AEC13, RP95], and faced difficulties in performing diverse visual tasks requiring adaptability

and versatility to follow complex instructions.

Recently, attention-based visual systems have emerged as an alternative to CNN-based

systems with flexibility to integration top-down information, revolutionizing computer vision

[DBK+21, CMS+20, ADL+22, RZP+22a]. Attention mechanisms, which were originally devel-

oped for natural language processing, have been successfully applied to computer vision tasks,

enabling more accurate and efficient processing of complex visual scenes. Transformer models

with self-attention [ADL+22, RZP+22a], showcase the flexibility and robustness of attention

mechanisms in handling visual data and complex language instructions. This new paradigm

in computer vision combines both "bottom-up" and "top-down" information processing while

removing the need for explicit intermediate representations and heuristic-guided designs. This

shift moves us closer to general artificial intelligence by forming a generalized deep representa-

tion that can study diverse cognitive functions in a unified framework, such as visual processing

[DBK+21], language understanding [DCLT19a], speech [DXX18], memory [BKPS20], and

decision-making [CLR+21].

Moreover, the concept of world models emerges as another keystone in human cognition,

connecting visual perception to higher-level cognitive processes [Lan14]. World models enable

humans to form internal representations of their environment, which are crucial for tasks such

as planning, navigation and decision-making behavior [QRK+05, NRO+15, CT17]. In artificial

intelligence, the incorporation of world models has led to a renaissance of model-based rein-

forcement learning (RL), with agents benefiting from improved learning efficiency in various

tasks [HS18b, HLBN19, SAH+20b, KBM+20, YLK+21, HWS22]. The concurrent development

of visual attention and world models offers the potential for developing more generalized and

efficient AI systems.

In this thesis, we aim to investigate building generalized representation that leverages

2

visual attention and world models. In the following sections, we (1) discuss human visual attention

and connect it to the current state of attention research in artificial intelligence, focusing primarily

on recent transformer models featuring self-attention. (2) We outline the internal model theory for

human perception and relate it to the world models developed within the context of model-based

reinforcement learning. (3) Finally, we provide an overview of this thesis.

1.1 Visual Attention

1.1.1 Human Visual Attention and Its Mechanisms

From cognitive science and system neuroscience perspectives, the history of attention

research is mainly centered on visual attention given the critical role visual perception plays in

human cognition [IK01, TBG05, Lin20]. Here we divide our discussion on visual attention into a

section on spatial attention and another on feature attention. We will also discuss the interplay

between "bottom-up" and "top-down" in both sections.

Visual Spatial Attention One primary role of visual attention is to provide flexible control

to select information for future processing. In primate’s visual field, only the fovea, a small area

of the visual field at the center, offers high resolution. Our visual system resolves such spatial

resolution limitations with rapid eye movement (saccades) multiple times each second. The

spatial movement of the focal region is taken to indicate the subject’s shift in interest, which

is known as overt spatial attention [AEC13]. While effective, overt spatial attention is not the

only option for controlling visual attention. Without eye movements, humans can still attend

to locations in peripheral vision given appropriate cues. This is called covert spatial attention

[AEC13]. Some studies show that a potential role for covert spatial attention is to guide overt

spatial attention [RRDU87].

Spatial attention can guide feature detection by directing attention to salient regions of

the visual field. Previous studies have found that certain image patterns, such as oriented edges,

3

color contrast, intensity, and motion, can capture attention and bias attention to a particular

location [IK01, vZD05]. This is usually referred as non-volitional attention and is computed

in "bottom-up" fashion. When a specific task (e.g., reading text in a cluttered background) is

assigned, spatial attention would strongly affect the pattern of eye movements to provide enough

visual information for that task [HB05]. This is referred to as volitional attention due to the extra

effort the individual expends based on "top-down" instructions.

Visual Feature Attention In addition to attending to specific spatial locations, primates

like humans are also able to attend to cued visual features globally in their visual field [RP95].

The visual features can be a specific color, shape, and orientation and have often been examined

in various visual search tasks [ZD11]. A closely related topic is object attention where the

appearance of a particular object will attract subject’s attention [Che12]. In addition, feature

attention often appear together with spatial attention to provide additional "top-down" information

[HG09]. A recent study shows the selectivity from both feature and spatial attention implement a

normalization model in visual processing flow [RH09].

The interaction between spatial and feature attention allows humans to effectively process

complex visual scenes by selectively focusing on the most relevant information. The equilibrium

between bottom-up and top-down processes facilitates flexible adaptation to various tasks, en-

vironments, and objectives. As our comprehension of visual attention expands, researchers can

utilize this knowledge to develop advanced artificial intelligence systems that mimic human-like

visual processing capabilities as we will discuss in the following sections.

1.1.2 The Rise of Self-Attention and Transformer Models

Visual attention plays a critical role in not only the primate visual system but also in build-

ing artificial intelligence systems during the deep learning era [GBC16]. In exploring the concept

of visual attention in computer vision, it is essential to recognize its parallel evolution with natural

language processing (NLP), an area in which attention mechanisms have emerged earlier and were

4

studied more extensively [SVL14, BCB15, LPM15, WSC+16, VSP+17, DCLT19b, BMR+20].

Attention mechanisms have played a key role in enhancing neural network-based sequence-to-

sequence models, such as recurrent neural networks (RNNs [RHW86, HS97]), in NLP applica-

tions like machine translation by effectively capturing long-range dependencies and contextual

information [SVL14, BCB15, LPM15, WSC+16]. By empowering RNNs to selectively attend to

the most relevant parts of the input sequences, attention mechanisms streamline the processing of

lengthy texts.

The success of attention mechanisms in NLP has led researchers to focus on developing

neural network models that emphasize attention, surpassing their initial role as a complementary

component to classic RNNs. One of the most notable examples is the Transformer model

[VSP+17], specifically developed to tackle machine translation challenges with the utilization of a

unique attention mechanism named as self-attention. Empirical studies in [VSP+17] demonstrated

that the self-attention mechanism alone is capable of capturing global dependencies between

inputs and outputs, effectively eliminating the need for recurrent layers in the model. This

innovative approach significantly streamlined the architecture design and enhanced the models’

ability to comprehend text structure and semantic meaning. Consequently, the Transformer has

become the de facto standard architecture for numerous language tasks [DCLT19b, BMR+20].

The growing popularity of attention mechanisms can be attributed to their capacity to efficiently

process complex relationships within input data, a crucial aspect for tasks that demand a deep

understanding of context and semantics.

To illustrate how attention mechanisms operate within Transformer models [VSP+17],

consider a French-to-English translation task. The Transformer, built on an encoder-decoder ar-

chitecture, converts input French words into initial embeddings — learned vector representations

capturing meaning. Self-attention layers in both the encoder and decoder form a multi-layered

structure, with each layer refining the previous layer’s output embeddings for decoding the

subsequent English word. During translation, the encoder’s self-attention layers process initial

5

embeddings, capturing the input French text’s structure and meaning. The processed embeddings

are passed to the decoder, which predicts English words using relevant information from the

French sentence. The self-attention in decoder ensures coherent, contextually appropriate transla-

tions. Each self-attention layer involves these steps: (1) converting input embeddings into query,

key, and value vectors with learned transformations; (2) calculating similarity between query-key

pairs to create attention scores for word relationships; (3) normalizing scores to emphasize

relevant relationships; (4) weighting value vectors using normalized scores; and (5) summing

weighted vectors to produce output embeddings with improved contextual relationships.

The term "attention" refers to such described mechanism selectively focuses on specific

elements of the input data, simulating how human attention prioritizes certain aspects of infor-

mation when processing it. The term "self-attention" highlights that the attention is applied to

the input data itself, enabling the model to capture internal relationships within the input data

and dynamically adjust its focus throughout the translation. By leveraging self-attention in both

the encoder and decoder, Transformer models can efficiently process and translate complex lan-

guage sequences. They selectively concentrate on the most relevant information, integrating data

from both source and target languages while capturing subtle relationships within and between

languages. This approach leads to accurate and contextually rich translations.

The success of attention mechanisms in natural language processing (NLP) has inspired

researchers to apply similar techniques to computer vision within deep learning models, given

the shared need to process intricate relationships within data efficiently and manage context

and semantics effectively [WGGH18, FLT+19, ZGMO19]. Prior to the introduction of attention

mechanisms in computer vision, the primary deep learning architecture for visual tasks was

convolutional neural networks (CNNs [LBBH98]). CNNs use fixed-size kernels and operate on

spatially local regions of the input image, which limits their ability to effectively process images

with rich global context details. In contrast, attention mechanisms enable neural networks to

selectively focus their computational resources on the most important components of the input

6

data when processing complex visual scenes. By incorporating attention mechanisms into CNNs,

researchers can enhance their ability to handle the inherent complexity of numerous computer

vision tasks, such as video classification [WGGH18], semantic segmentation [FLT+19], and

image generation [ZGMO19], improving long-range interactions between pixels in time and

space.

Incorporating attention mechanisms into CNNs was not the end of the story. As Trans-

formers began to dominate in NLP by processing text using only self-attention, researchers started

to apply Transformer attention mechanisms to various computer vision tasks, developing models

such as ViT (Vision Transformer) [DBK+21], DETR (DEtection TRansformer) [CMS+20], and

others [LMGH22, HCX+21, ADL+22, RZP+22a]. These models showcase the adaptability and

versatility of attention mechanisms, which have proven effective not only in language processing

but also in handling visual data. By leveraging the strengths of attention mechanisms, these

models can selectively focus on the most relevant visual information, enabling more accurate and

efficient processing of complex visual scenes. As a result, attention mechanisms have become a

powerful tool for advancing the state of the art in both NLP and computer vision. By bridging

the gap between the two fields, attention mechanisms open up new possibilities for developing

more sophisticated and human-like artificial intelligence systems that can effectively process and

interpret complex data across multiple domains, as seen in recent studies [ADL+22, RZP+22a].

1.1.3 Relationship between Self-Attention and Visual Attention

Investigating the connections between visual attention and deep learning attention mecha-

nisms is crucial for advancing artificial intelligence systems. Such investigations provide great

insights into how human cognitive principles can inspire and strengthen deep learning mecha-

nisms. In this section, we will dive deeper into the connections between various aspects of visual

attention and deep learning attention mechanisms, highlighting the importance of understanding

these relationships.

7

Relation to Spatial Attention: Spatial attention in the human visual system can be

divided into overt and covert spatial attention. Both forms have parallels to components in

deep learning attention mechanisms, particularly self-attention in Transformer models. Overt

spatial attention involves moving the eyes to focus on a specific area within the visual field. This

form of attention can be likened to the encoder-decoder architecture of Transformer models

[CMS+20, ADL+22]. In this architecture, the encoder selectively attends to the most relevant

portions of the input data, similar to how our eyes move to focus on specific parts of a visual

scene [AEC13]. The processed information from the encoder is then passed to the decoder, which

generates the output. This process mirrors how our brain processes visual input to form a coherent

understanding of the scene.

Covert spatial attention, on the other hand, allows humans to attend to peripheral locations

without moving their eyes [AEC13]. This ability is similar to how self-attention mechanisms in

decoder-only Transformer models selectively focus on different parts of the input data without

explicit spatial information [DBK+21, RZP+22a]. Self-attention enables the model to weigh the

importance of different elements in the input and adjust its focus accordingly, akin to how covert

spatial attention can shift our focus without eye movement.

Relation to Feature Attention: Humans can also attend to specific features, such as color,

shape, or orientation within their visual field [RP95, ZD11]. Similarly, attention mechanisms in

deep learning models can learn to focus on particular features within the input data to improve

performance [ADL+22, RZP+22a]. For example, Flamingo [ADL+22], a single visual language

Transformer model with self-attention, might selectively attend to objects with specific colors or

shapes based on a language query to answer them accurately [WGGH18, FLT+19]. This selective

attention enables the model to prioritize the most relevant features in the input data, leading to

better performance on complex tasks. Furthermore, the combination of feature attention and

spatial attention in deep learning models allows them to capture complex relationships between

features in the input data, which is essential for tasks that require a deep understanding of context

8

and semantics [RH09].

Relation to Bottom-up and Top-down Processes: The interplay between bottom-up and

top-down processes in visual attention is also reflected in deep learning models. Consider a visual

language task where the encoder-decoder model is given an image and a language query, such as

"Find the red ball." The model’s goal is to identify the relevant object within the image based on

the language instruction.

Bottom-up processes in visual attention, driven by salient features in the visual envi-

ronment [IK01, vZD05], can be compared to how deep learning models, such as Flamingo

[ADL+22], extract essential features from the input image. These models learn to focus on

particular elements in the image, such as colors or shapes, based on the inherent characteristics of

the visual data.

On the other hand, top-down processes in visual attention, guided by task-specific goals

and prior knowledge, are analogous to the goal-oriented aspects of language queries sent to

the decoder in [ADL+22]. In our example, the language query "Find the red ball" provides a

specific goal for the model to follow. By incorporating attention mechanisms, models can learn to

prioritize certain features or relationships in the input data, such as the color red and the shape of

a ball, based on the task at hand. This mirrors how top-down processes guide our visual attention

to focus on relevant aspects of a scene [HB05].

1.2 World Models

1.2.1 Internal Model Theory for Human Perception

Building on the primate visual system, we will explore the significance of internal world

models in human cognition. While visual perception is essential, it alone is not sufficient for

comprehending and interacting with the environment. Our ability to interact with objects beyond

our visual field highlights the existence of an internal memory model of the surroundings, which is

9

available to the motor system and facilitates perception-action coordination [Lan14]. Functional

MRI studies in [Lan14] reveal a stable egocentric representation that contributes to our conscious

perception of a stable internal world model. World models serve as an important connection

between visual perception and higher-level cognitive processes, guiding the perception-action

coordination and decision-making process based on perceived spatial and temporal information

in response to environmental changes.

Recent research offers compelling evidence supporting the existence of world models

within the human brain. Studies demonstrate the brain has an ability to perceive a scene and store

an abstract representation of it [QRK+05, CT17] . This capacity to retain abstract information

and form predictions about future events is crucial for various human cognitive functions, such as

decision-making, planning, navigation behavior. More recent investigation [NRO+15] have shown

the role of the primary visual cortex (V1) in representing the difference between consecutive

visual inputs in order to adapt to environmental changes. Moreover, the predictive coding theory

[RB99] shows that the human brain continuously adapts its internal world model by comparing

and correcting the predicted sensory input with the actual input received.

1.2.2 Renaissance of Model-Based Reinforcement Learning

The recent resurgence of interest in model-based reinforcement learning (RL) can be

attributed to the advantages provided by incorporating world models into artificial intelligence

systems [HS18b, HLBN19, SAH+20b, KBM+20, YLK+21, HWS22]. Reinforcement learning

is a type of machine learning where an agent learns to make decisions by interacting with

its environment, receiving feedback in the form of rewards [MKS+13, SHM+16b, BBC+19,

CHHS20]. In RL, there are two main approaches: model-free and model-based methods [KLM96,

ADBB17]. Model-free RL methods directly learn a policy, which is a mapping from states to

actions, without explicitly modeling the environment’s dynamics [MKS+13, SLA20]. In contrast,

model-based RL methods learn an internal model of the environment - world model - which

10

is used to generate predictions about future states and rewards based on the agent’s actions

[HS18b, SAH+20b]. In the realm of RL, agents can significantly benefit from world models,

which enable them to develop a comprehensive representation of past states and make accurate

predictions about future states, thus leading to higher learning efficiency in various tasks, such as

navigation, control, and decision-making [YLK+21, HWS22].

Historically, model-free RL methods have been prevalent due to their simplicity form.

However, as our understanding of world models has grown, researchers have started exploring

the potential of model-based RL approaches [HS18b, HLBN19, SAH+20b]. These approaches

have been shown to outperform model-free methods in certain scenarios, as they leverage the

world model to generate predictions about the consequences of their actions. By simulating

potential outcomes and evaluating them based on their value, model-based RL agents can select

the most appropriate actions to achieve their goals. This approach is closely aligned with human

decision-making processes, where the internal world model guides our actions and decisions

[Lan14, NRO+15].

The renaissance of model-based RL is driven by the growing realization that incorporating

world models can significantly improve the learning efficiency of RL agents. With the aid of

world models, agents can quickly adapt their decision-making strategies (i.e., policy) to new

environments or situations without requiring extensive exploration or trial-and-error [YLK+21,

HWS22]. This ability to rapidly learn and adapt enables model-based RL agents to excel in

complex tasks and dynamically changing environments, demonstrating the immense potential of

integrating world models into artificial intelligence systems.

1.2.3 Connection Between Human Internal Model and Model-Based RL

The parallels between human internal world models and model-based reinforcement

learning (RL) approaches offer intriguing insights into the development of artificial intelligence

systems. Both humans and model-based RL agents rely on internal models to predict future

11

events, evaluate potential outcomes, and guide decision-making processes. In humans, the internal

world model is shaped by the integration of visual perception and higher-level cognitive processes,

such as attention, memory, and planning [Lan14]. Similarly, in model-based RL, the world

model is learned from the agent’s interactions with its environment, allowing it to understand the

underlying dynamics and predict future states and rewards based on its actions [HS18b].

The connection between human internal models and model-based RL is not just a matter of

shared functionality; it also reflects the underlying cognitive processes that drive decision-making

and adaptability in both humans and artificial agents. In humans, the brain continually updates its

world model based on the difference between predicted sensory input and actual input, allowing

for rapid adaptation to changes in the environment [RB99]. Model-based RL agents also update

their world model by incorporating new observations, refining their predictions, and adjusting

their decision-making strategies accordingly [SAH+20b].

1.3 Overview

This thesis explores visual perception with Transformers and world model representation.

The research is organized into five primary chapters, each addressing a different aspect of

Transformers and self-attention in visual representation learning and world model in model-based

reinforcement learning:

Chapter 2 investigates the application of attention mechanisms for the development of

a geometry perception framework. In this chapter, we introduce an end-to-end method for line

segment detection in images without the need for additional processing or heuristic-guided

intermediate steps. The proposed technique refines line segments through multiple layers of

self-attention, enabling the model to gradually learn the optimal location, length, and orientation

of line segment candidates.

Chapter 3 presents the development of a novel image transformer architecture capable

12

of handling multi-scale and contextual information. We design a co-scale mechanism that

preserves the integrity of individual encoder branches at different scales while facilitating effective

communication between representations learned at these scales. Furthermore, we devise a

conv-attentional mechanism by incorporating a relative position embedding formulation in the

factorized attention module, resulting in an efficient convolution-like implementation.

Chapter 4 demonstrates the utilization of self-attention for modeling spatial relationships

among object parts. We propose an end-to-end framework that combines implicit and explicit

part-based representations for few-shot classification tasks by seamlessly integrating constellation

models with convolution operations. Our approach incorporates a cell feature clustering module

to encode potential object parts and models the relationships between these parts using a self-

attention mechanism, resembling the spatial configuration design in constellation models.

Chapter 5 explores the potential of model-based reinforcement learning algorithms for

efficient task transfer. We introduce Model-Based Cross-Task Transfer (XTRA), a framework that

leverages learned internal world models to accelerate the learning of new, distinctly different tasks.

By employing offline multi-task pretraining and online cross-task finetuning, XTRA achieves

substantial improvements over model-based RL algorithm trained from scratch.

In Chapter 6, we provide a summary of the contributions made by this research and

discuss potential future directions in the field of visual representation learning with attention

mechanisms and reinforcement learning with world model representations.

13

Chapter 2

Line Segment Detection Using

Transformers without Edges

14

2.1 Introduction

Line segment detection is an important mid-level visual process [Mar82] useful for solving

various downstream computer vision tasks, including segmentation, 3D reconstruction, image

matching and registration, depth estimation, scene understanding, object detection, image editing,

and shape analysis. Despite its practical and scientific importance, line segment detection remains

an unsolved problem in computer vision.

(b) Transformer
Encoder

Transformer
Decoder

FFN
FFN
FFNBackbone

Image

Positional
Encoding

Feature
ExtractorImage(a)

Line
Segment
Proposals

Junctions

Refined
Proposals

LoI
Pooling

LoI Features Line Segments

Line Segments

Figure 2.1: Pipeline comparison between (a) holistically-attracted wireframe parsing (HAWP)
[XWB+20] and (b) our proposed LinE segment TRansformers (LETR). LETR is based on a general-
purpose pipeline without heuristics-driven intermediate stages for detecting junctions and generating line
segment proposals.

Although dense pixel-wise edge detection has achieved an impressive performance

[XT15], reliably extracting line segments of semantic and perceptual significance remains

a further challenge. In natural scenes, line segments of interest often have heterogeneous

structures within the cluttered background that are locally ambiguous or partially occluded.

Morphological operators [SB97] operated on detected edges [Can86] often give sub-optimal

results. Mid-level representations such as Gestalt laws [EG02] and contextual information

[Tu08] can play an important role in the perceptual grouping, but they are often hard to be

seamlessly integrated into an end-to-end line segment detection pipeline. Deep learning tech-

niques [KSH12, LSD15, HZRS16, XT15] have provided greatly enhanced feature representation

15

power, and algorithms such as [ZQM19, XBW+19, XWB+20] become increasingly feasible in

real-world applications. However, systems like [ZQM19, XBW+19, XWB+20] still consist of

heuristics-guided modules [SB97] such as edge/junction/region detection, line grouping, and

post-processing, limiting the scope of their performance enhancement and further development.

In this work, we skip the traditional edge/junction/region detection + proposals + percep-

tual grouping pipeline by designing a Transformer-based [VSP+17, CMS+20] joint end-to-end

line segment detection algorithm. We are motivated by the following observations for the Trans-

former frameworks [VSP+17, CMS+20]: tokenized queries with an integrated encoding and

decoding strategy, self-attention mechanism, and bipartite (Hungarian) matching step, capable

of addressing the challenges in line segment detection for edge element detection, perceptual

grouping, and set prediction; general-purpose pipelines for Transformers that are heuristics

free. Our system, named LinE segment TRsformer (LETR), enjoys the modeling power of a

general-purpose Transformer architecture while having its own enhanced property for detecting

fine-grained geometric structures like line segments. LETR is built on top of a seminal work,

DEtection TRansformer (DETR) [CMS+20]. However, as shown in Section 2.4.4 for ablation

studies, directly applying the DETR object detector [CMS+20] for line segment detection does

not yield satisfactory results since line segments are elongated geometric structures that are not

feasible for the bounding box representations.

Our contributions are summarized as follows.

• We cast the line segment detection problem in a joint end-to-end fashion without explicit

edge/junction/region detection and heuristics-guided perceptual grouping processes, which

is in distinction to the existing literature in this domain. We achieve state-of-the-art results

on the Wireframe [HWZ+18] and YorkUrban benchmarks [DEE08].

• We perform line segment detection using Transformers, based specifically on DETR

[CMS+20], to realize tokenized entity modeling, perceptual grouping, and joint detection

via an integrated encoder-decoder, a self-attention mechanism, and joint query inference

16

within Transformers.

• We introduce two new algorithmic aspects to DETR [CMS+20]: first, a multi-scale en-

coder/decoder strategy as shown in Figure 2.2; second, a direct endpoint distance loss term

in training, allowing geometric structures like line segments to be directly learned and

detected — something not feasible in the standard DETR bounding box representations.

2.2 Related Works

2.2.1 Line Segment Detection

Traditional Approaches. Line detection has a long history in computer vision. Early pioneer-

ing works rely on low-level cues from pre-defined features (e.g. image gradients). Typically,

line (segment) detection performs edge detection [Can86, MFM04, DTB06, DZ13, XT15], fol-

lowed by a perceptual grouping [GVZ95, SB97, EG02] process. Classic perceptual grouping

frameworks [BHR86, BWR89, NCSG11, LYLL15, vGJMR10] aggregate the low-level cues to

form line segments in a bottom-up fashion: an image is partitioned into line-support regions by

grouping similar pixel-wise features. Line segments are then approximated from line-support

regions and filtered by a validation step to remove false positives. Another popular series of line

segment detection approaches are based on Hough transform [DH72, GVZ95, MGK00, FS03]

by gathering votes in the parameter space: the pixel-wise edge map of an image is converted into

a parameter space representation, in which each point corresponds to a unique parameterized

line. The points in the parameter space that accumulate sufficient votes from the candidate edge

pixels are identified as line predictions. However, due to the limitations in the modeling/inference

processes, these traditional approaches often produce sub-optimal results.

Deep Learning Based Approaches. The recent surge of deep learning based approaches

has achieved much-improved performance on the line segment detection problem [HWZ+18,

17

XBW+19, ZQM19, ZLB+19, XWB+20] with the use of learnable features to capture extensive

context information. One typical family of methods is junction-based pipelines: Deep Wireframe

Parser (DWP) [HWZ+18] creates two parallel branches to predict the junction heatmap and the

line heatmap, followed by a merging procedure. Motivated by [RHGS15], L-CNN [ZQM19]

simplifies [HWZ+18] into a unified network. First, a junction proposal module produces the

junction heatmap and then converts detected junctions into line proposals. Second, a line

verification module classifies proposals and removes unwanted false-positive lines. Methods

like [ZQM19] are end-to-end, but they are at the instance-level (for detecting the individual line

segments). Our LETR, like DETR [CMS+20], has a general-purpose architecture that is trained

in a holistically end-to-end fashion. PPGNet [ZLB+19] proposes to create a point-set graph with

junctions as vertices and model line segments as edges. However, the aforementioned approaches

are heavily dependent on high-quality junction detection, which is error-prone to various imaging

conditions and complex scenarios.

Another line of approaches employs dense prediction to obtain a surrogate representation

map and applies a post-process procedure to extract line segments: AFM [XBW+19] proposes an

attraction field map as an intermediate representation that contains 2-D projection vectors pointing

to associated lines. A squeeze module then recovers vectorized line segments from the attraction

field map. Despite a relatively simpler design, [XBW+19] demonstrates its inferior performance

compared with junction-based approaches. Recently, HAWP [XWB+20] builds a hybrid model of

AFM [XBW+19], and L-CNN [ZQM19] by computing line segment proposals from the attraction

field map and then refining proposals with junctions before further line verification.

In contrast, as shown in Figure 2.1, our approach differs from previous methods by

removing heuristics-driven intermediate stages for detecting edge/junction/region proposals and

surrogate prediction maps. Our approach is able to directly predict vectorized line segments while

keeping competitive performances under a general-purpose framework.

18

Self-Attention

C
ross-Attention

Feed-Forw
ard

Decoding
Layer 1

Decoding
Layer 2

...

Decoding
Layer 6

FFN

Decoding
Layer 2

...

Decoding
Layer 6

Decoding
Layer 1

Fine DecoderCoarse Decoder

Self-Attention

Feed-Forw
ard

Encoding
Layer 1

Encoding
Layer 2

...

Coarse Encoder

Encoding
Layer 6

Encoding
Layer 2

...

Fine Encoder

Encoding
Layer 6

Encoding
Layer 1

FFN

FFN

FFN

Backbone

Initial
Line

Entities
Detected Line

Segments
Image

Coarse
Features

Positional
Encoding

Positional
Encoding

Fine
Features

Interm.
Line

Entities

Interm.
Line

Entities

Final
Line

Entities

Figure 2.2: Schematic illustration of our LETR pipeline An image is fed into a backbone
network and generates two feature maps, which are then used by the coarse and the fine encoder
respectively. Initial line entities are then first refined by the coarse decoder with the interaction
of the coarse encoder output, and then the intermediate line entities from the coarse decoder
are further refined by the fine decoder attending to the fine encoder. Finally, line segments are
detected by feed-forward networks (FFNs) on top of line entities.

2.2.2 Transformer Architecture

Transformers [VSP+17] have achieved great success in the natural language process-

ing field and become de facto standard backbone architecture for many language models

[VSP+17, DCLT19b]. It introduces self-attention and cross-attention modules as basic building

blocks, modeling dense relations among elements of the input sequence. These attention-based

mechanisms also benefit many vision tasks such as video classification [WGGH18], semantic

segmentation [FLT+19], image generation [ZGMO19], etc. Recently, end-to-end object detection

with Transformers (DETR) [CMS+20] reformulates the object detection pipeline with Transform-

ers by eliminating the need for hand-crafted anchor boxes and non-maximum suppression steps.

Instead, [CMS+20] proposes to feed a set of object queries into the encoder-decoder architecture

with interactions from the image feature sequence and generate a final set of predictions. A

bipartite matching objective is then optimized to force unique assignments between predictions

and targets.

We introduce two new aspects to DETR [CMS+20] when realizing our LETR: 1) multi-

19

scale encoder and decoder; 2) direct distance loss for the line segments.

2.3 Line Segment Detection with Transformers

2.3.1 Motivation

Figure 2.3: Bounding box representation Three difficult cases to represent line segments using
bounding box diagonals. Red lines, black boxes, and gray dotted boxes refer to as line segments, the
corresponding bounding boxes, and anchors respectively.

Despite the exceptional performance achieved by the recent deep learning based ap-

proaches [ZQM19, XBW+19, XWB+20] on line segment detection, their pipelines still involve

heuristics-driven intermediate representations such as junctions and attraction field maps, raising

an interesting question: Can we directly model all the vectorized line segments with a neural

network? A naive solution could be simply regarding the line segments as objects and building

a pipeline following the standard object detection approaches [RHGS15]. Since the location

of 2-D objects is typically parameterized as a bounding box, the vectorized line segment can

be directly read from a diagonal of the bounding box associated with the line segment object.

However, the limited choices of anchors make it difficult for standard two-stage object detectors to

predict very short line segments or line segments nearly parallel to the axes (see Figure 2.3). The

recently appeared DETR [CMS+20] eliminates the anchors and the non-maximum suppression,

perfectly meets the need of line segment detection. However, the vanilla DETR still focuses on

20

Figure 2.4: Line entity representation For each row, we show how a same line entity predicts
line segments with same property in three different indoor/outdoor scenes. The top line entity is
specialized for horizontal line segments in the middle of the figure, and the bottom one prefers
to predict vertical line segments with a various range of lengths.

bounding box representation with a GIoU loss. We further convert the box predictor in DETR into

a vectorized line segment predictor by adapting the losses and enhancing the use of multi-scale

features in our designed model.

2.3.2 Overview

In a line segment detection task, a detector aims to predict a set of line segments from

given images. Performing line segment detection with Transformers removes the need of explicit

edge/junction/region detection [ZQM19, XWB+20] (see Figure 2.1). Our LETR is built purely

based on the Transformer encoder-decoder structure. The proposed line segment detection process

consists of four stages:

(1) Image Feature Extraction: Given an image input, we obtain the image feature map x ∈

21

RH×W×C from a CNN backbone with reduced dimension. The image feature is concatenated

with positional embeddings to obtain spatial relations. (2) Image Feature Encoding: The flattened

feature map x ∈ RHW×C is then encoded to x′ ∈ RHW×C by a multi-head self-attention module

and a feed forward network module following the standard Transformer encoding architecture. (3)

Line Segment Detection: In the Transformer decoder networks, N learnable line entities l ∈RN×C

interact with the encoder output via the cross-attention module. (4) Line Segment Prediction: Line

entities make line segment predictions with two prediction heads built on top of the Transformer

decoder. The line coordinates are predicted by a multi-layer perceptron (MLP), and the prediction

confidences are scored by a linear layer.

Self-Attention and Cross-Attention. We first visit the scaled dot-product attention popularized

by Transformer architectures [VSP+17]. The basic scaled dot-product attention consists of a set

of m queries Q ∈ Rm×d , a set of n key-value pairs notated as a key matrix K ∈ Rn×d and a value

matrix V ∈Rn×d . Here we set Q, K, V to have same feature dimension d. The attention operation

F is defined as:

F = Att(Q,K,V) = softmax(
QKT
√

d
)V (2.1)

In our encoder-decoder Transformer architecture, we adopt two attention modules based

on the multi-head attention, namely the self-attention module (SA) and cross-attention (CA)

module (see Figure 2.2). The SA module takes in a set of input embeddings notated as x =

[x1, ...,xi] ∈ Ri×d , and outputs a weighted summation x′ = [x′1, ...,x
′
i] ∈ Ri×d of input embeddings

within x following Eq.2.1 where F = Att(Q = x,K = x,V = x). The CA module takes in two sets

of input embeddings notated as x = [x1, ...,xi] ∈ Ri×d , z = [x1, ...,x j] ∈ R j×d following Eq.2.1

where F = Att(Q = z,K = x,V = x).

Transformer Encoder in LETR is stacked with multiple encoder layers. Each encoder layer

22

takes in image features x ∈ RHW×c from its predecessor encoder layer and processes it with a

SA module to learn the pairwise relation. The output features from SA module are passed into

a point-wise fully-connected layer (FC) with activation and dropout layer followed by another

point-wise fully-connected (FC) layer. Layer norm is applied between SA module and first FC

layer and after second FC layer. Residual connection is added before the first FC layer and after

the second FC layer to facilitate optimization of deep layers.

Transformer Decoder in LETR is stacked with multiple decoder layers. Each decoder layer

takes in a set of image features x′ ∈ RHW×C from the last encoder layer and a set of line entities

l ∈ RN×C from its predecessor decoder layer. The line entities are first processed with a SA

module, each line entity l ∈ RC in l attends to different regions of image feature embeddings

x′ via the CA module. FC layers and other modules are added into the pipeline similar to the

Encoder setting above.

Line Entity Interpretation. The line entities are analogous with the object queries in DETR

[CMS+20]. We found each line entity has its own preferred existing region, length, and orientation

of potential line segment after the training process (shown in Figure 2.4). We discuss line entities

together make better predictions through self-attention and cross-attention refinement when

encountering heterogeneous line segment structures in Section 2.4.4 and Figure 2.5.

2.3.3 Coarse-to-Fine Strategy

Different from object detection, line segment detection requires the detector to consider

the local fine-grained details of line segments with the global indoor/outdoor structures together.

In our LETR architecture, we propose a coarse-to-fine strategy to predict line segments in

a refinement process. The process allows line entities to make precise predictions with the

interaction of multi-scale encoded features while having an awareness of the holistic architecture

with the communication to other line entities. During the coarse decoding stage, our line entities

attend to potential line segment regions, often unevenly distributed, with a low resolution. During

23

the fine decoding stage, our line entities produce detailed line segment predictions with a high

resolution (see Figure 2.2). After each decoding layer at both coarse and fine decoding stage,

we require line entities to make predictions through two shared prediction heads to make more

precise predictions gradually.

Coarse Decoding. During the coarse decoding stage, we pass image features and line entities

into an encoder-decoder Transformer architecture. The encoder receives coarse features from

the output of Conv5 (C5) from ResNet with 1
32 original resolution. Then, line entity embeddings

attend to coarse features from the output of the encoder in the cross-attention module at each

layer. The coarse decoding stage is necessary for success at fine decoding stage and its high

efficiency with less memory and computation cost.

Fine Decoding. The fine decoder inherits line entities from the coarse decoder and high-resolution

features from the fine encoder. The features to the fine encoder come from the output of Conv4

(C4) from ResNet with 1
16 original resolution. The line entity embeddings decode feature

information in the same manner as the coarse decoding stage.

2.3.4 Line Segment Prediction

In the previous decoding procedure, our multi-scale decoders progressively refine N initial

line entities to produce same amount final line entities. In the prediction stage. Each final entity l

will be fed into a feed-forward network (FFN), which consists of a classifier module to predict

the confidence p of being a line segment, and a regression module to predict the coordinates

of two end points p̂1 = (x̂1, ŷ1), p̂2 = (x̂2, ŷ2) that parameterizes the associated line segment

L̂ = (p̂1, p̂2).

Bipartite Matching. Generally, there are many more line entities provided than actual line

segments in the image. Thus, during the training stage, we conduct a set-based bipartite matching

between line segment predictions and ground-truth targets to determine whether the prediction

24

is associated with an existing line segment or not: Assume there are N line segment predictions

{(p(i), L̂(i)); i = 1, ...,N} and M targets {L(j); j = 1, ...,M}, we optimize a bipartite matching

objective on a permutation function σ(·) : Z+→ Z+ which maps prediction indices {1, ...,N} to

potential target indices {1, ...,N} (including {1, ...,M} for ground-truth targets and {M+1, ...,N}

for unmatched predictions):

Lmatch =
N

∑
i=1

1{σ(i)≤M}
[
λ1d(L̂(i),L(σ(i)))−λ2 p(i)] (2.2)

σ
∗ = argmin

σ
Lmatch (2.3)

where d(·, ·) represents L1 distance between coordinates and 1{·} is an indicator function. Lmatch

takes both distance and confidence into account with balancing coefficients λ1,λ2. The optimal

permutation σ∗ is computed using a Hungarian algorithm, mapping M positive prediction indices

to target indices {1, ...,M}. During the inference stage, we filter the N line segment predictions

by setting a fixed threshold on the confidence p(i) if needed due to no ground-truth provided.

2.3.5 Line Segment Losses

We compute line segment losses based on the optimal permutation σ∗ from the bipartite

matching procedure, in which {i;σ∗(i)≤M} represents indices of positive predictions.

Classification Loss. Based on a binary cross-entropy loss, we observe that hard examples are

less optimized after learning rate decay and decide to apply adaptive coefficients inspired by focal

loss [LGG+17] to the classification loss term Lcls:

25

L(i)
cls =−1{σ∗(i)≤M}α1(1− p(i))γ log p(i) (2.4)

−1{σ∗(i)>M}α2 p(i)
γ
log(1− p(i)) (2.5)

Distance Loss. We compute a simple L1-based distance loss for line segment endpoint regres-

sion:

L(i)
dist = 1{σ∗(i)≤M}d(L̂(i),L(σ∗(i))) (2.6)

where d(·, ·) represents the sum of L1 distances between prediction and target coordinates. The

distance loss is only applied to the positive predictions. Note that we remove the GIoU loss from

[CMS+20] since GIoU is mainly designed for the similarity between bounding boxes instead of

line segments. Thus, the final loss L of our model is formulated as:

L =
N

∑
i=1

λclsL
(i)
cls +λdistL

(i)
dist (2.7)

2.4 Experiments

2.4.1 Datasets

We train and evaluate our model on the ShanghaiTech Wireframe dataset [HWZ+18],

which consists of 5000 training images and 462 testing images. We also evaluate our model on

the YorkUrban dataset [DEE08] with 102 testing images from both indoor scenes and outdoor

scenes.

Through all experiments, we conduct data augmentations for the training set, including

random horizontal/vertical flip, random resize, random crop, and image color jittering. At the

training stage, we resize the image to ensure the shortest size is at least 480 and at most 800

26

(a) AFM
[XBW+19]

(b) LCNN
[ZQM19]

(c) HAWP
[XWB+20]

(d) LETR (ours) (e) Ground-Truth

Figure 2.5: Qualitative evaluation of line detection methods From left to right: the columns
are the results from AFM [XBW+19], LCNN [ZQM19], HAWP [XWB+20], LETR (ours) and
the ground-truth. From top to bottom: the top two rows are the results from the Wireframe test
set, and the bottom two rows are the results from the YorkUrban test set.

27

pixels while the longest size is at most 1333. At the evaluation stage, we resize the image with

the shortest side at least 1100 pixels.

2.4.2 Implementation

Networks. We adopt both ResNet-50 and ResNet-101 as our feature backbone. For an input

image X ∈ RH0×W0×3, the coarse encoder takes in the feature map from the Conv5 (C5) layer

of ResNet backbone with resolution x ∈ RH×W×C where H = H0
32 ,W = W0

32 ,C = 2048. The fine

encoder takes in a higher resolution feature map (H = H0
16 ,W = W0

16 ,C = 1024) from the Conv4

(C4) layer of ResNet. Feature maps are reduced to 256 channels by a 1x1 convolution and are fed

into the Transformer along with the sine/cosine positional encoding. Our coarse-to-fine strategy

consists of two independent encoder-decoder structures processing multi-scale image features.

Each encoder-decoder structure is constructed with 6 encoder and 6 decoder layers with 256

channels and 8 attention heads.

Optimization. We train our model using 4 Titan RTX GPUs through all our experiments.

Model weights from DETR [CMS+20] with ResNet-50 and ResNet-101 backbone are loaded

as pre-training, and we discuss the effectiveness of pre-training in Section 2.5. We first train

the coarse encoder-decoder for 500 epochs until optimal. Then, we freeze the weights in the

coarse Transformer and train the fine Transformer initialized by coarse Transformer weights for

325 epochs (including a 25-epoch focal-loss fine-tuning). We adopt deep supervision [LXG+15,

XT15] for all decoder layers following DETR [CMS+20]. FFN prediction head weights are

shared through all decoder layers. We use AdamW as the model optimizer and set weight decay

as 10−4. The initial learning rate is set to 10−4 and is reduced by a factor of 10 every 200 epochs

for the coarse decoding stage and every 120 epochs for the fine prediction stage. We use 1000 line

entities in all reported benchmarks unless specified elsewhere. To mitigate the class imbalance

issue, we also reduce the classification weight for background/no-object instances by a factor of

28

10.

Table 2.1: Comparison to prior work on Wireframe and YorkUrban benchmarks Our
proposed LETR reaches state-of-the-art performance except sAP10 and sAP15 slightly worse
than HAWP [XWB+20] in Wireframe. FPS Results for LETRs are tested on a single Tesla
V100. Results for other prior works are adopted from HAWP paper.

Method
Wireframe Dataset YorkUrban Dataset FPS

sAP10 sAP15 sF10 sF15 APH FH sAP10 sAP15 sF10 sF15 APH FH

LSD [vGJMR10] / / / / 55.2 62.5 / / / / 50.9 60.1 49.6
DWP [HWZ+18] 5.1 5.9 / / 67.8 72.2 2.1 2.6 / / 51.0 61.6 2.24
AFM [XBW+19] 24.4 27.5 / / 69.2 77.2 9.4 11.1 / / 48.2 63.3 13.5
L-CNN [ZQM19] 62.9 64.9 61.3 62.4 82.8 81.3 26.4 27.5 36.9 37.8 59.6 65.3 15.6
HAWP [XWB+20] 66.5 68.2 64.9 65.9 86.1 83.1 28.5 29.7 39.7 40.5 61.2 66.3 29.5
LETR (ours) 65.2 67.7 65.8 67.1 86.3 83.3 29.4 31.7 40.1 41.8 62.7 66.9 5.04

Figure 2.6: Precision-Recall (PR) curves PR curves of sAP15 and APH for DWP[HWZ+18],
AFM[XBW+19], L-CNN[ZQM19], HAWP[XWB+20] and LETR (ours) on Wireframe and
YorkUrban benchmarks.

2.4.3 Evaluation Metric

We evaluate our results based on two heatmap-based metrics, APH and FH , which are

widely used in previous LSD task[ZQM19, HWZ+18], and Structural Average Precision (sAP)

which is proposed in L-CNN [ZQM19]. On top of that, we evaluate the result with a new metric,

Structural F-score (sF), for a more comprehensive comparison.

Heatmap-based metrics, APH , FH : Prediction and ground truth lines are first converted to

heatmaps by rasterizing the lines, and we generate the precision-recall curve comparing each

pixel along with their confidence. Then we can use the curve to calculate FH and APH .

29

Structural-based metrics, sAP[ZQM19], sF: Given a set of ground truth line and a set of predicted

lines, for each ground-truth line L, we define a predicted line L̂ to be a match of L if their L2

distance is smaller than the pre-defined threshold ϑ ∈ {10,15}. Over the set of lines matched to

L, we select the line with the highest confidence as a true positive and treat the rest as candidates

for false positives. If the set of matching lines is empty, we would regard this ground-truth line as

false negative. Each predicted line would be matched to at most one ground truth line, and if a

line isn’t matched to any ground-truth line, then it is considered as a false positive. The matching

is recomputed at each confidence level to produce the precision-recall curve, and we consider

sAP as the area under this curve. Considering FH as the complementary F-score measurement

for APH , we evaluate the F-score measurement for sAP, denoted as sF, to be the best balanced

performance measurement.

2.4.4 Results and Comparisons

We summarize quantitative comparison results between LETR and previous line segment

detection methods in Table 2.1. We report results for LETR with ResNet-101 backbone for

Wireframe dataset and results with ResNet-50 backbone for York dataset. Our LETR achieves

new state-of-the-art for all evaluation metrics on YorkUrban Dataset [DEE08]. In terms of

heatmap-based evaluation metrics, our LETR is consistently better than other models for both

benchmarks and outperforms HAWP [XWB+20] by 1.5 for APH on YorkUrban Dataset. We

show PR curve comparison in Figure 2.6 on sAP15 and APH for both Wireframe [HWZ+18]

and YorkUrban benchmarks. In Figure 2.6, we notice the current limitation of LETR comes

from lower precision prediction when we include fewer predictions compare to HAWP. When

we include all sets of predictions, LETR predicts slightly better than HAWP and other leading

methods, which matches our hypothesis that holistic prediction fashion can guide line entities

to refine low confident predictions (usually due to local ambiguity and occlusion) with high

confident predictions.

30

We also show both Wireframe and YorkUrban line segment detection qualitative results

from LETR and other competing methods in Figure 2.5. The top two rows are indoor scene

detection results from the Wireframe dataset, while the bottom two rows are outdoor scene

detection results from the YorkUrban dataset.

2.5 Ablation Study

Compare with Object Detection Baselines. We compare LETR results with two object detection

baseline where the line segments are treated as 2-D objects within this context in Table 2.2.

We see clear limitations for using bounding box diagonal for both Faster R-CNN and DETR

responding to our motivation in Section 2.3.1.

Table 2.2: Comparison with object detection baselines on Wireframe [HWZ+18].

Method sAP10 sAP15 sF10 sF15

Faster R-CNN 38.4 40.7 51.5 53.0
Vanilla DETR 53.8 57.2 57.2 59.0
LETR (ours) 65.2 67.7 65.8 67.1

Effectiveness of Multi-Stage Training. We compare the effectiveness of different modules in

LETR in Table 2.3. During the coarse decoding stage, LETR reaches 62.3 and 65.2 for sAP10

and sAP15 with encoding features from the C5 layer of ResNet backbone, and 63.8 and 66.5 with

the one from C4 of ResNet backbone. The fine decoder reaches 64.7 and 67.4 for sAP10 and

sAP15 by improving the coarse prediction with fine-grained details from high-resolution features.

We then adjust the data imbalance problem with focal loss to reach 65.2 and 67.7 for sAP10 and

sAP15.

As shown in Figure 2.7 (a), we found it is necessary to train the fine decoding stage after

the coarse decoding stage converges. Training both stages together as a one-stage model results a

significant worse performance after 400 epochs.

Effect of Number of Queries. We found a large number of line entities is essential to the

31

line segment detection task by experimenting on a wide range of the number of line entities

(See Figure 2.7 (c), and using 1000 line entities is optimal for the Wireframe benchmark which

contains 74 line segments in average.

Table 2.3: Effectiveness of modules Ablation study of the architecture design and learning
aspects in the proposed LETR on Wireframe dataset. (C) indicates the indexed feature used for
coarse decoder; (F) indicates the indexed feature used for fine decoder.

Coarse Decoding Fine Decoding Focal Loss Feature Index sAP10 sAP15

✓ C5(C) 62.3 65.2
✓ C4(C) 63.8 66.5
✓ ✓ C5(C), C4(F) 64.7 67.4
✓ ✓ ✓ C5(C), C4(F) 65.2 67.7

Stage 1

Stage 2

Stage 1

Stage 2

Figure 2.7: Ablation Studies (a) Multi-stage vs. single-stage training. We compare results
training coarse and fine layers in single stages and multi-stages (b) Number of decoding layers.
We evaluate the performance of outputs from each decoding layer. The 1-6 layers are coarse
decoder layers and 7-12 layers fine decoder layers. (c) Number of line entities. We test LETR
(coarse decoding stage only) with different numbers of line entities on Wireframe.

Effect of Image Upsampling. All algorithms see the same input image resolution (640×480

typically). However, some algorithms try more precise predictions by upsampling images.

To understand the impact of upsampling, we train and test HAWP and LETR under multiple

upsampling scales. In Table 2.4 below, higher training upsampling resolution improves both

methods. LETR obtains additional gains with higher test upsampling resolution.

Effectiveness of Pretraining. We found model pretraining is essential for LETR to obtain

state-of-the-art results. With DETR pretrained weights for COCO object detection [LMB+14],

our coarse-stage-only model converges at 500 epochs. With CNN backbone pretrained weights

32

Table 2.4: Effectiveness of upsampling with Wireframe dataset. LETR uses ResNet-101
backbone. * Our LETR-512 resizes original image with the shortest size in a range between 288
and 512 † Our LETR-800 resizes original image with the shortest size in a range between 480
and 800.

Train Size Test Size sAP10 sAP15 sF10 sF15

HAWP 512 512 65.7 67.4 64.7 65.8
HAWP 832 832 67.7 69.1 65.5 66.4
HAWP 832 1088 65.7 67.1 64.3 65.1
LETR 512* 512 61.1 64.1 63.1 64.8
LETR 800† 800 64.3 67.0 65.5 66.9
LETR 800† 1100 65.2 67.7 65.8 67.1

for ImageNet classification, our coarse-stage-only model converges to a lower score at 900 epochs.

Without pretraining, LETR is difficult to train due to the limited amount of data in the Wireframe

benchmark.

Table 2.5: Effectiveness of pretraining We train LETR (coarse decoding stage only) with
two variants. ImageNet represents LETR with ImageNet pretrained ResNet backbone. COCO
represents LETR with COCO pretrained DETR weights.

Method Epochs sAP10 sAP15 sF10 sF15

ImageNet 900 58.4 62.0 62.4 64.6
COCO 500 62.3 65.2 64.3 65.9

2.6 Visualization

We demonstrate LETR’s coarse-to-fine decoding process in Figure 2.8. The first two

columns are results from the coarse decoder receiving decoded features from the C5 ResNet

layer. While the global structure of the scene is well-captured efficiently, the low-resolution

features prevent it from making predictions precisely. The last two columns are results from

the fine decoder receiving decoded features from the C4 ResNet layer and line entities from

the coarse decoder. The overlay of attention heatmaps depicts more detailed relations in the

image space, which is the key to the detector performance. This finding is also shown in Figure

33

Coarse Layer 1 Coarse Layer 6 Fine Layer 1 Fine Layer 6

sAP15=0.51sAP15=0.49sAP15=0.49sAP15=0.37

Figure 2.8: Visualization of LETR coarse-to-fine decoding process From top to bottom: The
1st row shows line segment detection results based on line entities after different layers and the
2nd row shows its corresponding overlay of attention heatmaps. From left to right: The 1st , 2nd ,
3rd , 4th columns are coarse decoder layer 1, coarse decoder layer 6, fine decoder layer 1, fine
decoder layer 6, respectively.

2.7(b), where the decoded output after each layer has consistent improvement with the multi-scale

encoder-decoder strategy.

2.7 Conclusion

In this work, we presented LETR, a line segment detector based on a multi-scale en-

coder/decoder Transformer structure. By casting the line segment detection problem in a holisti-

cally end-to-end fashion, we perform set prediction without explicit edge/junction/region detection

and heuristics-guided perceptual grouping processes. A direct endpoint distance loss allows

geometric structures beyond bounding box representations to be modeled and predicted.

Acknowledgements

This chapter is based on the material “Line Segment Detection Using Transformers

without Edges” by Yifan Xu*, Weijian Xu*, David Cheung, and Zhuowen Tu, which appears in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

34

2021. The dissertation author is the co-primary investigator and author of this material.

35

Chapter 3

Co-Scale Conv-Attentional Image

Transformers

36

3.1 Introduction

A notable recent development in artificial intelligence is the creation of attention mecha-

nisms [XBK+15] and Transformers [VSP+17], which have made a profound impact in a range of

fields including natural language processing [DCLT19a, RNSS18], document analysis [XLC+20],

speech recognition [DXX18], and computer vision [DBK+21, CMS+20]. In the past, state-of-

the-art image classifiers have been built primarily on convolutional neural networks (CNNs)

[LBBH98, KSH12, SLJ+15, SZ15, HZRS16, XGD+17] that operate on layers of filtering pro-

cesses. Recent developments [TCD+20, DBK+21] however begin to show encouraging results

for Transformer-based image classifiers.

In essence, both the convolution [LBBH98] and attention [XBK+15] operations address

the fundamental representation problem for structured data (e.g. images and text) by modeling

the local contents, as well as the contexts. The receptive fields in CNNs are gradually expanded

through a series of convolution operations. The attention mechanism [XBK+15, VSP+17] is,

however, different from the convolution operations: (1) the receptive field at each location or token

in self-attention [VSP+17] readily covers the entire input space since each token is “matched”

with all tokens including itself; (2) the self-attention operation for each pair of tokens computes

a dot product between the “query” (the token in consideration) and the “key” (the token being

matched with) to weight the “value” (of the token being matched with).

Moreover, although the convolution and the self-attention operations both perform a

weighted sum, their weights are computed differently: in CNNs, the weights are learned during

training but fixed during testing; in the self-attention mechanism, the weights are dynamically

computed based on the similarity or affinity between every pair of tokens. As a consequence,

the self-similarity operation in the self-attention mechanism provides modeling means that are

potentially more adaptive and general than convolution operations. In addition, the introduction of

position encodings and embeddings [VSP+17] provides Transformers with additional flexibility

37

0 10 20 30 40 50 60 70 80 90
Number of Parameters (Millions)

70

72

74

76

78

80

82

84

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

CoaT-Li
(T)

CoaT-Li
(Mi)

CoaT-Li
(S)

CoaT-Li
(M)

CoaT
(T)

CoaT
(Mi)

CoaT
(S)

DeiT-T

DeiT-S

DeiT-B

T2T-ViT-7

T2T-ViT-12

T2T-ViT-14
T2T-ViT-19

PVT-T

PVT-S

PVT-M
PVT-L

R18

R50
R101

ViT-B

CoaT-Lite (ours)
CoaT (ours)
DeiT (baseline)
T2T
PVT
ResNet
ViT

Figure 3.1: Model Size vs. ImageNet Accuracy Our CoaT model significantly outperforms
other image Transformers. Details are in Table 3.2.

to model spatial configurations beyond fixed input structures.

Of course, the advantages of the attention mechanism are not given for free, since the

self-attention operation computes an affinity/similarity that is more computationally demanding

than linear filtering in convolution. The early development of Transformers has mainly focused

on natural language processing tasks [VSP+17, DCLT19a, RNSS18] since text is “shorter” than

an image, and text is easier to tokenize. In computer vision, self-attention has been adopted to

provide added modeling capability for various applications [WGGH18, XLCT18, ZJK20]. With

the underlying framework increasingly developed [DBK+21, TCD+20], Transformers start to

bear fruit in computer vision [CMS+20, DBK+21] by demonstrating their enriched modeling

capabilities.

In the seminal DEtection TRansformer (DETR) [CMS+20] algorithm, Transformers

are adopted to perform object detection and panoptic segmentation, but DETR still uses CNN

backbones to extract the basic image features. Efforts have recently been made to build image

38

classifiers from scratch, all based on Transformers [DBK+21, TCD+20, WXL+21]. While

Transformer-based image classifiers have reported encouraging results, performance and design

gaps to the well-developed CNN models still exist. For example, in [DBK+21, TCD+20], an input

image is divided into a single grid of fixed patch size. In this work, we develop Co-scale conv-

attentional image Transformers (CoaT) by introducing two mechanisms of practical significance

to Transformer-based image classifiers. The contributions of our work are summarized as follows:

• We introduce a co-scale mechanism to image Transformers by maintaining encoder branches

at separate scales while engaging attention across scales. Two types of building blocks are

developed, namely a serial and a parallel block, realizing fine-to-coarse, coarse-to-fine,

and cross-scale image modeling.

• We design a conv-attention module to realize relative position embeddings with convolu-

tions in the factorized attention module that achieves significantly enhanced computation

efficiency when compared with vanilla self-attention layers in Transformers.

Our resulting Co-scale conv-attentional image Transformers (CoaT) learn effective representations

under a modularized architecture. On the ImageNet benchmark, CoaT achieves state-of-the-art

classification results when compared with the competitive convolutional neural networks (e.g.

EfficientNet [TL19]), while outperforming the competing Transformer-based image classifiers

[DBK+21, TCD+20, WXL+21], as shown in Figure 3.1.

3.2 Related Works

Our work is inspired by the recent efforts [DBK+21, TCD+20] to realize Transformer-

based image classifiers. ViT [DBK+21] demonstrates the feasibility of building Transformer-

based image classifiers from scratch, but its performance on ImageNet [RDS+15] is not achieved

without including additional training data; DeiT [TCD+20] attains results comparable to convolution-

based classifiers by using an effective training strategy together with model distillation, removing

39

the data requirement in [DBK+21]. Both ViT [DBK+21] and DeiT [TCD+20] are however based

on a single image grid of fixed patch size.

The development of our co-scale conv-attentional transformers (CoaT) is motivated by

two observations: (1) multi-scale modeling typically brings enhanced capability to representation

learning [HZRS16, RFB15, WSC+20]; (2) the intrinsic connection between relative position

encoding and convolution makes it possible to carry out efficient self-attention using conv-like

operations. As a consequence, the superior performance of the CoaT models shown in the

experiments comes from two of our new designs in Transformers: (1) a co-scale mechanism that

allows cross-scale interaction; (2) a conv-attention module to realize an efficient self-attention

operation. Next, we highlight the differences of the two proposed modules with the standard

operations and concepts.

• Co-Scale vs. Multi-Scale. Multi-scale approaches have a long history in computer vision

[Wit84, Low04]. Convolutional neural networks [LBBH98, KSH12, HZRS16] naturally

implement a fine-to-coarse strategy. U-Net [RFB15] enforces an extra coarse-to-fine

route in addition to the standard fine-to-coarse path; HRNet [WSC+20] provides a further

enhanced modeling capability by keeping simultaneous fine and coarse scales throughout

the convolution layers. In a parallel development [WXL+21] to ours, layers of different

scales are in tandem for the image Transformers but [WXL+21] merely carries out a fine-to-

coarse strategy. The co-scale mechanism proposed here differs from the existing methods

in how the responses are computed and interact with each other: CoaT consists of a series

of highly modularized serial and parallel blocks to enable attention with fine-to-coarse,

coarse-to-fine, and cross-scale information on tokenized representations. The joint attention

mechanism across different scales in our co-scale module provides enhanced modeling

power beyond existing vision Transformers [DBK+21, TCD+20, WXL+21].

• Conv-Attention vs. Attention. Pure attention-based models [RPV+19, HZXL19, ZJK20,

DBK+21, TCD+20] have been introduced to the vision domain. [RPV+19, HZXL19,

40

ZJK20] replace convolutions in ResNet-like architectures with self-attention modules for

better local and non-local relation modeling. In contrast, [DBK+21, TCD+20] directly

adapt the Transformer [VSP+17] for image recognition. Recently, there have been works

[Bel21, CZT+21] enhancing the attention mechanism by introducing convolution. Lamb-

daNets [Bel21] introduce an efficient self-attention alternative for global context modeling

and employ convolutions to realize the relative position embeddings in local context model-

ing. CPVT [CZT+21] designs 2-D depthwise convolutions as the conditional positional

encoding after self-attention. In our conv-attention, we: (1) adopt an efficient factorized

attention following [Bel21]; (2) extend it to be a combination of depthwise convolutional

relative position encoding and convolutional position encoding, related to CPVT [CZT+21].

Detailed discussion of our network design and its relation with LambdaNets [Bel21] and

CPVT [CZT+21] can be found in Section 3.4.1 and 3.4.2.

3.3 Revisited Scaled Dot-Product Attention

Transformers take as input a sequence of vector representations (i.e. tokens) x1, ...,xN ,

or equivalently X ∈ RN×C. The self-attention mechanism in Transformers projects each xi

into corresponding query, key, and value vectors, using learned linear transformations W Q,

W K , and WV ∈ RC×C. Thus, the projection of the whole sequence generates representations

Q,K,V ∈ RN×C. The scaled dot-product attention from original Transformers [VSP+17] is

formulated as :

Att(X) = softmax
(QK⊤√

C

)
V (3.1)

In vision Transformers [DBK+21, TCD+20], the input sequence of vectors is formulated

by the concatenation of a class token CLS and the flattened feature vectors x1, ...,xHW as image

tokens from the feature maps F ∈ RH×W×C, for a total length of N = HW + 1. The softmax

logits in Equation 3.1 become not affordable for high-resolution images (i.e. N≫C) due to its

41

Depthwise Conv*

Depthwise Conv*

Q K V

Softmax

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C
<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C
<latexit sha1_base64="6jD5Hw2TX91vjBX4cGtTP5U08xg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPdZJD0XEDbnrlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHi9aQIQ==</latexit>

C ⇥N

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C

<latexit sha1_base64="ptFsCPtc2X6bc7IQTNlxKtjTw1c=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqsdCLx4r2A9sQ9lsN+3SzSbsToQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMGnO/88S1EbF6wGnC/YiOlAgFo2ilxwbpo4i4IY1BueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lipq1/jZ4uIZubDKkISxtqWQLNTfExmNjJlGge2MKI7NqjcX//N6KYa3fiZUkiJXbLkoTCXBmMzfJ0OhOUM5tYQyLeythI2ppgxtSCUbgrf68jppX1W9WtW7v67U3TyOIpzBOVyCBzdQhztoQgsYKHiGV3hzjPPivDsfy9aCk8+cwh84nz97KpAW</latexit>

C ⇥ C

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C
<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C

Depthwise Conv

reshape

<latexit sha1_base64="gCWcveOpRcv7c4laoKcpyWoAeYU=">AAAB+nicbVC7TsMwFHV4tZRXCiOLRYXEVCUMwEalLhVTkehDaqPKcZ3WquNE9g1VFfonsDCAECtfwsY3sLOC+xig5UiWj865V/fe48eCa3CcD2tldW19I5PdzG1t7+zu2fn9uo4SRVmNRiJSTZ9oJrhkNeAgWDNWjIS+YA1/UJ74jVumNI/kDYxi5oWkJ3nAKQEjdex8pQ08ZBo35n+5YxecojMFXibunBQuv+6/PzNXw2rHfm93I5qETAIVROuW68TgpUQBp4KNc+1Es5jQAemxlqGSmDFeOl19jI+N0sVBpMyTgKfq746UhFqPQt9UhgT6etGbiP95rQSCCy/lMk6ASTobFCQCQ4QnOeAuV4yCGBlCqOJmV0z7RBEKJq2cCcFdPHmZ1E+L7lnRvXYKJQfNkEWH6AidIBedoxKqoCqqIYqG6AE9oWfrznq0XqzXWemKNe85QH9gvf0Af/mX5g==</latexit>

H ⇥W ⇥ C

reshape

concat

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C

Factorized
Attention

Convolutional
Relative Position

Encoding

Convolutional Relative Position Encoding

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P…

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="Kk581vKii6sNAjwOjTO0Dq5wlPA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBBI8V7Ae0oWy2m3bpZpPuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iJOE+xEdKBEKRtFK7e6QYnbXnPbKFbfqzkFWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8mmpmxqeUDaiA96xVNGIGz+b3zslZ1bpkzDWthSSufp7IqORMZMosJ0RxaFZ9mbif14nxfDGz4RKUuSKLRaFqSQYk9nzpC80ZygnllCmhb2VsCHVlKGNqGRD8JZfXiXNi6p3VfUeLis1N4+jCCdwCufgwTXU4B7q0AAGEp7hFd6csfPivDsfi9aCk88cwx84nz8JUY/q</latexit>

ÊV

Convolutional Relative Position Encoding

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P…

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="Kk581vKii6sNAjwOjTO0Dq5wlPA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBBI8V7Ae0oWy2m3bpZpPuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iJOE+xEdKBEKRtFK7e6QYnbXnPbKFbfqzkFWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8mmpmxqeUDaiA96xVNGIGz+b3zslZ1bpkzDWthSSufp7IqORMZMosJ0RxaFZ9mbif14nxfDGz4RKUuSKLRaFqSQYk9nzpC80ZygnllCmhb2VsCHVlKGNqGRD8JZfXiXNi6p3VfUeLis1N4+jCCdwCufgwTXU4B7q0AAGEp7hFd6csfPivDsfi9aCk88cwx84nz8JUY/q</latexit>

ÊV

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P

*
<latexit sha1_base64="Kk581vKii6sNAjwOjTO0Dq5wlPA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBBI8V7Ae0oWy2m3bpZpPuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iJOE+xEdKBEKRtFK7e6QYnbXnPbKFbfqzkFWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8mmpmxqeUDaiA96xVNGIGz+b3zslZ1bpkzDWthSSufp7IqORMZMosJ0RxaFZ9mbif14nxfDGz4RKUuSKLRaFqSQYk9nzpC80ZygnllCmhb2VsCHVlKGNqGRD8JZfXiXNi6p3VfUeLis1N4+jCCdwCufgwTXU4B7q0AAGEp7hFd6csfPivDsfi9aCk88cwx84nz8JUY/q</latexit>

ÊV

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

Sum
<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ Multiplication * Convolution

Convolutional
Position
Encoding

Input Feature Map

Output Feature Map

Hadamard Product
Matrix Product

Elementwise Sum

Figure 3.2: Illustration of the conv-attentional module We apply a convolutional position
encoding to the image tokens from the input. The resulting features are fed into a factorized
attention with a convolutional relative position encoding.

O(N2) space complexity and O(N2C) time complexity. To reduce the length of the sequence,

ViT [DBK+21, TCD+20] tokenizes the image by patches instead of pixels. However, the coarse

splitting (e.g. 16×16 patches) limits the ability to model details within each patch. To address

this dilemma, we propose a co-scale mechanism that provides enhanced multi-scale image

representation with the help of an efficient conv-attentional module that lowers the computation

complexity for high-resolution images.

42

Serial Block

Serial Block

Serial Block

Input Image

Parallel Block

Parallel Block

Serial Block Parallel Block

Parallel Block

Parallel Block

Parallel Block

Parallel Group

…

…

…
Parallel Group Image and Class Tokens

C
oncat

Linear

1000-class
logits

C
onv-Att

FFN

C
onv-Att

FFN

C
onv-Att

FFN

Parallel Block

Parallel Block

Parallel Block

Parallel Group

Serial Block

Serial Block

Serial Block

Input Image

Serial Block

1000-class logits

Linear

(a) CoaT-Lite (b) CoaT

Image and Class Tokens

<latexit sha1_base64="0pjc2PBKzPC4TJvj2h7g5hSLQ7Q=">AAACFHicbZDLSsNAFIZP6q3WW9Slm8EiCEJJalGXhW66rGAv0IQymU7aoZMLMxOhhDyEG1/FjQtF3Lpw59s4bbOwrT8M/HznHM6c34s5k8qyfozCxubW9k5xt7S3f3B4ZB6fdGSUCELbJOKR6HlYUs5C2lZMcdqLBcWBx2nXmzRm9e4jFZJF4YOaxtQN8ChkPiNYaTQwrxxfYJI2s/S6miFHsYBKtGDdJdYY1AZm2apYc6F1Y+emDLlaA/PbGUYkCWioCMdS9m0rVm6KhWKE06zkJJLGmEzwiPa1DbFe5KbzozJ0ockQ+ZHQL1RoTv9OpDiQchp4ujPAaixXazP4X62fKP/OTVkYJ4qGZLHITzhSEZolhIZMUKL4VBtMBNN/RWSMdSJK51jSIdirJ6+bTrVi31Ts+1q5buVxFOEMzuESbLiFOjShBW0g8AQv8AbvxrPxanwYn4vWgpHPnMKSjK9fnQad2A==</latexit>

H

32
⇥ W

32
⇥ C4

<latexit sha1_base64="fgcMoFPb51ekf9JsummRAdICe20=">AAACG3icbZDLSsNAFIYn9VbrLerSzWApuCpJleqy0E2XFewF2hAm00k7dHJh5kQoIe/hxldx40IRV4IL38Zpm4Vt/WHg5zvncOb8Xiy4Asv6MQpb2zu7e8X90sHh0fGJeXrWVVEiKevQSESy7xHFBA9ZBzgI1o8lI4EnWM+bNuf13iOTikfhA8xi5gRkHHKfUwIauWZt6EtC01aW2vUMD4EHTOEl662wpnuNK9iux+CaZatqLYQ3jZ2bMsrVds2v4SiiScBCoIIoNbCtGJyUSOBUsKw0TBSLCZ2SMRtoGxK9z0kXt2W4oskI+5HULwS8oH8nUhIoNQs83RkQmKj12hz+Vxsk4N85KQ/jBFhIl4v8RGCI8DwoPOKSURAzbQiVXP8V0wnRwYCOs6RDsNdP3jTdWtWuV+37m3LDyuMoogt0ia6QjW5RA7VQG3UQRU/oBb2hd+PZeDU+jM9la8HIZ87RiozvX6a3n9E=</latexit>

H

16
⇥ W

16
⇥ C3

<latexit sha1_base64="jgOVPjMcP+lPLkx1/nbPKAXmJP4=">AAACGXicbZDLSsNAFIYn9VbrLerSzWApuCpJkdploZsuK9gLtCFMppN26OTCzIlQQl7Dja/ixoUiLnXl2zhts6itPwz8fOcczpzfiwVXYFk/RmFnd2//oHhYOjo+OT0zzy96KkokZV0aiUgOPKKY4CHrAgfBBrFkJPAE63uz1qLef2RS8Sh8gHnMnIBMQu5zSkAj17RGviQ0bWdpI8Mj4AFTeIX666jl1nAF2/UYXLNsVa2l8Laxc1NGuTqu+TUaRzQJWAhUEKWGthWDkxIJnAqWlUaJYjGhMzJhQ21Dovc56fKyDFc0GWM/kvqFgJd0fSIlgVLzwNOdAYGp2qwt4H+1YQJ+w0l5GCfAQrpa5CcCQ4QXMeExl4yCmGtDqOT6r5hOic4FdJglHYK9efK26dWqdr1q39+Wm1YeRxFdoWt0g2x0h5qojTqoiyh6Qi/oDb0bz8ar8WF8rloLRj5zif7I+P4Fsj6fXg==</latexit>

H

8
⇥ W

8
⇥ C2

<latexit sha1_base64="9w4/MZFPtW0OPOnUYpZsZXC0PFo=">AAACGXicbZDLSsNAFIYn9VbrLerSzWApuCqJSHVZ6KbLCvYCTQiT6aQdOrkwcyKUkNdw46u4caGIS135Nk7bLGrrDwM/3zmHM+f3E8EVWNaPUdra3tndK+9XDg6Pjk/M07OeilNJWZfGIpYDnygmeMS6wEGwQSIZCX3B+v60Na/3H5lUPI4eYJYwNyTjiAecEtDIMy0nkIRm7Ty7ybEDPGQKL1F/FbU8G9ew3UjAM6tW3VoIbxq7MFVUqOOZX84opmnIIqCCKDW0rQTcjEjgVLC84qSKJYROyZgNtY2I3udmi8tyXNNkhINY6hcBXtDViYyESs1CX3eGBCZqvTaH/9WGKQR3bsajJAUW0eWiIBUYYjyPCY+4ZBTETBtCJdd/xXRCdC6gw6zoEOz1kzdN77puN+r2/U21aRVxlNEFukRXyEa3qInaqIO6iKIn9ILe0LvxbLwaH8bnsrVkFDPn6I+M71+jr59V</latexit>

H

4
⇥ W

4
⇥ C1

C
onv1D

Figure 3.3: CoaT model architecture (Left) The overall network architecture of CoaT-Lite.
CoaT-Lite consists of serial blocks only, where image features are down-sampled and processed
in a sequential order. (Right) The overall network architecture of CoaT. CoaT consists of serial
blocks and parallel blocks. Both blocks enable the co-scale mechanism.

3.4 Conv-Attention Module

3.4.1 Factorized Attention Mechanism

In Equation 3.1, the materialization of the softmax logits and attention maps leads to

the O(N2) space complexity and O(N2C) time complexity. Inspired by recent works [CLD+21,

SZZ+21, Bel21] on linearization of self-attention, we approximate the softmax attention map

by factorizing it using two functions φ(·),ψ(·) : RN×C→ RN×C′ and compute the second matrix

multiplication (keys and values) together:

FactorAtt(X) = φ(Q)
(

ψ(K)⊤V
)

(3.2)

The factorization leads to a O(NC′+NC+CC′) space complexity (including output of φ(·),ψ(·)

and intermediate steps in the matrix product) and O(NCC′) time complexity, where both are

linear functions of the sequence length N. Performer [CLD+21] uses random projections in φ

and ψ for a provable approximation, but with the cost of relatively large C′. Efficient-Attention

43

[SZZ+21] applies the softmax function for both φ and ψ, which is efficient but causes a significant

performance drop on the vision tasks in our experiments. Here, we develop our factorized attention

mechanism following LambdaNets [Bel21] with φ as the identity function and ψ as the softmax:

FactorAtt(X) =
Q√
C

(
softmax(K)⊤V

)
(3.3)

where softmax(·) is applied across the tokens in the sequence in an element-wise manner and the

projected channels C′=C. In LambdaNets [Bel21], the scaling factor 1/
√

C is implicitly included

in the weight initialization, while our factorized attention applies the scaling factor explicitly.

This factorized attention takes O(NC+C2) space complexity and O(NC2) time complexity. It is

noteworthy that the proposed factorized attention following [Bel21] is not a direct approximation

of the scaled dot-product attention, but it can still be regarded as a generalized attention mechanism

modeling the feature interactions using query, key and value vectors.

3.4.2 Convolution as Position Encoding

Our factorized attention module mitigates the computational burden from the original

scaled dot-product attention. However, because we compute L = softmax(K)⊤V ∈ RC×C first, L

can be seen as a global data-dependent linear transformation for every feature vector in the query

map Q. This indicates that if we have two query vectors q1,q2 ∈ RC from Q and q1 = q2, then

their corresponding self-attention outputs will be the same:

FactorAtt(X)1 =
q1√

C
L =

q2√
C

L = FactorAtt(X)2 (3.4)

Without the position encoding, the Transformer is only composed of linear layers and self-

attention modules. Thus, the output of a token is dependent on the corresponding input without

awareness of any difference in its locally nearby features. This property is unfavorable for vision

44

tasks such as semantic segmentation (e.g. the same blue patches in the sky and the sea are

segmented as the same category).

Convolutional Relative Position Encoding. To enable vision tasks, ViT and DeiT [DBK+21,

TCD+20] insert absolute position embeddings into the input, which may have limitations in

modeling relations between local tokens. Instead, following [SUV18], we can integrate a relative

position encoding P = {pi ∈ RC, i =−M−1
2 , ..., M−1

2 } with window size M to obtain the relative

attention map EV ∈ RN×C; in attention formulation, if tokens are regarded as a 1-D sequence:

RelFactorAtt(X) =
Q√
C

(
softmax(K)⊤V

)
+EV (3.5)

where the encoding matrix E ∈ RN×N has elements:

Ei j = 1(i, j)qi ·p j−i, 1≤ i, j ≤ N (3.6)

in which 1(i, j) = 1{| j−i|≤(M−1)/2}(i, j) is an indicator function. Each element Ei j represents

the relation from query qi to the value v j within window M, and (EV)i aggregates all related

value vectors with respect to query qi. Unfortunately, the EV term still requires O(N2) space

complexity and O(N2C) time complexity. In CoaT, we propose to simplify the EV term to ˆEV

by considering each channel in the query, position encoding and value vectors as internal heads.

Thus, for each internal head l, we have:

E(l)
i j = 1(i, j)q(l)i p(l)j−i, ˆEV (l)

i = ∑ j E(l)
i j v(l)j (3.7)

45

In practice, we can use a 1-D depthwise convolution to compute ˆEV :

ˆEV (l)
= Q(l) ◦Conv1D(P(l),V (l)), (3.8)

ˆEV = Q◦DepthwiseConv1D(P,V) (3.9)

where ◦ is the Hadamard product. It is noteworthy that in vision Transformers, we have two types

of tokens, the class (CLS) token and image tokens. Thus, we use a 2-D depthwise convolution

(with window size M×M and kernel weights P) and apply it only to the reshaped image tokens

(i.e. Qimg,V img ∈ RH×W×C from Q,V respectively):

ˆEV img
= Qimg ◦DepthwiseConv2D(P,V img) (3.10)

ˆEV = concat(ˆEV img
,0) (3.11)

ConvAtt(X) =
Q√
C

(
softmax(K)⊤V

)
+ ˆEV (3.12)

Based on our derivation, the depthwise convolution can be seen as a special case of relative

position encoding.

Convolutional Relative Position Encoding vs Other Relative Position Encodings. The commonly

referenced relative position encoding [SUV18] works in standard scaled dot-product attention

settings since the encoding matrix E is combined with the softmax logits in the attention maps,

which are not materialized in our factorized attention. Related to our work, the main results

of the original LambdaNets [Bel21] use a 3-D convolution to compute EV directly and reduce

the channels of queries and keys to CK where CK <C, but it costs O(NCCK) space complexity

and O(NCCKM2) time complexity, which leads to relatively heavy computation when channel

sizes CK,C are large. A recent update in LambdaNets [Bel21] provides an efficient variant with

depth-wise convolution under resource constrained scenarios. Our factorized attention computes

ˆEV with only O(NC) space complexity and O(NCM2) time complexity, aiming to achieve better

46

Conv-Attention

Feed-Forward

Class
Token

Image
Tokens

Conv-Attention

Feed-Forward

Flatten

Reshape

Patch Embed

Input Feature Maps

Output Feature Maps

To Linear Layer
Or Parallel Block

Serial Block

Serial Block

Serial Block

Input Image

Parallel Block

Parallel Block

Serial Block Parallel Block

Parallel Block

Parallel Block

Parallel Block

Parallel Group

…

…

…
Parallel Group Image and Class Tokens

C
oncat

Linear

1000-class
logits

C
onv-Att

FFN

C
onv-Att

FFN

C
onv-Att

FFN

Parallel Block

Parallel Block

Parallel Block

Parallel Group

Serial Block

Serial Block

Serial Block

Serial Block

Input Image

Serial Block

1000-class logits

Linear

(a) CoaT-Lite (b) CoaT

Image and Class Tokens

<latexit sha1_base64="0pjc2PBKzPC4TJvj2h7g5hSLQ7Q=">AAACFHicbZDLSsNAFIZP6q3WW9Slm8EiCEJJalGXhW66rGAv0IQymU7aoZMLMxOhhDyEG1/FjQtF3Lpw59s4bbOwrT8M/HznHM6c34s5k8qyfozCxubW9k5xt7S3f3B4ZB6fdGSUCELbJOKR6HlYUs5C2lZMcdqLBcWBx2nXmzRm9e4jFZJF4YOaxtQN8ChkPiNYaTQwrxxfYJI2s/S6miFHsYBKtGDdJdYY1AZm2apYc6F1Y+emDLlaA/PbGUYkCWioCMdS9m0rVm6KhWKE06zkJJLGmEzwiPa1DbFe5KbzozJ0ockQ+ZHQL1RoTv9OpDiQchp4ujPAaixXazP4X62fKP/OTVkYJ4qGZLHITzhSEZolhIZMUKL4VBtMBNN/RWSMdSJK51jSIdirJ6+bTrVi31Ts+1q5buVxFOEMzuESbLiFOjShBW0g8AQv8AbvxrPxanwYn4vWgpHPnMKSjK9fnQad2A==</latexit>

H

32
⇥ W

32
⇥ C4

<latexit sha1_base64="fgcMoFPb51ekf9JsummRAdICe20=">AAACG3icbZDLSsNAFIYn9VbrLerSzWApuCpJleqy0E2XFewF2hAm00k7dHJh5kQoIe/hxldx40IRV4IL38Zpm4Vt/WHg5zvncOb8Xiy4Asv6MQpb2zu7e8X90sHh0fGJeXrWVVEiKevQSESy7xHFBA9ZBzgI1o8lI4EnWM+bNuf13iOTikfhA8xi5gRkHHKfUwIauWZt6EtC01aW2vUMD4EHTOEl662wpnuNK9iux+CaZatqLYQ3jZ2bMsrVds2v4SiiScBCoIIoNbCtGJyUSOBUsKw0TBSLCZ2SMRtoGxK9z0kXt2W4oskI+5HULwS8oH8nUhIoNQs83RkQmKj12hz+Vxsk4N85KQ/jBFhIl4v8RGCI8DwoPOKSURAzbQiVXP8V0wnRwYCOs6RDsNdP3jTdWtWuV+37m3LDyuMoogt0ia6QjW5RA7VQG3UQRU/oBb2hd+PZeDU+jM9la8HIZ87RiozvX6a3n9E=</latexit>

H

16
⇥ W

16
⇥ C3

<latexit sha1_base64="jgOVPjMcP+lPLkx1/nbPKAXmJP4=">AAACGXicbZDLSsNAFIYn9VbrLerSzWApuCpJkdploZsuK9gLtCFMppN26OTCzIlQQl7Dja/ixoUiLnXl2zhts6itPwz8fOcczpzfiwVXYFk/RmFnd2//oHhYOjo+OT0zzy96KkokZV0aiUgOPKKY4CHrAgfBBrFkJPAE63uz1qLef2RS8Sh8gHnMnIBMQu5zSkAj17RGviQ0bWdpI8Mj4AFTeIX666jl1nAF2/UYXLNsVa2l8Laxc1NGuTqu+TUaRzQJWAhUEKWGthWDkxIJnAqWlUaJYjGhMzJhQ21Dovc56fKyDFc0GWM/kvqFgJd0fSIlgVLzwNOdAYGp2qwt4H+1YQJ+w0l5GCfAQrpa5CcCQ4QXMeExl4yCmGtDqOT6r5hOic4FdJglHYK9efK26dWqdr1q39+Wm1YeRxFdoWt0g2x0h5qojTqoiyh6Qi/oDb0bz8ar8WF8rloLRj5zif7I+P4Fsj6fXg==</latexit>

H

8
⇥ W

8
⇥ C2

<latexit sha1_base64="9w4/MZFPtW0OPOnUYpZsZXC0PFo=">AAACGXicbZDLSsNAFIYn9VbrLerSzWApuCqJSHVZ6KbLCvYCTQiT6aQdOrkwcyKUkNdw46u4caGIS135Nk7bLGrrDwM/3zmHM+f3E8EVWNaPUdra3tndK+9XDg6Pjk/M07OeilNJWZfGIpYDnygmeMS6wEGwQSIZCX3B+v60Na/3H5lUPI4eYJYwNyTjiAecEtDIMy0nkIRm7Ty7ybEDPGQKL1F/FbU8G9ew3UjAM6tW3VoIbxq7MFVUqOOZX84opmnIIqCCKDW0rQTcjEjgVLC84qSKJYROyZgNtY2I3udmi8tyXNNkhINY6hcBXtDViYyESs1CX3eGBCZqvTaH/9WGKQR3bsajJAUW0eWiIBUYYjyPCY+4ZBTETBtCJdd/xXRCdC6gw6zoEOz1kzdN77puN+r2/U21aRVxlNEFukRXyEa3qInaqIO6iKIn9ILe0LvxbLwaH8bnsrVkFDPn6I+M71+jr59V</latexit>

H

4
⇥ W

4
⇥ C1

…

Figure 3.4: Schematic illustration of the serial block in CoaT Input feature maps are first
down-sampled by a patch embedding layer, and then tokenized features (along with a class
token) are processed by multiple conv-attention and feed-forward layers.

efficiency.

Convolutional Position Encoding. We then extend the idea of convolutional relative position

encoding to a general convolutional position encoding case. Convolutional relative position

encoding models local position-based relationships between queries and values. Similar to the

absolute position encoding used in most image Transformers [DBK+21, TCD+20], we would

like to insert the position relationship into the input image features directly to enrich the effects

of relative position encoding. In each conv-attentional module, we insert a depthwise convolution

into the input features X and concatenate the resulting position-aware features back to the input

features following the standard absolute position encoding scheme (see Figure 3.2 lower part),

which resembles the realization of conditional position encoding in CPVT [CZT+21].

CoaT and CoaT-Lite share the convolutional position encoding weights and convolutional

relative position encoding weights for the serial and parallel modules within the same scale. We

47

C
onv-Att

FFN

C
onv-Att

FFN

C
onv-Att

FFN
Parallel Block

Parallel Block

Parallel Block

Parallel Group

C
onv-Att

FFN

C
onv-Att

FFN

C
onv-Att

FFN

Cross-Att

FFN
FFN

FFN

Conv-Att

Cross-Att

Conv-Att

Cross-Att

Cross-Att

Cross-Att

Cross-Att

Conv-Att

w/o Co-Scale Co-Scale w/
Direct Cross-Layer Attention

Co-Scale w/
Feature Interpolation

Figure 3.5: Schematic illustration of the parallel group in CoaT For “w/o Co-Scale”, tokens
learned at the individual scales are combined to perform the classification but absent intermediate
co-scale interaction for the individual paths of the parallel blocks. We propose two co-scale
variants, namely direct cross-layer attention and attention with feature interpolation. Co-scale
with feature interpolation is adopted in the final CoaT-Lite and CoaT models reported on the
ImageNet benchmark.

set convolution kernel size to 3 for the convolutional position encoding. We set convolution kernel

size to 3, 5 and 7 for image features from different attention heads for convolutional relative

position encoding.

The work of CPVT [CZT+21] explores the use of convolution as conditional position

encodings by inserting it after the feed-forward network under a single scale (H
16 × W

16). Our work

focuses on applying convolution as relative position encoding and a general position encoding

with the factorized attention.

Conv-Attentional Mechanism The final conv-attentional module is shown in Figure 3.2: We

apply the first convolutional position encoding on the image tokens from the input. Then, we feed

it into ConvAtt(·) including factorized attention and the convolutional relative position encoding.

The resulting map is used for the subsequent feed-forward networks.

48

Table 3.1: Architecture details of CoaT-Lite and CoaT models Ci represents the hidden
dimension of the attention layers in block i; Hi represents the number of attention heads in
the attention layers in block i; Ri represents the expansion ratio for the feed-forward hidden
layer dimension between attention layers in block i. Multipliers indicate the number of conv-
attentional modules in block i.

Blocks Output
CoaT-Lite CoaT

Tiny Mini Small Medium Tiny Mini Small

Serial Block
(S1) 56×56

 C1 = 64
H1 = 8
R1 = 8

×2

 C1 = 64
H1 = 8
R1 = 8

×2

 C1 = 64
H1 = 8
R1 = 8

×3

 C1 = 128
H1 = 8
R1 = 4

×3

 C1 = 152
H1 = 8
R1 = 4

×2

 C1 = 152
H1 = 8
R1 = 4

×2

 C1 = 152
H1 = 8
R1 = 4

×2

Serial Block
(S2) 28×28

 C2 = 128
H2 = 8
R2 = 8

×2

 C2 = 128
H2 = 8
R2 = 8

×2

 C2 = 128
H2 = 8
R2 = 8

×4

 C1 = 256
H1 = 8
R1 = 4

×6

 C2 = 152
H2 = 8
R2 = 4

×2

 C2 = 216
H2 = 8
R2 = 4

×2

 C1 = 320
H1 = 8
R1 = 4

×2

Serial Block
(S3) 14×14

 C3 = 256
H3 = 8
R3 = 4

×2

 C3 = 320
H3 = 8
R3 = 4

×2

 C3 = 320
H3 = 8
R3 = 4

×6

 C1 = 320
H1 = 8
R1 = 4

×10

 C3 = 152
H3 = 8
R3 = 4

×2

 C3 = 216
H3 = 8
R3 = 4

×2

 C1 = 320
H1 = 8
R1 = 4

×2

Serial Block
(S4) 7×7

 C4 = 320
H4 = 8
R4 = 4

×2

 C4 = 512
H4 = 8
R4 = 4

×2

 C4 = 512
H4 = 8
R4 = 4

×3

 C1 = 512
H1 = 8
R1 = 4

×8

 C4 = 152
H4 = 8
R4 = 4

×2

 C4 = 216
H4 = 8
R4 = 4

×2

 C1 = 320
H1 = 8
R1 = 4

×2

Parallel Group

 28×28
14×14
7×7

  C4 = 152
H4 = 8
R4 = 4

×6

 C4 = 216
H4 = 8
R4 = 4

×6

 C1 = 320
H1 = 8
R1 = 4

×6

#Params 5.7M 11M 20M 45M 5.5M 10M 22M

3.5 Co-Scale Conv-Attentional Transformers

3.5.1 Co-Scale Mechanism

The proposed co-scale mechanism is designed to introduce fine-to-coarse, coarse-to-fine

and cross-scale information into image transformers. Here, we describe two types of building

blocks in the CoaT architecture, namely serial and parallel blocks, in order to model multiple

scales and enable the co-scale mechanism.

CoaT Serial Block. A serial block (shown in Figure 3.4) models image representations in a

reduced resolution. In a typical serial block, we first down-sample input feature maps by a certain

ratio using a patch embedding layer, and flatten the reduced feature maps into a sequence of

image tokens. We then concatenate image tokens with an additional CLS token, a specialized

vector to perform image classification, and apply multiple conv-attentional modules as described

in Section 3.4 to learn internal relationships among image tokens and the CLS token. Finally, we

separate the CLS token from the image tokens and reshape the image tokens to 2-D feature maps

49

for the next serial block.

CoaT Parallel Block. We realize a co-scale mechanism between parallel blocks in each parallel

group (shown in Figure 3.5). In a typical parallel group, we have sequences of input features

(image tokens and CLS token) from serial blocks with different scales. To enable fine-to-coarse,

coarse-to-fine, and cross-scale interaction in the parallel group, we develop two strategies: (1)

direct cross-layer attention; (2) attention with feature interpolation. In this work, we adopt

attention with feature interpolation for better empirical performance. The effectiveness of both

strategies is shown in Section 3.6.4.

Direct cross-layer attention. In direct cross-layer attention, we form query, key, and value vectors

from input features for each scale. For attention within the same layer, we use the conv-attention

(Figure 3.2) with the query, key and value vectors from current scale. For attention across

different layers, we down-sample or up-sample the key and value vectors to match the resolution

of other scales, which enables fine-to-coarse and coarse-to-fine interaction. We then perform

cross-attention, which extends the conv-attention with queries from the current scale with keys

and values from another scale. Finally, we sum the outputs of conv-attention and cross-attention

together and apply a shared feed-forward layer. With direct cross-layer attention, the cross-scale

information is fused in a cross-attention fashion.

Attention with feature interpolation. Instead of performing cross-layer attention directly, we also

present attention with feature interpolation. First, the input image features from different scales

are processed by independent conv-attention modules. Then, we down-sample or up-sample

image features from each scale to match the dimensions of other scales using bilinear interpolation,

or keep the same for its own scale. The features belonging to the same scale are summed in

the parallel group, and they are further passed into a shared feed-forward layer. In this way, the

conv-attentional module in the next step can learn cross-scale information based on the feature

interpolation in the current step.

50

3.5.2 Model Architecture

CoaT-Lite. CoaT-Lite, Figure 3.3 (Left), processes input images with a series of serial blocks

following a fine-to-coarse pyramid structure. Given an input image I ∈ RH×W×C, each serial

block down-samples the image features into lower resolution, resulting in a sequence of four

resolutions:F1 ∈ RH
4 ×W

4 ×C1 , F2 ∈ R
H
8 ×W

8 ×C2 , F3 ∈ R
H
16×W

16×C3 , F4 ∈ R
H
32×W

32×C4 . In CoaT-Lite,

we obtain the CLS token in the last serial block, and perform image classification via a linear

projection layer based on the CLS token.

CoaT. Our CoaT model, shown in Figure 3.3 (Right), consists of both serial and parallel blocks.

Once we obtain multi-scale feature maps {F1,F2,F3,F4} from the serial blocks, we pass F2,F3,F4

and corresponding CLS tokens into the parallel group with three separate parallel blocks. To

perform classification with CoaT, we aggregate the CLS tokens from all three scales.

Model Variants. In this work, we explore CoaT and CoaT-Lite with several different model

sizes, namely Tiny, Mini, Small and Medium. Architecture details are shown in Table 3.1. For

example, tiny models represent those with a 5M parameter budget constraint. Specifically, these

tiny models have four serial blocks, each with two conv-attentional modules. In CoaT-Lite Tiny

architectures, the hidden dimensions of the attention layers increase in later blocks. CoaT Tiny

sets the hidden dimensions of the attention layers in the parallel group to be equal, and performs

the co-scale mechanism within the six parallel groups. Mini, small and medium models follow

the same architecture design but with increased embedding dimensions and increased numbers of

conv-attentional modules within blocks.

51

Table 3.2: CoaT performance on ImageNet-1K validation set Our CoaT models consistently
outperform other methods while being parameter efficient. ConvNets and ViTNets with similar
model size are grouped together for comparison. “#GFLOPs" and Top-1 Acc are measured at
input image size. “*" results are adopted from [WXL+21].

Arch. Model #Params Input #GFLOPs Top-1 Acc.

ConvNets EfficientNet-B0 [TL19] 5.3M 2242 0.4 77.1%
ShuffleNet [ZZLS18] 5.4M 2242 0.5 73.7%

ViTNets DeiT-Tiny [TCD+20] 5.7M 2242 1.3 72.2%
CPVT-Tiny [CZT+21] 5.7M 2242 - 73.4%
CoaT-Lite Tiny (Ours) 5.7M 2242 1.6 77.5%
CoaT Tiny (Ours) 5.5M 2242 4.4 78.3%

ConvNets EfficientNet-B2[TL19] 9M 2602 1.0 80.1%
ResNet-18∗ [HZRS16] 12M 2242 1.8 69.8%

ViTNets PVT-Tiny [WXL+21] 13M 2242 1.9 75.1%
CoaT-Lite Mini (Ours) 11M 2242 2.0 79.1%
CoaT Mini (Ours) 10M 2242 6.8 81.0%

ConvNets EfficientNet-B4 [TL19] 19M 3802 4.2 82.9%
ResNet-50∗ [HZRS16] 25M 2242 4.1 78.5%
ResNeXt50-32x4d* [XGD+17] 25M 2242 4.3 79.5%

ViTNets DeiT-Small [TCD+20] 22M 2242 4.6 79.8%
PVT-Small [WXL+21] 24M 2242 3.8 79.8%
CPVT-Small [CZT+21] 22M 2242 - 80.5%
T2T-ViTt-14 [YCW+21] 22M 2242 6.1 81.7%
Swin-T [LLC+21] 29M 2242 4.5 81.3%
CoaT-Lite Small (Ours) 20M 2242 4.0 81.9%
CoaT Small (Ours) 22M 2242 12.6 82.1%

ConvNets EfficientNet-B6 [TL19] 43M 5282 19 84.0%
ResNet-101∗ [HZRS16] 45M 2242 7.9 79.8%
ResNeXt101-64x4d∗ [XGD+17] 84M 2242 15.6 81.5%

ViTNets PVT-Large [WXL+21] 61M 2242 9.8 81.7%
T2T-ViTt-24 [YCW+21] 64M 2242 15 82.6%
DeiT-Base [TCD+20] 86M 2242 17.6 81.8%
CPVT-Base [CZT+21] 86M 2242 - 82.3%
Swin-B [LLC+21] 88M 2242 15.4 83.5%
Swin-B [LLC+21] 88M 3842 47 84.5%
CoaT-Lite Medium (Ours) 45M 2242 9.8 83.6%
CoaT-Lite Medium (Ours) 45M 3842 28.7 84.5%

52

Table 3.3: Object detection and instance segmentation results based on Mask R-CNN on
COCO val2017. Experiments are performed under the MMDetection framework [CWP+19].
“*” results are adopted from Detectron2.

Backbone
#Params

(M)
w/ FPN 1× w/ FPN 3×
APb APm APb APm

ResNet-18* 31.3 34.2 31.3 36.3 33.2
PVT-Tiny [WXL+21] 32.9 36.7 35.1 39.8 37.4
CoaT-Lite Mini (Ours) 30.7 41.4 38.0 42.9 38.9
CoaT Mini (Ours) 30.2 45.1 40.6 46.5 41.8
ResNet-50* 44.3 38.6 35.2 41.0 37.2
PVT-Small [WXL+21] 44.1 40.4 37.8 43.0 39.9
Swin-T [LLC+21] 47.8 43.7 39.8 46.0 41.6
CoaT-Lite Small (Ours) 39.5 45.2 40.7 45.7 41.1
CoaT Small (Ours) 41.6 46.5 41.8 49.0 43.7

Table 3.4: Object detection and instance segmentation results based on Cascade Mask
R-CNN on COCO val2017. Experiments are performed using the MMDetection framework
[CWP+19].

Backbone
#Params

(M)
w/ FPN 1× w/ FPN 3×
APb APm APb APm

Swin-T [LLC+21] 85.6 48.1 41.7 50.4 43.7
CoaT-Lite Small (Ours) 77.3 49.1 42.5 48.9 42.6
CoaT Small (Ours) 79.4 50.4 43.5 52.2 45.1

Table 3.5: Object detection results based on Deformable DETR on COCO val2017. DD
ResNet-50 represents the baseline result using the official checkpoint. ResNet-50 and our
CoaT-Lite as DD backbones are directly comparable due to similar model size.

Backbone
Deformable DETR (Multi-Scale)

AP AP50 AP75 APS APM APL

DD ResNet-50 [ZSL+21] 44.5 63.7 48.7 26.8 47.6 59.6
DD CoaT-Lite Small (Ours) 47.0 66.5 51.2 28.8 50.3 63.3
DD CoaT Small (Ours) 48.4 68.5 52.4 30.2 51.8 63.8

3.6 Experiments

3.6.1 Experiment Details

Image Classification. We perform image classification on the standard ILSVRC-2012 Ima-

geNet dataset [RDS+15]. The standard ImageNet benchmark contains 1.3 million images in

the training set and 50K images in the validation set, covering 1000 object classes. Image

53

cropping sizes are set to 224×224. For fair comparison, we perform data augmentation such

as MixUp [ZCDLP18], CutMix [YHO+19], random erasing [ZZK+20], repeated augmentation

[HBNH+20], and label smoothing [SVI+16], following identical procedures in DeiT [TCD+20].

All experimental results for our models in Table 3.2 are reported at 300 epochs, consistent

with previous methods [TCD+20]. All models are trained with the AdamW [LH19] optimizer

under the NVIDIA Automatic Mixed Precision (AMP) framework. The learning rate is scaled as

5×10−4× global batch size
512 .

Object Detection and Instance Segmentation. We conduct object detection and instance

segmentation experiments on the Common Objects in Context (COCO2017) dataset [LMB+14].

The COCO2017 benchmark contains 118K training images and 5K validation images. We

evaluate the generalization ability of CoaT in object detection and instance segmentation with

the Mask R-CNN [HGDG17] and Cascade Mask R-CNN [CV19]. We use the MMDetection

[CWP+19] framework and follow the settings from Swin Transformers [LLC+21]. In addition,

we perform object detection based on Deformable DETR [ZSL+21] following its data processing

settings.

For Mask R-CNN optimization, we train the model with the ImageNet-pretrained back-

bone on 8 GPUs via AdamW optimizer with learning rate 0.0001. The training period contains 12

epochs in 1× setting and 36 epochs in 3× setting. For Cascade R-CNN experiments, we use three

detection heads, with the same optimization and training period as Mask R-CNN. For Deformable

DETR optimization, we train the model with the pretrained backbone for 50 epochs, using an

AdamW optimizer with initial learning rate 2×10−4, β1 = 0.9, and β2 = 0.999. We reduce the

learning rate by a factor of 10 at epoch 40.

54

3.6.2 CoaT for ImageNet Classification

Table 3.2 shows top-1 accuracy results for our models on the ImageNet validation set

comparing with state-of-the-art methods. We separate model architectures into two categories:

convolutional networks (ConvNets), and Transformers (ViTNets). Under different parameter

budget constraints, CoaT and CoaT-Lite show strong results compared to other ConvNet and

ViTNet methods.

3.6.3 Object Detection and Instance Segmentation

Tables 3.3 and 3.4 demonstrate CoaT object detection and instance segmentation results

under the Mask R-CNN and Cascade Mask R-CNN frameworks on the COCO val2017 dataset.

Our CoaT and CoaT-Lite models show clear performance advantages over the ResNet, PVT

[WXL+21] and Swin [LLC+21] backbones under both the 1× setting and the 3× setting. In

particular, our CoaT models bring a large performance gain, demonstrating that our co-scale

mechanism is essential to improve the performance of Transformer-based architectures for

downstream tasks.

We additionally perform object detection with the Deformable DETR (DD) framework in

Table 3.5. We compare our models with the standard ResNet-50 backbone on the COCO dataset

[LMB+14]. Our CoaT backbone achieves 3.9% improvement on average precision (AP) over the

results of Deformable DETR with ResNet-50 [ZSL+21].

3.6.4 Ablation Study

Effectiveness of Position Encodings. We study the effectiveness of the combination of the

convolutional relative position encoding (CRPE) and convolutional position encoding (CPE) in

our conv-attention module in Table 3.6. Our CoaT-Lite without any position encoding results

in poor performance, indicating that position encoding is essential for vision Transformers. We

55

observe great improvement for CoaT-Lite variants with either CRPE or CPE, and the combination

of CRPE and CPE leads to the best performance (77.5% top-1 accuracy), making both position

encoding schemes complementary rather than conflicting.

Table 3.6: Effectiveness of position encodings. All experiments are performed with the CoaT-
Lite Tiny architecture. Performance is evaluated on the ImageNet-1K validation set.

Model CPE CRPE Top-1 Acc.

CoaT-Lite Tiny ✗ ✗ 68.8%
✗ ✓ 75.0%
✓ ✗ 75.9%
✓ ✓ 77.5%

Effectiveness of Co-Scale. In Table 3.7, we present performance results for two co-scale

variants in CoaT, direct cross-layer attention and attention with feature interpolation. We also

report CoaT without co-scale as a baseline. Comparing to CoaT without a co-scale mechanism,

CoaT with feature interpolation shows performance improvements on both image classification

and object detection (Mask R-CNN w/ FPN 1×). Attention with feature interpolation offers a

clear advantage over direct cross-layer attention due to less computational complexity and higher

accuracy.

Table 3.7: Effectiveness of co-scale. All experiments are performed with the CoaT Tiny
architecture. Performance is evaluated on the ImageNet-1K validation set and the COCO
val2017 dataset.

Model #Params Input #GFLOPs Top-1 Acc. @input APb APm

CoaT w/o Co-Scale 5.5M 2242 4.4 77.8% 41.6 37.9
CoaT w/ Co-Scale

- Direct Cross-Layer Attention 5.5M 2242 4.8 77.0% 42.1 38.3
- Attention w/ Feature Interp. 5.5M 2242 4.4 78.3% 42.5 38.6

Computational Cost. We report FLOPs, FPS, latency, and GPU memory usage in Table 3.8. In

summary, CoaT models attain higher accuracy than similar-sized Swin Transformers, but CoaT

56

models in general do have larger latency/FLOPs. The current parallel groups in CoaT are more

computationally demanding, which can be mitigated by reducing high-resolution parallel blocks

and re-using their feature maps in the co-scale mechanism in future work. The latency overhead

in CoaT is possibly because operations (e.g. layers, position encodings, upsamples/downsamples)

are not running in parallel.

Table 3.8: ImageNet-1K validation set results compared with the concurrent work Swin
Transformer[LLC+21]. Computational metrics are measured on a single V100 GPU.

Model #Params Input GFLOPs FPS Latency Mem Top-1 Acc. Top-5 Acc.

Swin-T [LLC+21] 28M 2242 4.5 755 16ms 222M 81.2% 95.5%
CoaT-Lite Small (Ours) 20M 2242 4.0 634 32ms 224M 81.9% 95.6%
CoaT Small (Ours) 22M 2242 12.6 111 60ms 371M 82.1% 96.1%

Swin-S [LLC+21] 50M 2242 8.7 437 29ms 372M 83.2% 96.2%
Swin-B [LLC+21] 88M 2242 15.4 278 30ms 579M 83.5% 96.5%
CoaT-Lite Medium (Ours) 45M 2242 9.8 319 52ms 429M 83.6% 96.7%

Swin-B [LLC+21] 88M 3842 47.1 85 33ms 1250M 84.5% 97.0%
CoaT-Lite Medium (Ours) 45M 3842 28.7 97 56ms 937M 84.5% 97.1%

3.7 Conclusion

In this work, we present a Transformer based image classifier, Co-scale conv-attentional

image Transformer (CoaT), in which cross-scale attention and efficient conv-attention operations

have been developed. CoaT models attain strong classification results on ImageNet, and their

applicability to downstream computer vision tasks has been demonstrated for object detection

and instance segmentation.

Acknowledgments

This chapter is based on the material “Co-Scale Conv-Attentional Image Transformers”

by Weijian Xu*, Yifan Xu*, Tyler Chang, and Zhuowen Tu, which appears in Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV) 2021. The dissertation author

is the co-primary investigator and author of this material.

57

Chapter 4

Attentional Constellation Nets for Few-Shot

Learning

58

4.1 Introduction

Tremendous progress has been made in both the development and the applications of

the deep convolutional neural networks (CNNs) [KSH12, SZ15, SLJ+15, HZRS16, XGD+17].

Visualization of the internal CNN structure trained on e.g. ImageNet [DDS+09] has revealed the

increasing level of semantic relevance for the learned convolution kernels/filters to the semantics

of the object classes, displaying bar/edge like patterns in the early layers, object parts in the

middle layers, and face/object like patterns in the higher layers [ZF14]. In general, we consider

the learned convolution kernels being somewhat implicit about the underlying objects since they

represent projections/mappings for the input but without the explicit knowledge about the parts in

terms of their numbers, distributions, and spatial configurations.

On the other hand, there has been a rich history about explicit object representations

starting from deformable templates [YHC92], pictorial structure [FH05], constellation models

[WWP00, FPZ03, STFW05, FFFP06], and grammar-based model [ZM07]. These part-based

models [WWP00, FH05, FPZ03, STFW05, ZM07] share three common properties in the al-

gorithm design: (1) unsupervised learning, (2) explicit clustering to obtain the parts, and (3)

modeling to characterize the spatial configuration of the parts. Compared to the CNN architec-

tures, these methods are expressive with explicit part-based representation. They have pointed

to a promising direction for object recognition, albeit a lack of strong practice performance on

the modern datasets. Another line of object recognition system with the part concept but trained

discriminatively includes the discriminative trained part-based model (DPM) [FGMR09] and the

spatial pyramid matching method (SPM) [LSP06]. In the context of deep learning, efforts exist to

bring the explicit part representation into deep hierarchical structures [STT12].

The implicit and explicit feature representations could share mutual benefits, especially in

few-shot learning where training data is scarce: CNNs may face difficulty in learning a generalized

representation due to lack of sufficient training data, whereas clustering and dictionary learning

59

provide a direct means for data abstraction. In general, end-to-end learning of both the implicit

and explicit part-based representations is a viable and valuable means in machine learning. We

view convolutional features as an implicit part-based representation since they are learned through

back-propagation via filtering processes. On the other hand, an explicit representation can be

attained by introducing feature clustering that captures the data abstraction/distribution under a

mixture model.

In this work, we develop an end-to-end framework to combine the implicit and explicit part-

based representations for the few-shot classification task by seamlessly integrating constellation

models with convolution operations. In addition to keeping a standard CNN architecture, we also

employ a cell feature clustering module to encode the potential object parts. This procedure is

similar to the clustering/codebook learning for appearance in the constellation model [WWP00].

The cell feature clustering process generates a dense distance map. We further model the

relations for the cells using a self-attention mechanism, resembling the spatial configuration

design in the constellation model [WWP00]. Thus, we name our method constellation networks

(ConstellationNet). We demonstrate the effectiveness of our approach on standard few-shot

benchmarks, including FC100 [OLR18], CIFAR-FS [BHTV19] and mini-ImageNet [VBL+16] by

showing a significant improvement over the existing methods. An ablation study also demonstrates

the effectiveness of ConstellationNet is not achieved by simply increasing the model complexity

using e.g. more convolution channels or deeper and wider convolution layers (WRN-28-10

[ZK16]) (see ablation study in Table 4.3 and Figure 4.2 (e)).

4.2 Related Work

Few-Shot Learning. Recently, few-shot learning attracts much attention in the deep learning

community [SSZ17, LMRS19]. Current few-shot learning is typically formulated as a meta-

learning problem [FAL17], in which an effective feature embedding is learned for generalization

60

across novel tasks. We broadly divide the existing few-shot learning approaches into three

categories: (1) Gradient-based methods optimize feature embedding with gradient descent during

meta-test stage [FAL17, BHTV19, LMRS19]. (2) Metric-based methods learn a fixed optimal

embedding with a distance-based prediction rule [VBL+16, SSZ17]. (3) Model-based methods

obtains a conditional feature embedding via a weight predictor [MRCA18, MYMT17]. Here

we adopt ProtoNet [SSZ17], a popular metric-based framework, in our approach and boost the

generalization ability of the feature embeddings with explicit structured representations from the

constellation model. Recently, [TWH19] proposes a compositional regularization to the image

with its attribute annotations, which is different from out unsupervised part-discovery strategy.

Part-Based Constellation/Discriminative Models. The constellation model family [WWP00,

FH05, FPZ03, STFW05, FFFP06, ZM07] is mostly generative/expressive that shares two com-

monalities in the representation: (1) clustering/codebook learning in the appearance and (2)

modeling of the spatial configurations. The key difference among these approaches lies in how

the spatial configuration is modeled: Gaussian distributions [WWP00]; pictorial structure [FH05];

joint shape model [FPZ03] ; hierarchical graphical model [STFW05]; grammar-based [ZM07].

These constellation models represent a promising direction for object recognition but are not

practical competitive compared with deep learning based approaches. There are also discrim-

inative models: The discriminatively trained part-based model (DPM) [FGMR09] is a typical

method in this vein where object parts (as HOG features [DT05]) and their configurations (a star

model) are learned jointly in a discriminative way. The spatial pyramid matching method (SPM)

[LSP06] has no explicit parts but instead builds on top of different levels of grids with codebook

learned on top of the SIFT features [Low04]. DPM and SPM are of practical significance for

object detection and recognition. In our approach, we implement the constellation model with

cell feature clustering and attention-based cell relation modeling to demonstrate the appearance

learning and spatial configuration respectively.

Parts models are extensively studied in fine-grained image classifications and object

61

detection to provide spatial guidance for filtering uninformative object proposals [SR15, PHZ17,

ZZW+17, GLY19, QLL19]. Related to our work, Neural Activation Constellations (NAC)

[SR15] introduces the constellation model to perform unsupervised part model discovery with

convolutional networks. Our work is different from NAC in three aspects: (1) The algorithmic

mechanisms behind [SR15] and ours are different. [SR15] implements a traditional Gaussian-

based constellation module to model the spatial configuration and part selection on top of a

fixed pre-trained CNN. However, in our ConstellationNet, our part representation and spatial

configuration are modeled by cell feature clustering and self-attention based cell relation module,

which is general-purpose, modularized and recursive. (2) In [SR15] , the constellation module

is optimized in an EM-like algorithm, which is separate from the CNN optimization. Our

constellation modules are seamlessly integrated into the current CNNs and jointly optimized with

them. (3) Our ConstellationNet uses the dense cell features from the CNN feature maps, which

considers all positions from the images as potential parts and models their relation. However,

(Simon et al. 2015) extracts sparse part representations (i.e. it uses at most one part proposal per

channel and selects even less parts later), which may not fully utilize the rich information from

the CNN feature maps.

4.3 Few-shot learning

In a standard classification problem, we aim to learn a model trained on the dataset Dbase

that can generalize its classification ability to unseen test set Dnovel belonging to same categories.

In few-shot classification problem, we encourage Dbase and Dnovel to be formed from different

categories to emphasize model’s generalization ability on novel categories, where we denote

training categories as Cbase, test categories as Cnovel, and Cbase∩Cnovel =∅ to ensure the fairness.

In the training stage (a.k.a. meta-train stage), metric-based few-shot learning approaches

[SSZ17, VBL+16, OLR18] usually learn a feature extractor φ(x) on the dataset Dbase to obtain

62

C
oncatenation

C
onv 1x1

BatchN
orm

R
eLU

Avg
Pool

Embeddings

Support

Query

cos

cos

cos

0.91

0.74

0.15

✓
✗
✗

Constell.Conv + Constell.Conv + Constell.Conv + Constell.Conv +

Convolutional
Feature Map

Distance Map
(Cell Code Map)

Cell Feature Clustering

Conv
3x3

Convolution Cell Relation Modeling

Key

Query

Value

Dot Product

Softmax

Cell Feature

<latexit sha1_base64="TZEG1zQzkeGIyv2/Y1cMi5UskLg=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSi2GXBjcsK9gFNKJPppB06mYR5CCXkN9y4UMStP+POv3HSZqGtBwYO59zLPXPClDOlXffbqWxsbm3vVHdre/sHh0f145OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++HsrvD7T1QqlohHPU9pEOOJYBEjWFvJ92Osp2GUmXzERvWG23QXQOvEK0kDSnRG9S9/nBATU6EJx0oNPTfVQYalZoTTvOYbRVNMZnhCh5YKHFMVZIvMObqwyhhFibRPaLRQf29kOFZqHod2ssioVr1C/M8bGh21goyJ1GgqyPJQZDjSCSoKQGMmKdF8bgkmktmsiEyxxETbmmq2BG/1y+ukd9X0bpruw3Wj3SrrqMIZnMMleHALbbiHDnSBQArP8ApvjnFenHfnYzlaccqdU/gD5/MHePuR7w==</latexit>ui
<latexit sha1_base64="wanmTjPMPuITbmchYSNGzkWaTmA=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KIYo8FLx4r2FpoStlsN+3SzSbsvhRK6N/w4kERr/4Zb/4bN20O2jqwMMy8x5udIJHCoOt+O6WNza3tnfJuZW//4PCoenzSMXGqGW+zWMa6G1DDpVC8jQIl7yaa0yiQ/CmY3OX+05RrI2L1iLOE9yM6UiIUjKKVfD+iOA7CbDofTAbVmlt3FyDrxCtIDQq0BtUvfxizNOIKmaTG9Dw3wX5GNQom+bzip4YnlE3oiPcsVTTipp8tMs/JhVWGJIy1fQrJQv29kdHImFkU2Mk8o1n1cvE/r5di2OhnQiUpcsWWh8JUEoxJXgAZCs0ZypkllGlhsxI2ppoytDVVbAne6pfXSeeq7t3U3YfrWrNR1FGGMziHS/DgFppwDy1oA4MEnuEV3pzUeXHenY/laMkpdk7hD5zPH32KkfI=</latexit>vk

Positional
Encoding

<latexit sha1_base64="mgvcNWypuqiLmJA1ri0cXLDdb1U=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1RzDHgxWME84BkCbOzs8mYeSwzs0JY8g9ePCji1f/x5t84SfagiQUNRVU33V1Rypmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UZkmtEUUV7obYUM5k7RlmeW0m2qKRcRpJxrfzvzOE9WGKflgJykNBR5KljCCrZPa8SBn4+mgUvVr/hxolQQFqUKB5qDy1Y8VyQSVlnBsTC/wUxvmWFtGOJ2W+5mhKSZjPKQ9RyUW1IT5/NopOndKjBKlXUmL5urviRwLYyYicp0C25FZ9mbif14vs0k9zJlMM0slWSxKMo6sQrPXUcw0JZZPHMFEM3crIiOsMbEuoLILIVh+eZW0L2vBdc2/v6o26kUcJTiFM7iAAG6gAXfQhBYQeIRneIU3T3kv3rv3sWhd84qZE/gD7/MHzkePPw==</latexit>

dik

<latexit sha1_base64="0ra3zmdRvengF77TZu1bC0v/U6o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF49VbC20oWy2m3bpZhN2J0JJ+w+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMnGqGW+yWMa6HVDDpVC8iQIlbyea0yiQ/DEY3cz8xyeujYjVA44T7kd0oEQoGEUr3U8mvXLFrbpzkFXi5aQCORq98le3H7M04gqZpMZ0PDdBP6MaBZN8WuqmhieUjeiAdyxVNOLGz+aXTsmZVfokjLUthWSu/p7IaGTMOApsZ0RxaJa9mfif10kxrPmZUEmKXLHFojCVBGMye5v0heYM5dgSyrSwtxI2pJoytOGUbAje8surpHVR9a6q7t1lpV7L4yjCCZzCOXhwDXW4hQY0gUEIz/AKb87IeXHenY9Fa8HJZ47hD5zPH8v4jYA=</latexit>||
<latexit sha1_base64="OL9nvmLDwx37RGowQnds7mvEq0A=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ktFnssePFYwX5Au5Rsmm1Dk+ySZIWy7V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1PY2t7Z3Svulw4Oj45PyqdnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6V3md5+o0iySj2YWU1/gsWQhI9hk0nw+rA3LFbfqLoE2iZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRThelQaJpjMkUj2nfUokF1X66vHWBrqwyQmGkbEmDlurviRQLrWcisJ0Cm4le9zLxP6+fmLDhp0zGiaGSrBaFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt/eZN0alWvXnUfbirNRh5HES7gEq7Bg1towj20oA0EJvAMr/DmCOfFeXc+Vq0FJ585hz9wPn8A8+iOJQ==</latexit>||2<latexit sha1_base64="zcLjsqYgHMjRIYY9vxr4S1RVQGY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4sSSi2GPBi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJYPZpKgH9Gh5CFn1Fipcdkvld2KOwdZJV5OypCj3i999QYxSyOUhgmqdddzE+NnVBnOBE6LvVRjQtmYDrFrqaQRaj+bHzol51YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRVP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbIo2BG/55VXSuqp4NxW3cV2uVfM4CnAKZ3ABHtxCDe6hDk1ggPAMr/DmPDovzrvzsWhdc/KZE/gD5/MHct2Mqw==</latexit>� <latexit sha1_base64="a9APXYAQdj6DRb97QG/ZCzINJfg=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Koko9iIUvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38389hMqzWP5YCYJ+hEdSh5yRo2VGrf9UtmtuHOQVeLlpAw56v3SV28QszRCaZigWnc9NzF+RpXhTOC02Es1JpSN6RC7lkoaofaz+aFTcm6VAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1Y9TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZoQ/CWX14lrcuKd11xG1flWjWPowCncAYX4MEN1OAe6tAEBgjP8ApvzqPz4rw7H4vWNSefOYE/cD5/AIsdjLs=</latexit>=

<latexit sha1_base64="0ra3zmdRvengF77TZu1bC0v/U6o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF49VbC20oWy2m3bpZhN2J0JJ+w+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMnGqGW+yWMa6HVDDpVC8iQIlbyea0yiQ/DEY3cz8xyeujYjVA44T7kd0oEQoGEUr3U8mvXLFrbpzkFXi5aQCORq98le3H7M04gqZpMZ0PDdBP6MaBZN8WuqmhieUjeiAdyxVNOLGz+aXTsmZVfokjLUthWSu/p7IaGTMOApsZ0RxaJa9mfif10kxrPmZUEmKXLHFojCVBGMye5v0heYM5dgSyrSwtxI2pJoytOGUbAje8surpHVR9a6q7t1lpV7L4yjCCZzCOXhwDXW4hQY0gUEIz/AKb87IeXHenY9Fa8HJZ47hD5zPH8v4jYA=</latexit>||
<latexit sha1_base64="OL9nvmLDwx37RGowQnds7mvEq0A=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ktFnssePFYwX5Au5Rsmm1Dk+ySZIWy7V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1PY2t7Z3Svulw4Oj45PyqdnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6V3md5+o0iySj2YWU1/gsWQhI9hk0nw+rA3LFbfqLoE2iZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRThelQaJpjMkUj2nfUokF1X66vHWBrqwyQmGkbEmDlurviRQLrWcisJ0Cm4le9zLxP6+fmLDhp0zGiaGSrBaFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt/eZN0alWvXnUfbirNRh5HES7gEq7Bg1towj20oA0EJvAMr/DmCOfFeXc+Vq0FJ585hz9wPn8A8+iOJQ==</latexit>||2<latexit sha1_base64="zcLjsqYgHMjRIYY9vxr4S1RVQGY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4sSSi2GPBi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJYPZpKgH9Gh5CFn1Fipcdkvld2KOwdZJV5OypCj3i999QYxSyOUhgmqdddzE+NnVBnOBE6LvVRjQtmYDrFrqaQRaj+bHzol51YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRVP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbIo2BG/55VXSuqp4NxW3cV2uVfM4CnAKZ3ABHtxCDe6hDk1ggPAMr/DmPDovzrvzsWhdc/KZE/gD5/MHct2Mqw==</latexit>� <latexit sha1_base64="a9APXYAQdj6DRb97QG/ZCzINJfg=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Koko9iIUvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38389hMqzWP5YCYJ+hEdSh5yRo2VGrf9UtmtuHOQVeLlpAw56v3SV28QszRCaZigWnc9NzF+RpXhTOC02Es1JpSN6RC7lkoaofaz+aFTcm6VAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1Y9TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZoQ/CWX14lrcuKd11xG1flWjWPowCncAYX4MEN1OAe6tAEBgjP8ApvzqPz4rw7H4vWNSefOYE/cD5/AIsdjLs=</latexit>=

<latexit sha1_base64="0ra3zmdRvengF77TZu1bC0v/U6o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF49VbC20oWy2m3bpZhN2J0JJ+w+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMnGqGW+yWMa6HVDDpVC8iQIlbyea0yiQ/DEY3cz8xyeujYjVA44T7kd0oEQoGEUr3U8mvXLFrbpzkFXi5aQCORq98le3H7M04gqZpMZ0PDdBP6MaBZN8WuqmhieUjeiAdyxVNOLGz+aXTsmZVfokjLUthWSu/p7IaGTMOApsZ0RxaJa9mfif10kxrPmZUEmKXLHFojCVBGMye5v0heYM5dgSyrSwtxI2pJoytOGUbAje8surpHVR9a6q7t1lpV7L4yjCCZzCOXhwDXW4hQY0gUEIz/AKb87IeXHenY9Fa8HJZ47hD5zPH8v4jYA=</latexit>||
<latexit sha1_base64="OL9nvmLDwx37RGowQnds7mvEq0A=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ktFnssePFYwX5Au5Rsmm1Dk+ySZIWy7V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1PY2t7Z3Svulw4Oj45PyqdnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6V3md5+o0iySj2YWU1/gsWQhI9hk0nw+rA3LFbfqLoE2iZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRThelQaJpjMkUj2nfUokF1X66vHWBrqwyQmGkbEmDlurviRQLrWcisJ0Cm4le9zLxP6+fmLDhp0zGiaGSrBaFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt/eZN0alWvXnUfbirNRh5HES7gEq7Bg1towj20oA0EJvAMr/DmCOfFeXc+Vq0FJ585hz9wPn8A8+iOJQ==</latexit>||2<latexit sha1_base64="zcLjsqYgHMjRIYY9vxr4S1RVQGY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4sSSi2GPBi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJYPZpKgH9Gh5CFn1Fipcdkvld2KOwdZJV5OypCj3i999QYxSyOUhgmqdddzE+NnVBnOBE6LvVRjQtmYDrFrqaQRaj+bHzol51YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRVP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbIo2BG/55VXSuqp4NxW3cV2uVfM4CnAKZ3ABHtxCDe6hDk1ggPAMr/DmPDovzrvzsWhdc/KZE/gD5/MHct2Mqw==</latexit>� <latexit sha1_base64="a9APXYAQdj6DRb97QG/ZCzINJfg=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Koko9iIUvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38389hMqzWP5YCYJ+hEdSh5yRo2VGrf9UtmtuHOQVeLlpAw56v3SV28QszRCaZigWnc9NzF+RpXhTOC02Es1JpSN6RC7lkoaofaz+aFTcm6VAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1Y9TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZoQ/CWX14lrcuKd11xG1flWjWPowCncAYX4MEN1OAe6tAEBgjP8ApvzqPz4rw7H4vWNSefOYE/cD5/AIsdjLs=</latexit>=

Element-wise Sum

Figure 4.1: Illustration of our ConstellationNet pipeline where the bottom part is the network
architecture based on Conv-4 backbone, and the top part shows the constellation model. Our
proposed ConstellationNet consists of “Constell.” modules that perform explicit cell feature
clustering with self-attention for joint relation modeling.

generic feature embedding by optimizing the loss L(φ):

L(φ) = E{(x,y)}∼Dbaseℓ
(
{(φ(x),y)}

)
(4.1)

where {(x,y)} is a sampled mini-batch of data points and ℓ(·) is usually an episodic few-shot loss

[VBL+16] or a standard cross-entropy loss [CWL+20].

In the inference stage (a.k.a. meta-test stage), a typical few-shot benchmark evaluates

the model on K-way, N-shot classification tasks T drawn from Dnovel, where each task has a

support set and a query set, i.e. T = (T supp,T query). The support set T supp contains K classes

and each class has N images (e.g. K = 5, N ∈ {1,5}). Following [SSZ17], the prediction ŷ′ of a

query image x′ ∈ T query is given by the label of nearest prototype ck from T supp under a cosine

63

similarity d(·, ·):

ŷ′ = argmax
k

d
(
φ(x′),ck

)
, ck =

1
N ∑

(x,y)∈T supp, y=k
φ(x). (4.2)

An extended description of the few-shot learning framework can be found from Appendix 4.8.1.

The generalization ability of the feature extractor φ(x) is improved in terms of training scheme

(e.g. episodic learning [VBL+16]), network design (e.g. task condition [OLR18]) or objective

function (e.g. learnable distance [SYZ+18]). In our method, we propose a novel network design

by inserting constellation models into CNNs and strengthen the intermediate features.

4.4 Constellation Model

The concept of constellation has been introduced to the few-shot learning scenario in early

years [FFFP06], in which the appearance and the shape are independently learned in a mixture

model. In our work, we revisit the constellation model in an end-to-end learning framework: First,

we define the a cell feature as the individual local feature at a position in the feature map (see

Figure 4.1). We then employ cell feature clustering to model the underlying distribution of input

cell features, implying a part discovery procedure. We further obtain the distance map of the cell

features from clustering and then perform cell relation modeling to build spatial relationships.

4.4.1 Cell Feature Clustering

In convolutional neural networks (CNNs), the convolutional filters are learned to detect

the discriminative patterns from low-level to high-level through back-propagation [ZF14]. In fact,

the backward signal in the back-propagation is not necessarily needed to obtain a pattern detector.

With the feature map in the forward step of the CNN, we are able to cluster the individual features

at each location of the feature map (a.k.a. cell features) into multiple centers and employ the

64

cluster centers as filters [CN12, KDDD15]. Assume we obtain a convolutional feature map U with

batch size B, spatial size H×W and channels C. We disensemble the feature map U∈RB×H×W×C

into a cell features set U = {u1,u2, ...,un} where n = BHW and ui ∈RC is a cell feature. Naively,

we can conduct a k-means algorithm on input cell features U to solve the clustering objective:

min∑
i

∑
k

mik||ui−vk||22 s.t. mik ∈ {0,1}, ∑
k

mik = 1 (4.3)

where V = {v1,v2, ...,vK} is a set of cluster centers and mik indicates if the input cell feature

ui is assigned to cluster center vk. The clustering-based filters V can model the underlying cell

feature distributions and capture the most frequent features, which can be explicitly interpreted as

meaningful part patterns/part types. The hard assignment map mi = (mi1,mi2, ...,miK) of input

cell feature ui onto the cluster centers can be used as a part-based representation, providing

alternative information to the next layer in the CNN.

However, there are two issues remaining unsolved in the naive design: Firstly, CNNs

are typically optimized in a stochastic gradient descent (SGD) manner. Thus, in each forward

step, only a mini-batch of images are proceeded to provide cell features, which implies that the

cluster centers cannot extract the global feature distribution across the whole dataset. Secondly,

the hard assignment map has limited information due to its discrete representation. Therefore,

inspired by [Scu10], we design a mini-batch soft k-means algorithm to cluster the cell features

approximately:

• Initialization. Randomly initialize global cluster centers V = {v1,v2, ...,vK} and a counter

s = (s1,s2, ...,sK) = 0.

• Cluster Assignment. In forward step, given input cell features U = {u1,u2, ...,un}, we

compute the distance vector di = (di1,di2, ...diK) between input cell feature ui and all

cluster centers V . We then compute the soft assignment mik ∈ R and generate the current

mini-batch centers v′k:

65

dik = ||ui−vk||22, mik =
e−βdik

∑ j e−βdi j
, v′k =

∑i mikui

∑i mik
(4.4)

-0.0mm where β > 0 is an inverse temperature.

• Centroid Movement. We formulate a count update ∆s = ∑i mi by summing all assignment

maps mi = (mi1,mi2, ...miK). The current mini-batch centers v′k are then updated to the

global centers vk with a momentum coefficient η:

vk← (1−η)vk +ηv′k, η =
λ∆sk

sk +∆sk
(4.5)

• Counter Update. Counter s is updated and distance vectors {di} are reshaped and returned:

s← s+∆s (4.6)

With gradually updating global cluster centers, the above algorithm is able to address the

issue of limited data in a mini-batch. In addition, we reshape the distance vectors {di} of all input

cell features to a distance map D ∈ RB×H×W×K . Each distance vector di can be seen as a learned

cell code in codebook (dictionary) learning, which encodes a soft assignment of the visual word

(i.e. cell feature) onto the codewords (i.e. cluster centers) and implies a part representation. The

distance map D then can be viewed as a cell code map that represents a spatial distribution of

identified parts, which is passed to following layers. Empirically, it is observed that when ui

and vk are L2 normalized, the training procedure is more stable and the Euclidean distance dik

is equivalent to a cosine similarity up to an affine transformation. Details of the cell feature

clustering can be found in Appendix 4.8.9.

66

4.4.2 Cell Relation and Spatial Configuration Modeling

Before the deep learning era, traditional constellation models [FFFP06] decompose visual

information into appearance and shape representation. The appearance of different parts in the

image is treated independently while the shape of parts is assumed to have spatial connections.

In our constellation model, we establish the spatial relationship among the individual part-

based representations at a different location from the distance map as well. Specifically, we

apply the self-attention mechanism [VSP+17] to build the spatial relationship and enhance the

representation instead of using probabilistic graphical models in prior work [FFFP06].

In cell relation modeling, we add a positional encoding P ∈ RB×H×W×C following

[CMS+20] for spatial locations to the distance map D and obtain the input feature map FI

for query and key layers. For value layer, we directly flatten the distance map D to another input

feature map F′I:

FI = SpatialFlatten(D+P) ∈ RB×HW×K, F′I = SpatialFlatten(D) ∈ RB×HW×K (4.7)

The input feature maps FI,F′I are transformed into query, key and value {Fq, Fk, Fv} ⊂RB×HW×K

by three linear layers {Wq, Wk, Wv} ⊂ RK×K and further computes the output feature FA:

[Fq,Fk,Fv] = [FIWq,FIWk,F′IW
v] (4.8)

FA = Att(Fq,Fk,Fv) = softmax
(Fq(Fk)⊤√

K

)
Fv (4.9)

The softmax of dot product between query and key matrix Fq(Fk)⊤ ∈ RB×HW×HW calculates

the similarity scores in the embedding space among features across the spatial dimension. This

encodes the spatial relationships of input features and leads to an enhanced output feature

representation FA. Besides,
√

K in the denominator is to stabilize the gradient. In practice, we

67

adopt a multi-head attention to model the feature relation in the embedding subspaces:

FMHA = MultiHeadAtt(Fq,Fk,Fv) = [F1, ...,FJ]W, F j = Att(Fq
j ,F

k
j,F

v
j) (4.10)

In a J-head attention, the aforementioned similarity scores in the K′ = K
J dimensional embedding

subspace are calculated using the query, key and value from j-th head, i.e. {Fq
j , Fk

j, Fv
j} ⊂

RB×HW×K′ . The output features F j of each head are computed following Eq. 4.9. All the

output features {F1, ...,FJ} are concatenated back into K dimension embedding and further

processed with a linear layer W ∈ RK×K to generate multi-head output features FMHA. Such

multi-head attention settings could provide more diverse feature relation without introducing

extra parameters.

4.4.3 Integrate Constellation Model with CNNs

Our constellation model has the capability to capture explicit structured features and

encodes spatial relations among the cell features. The output features yield informative visual

cues which are able to strengthen the convolutional features. Thus, as shown in Figure 4.1,

we place the constellation model after the convolution operation to extract its unique explicit

features and concatenate them with the original convolutional feature map. A following 1×1

convolutional layer is used on the concatenated features to restore the channels of convolutional

feature map. In Table 4.3, we provide evidence that merging features from constellation model to

the CNN backbone can significantly improve the representation ability. In contrast, increasing

channels in CNNs alone to double the parameters (second row in Table 4.3) can only improve the

performance marginally. Optionally, we found it is useful to adopt auxiliary loss when training

the constellation model in deeper networks (e.g. ResNet-12). On top of each constellation model,

we conduct a standard classification to acquire additional regularization.

68

4.4.4 Why clustering and self-attention (clustering map + positional encod-

ing)?

As described in Section 4.1 and 4.2, classical constellation models [FPZ03, FH05] extract

parts with their spatial relationships; they are expressive but do not produce competitive results

on modern image benchmarks. CNN models [KSH12, HZRS16] attain remarkable results on

large-scale image benchmarks [DDS+09] but they are limited when training data is scarce. We

take the inspiration from the traditional constellation models, but with a realization that overcomes

their previous modeling limitations.

The main contribution of our work is a constellation module/block that performs cell-wise

clustering, followed by self-attention on the clustering distance map + positional encoding.

This separates our work from previous attempts, e.g. non-local block work [WGGH18] in which

long-range non-linear averaging is performed on the convolution features (no clustering, nor

positional encoding for the spatial configuration). The main properties of our constellation

block include: (1) Cell based dense representation as opposed to the sparse part representation

in [WWP00] to make the cells recursively modeled in the self-attention unit in a modularized

and general-purpose way. (2) Clustering to generate the cell code after clustering (codebook

learning) that attains abstraction and is not dependent on the CNN feature dimensions. (3)

Positional encoding (as in [CMS+20]) for cells to encode the spatial locations. (4) Tokenized

representation as expressive parts (code/clustering distance map + positional encoding) for the

cells. (5) Self-attention to jointly model the cell code and positional encoding to capture the

relationships between the parts together with their spatial configurations.

69

4.5 Experiment

4.5.1 Datasets

We adopt three standard benchmark datasets that are widely used in few-shot learning,

CIFAR-FS dataset [BHTV19], FC100 dataset [OLR18], and mini-ImageNet dataset [VBL+16].

Details about dataset settings in few-shot learning are in Appendix 4.8.2.

4.5.2 Network with Multi-Branch

We build ConstellationNet on two ProtoNet variants, namely Conv-4 and ResNet-12,

which are commonly used in few-shot learning. Details of networks and the optimization are in

Appendix.

We develop a new technique, Multi-Branch, to optimize standard classification loss and

prototypical loss simultaneously. We find the two training schemes, standard classification scheme

and prototypical scheme, can be a companion rather than a conflict. Details of these two schemes

can be found from Appendix 4.8.1. Different from standard network backbone used in prior

works, our embedding φ(x) is separated into two branches after a shared stem (Y-shape). Details

of our multi-branch design are elaborated in 4.8.10. The detailed ablation study is described in

Table 4.3.

Feature Augmentation. During the meta-testing stage, we discover that concatenating

features before average pooling to the final output can improve classification accuracy. The

advantage of this technique is that no additional training and model parameters are introduced.

4.5.3 Results on Standard Benchmarks

Table 4.1 and 4.2 summarize the results of the few-shot classification tasks on CIFAR-FS,

FC100, and mini-ImageNet, respectively. Our method shows a notable improvement over several

70

strong baselines in various settings. ConstellationNet significantly improves the performance

on shallow networks (Conv-4). In Table 4.2, our model outperforms SIB [HMX+20] 1-shot by

0.6% and 5-shot by 5.6%. In Table 4.1, our model outperforms MetaOptNet [LMRS19] by 5.95%

in 1-shot and 6.24% in 5-shot. For deep networks with rich features, the constellation module

still contributes to the performance, showing its complementary advantage to convolution. Our

ResNet-12 model beats [LMRS19] 1-shot result by 2.7% on FC100, 3.4% on CIFAR-FS, and

1.72% on mini-ImageNet. The consistent improvement over both shallow and deep networks

across all three datasets shows the generality of our method. Our ConstellationNet is orthogonal

to the margin loss based methods [LCL+20, LHL+20], and we also do not use extra cross-

modal information [XROOP19, LHL+20]. On the contrary, our model enhances the embedding

generalization ability by incorporating its own part-based representation. Additionally, to verify

the orthogonality of our method, we adapt the negative margin loss following [LCL+20] to our

Conv-4 models in Appendix 4.8.8. We observe ConstellationNet with negative margin brings

0.52% improvement to ConstellationNet, and obtains 6.93% gain compared with baseline on

mini-ImageNet.

4.6 Model Analysis

4.6.1 Architecture alternatives

In Table 4.3, we first study the role of each module in ConstellationNet, where the number

of parameters is controlled approximately equivalent to the baseline’s size. Our constellation

model brings 6.41% and 2.59% improvements over baseline on 1-shot Conv-4 and ResNet-

12 results. Combined with our multi-branch training procedure, the model further improves

additional 1.34% and 1.26% on 1-shot Conv-4 and ResNet-12, respectively. Finally, feature

augmentation from penultimate layer to final output embedding brings additional 0.45% and

0.27% improvements on two variants.

71

Table 4.1: Comparison to prior work on mini-ImageNet. Average 5-way classification
accuracies (%) on mini-ImageNet meta-test split are reported with 95% confidence intervals.
Results of prior works are adopted from [LMRS19] and original works. † used extra cross-modal
information.

Model Backbone mini-ImageNet 5-way

1-shot 5-shot
Meta-Learning LSTM [RL17] Conv-4 43.44 ± 0.77 60.60 ± 0.71
Matching Networks [VBL+16] Conv-4 43.56 ± 0.84 55.31 ± 0.73
Prototypical Networks [SSZ17] Conv-4 49.42 ± 0.78 68.20 ± 0.66
Transductive Prop Nets [LLP+18] Conv-4 55.51 ± 0.86 69.86 ± 0.65
MetaOptNet [LMRS19] Conv-4 52.87 ± 0.57 68.76 ± 0.48
Negative Margin [LCL+20] Conv-4 52.84 ± 0.76 70.41 ± 0.66

ConstellationNet (ours) Conv-4 58.82 ± 0.23 75.00 ± 0.18

SNAIL [MRCA18] ResNet-12 55.71 ± 0.99 68.88 ± 0.92
TADAM [OLR18] ResNet-12 58.50 ± 0.30 76.70 ± 0.30
TapNet [YSM19] ResNet-12 61.65 ± 0.15 76.36 ± 0.10
Variational FSL [ZZN+19] ResNet-12 61.23 ± 0.26 77.69 ± 0.17
MetaOptNet [LMRS19] ResNet-12 62.64 ± 0.61 78.63 ± 0.46
CAN [HCB+19] ResNet-12 63.85 ± 0.48 79.44 ± 0.34
SLA-AG [LHS20] ResNet-12 62.93 ± 0.63 79.63 ± 0.47
Meta-Baseline [CWL+20] ResNet-12 63.17 ± 0.23 79.26 ± 0.17
AM3 [XROOP19] † ResNet-12 65.21 ± 0.30 75.20 ± 0.27
ProtoNets + TRAML [LHL+20] ResNet-12 60.31 ± 0.48 77.94 ± 0.57
AM3 + TRAML [LHL+20] † ResNet-12 67.10 ± 0.52 79.54 ± 0.60
Negative Margin [LCL+20] ResNet-12 63.85 ± 0.81 81.57 ± 0.56

ConstellationNet (ours) ResNet-12 64.89 ± 0.23 79.95 ± 0.17

We also test the baseline model with extra channels in the Table 4.3. The new model only

shows slight improvements over original baseline, and is outperformed by our ConstellationNet

with a large margin. We also obtain WRN-28-10 baseline results to validate our improvement.

While making ResNet baselines deeper and wider, our ConstellationNet still outperforms this

strong baseline. In Figure 4.2 (e), we further study whether the performance gap between

ConstellationNet and baseline can be reduced by simply altering the baseline’s model complexity

using e.g. more convolution channels. Although the trend of baseline accuracy increases when

increasing the model parameter number gradually, the performance gap is still significant. This

validates our concept that modeling hierarchical part structures can greatly benefit features

learned from convolution operation, and obtain a more robust feature representation. In addition,

72

Table 4.2: Comparison to prior work on FC100 and CIFAR-FS. Average 5-way classification
accuracies (%) on CIFAR-FS and FC100 meta-test split are reported with 95% confidence
intervals. Results of prior works are adopted from [LMRS19] and original works.

Model Backbone CIFAR-FS 5-way FC100 5-way

1-shot 5-shot 1-shot 5-shot
MAML [FAL17] Conv-4 58.9 ± 1.9 71.5 ± 1.0 - -
Prototypical Networks [SSZ17] Conv-4 55.5 ± 0.7 72.0 ± 0.6 - -
Relation Networks [SYZ+18] Conv-4 55.0 ± 1.0 69.3 ± 0.8 - -
R2D2 [BHTV19] Conv-4 65.3 ± 0.2 79.4 ± 0.1 - -
SIB [HMX+20] Conv-4 68.7 ± 0.6 77.1 ± 0.4 - -

ConstellationNet (ours) Conv-4 69.3 ± 0.3 82.7 ± 0.2 - -

Prototypical Networks [SSZ17] ResNet-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
TADAM [OLR18] ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4
MetaOptNet-RR [LMRS19] ResNet-12 72.6 ± 0.7 84.3 ± 0.5 40.5 ± 0.6 55.3 ± 0.6
MetaOptNet-SVM [LMRS19] ResNet-12 72.0 ± 0.7 84.2 ± 0.5 41.1 ± 0.6 55.5 ± 0.6

ConstellationNet (ours) ResNet-12 75.4 ± 0.2 86.8 ± 0.2 43.8 ± 0.2 59.7 ± 0.2

Table 4.3: Effectiveness of modules. Average classification accuracies (%) on mini-ImageNet
meta-test split. We compare our ConstellationNet with alternative architectures including the
baseline and the modified baseline with extra channels based on Conv-4 and ResNet-12. We
also include a baseline with WideResNet-28-10 [ZK16] backbone for comparison.

Baseline
Cell Cell Multi Feature Extra 1x1 #Params Conv-4 ResNet-12Feature Relation

Clustering Modeling Branch Augment Channels Convolution Conv-4/Res-
12

1-shot 5-shot 1-shot 5-shot

✓ 117K/8.0M 50.62 ±
0.23

68.40 ±
0.19

60.77 ±
0.22

78.76 ±
0.17

✓ ✓ 222K/16M 51.76 ±
0.22

69.54 ±
0.18

61.45 ±
0.22

79.33 ±
0.16

✓ ✓ 146K/8.3M 53.34 ±
0.23

70.61
±0.19

62.24 ±
0.23

79.55 ±
0.16

✓ ✓ 184K/9.7M 55.92 ±
0.23

73.02 ±
0.18

62.75 ±
0.23

79.21 ±
0.17

✓ ✓ ✓ 192K/8.4M 55.46 ±
0.23

72.52 ±
0.18

61.54 ±
0.24

76.51 ±
0.18

✓ ✓ ✓ 200K/8.4M 57.03 ±
0.23

74.09 ±
0.18

63.36 ±
0.23

79.72 ±
0.17

✓ ✓ ✓ ✓ 200K/8.4M 58.37 ±
0.23

74.52 ±
0.18

64.62 ±
0.23

79.60 ±
0.17

✓ ✓ ✓ ✓ ✓ 200K/8.4M 58.82 ±
0.23

75.00 ±
0.18

64.89 ±
0.23

79.95 ±
0.17

WRN WideResNet-28-10

✓ ✓ 36.5M 61.54 ±
0.25

79.41 ±
0.23

applying self-attention on the distance map (6-th row: 57.03% on Conv-4, 1-shot) achieves better

performance than directly applying it to the original cell features (i.e. convolutional feature map)

(4-th row: 55.92% on Conv-4, 1-shot). We also tried to replace the cell feature clustering module

73

with a 1x1 convolution layer (output dimension is equal to the number of clusters) (5-th row:

55.46% on Conv-4, 1-shot). It is worse than our results (6-th row) as well. We observe that the

1x1 convolution layer is less expressive than the cell feature clustering module, making it difficult

to extract enough context information during cell relation modeling.

4.6.2 Modules Analysis

Figure 4.2: Modules analysis. (a, b, c, d) We study the effectiveness of changing the number of
clusters, the number of heads in attention layer, and the layer indices with constellation based
on Conv-4, (e) We demonstrate the performance gain of our ConstellationNet is unmatched by
increasing the model complexity of our baselines. All experiments are done on mini-ImageNet.

In Figure 4.2 (a), we vary the number of clusters adapted in all layers to observe the

performance change. We found that increasing the number of clusters improves the accuracy in

general, and set clusters to 64 is optimal in terms of both model size and classification performance.

Figure 4.2 (b) shows the number of attention heads does not effect performance as much as the

number of cluster, and 8-head attention obtains 1.80% performance gain on the 1-shot setting

compared to 1-head attention. In Figure 4.2 (c, d), we also study the effectiveness of clustering

algorithm applied to different layers. The results show both early features and high-level features

benefit from introducing clusters algorithm into the original CNN architecture.

4.6.3 Visualization

Figure 4.3 demonstrates the visualization of cluster centers in each layer of Conv-4 model

on mini-ImageNet. In the upper part of the figure, each image shows patches corresponding to

74

Dog’s legs

Other legs

Unicycle wheels
(w/ human legs)

Human legs

Bird’s head

Beetles

Layer 1 Layer 2 Layer 3 Layer 4

Figure 4.3: Visualization of cluster centers. (Upper) We visualize four cluster centers in
each layer by showing patches associated with cell features that have the nearest distance to the
clustering center. (Lower) Identifying parts from two cluster centers in layer 4: Left one with
green box represents various types of legs. Right one with red box mostly shows beetles and
bird’s head, sharing a dotted structure.

the nearest cell features to a cluster center (i.e. with lowest Euclidean distance). It is observed

that clusters in early layers (e.g. layer 1,2) represent simple low-level patterns while the clusters

in high layers (e.g. layer 3,4) indicate more complex structures and parts. In the lower part of the

figure, we choose two cluster centers from layer 4 for further interpretation: The left one with

green box could possibly represent legs since it consists of various types of legs from human,

dog and other animals. The right one with the red box shows most nearest cell features to this

cluster center are parts with bird’s head or beetles, which share a dotted structure (i.e. black dots

on beetles / eyes on bird’s head).

The left side of Figure 4.4 shows the visualization of cell features that are assigned to

different clusters. For each image, we extract the assignment maps corresponding to three cluster

centers generated in the last constellation module of Conv-4 and find multiple cell features with

the highest assignments within each assignment map. The locations of cell features are projected

75

Figure 4.4: Visualization of the cells assignment and attention maps. (Left) Each color
represents a cluster, and each point, marked as "·", represents a cell assigned to a cluster center.
We demonstrate 6 samples for each class (bird, dog and tank). (Right) We visualize attention
maps of one query feature (at the location of red point in left part) with all key features. The
middle part shows the attention maps corresponding to 8 heads in the multi-head attention. The
right part shows an overlapped map of all attention maps.

back in the original image space, marked by three different colors of "·" in the raw image to show

three different feature clusters. For a given class of images, the same cluster centers are selected

for comparison across 6 samples. As shown in Figure 4.4, we observe part information of each

class is explicitly discovered. For the bird category, we can see different parts in each image,

including head (cyan "·"), body (purple "·") and tail (yellow "·"). For the dog category, we see

parts including heads (red "·"), legs (green "·") and body (blue "·"). For the tank category, we see

parts like track (light blue "·") and turret (pink "·").

The right side of Figure 4.4 visualizes the attention maps in the cell relation model. We

use the last constellation module in the ResNet-12 model for visualization since it captures

high-level features that better represent parts. We choose one query feature at the center of the

object and show its attention map to all key features. The middle part of the figure shows the

attention maps corresponding to 8 heads in the multi-head attention. It is observed that some

parts are identified such as head (second map in first row), legs (first two map in second row),

buttock (first map in first row) and body (second map in the second row). A merged attention

map by overlaying all 8 attention maps is presented at right part of the figure. It indicates that all

the attention heads together can extract the features of the whole object, which would be useful

76

for final classification.

4.7 Conclusion

In this work, we present ConstellationNet by introducing an explicit feature clustering

procedure with relation learning via self-attention. We implement a mini-batch soft k-means

algorithm to capture the cell feature distribution. With integrated implicit (standard CNN modules)

and explicit (cell feature clustering + cell relation modeling) representations, our proposed

ConstellationNet achieves significant improvement over the competing methods on few-shot

classification benchmarks.

4.8 Appendix

4.8.1 Few-Shot Learning Framework

In this section, we introduce background concepts of meta-learning and elaborate the

few-shot learning framework used in our ConstellationNet.

Meta-Learning in Few-Shot Classification. Current few-shot learning is typically formulated

as a meta-learning task [FAL17], in which an dataset Dbase is used to provide commonsense

knowledge and a dataset Dnovel for the few-shot classification. Dbase has the classes Cbase which

are disjoint from the Cnovel in Dnovel to ensure fairness. There are two stages, meta-training and

meta-test, in the meta-learning framework: In meta-training stage, we attempt to train a model to

learn generic features from Dbase. In meta-test stage, we adapt the model on the limited training

split from Dnovel and evaluate the performance of the model on the test split.

ProtoNet-Based Framework. In our ConstellationNet, we adopt ProtoNet [SSZ17] as the

base few-shot learning framework. In ProtoNet, the dataset Dnovel is represented by a series

77

of K-way N-shot tasks {T } where each task consists of a support set and a query set, i.e.

T = (T supp,T query). The support set T supp contains K classes and each class has N examples

from the training split of Dnovel, which are used to adapt the model in meta-test stage. The query

set T query from the test split of Dnovel is then used to evaluate the model.

The ProtoNet attempts to learn a generic feature extractor φ(x) on image x, and represent

a class k by the prototype ck, which is the average feature of examples from support set T supp

with this class:

ck =
1
|N| ∑

(x,y)∈T supp,y=k
φ(x) (4.11)

During the meta-test stage, we use the prototypes to compute the probability pk of a query

example x′ ∈ T query on class k and predict its label y′:

pk = p(y = k|x′,T supp) =
exp(d(φ(x′),ck))

∑k′ exp(d(φ(x′),ck′))
, y′ = argmax

k
pk. (4.12)

where d(·, ·) is a cosine similarity function (different from the Euclidean distance in [SSZ17]).

During the meta-training stage, there are two different training schemes: The prototypical

scheme from ProtoNet uses an episodic learning strategy that also formulates the dataset Dbase as

a series of tasks {T }. The negative log-likelihood loss L(φ) is optimized:

ℓ(T supp,T query) = E(x′,y′)∈T query− log p(y = y′|x′,T supp), (4.13)

L(φ) = ET =(T supp,T query)∼Dbaseℓ(T supp,T query). (4.14)

Another way is the standard classification scheme [CWL+20]: It simply uses Dbase as a

standard classification dataset {(x,y)} consisting of Q classes in total. Thus, a cross-entropy loss

L(φ) is optimized:

L(φ) = E(x,y)∼Dbase− log
exp(wy ·φ(x))

∑q exp(wq ·φ(x))
(4.15)

78

where wq is the linear weight for class q. In our ConstellationNet, we use the standard classifica-

tion scheme at default. For the experiment with multi-branch network, we use the prototypical

scheme and standard classification scheme for separate branches.

4.8.2 Datasets

The CIFAR-FS dataset [BHTV19] is a few-shot classification benchmark containing 100

classes from CIFAR-100 [KH+09]. The classes are randomly split into 64, 16 and 20 classes

as meta-training, meta-validation and meta-testing set respectively. For each class, it contains

600 images of size 32×32. We adopt the split from [LMRS19]. The FC100 dataset [OLR18] is

another benchmark based on CIFAR-100 where classes are grouped into 20 superclasses to void

the overlap between the splits. The mini-ImageNet dataset [VBL+16] is a common benchmark

for few-shot classification containing 100 classes from ILSVRC-2012 [DDS+09]. The classes are

randomly split into 64, 16 and 20 classes as meta-training, meta-validation and meta-testing set

respectively. For each class, it contains 600 images of size 84×84. We follow the commonly-used

split in [RL17], [LMRS19] and [CWL+20]. In all experiments, we conduct data augmentation

for the meta-training set of all datasets to match [LMRS19]’s implementation.

4.8.3 Network Backbone

Conv-4. Following [LMRS19], we adopt the same network with 4 convolutional blocks.

Each of the 4 blocks has a 3×3 convolutional layer, a batch normalization layer, a ReLU activation

and a 2×2 max-pooling layer sequentially. The numbers of filters are 64 for all 4 convolutional

layers.

ResNet-12. Following [CWL+20], we construct the residual block with 3 consecutive

convolutional blocks followed by an addition average pooling layer where each convolutional

block has a 3×3 convolutional layer, a batch normalization layer, a leaky ReLU activation, and

79

max-pooling layers. The ResNet-12 network has 4 residual blocks with each filter size set to 64,

128, 256, 512, respectively.

WRN-28-10. WideResNet expands the residual blocks by increasing the convolutional

channels and layers [ZK16]. WRN-28-10 uses 28 convolutional layers with a widening factor of

10.

4.8.4 Constellation Module Configuration

To achieve the best performance with constellation modules, we do not always fully enable

them after all the convolutional layers. For Conv-4, we use constellation modules after all four

convolutional layers, but the cell relation modeling module is disabled in first two constellation

modules due to the high memory consumption. For ResNet-12, we enable the constellation

modules after the convolutional layer 1,7,8,9 and disable the relation modeling module in the

first constellation module. We use the deep supervision in ResNet-12 to stablize the training of

constellation modules.

4.8.5 Self-attention settings

We follow the common practice in [VSP+17] to set the attention layer with residual

connections, dropout and layer normalization. The sine positional encoding follows settings in

[CMS+20].

4.8.6 Training Details

Optimization Settings. We follow implementation in [LMRS19], and use SGD optimizer

with initial learning rate of 1, and set momentum to 0.9 and weight decay rate to 5×10−4. The

learning rate reduces to 0.06, 0.012, and 0.0024 at epoch 20, 40 and 50. The inverse temperature

β is set to 100.0 in the cluster assignment step, and λ is set to 1.0 in the centroid movement step.

80

4.8.7 Ablation Study on the Number of Clusters

Table 4.4: Ablation study on the number of clusters for random and similar classes. We
investigate how similarities of images in the training dataset affect the optimal number of clusters.
The first group of experiments use training dataset with 30 similar classes while the second
group use 30 random classes from FC100 dataset, all of which performed on ResNet-12 with
Constellation module.

Clusters Similar Classes Random Classes

1-shot 5-shot 1-shot 5-shot

8 38.9 ± 0.2 52.8 ± 0.2 40.9 ± 0.2 54.5 ± 0.2
16 39.1 ± 0.2 51.8 ± 0.2 40.9 ± 0.2 54.9 ± 0.2
32 38.7 ± 0.2 52.3 ± 0.2 40.9 ± 0.2 54.7 ± 0.2
64 38.8 ± 0.2 52.3 ± 0.2 41.2 ± 0.2 54.9 ± 0.2
128 38.8 ± 0.2 52.1 ± 0.2 40.8 ± 0.2 54.7 ± 0.2

Table 4 studies the number of clusters needed for random and similar classes. The result

shows the optimal number of clusters are less affected by the number of clusters but more affected

by the similarity between classes. Less number of clusters are needed for dataset with classes of

high similarity, which aligns with our intuition, limited number of patterns exist in this dataset so

that small number of clusters are enough to represent its part-based information.

FC100 training dataset consists of 60 classes that are grouped evenly into 12 superclasses.

In the random classes group, the training dataset includes 6 randomly selected super-classes

(i.e., 30 classes) and models are trained with 8, 16, 32, 64 and 128 number of clusters. The

highest accuracy occurs at 16 clusters (1-shot: 39.12% in ResNet-12). In the similar classes

group, 30 classes are randomly sampled from the original training dataset and we repeat the same

experiments as above. The highest accuracy occurs at 64 clusters (1-shot: 41.22% in ResNet-12),

which is much more than the 16 clusters used for images from similar classes.

4.8.8 Additional Experiments with Negative Margin

Table 4.5 studies the use of negative margin loss [LCL+20] on our Conv-4 models. In the

negative margin loss, we use the inner-product similarity, the temperature coefficient β = 1.0 and

81

Table 4.5: Additional experiments with the use of negative margin. Average classification
accuracies (%) on mini-ImageNet meta-test split. We compare our ConstellationNet and baseline
with and without the negative margin loss based on Conv-4.

Baseline Cell Feature Cell
Relation

Negative Conv-4

Clustering Modeling Margin 1-shot 5-shot

✓ 50.62 ±
0.23

68.40 ±
0.19

✓ ✓ 51.42 ±
0.23

68.84 ±
0.19

✓ ✓ ✓ 57.03 ±
0.23

74.09 ±
0.18

✓ ✓ ✓ ✓ 57.55 ±
0.23

74.49 ±
0.18

the negative margin m =−0.5, which attains the best performance improvement on our models.

Besides, we do not have the fine-tune step during meta-test. Our baseline with the negative

margin loss obtains 0.80% improvement on 1-shot and 0.44% improvement on 5-shot compared

with the baseline. Similarly, our ConstellationNet with the negative margin loss achieves 0.52%

improvement on 1-shot and 0.40% improvement on 5-shot. The consistent improvement of

negative margin loss on the baseline and our ConstellationNet indicates that our constellation

module is orthogonal to the negative margin loss, and both modules can boost the performance

on few-shot classification.

4.8.9 Clarification on Clustering Procedure

In this section, we add more clarification on our cell feature clustering procedure in Sec.

4.4.1: During the training stage, the global cluster centers V = {vk} are updated by the computed

clustering centers {v′k} in current mini-batch. Each update to a cluster center vk is weighted by a

momentum coefficient η determined by the value of an associated counter sk, since we would

like to avoid large adjustment from the current mini-batch in order to stabilize the global cluster

centers. Besides, the mini-batches of examples are randomly drawn from the dataset following

[Scu10], without specialized design to optimize clustering learning. During the evaluation stage,

82

we fix the global cluster centers V in the forward step of our model, avoiding the potential

information leak or transduction from the test mini-batches.

4.8.10 Multi-Branch Details

Our embedding φ(x) is separated into two branches after a shared stem (Y-shape), which

is defined as φ(x) = {φcls(x),φproto(x)} and φcls(x) = gcls(f stem(x)), φproto(x) = gproto(f stem(x)).

Two branches φcls(x),φproto(x) are trained by standard classification and prototypical schemes

separately in a multi-task learning fashion. During the testing time, φcls(x) and φproto(x) are

concatenated together to compute distance between support prototypes and query images.

For our ConstellationNet, we split the network into two branches after the second convo-

lutional blocks (Conv-4) or the second residual blocks (ResNet-12). We keep the shared stem

identical to the network backbone and reduce the channels of two separate branches to match the

parameter size of the model without multi-branch.

4.8.11 Connection with Capsule Networks

A notable development to learning the explicit structured representation in an end-to-

end framework is the capsule networks (CapsNets) [SFH17]. The line of works on CapsNets

[SFH17, HSF18, KSTH19, TSGS20] intends to parse a visual scene in an interpretable and

hierarchical way. [SFH17] represents parts and objects in vector-based capsules with a dynamic

routing mechanism. [TSGS20] uses a stacked autoencoder architecture to model the hierarchical

relation among parts, objects and scenes. Here our ConstellationNet maintains part modeling by

enabling the joint learning of the convolution and constellation modules to simultaneously attain

implicit and explicit representations.

83

Acknowledgements

This chapter is based on the material “Attentional Constellation Nets for Few-Shot

Learning” by Weijian Xu*, Yifan Xu*, Huaijin Wang*, and Zhuowen Tu, which appears in

International Conference on Learning Representations (ICLR) 2021. The dissertation author is

the co-primary investigator and author of this material.

84

Chapter 5

On the Feasibility of Cross-Task Transfer

with Model-Based Reinforcement Learning

85

5.1 Introduction

Reinforcement Learning (RL) has achieved great feats across a wide range of areas,

most notably game-playing [MKS+13, SHM+16b, BBC+19, CHHS20]. However, traditional

RL algorithms often suffer from poor sample-efficiency and require millions (or even billions)

of environment interactions to solve tasks – especially when learning from high-dimensional

observations such as images. This is in stark contrast to humans that have a remarkable ability

to quickly learn new skills despite very limited exposure [DAP+18]. In an effort to reliably

benchmark and improve the sample-efficiency of image-based RL across a variety of problems,

the Arcade Learning Environment (ALE; [BNVB13]) has become a long-standing challenge

for RL. This task suite has given rise to numerous successful and increasingly sample-efficient

algorithms [MKS+13, BPK+20, KBM+20, SAH+20a, KYF21, HLNB21, YLK+21], notably

most of which are model-based, i.e., they learn a model of the environment [HS18a].

Z0

Offline Tasks

MuZero Offline Pretraining

Target Task

Action

Reward

Observation

Online

Finetuning

Stage 1: Offline Multi-Task Pretraining Stage 2: Online Finetuning On Target Task

 Concurrent Cross-Task Learning

Pretrained Model

Figure 5.1: Illustration of our XTRA pipeline. Model-Based Cross-Task Transfer (XTRA)
is a sample-efficient online RL framework with scalable pretraining and finetuning of learned
world models using auxiliary data from offline tasks.

Most recently, EfficientZero [YLK+21], a model-based RL algorithm, has demonstrated

impressive sample-efficiency, surpassing human-level performance with as little as 2 hours of

real-time game play in select Atari 2600 games from the ALE. This achievement is attributed, in

part, to the algorithm concurrently learning an internal model of the environment from interaction,

and using the learned model to imagine (simulate) further interactions for planning and policy im-

provement, thus reducing reliance on real environment interactions for skill acquisition. However,

86

current RL algorithms, including EfficientZero, are still predominantly assumed to learn both

perception, model, and skills tabula rasa (from scratch) for each new task. Conversely, humans

rely heavily on prior knowledge and visual cues when learning new skills – a study found that

human players easily identify visual cues about game mechanics when exposed to a new game,

and that human performance is severely degraded if such cues are removed or conflict with prior

experiences [DAP+18].

In related areas such as computer vision and natural language processing, large-scale

unsupervised/self-supervised/supervised pretraining on large-scale datasets [DCLT19c, BMR+20,

LLL+22, RKH+21, CND+22] has emerged as a powerful framework for solving numerous down-

stream tasks with few samples [ADL+22]. This pretraining paradigm has recently been extended

to visuo-motor control in various forms, e.g., by leveraging frozen (no finetuning) pretrained rep-

resentations [XRDM22, PRPG22] or by finetuning in a supervised setting [RZP+22b, LNY+22].

However, the success of finetuning for online RL has mostly been limited to same-task initializa-

tion of model-free policies from offline datasets [WLRL22, ZZG22], or adapting policies to novel

instances of a given task [MRCA17, JSS+20, HJS+21], with prior work citing high-variance

objectives and catastrophical forgetting as the main obstacles to finetuning representations with

RL [BHDAJ20, XRDM22].

In this work, we explore whether such positive transfer can be induced with current model-

based RL algorithms in an online RL setting, and across markedly distinct tasks. Specifically, we

seek to answer the following questions: when and how can a model-based RL algorithm such

as EfficientZero benefit from pretraining on a diverse set of tasks? We base our experiments

on the ALE due to cues that are easily identifiable to humans despite great diversity in tasks,

and identify two key ingredients – cross-task finetuning and task alignment – for model-based

adaptation that improve sample-efficiency substantially compared to models learned tabula rasa.

In comparison, we find that a naïve treatment of the finetuning procedure as commonly used in

supervised learning [PY10, DGE15, HFW+20, RZP+22b, LNY+22] is found to be unsuccessful

87

or outright harmful in an RL context.

Based on our findings, we propose Model-Based Cross-Task Transfer (XTRA), a frame-

work for sample-efficient online RL with scalable pretraining and finetuning of learned world

models using extra, auxiliary data from other tasks (see Figure 5.1). Concretely, our framework

consists of two stages: (i) offline multi-task pretraining of a world model on an offline dataset

from m diverse tasks, a (ii) finetuning stage where the world model is jointly finetuned on a target

task in addition to m offline tasks. By leveraging offline data both in pretraining and finetuning,

XTRA overcomes the challenges of catastrophical forgetting. To prevent harmful interference

from certain offline tasks, we adaptively re-weight gradient contributions in unsupervised manner

based on similarity to target task.

We evaluate our method and a set of strong baselines extensively across 14 Atari 2600

games from the Atari100k benchmark [KBM+20] that require algorithms to be extremely sample-

efficient. From Table 5.1, we observe that XTRA improves sample-efficiency substantially

across most tasks, improving mean and median performance of EfficientZero by 23% and 25%,

respectively.

5.2 Background

Problem setting. We model image-based agent-environment interaction as an episodic

Partially Observable Markov Decision Process (POMDP; [KLC98]) defined by the tuple M =

⟨O,A ,P ,ρ,r,γ⟩, where O is the observation space (pixels), A is the action space, P : O×A 7→ O

is a transition function, ρ is the initial state distribution, r : O×A 7→R is a scalar reward function,

and γ ∈ [0,1) is a discount factor. As is standard practice in ALE [BNVB13], we convert M to

a fully observable Markov Decision Process (MDP; [Bel57]) by approximating state st ∈ S at

time t as a stack of frames st
.
= {ot ,ot−1,ot−2, . . .} where o ∈ O [MKS+13], and redefine P ,ρ,r

to be functions of s. Our goal is then to find a (neural) policy πθ(a|s) parameterized by θ that

88

maximizes discounted return Eπθ
[∑t

t=1 γtr(st ,at)] where at ∼ πθ(a|s), st ∼ P (st ,at),s0 ∼ ρ, and

T is the episode horizon. For clarity, we denote all parameterization by θ throughout this work.

To obtain a good policy from minimal environment interaction, we learn a "world model" from

interaction data and use the learned model for action search. Define M as the target task that

we aim to solve. Then, we seek to first obtain a good parameter initialization θ that allows us

to solve task M using fewer interactions (samples) than training from scratch, i.e., we wish to

improve the sample-efficiency of online RL. We do so by first pretraining the model on an offline

(fixed) dataset that consists of transitions (s,a,r,s′) collected by unknown behavior policies in m

environments {M̃ i |M̃ i ̸= M ,1≤ i≤ m}, and then finetune the model by online interaction on

the target task.

EfficientZero [YLK+21] is a model-based RL algorithm based on MuZero [SAH+20a]

that learns a discrete-action latent dynamics model from environment interactions, and selects

actions by lookahead via Monte Carlo Tree Search (MCTS; [Abr87, Cou06, SHM+16b]) in the

latent space of the model. An overview of the three main components of the MuZero algorithm

can be break down as a representation (encoder) hθ, a dynamics (transition) function gθ, and

a prediction head fθ. Given an observed state st , EfficientZero projects the state to a latent

representation zt = hθ(st), and predicts future latent states zt+1 and instantaneous rewards r̂t

using an action-conditional latent dynamics function zt+1, r̂t = gθ(zt ,at). For each latent state,

a prediction network fθ estimates a probability distribution p̂ over (valid) actions a ∈ A , as

well as the expected state value v̂ of the given state, i.e., v̂t , p̂t = fθ(zt). Intuitively, hθ and gθ

allow EfficientZero to search for actions entirely in its latent space before executing actions in

the real environment, and fθ predicts quantities that help guide the search towards high-return

action sequences. Concretely, v̂ provides a return estimate for nodes at the lookahead horizon

(as opposed to truncating the cumulative sum of expected rewards) and p̂ provides an action

distribution prior that helps guide the search. We describe EfficientZero’s learning objective

between model prediction (p̂, v̂, r̂) and quantity targets (π,z,u) in Appendix 5.7.1. EfficientZero

89

improves the sample-efficiency of MuZero by introducing additional auxiliary losses during

training. We adopt EfficientZero as our backbone model and learning algorithm, but emphasize

that our framework is applicable to most model-based algorithms, including those for continuous

action spaces [HLBN19, HWS22].

5.3 Model-Based Cross-Task Transfer

We propose Model-Based Cross-Task Transfer (XTRA), a two-stage framework for

offline multi-task pretraining and cross-task transfer of learned world models by finetuning with

online RL. Specifically, we first pretrain a world model on offline data from a set of diverse

pretraining tasks, and then iteratively finetune the pretrained model on data from a target task

collected by online interaction. In the following, we introduce each of the two stages – pretraining

and finetuning – in detail.

5.3.1 Offline Multi-Task Pretraining

In this stage, we aim to learn a single world model with general perceptive and dynamics

priors across a diverse set of offline tasks. We emphasize that the goal of pretraining is not to

obtain a truly generalist agent, but rather to learn a good initialization for finetuning to unseen

tasks. Learning a single RL agent for a diverse set of tasks is however difficult in practice, which

is only exacerbated by extrapolation errors due to the offline RL setting [KZTL20]. To address

such a challenge, we propose to pretrain the model following a student-teacher training setup in

the same spirit to DQN multi-task policy distillation in [RCG+16] and Actor-Mimic in [PBS16],

where teacher models are trained separately by offline RL for each task, and then distilled into a

single multi-task model using a novel instantiation of the MuZero Reanalyze [SHM+21].

For each pretraining task we assume access to a fixed dataset {D̃ i |1≤ i≤m} that consists

of trajectories from an unknown (and potentially sub-optimal) behavior policy. Importantly, we do

90

Target Task

Offline Task 1 Fixed

Data

Offline Task 2 Fixed

Data

Offline
Task 3 Fixed

Data

Online

Interaction

Pretrained

Model

Gradient Vectors

COS

COS

COS

Data from Online

Target Task and Offline Tasks

 Task Similarity Measurement

with Gradient Cosine Similarity

Re-weight Offline Tasks Periodically

Online

Finetuning

Task Weights Update

Figure 5.2: Illustration of our Concurrent Cross-Task Learning strategy, where we selectively
include a subset of the available pretraining tasks while finetuning on a target task.

not make any assumptions about the quality or the source of trajectories in the dataset, i.e., we do

not assume datasets to consist of expert trajectories. We first train individual EfficientZero teacher

models on each dataset for a fixed number of iterations in a single-task (offline) RL setting,

resulting in m teacher models {π̃i
ψ |1≤ i≤ m}. After training, we store the model predictions,

(p̂, v̂), from each teacher model π̃i
ψ together with environment reward u as the student’s quantity

targets (π,z,u) respectively for a given game M̃ i (see Appendix 5.7.1 for the definition of each

quantity). Next, we learn a multi-task student model πθ by distilling the task-specific teachers

into a single model via these quantity targets. Specifically, we optimize the student policy by

sampling data uniformly from all pretraining tasks, and use value/policy targets generated by

their respective teacher models rather than bootstrapping from student predictions as commonly

done in the (single-task) MuZero Reanalyze algorithm. This step can be seen as learning multiple

tasks simultaneously with direct supervision by distilling predictions from multiple teachers

into a single model. Empirically, we find this to be a key component in scaling up the number

of pretraining tasks. Although teacher models may not be optimal depending on the provided

offline datasets, we find that they provide stable (due to fixed parameters during distillation)

targets of sufficiently good quality. The simpler alternative – training a multi-task model on all

m pretraining tasks simultaneously using RL is found to not scale beyond a couple of tasks in

practice, as we will demonstrate our experiments in Appendix 5.7.3. After distilling a multi-task

student model, we now have a single set of pretrained parameters that can be used for finetuning

to a variety of tasks via online interaction, which we introduce in the following section.

91

5.3.2 Online Finetuning on a Target Task

In this stage, we iteratively interact with a target task (environment) to collect interaction

data, and finetune the pretrained model on data from the target task. However, we empirically

observe that directly finetuning a pretrained model often leads to poor performance on the target

task due to catastrophical forgetting. Specifically, the initial sub-optimal data collected from the

target task can cause a large perturbation in the original pretrained model parameters, ultimately

erasing inductive priors learned during pretraining. To overcome this challenge, we propose a

concurrent cross-task learning strategy: we retain offline data from the pretraining stage, and

concurrently finetune the model on both data from the target task, as well as data from the

pretraining tasks. While this procedure addresses catastrophical forgetting, interference between

the target task and certain pretraining tasks can be harmful for the sample-efficiency in online

RL. As a solution, gradient contributions from offline tasks are periodically re-weighted in an

unsupervised manner based on their similarity to the target task. Figure 5.2 shows the specific

concurrent cross-task learning procedure for target task finetuning in our framework.

At each training step t, we jointly optimize the target online task M and m offline (auxil-

iary) tasks {M̃ i |M̃ i ̸= M ,1≤ i≤ m} that were used during the offline multi-task pretraining

stage. Our online finetuning objective is defined as:

Ladapt
t (θ) = Lez

t (M)+
m

∑
i=1

η
iLez

t (M̃ i) (5.1)

where Lez is the ordinary (single-task) EfficientZero objective (see Appendix 5.7.1), and ηi are

dynamically (and independently) updated task weights for each of the m pretraining tasks. The

target task loss term maintains a constant task weight of 1. During online finetuning, we use

distillation targets from teachers obtained from each pretraining game, and use MuZero Reanalyze

to compute targets for the target task for which we have no teacher available.

In order to dynamically re-weight task weights ηi throughout the training process, we

break down the total number of environment steps (i.e., 100k in our experiments) into even

92

T -step cycles (intervals). Within each cycle, we spend first N-steps to compute an updated ηi

corresponding to each offline task M̃ i. The new ηi will then be fixed during the remaining T −N

steps in the current cycle and the first N steps in the next cycle. We dynamically assign the task

weights by measuring the “relevance” between each offline task M̃ i and the (online) target task

M . Inspired by the conflicting gradients measurement for multi-task learning in [YKG+20], we

compute the cosine similarity between loss gradients G̃ i
n from Lez

n (M̃ i) and Gn from Lez
n (M)

given by

Sim(M̃ i,M) =
G̃ i

n ·Gn

∥G̃ i
n∥∥Gn∥

. (5.2)

Within the N-step update, we maintain a task-specific counter si and the new task weights

ηi can be reset by ηi = si

N at the beginning of each every T -cycle. The procedure for obtaining

si is described in Appendix 5.7.2. Concretely, Sim(M̃ i,M) measures the angle between two

task gradients G̃ i
n and Gn. Intuitively, we aim to (approximately) prevent gradient contributions

from the offline tasks from conflicting with the gradient update direction for the target task by

regulating offline tasks objectives with task weights η. While re-weighting task weights at every

gradient update would result in the least amount of conflicting gradients, it is prohibitively costly

to do so in practice. However, we empirically find the cosine similarity of task gradients to be

strongly correlated in time, i.e., the cosine similarity does not change much between consecutive

gradient steps. By instead updating task weights every N steps, our proposed technique mitigates

gradient conflicts at a negligible computational cost in contrast to the compute-intensive gradient

modification method proposed in [YKG+20]. Figure 5.3 shows adjustments to task weights

during finetuning for each of two distinct sets of pretraining and target tasks.

5.4 Experiments

We evaluate our method and baselines on 14 tasks from the limited-interaction Atari100k

benchmark [KBM+20] where only 100k environment steps are permitted. We seek to answer:

93

Assault Carnival Centipede Phoenix Demon Attack

Alien Amidar Bank Heist Wizard Of Wor Ms Pacman

(a) Cross-Task Transfer from 4 offline games (left) to 1 target game (right).

0 20 40 60 80 100
Environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 W
ei

gh
ts

DemonAttack

Assault
Carnival

Centipede
Phoenix

0 20 40 60 80 100
Environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 W
ei

gh
ts

MsPacman

Alien
Amidar

BankHeist
WizardOfWor

(b) Task weights.
Figure 5.3: Visualization of Concurrent Cross-Task Learning. (left) the model adapts to
the online target game while concurrently learns 4 offline games. (right) the figure shows the
task weights of the 4 offline games that are periodically recomputed based on their gradient
similarity to the target games (DemonAttack and MsPacman).

• How does our proposed framework compare to alternative pretraining and online RL

approaches with limited online interaction from the target task?

• How do the individual components of our framework influence its success?

• When can we empirically expect finetuning to be successful?

Experimental setup. We base our architecture and backbone learning algorithm on

EfficientZero [YLK+21] and focus our efforts on the pretraining and finetuning aspects of our

problem setting. We consider EfficientZero with two different network sizes to better position our

results: (i) the same network architecture as in the original EfficientZero implementation which

we simply refer to as EfficientZero, and (ii) a larger variant with 4 times more parameters in

the representation network (denoted EfficientZero-L). We use the EfficientZero-L variant as the

default network for our framework through our experiments, unless stated otherwise. However,

we find that our EfficientZero baseline generally does not benefit from a larger architecture, and

we thus include both variants for a fair comparison. We experiment with cross-task transfer

on three subsets of tasks: tasks that share similar game mechanics (for which we consider two

94

Table 5.1: Atari100k benchmark results (similar pretraining tasks). Methods are evaluated
at 100k environment steps. For each game, XTRA is first pretrained on all 4 other games from
the same category. Our main result is highlighted . We also include three ablations that remove
(i) cross-task optimization in finetuning (only online RL), (ii) the pretraining stage (random
initialization), and (iii) task re-weighting (constant weights of 1). We also include zero-shot
performance of our method for target tasks in comparison to behavioral cloning. Mean of 5
seeds and 32 evaluation episodes.

Category Game
Ablations (XTRA) Zero-Shot

BC Efficient Efficient XTRA w.o. w.o. w.o. task BC XTRA

(finetuned) Zero Zero-L (Ours) cross-task pretraining weights (Ours)

Shooter Assault 838.4 1027.1 1041.6 1294.6 1246.4 1257.5 1164.2 0.0 92.8
Carnival 1952.4 3022.1 2784.3 3860.9 3544.4 2370.0 3071.6 93.75 719.3
Centipede 1814.1 3322.7 2750.7 5681.4 3833.2 6322.7 5484.1 162.2 1206.8
Demon Attack 825.5 11523.0 4691.0 14140.9 6381.5 9486.8 51045.9 73.8 113.6
Phoenix 427.6 10954.9 3071.0 14579.8 10797.3 9010.6 22873.9 0.0 8073.4

Mean Improvement 0.42 1.00 0.69 1.36 1.02 1.11 2.06 0.02 0.29
Median Improvement 0.55 1.00 0.83 1.28 1.15 0.82 1.65 0.01 0.24

Maze Alien 152.9 695.0 641.5 954.8 722.8 703.6 633.6 108.1 294.1
Amidar 25.5 109.7 84.2 90.2 121.8 70.8 69.7 0.0 5.2
Bank Heist 178.8 246.1 244.5 304.9 280.1 225.1 261.4 0.0 7.3
Ms Pacman 550.0 1281.4 1172.8 1459.7 1011.1 1122.6 809.2 147.6 448.9
Wizard Of Wor 163.8 1033.1 928.8 985.0 1246.1 654.4 263.5 100.0 9.4

Mean Improvement 0.35 1.00 0.90 1.11 1.06 0.82 0.70 0.07 0.17
Median Improvement 0.23 1.00 0.92 1.14 1.11 0.88 0.64 0.10 0.05

Overall Mean Improvement 0.39 1.00 0.79 1.23 1.04 0.96 1.38 0.05 0.23
Median Improvement 0.33 1.00 0.91 1.25 1.12 0.85 1.04 0.02 0.16

Shooter and Maze categories), and tasks that have no discernible properties in common (referred

to as Diverse). We measure performance on individual Atari games by absolute scores, and also

provide aggregate results as measured by mean and median scores across games, normalized by

human performance or EfficientZero performance at 100k environment steps. All of our results

are averaged across 5 random seeds (see Appendix 5.7.4 for more details). We provide details on

our pretraining dataset in Appendix 5.7.6.

Baselines. We compare our method against 7 prior methods for online RL that represent

the state-of-the-art on the Atari100k benchmark (including EfficientZero), a multi-task behavior

cloning policy pretrained on the same offline data as our method does for zero-shot performance

on the target task and the performance after finetuning on the target task (see Appendix 5.7.14

for details), and a direct comparison to CURL [SLA20], a strong model-free RL baseline, under

an offline pretraining + online finetuning setting. We also include a set of ablations that include

95

EfficientZero with several different model sizes and pretraining/finetuning schemes. The former

baselines serve to position our results with respect to the state-of-the-art, and the latter baselines

and ablations serve to shed light on the key ingredients for successful multi-task pretraining and

finetuning.

5.4.1 Results & Discussion

We introduce our results in the context of each of our three questions, and discuss our

main findings.

1. How does our proposed framework compare to alternative pretraining and online

RL approaches with limited online interaction from the target task?

Tasks with similar game mechanics. We first investigate the feasibility of finetuning

models that are pretrained on games with similar mechanics. We select 5 shooter games and 5

maze games for this experiment. Results for our method, baselines, and a set of ablations on the

Atari100k benchmark are shown in Table 5.1. For completeness, we also provide learning curves

in Figure 5.9. We find that pretraining improves sample-efficiency substantially across most

tasks, improving mean and median performance of EfficientZero by 23% and 25%, respectively,

overall. Interestingly, XTRA also had a notable zero-shot ability compared to a multi-game

Behavioral Cloning baseline that is trained on the same offline dataset. We also consider three

ablations: (1) XTRA without cross-task: a variant of our method that naively finetunes the

pretrained model without any additional offline data from pretraining tasks during finetuning, (2)

XTRA without pretraining: a variant that uses our concurrent cross-task learning (i.e., leverages

offline data during finetuning) but is initialized with random parameters (no pretraining), and

finally (3) XTRA without task weights: a variant that uses constant weights of 1 for all task loss

terms during finetuning. We find that XTRA achieves extremely high performance on 2 games

(DemonAttack and Phoenix) without dynamic task weights, improving over EfficientZero by as

much as 343% on DemonAttack. However, its median performance is overall low compared to our

96

0 20 40 60 80 100
Environment steps (×103)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d
Sc

or
e

(a) Target Task Relevance to Cross-Tasks

EfficientZero
EfficientZero-L

Shooter to Shooter
Maze to Shooter

0 20 40 60 80 100
Environment steps (×103)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d
Sc

or
e

(b) Frozen Pretrained Representation

EfficientZero
EfficientZero-L

XTRA (Ours)
XTRA w. Frozen h

0 20 40 60 80 100
Environment steps (×103)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d
Sc

or
e

(c) Model Size

EfficientZero
EfficientZero-L

XTRA (Ours)
XTRA-L (Ours)

0 20 40 60 80 100
Environment steps (×103)

0.5

1.0

1.5

2.0

2.5

Im
pr

ov
em

en
t R

at
io

(d) Step-wise Improvement Ratio

EfficientZero
EfficientZero-L

XTRA (Ours)

Figure 5.4: (a) Effectiveness of Task Relavance, (b) Frozen Representation, (c) Model Size,
and (d) Environment Steps. We visualize model performance on aggregated scores (5 seeds)
from 5 shooter games.

default variant that uses dynamic weights. We conjecture that this is because some (combinations

of) games are more susceptible to gradient conflicts than others.

Tasks with diverse game mechanics. We now consider a more diverse set of pretraining

and target games that have no discernible properties in common. Specifically, we use the

following tasks for pretraining: Carnival, Centipede, Phoenix, Pooyan, Riverraid, VideoPinball,

WizardOfWor, and YarsRevenge, and evaluate our method on 5 tasks from Atari100k. Results are

shown in Table 5.2. We find that XTRA advances the state-of-the-art in a majority of tasks on the

Atari100k benchmark, and achieve a mean human-normalized score of 187% vs. 129% for the

previous SOTA, EfficientZero. We perform the same set of the ablations as we do for tasks with

similar game mechanics with XTRA, and the results are shown in Table 5.6 from Appendix 5.7.8.

Additionally, we include an ablation that examines the effect of the number of pretrained tasks on

later finetuning performance. Details and results for this ablation are shown in Table 5.7 from

Appendix 5.7.9.

Model-free comparisons. For both settings (e.g., tasks with similar & diverse game

mechanics), we also compare our framework with a strong model-free baseline, CURL [SLA20],

where CURL is pretrained on the same pretraining tasks as XTRA is, and later finetuned to each

of the target tasks. We find that pretraining does not improve the performance of this model-free

baseline as consistently as for our model-based framework, XTRA, under both settings. More

details and results on this comparison can be found in Table 5.4 and 5.5 from Appendix 5.7.7.

2. How do the individual components of our framework influence its success?

97

Table 5.2: Atari100k benchmark results (diverse pretraining tasks). XTRA results use the
same set of pretrained model parameters obtained by offline pretraining on 8 diverse games.
Mean of 5 seeds each with 32 evaluation episodes. Our result is highlighted . All other results
are adopted from EfficientZero [YLK+21]. We also report human-normalized mean and median
scores.

Game XTRA (Ours) EfficientZero Random Human SimPLe OTRainbow DrQ SPR MuZero CURL

Assault 1742.2 1263.1 222.4 742.0 527.2 351.9 452.4 571.0 500.1 600.6
BattleZone 14631.3 13871.2 2360.0 37187.5 5184.4 4060.6 12954.0 16651.0 7687.5 14870.0
Hero 10631.8 9315.9 1027.0 30826.4 2656.6 6458.8 3736.3 7019.2 3095.0 6279.3
Krull 7735.8 5663.3 1598.0 2665.5 4539.9 3277.9 4018.1 3688.9 4890.8 4229.6
Seaquest 749.5 1100.2 68.4 42054.7 683.3 286.9 301.2 583.1 208.0 384.5

Normed Mean 1.87 1.29 0.00 1.00 0.70 0.41 0.62 0.65 0.77 0.75
Normed Median 0.35 0.33 0.00 1.00 0.08 0.18 0.30 0.41 0.15 0.36

A deeper look at task relevance. While our previous experiments established that XTRA

benefits from pretraining even when games are markedly different, we now seek to better quantify

the importance of task relevance. We compare the online finetuning performance of XTRA in

two different settings: (1) pretraining on 4 shooter games and finetuning to 5 new shooter games,

and (2) pretraining on 4 maze games and finetuning to the same 5 shooter games. Aggregate

results across all 5 target tasks are shown in Figure 5.4 (a). Unsurprisingly, we observe that offline

pretraining and concurrently learning from other shooter games significantly benefit the online

target shooter games through training, with particularly large gains early in training. On the

contrary, pretraining on maze games and finetuning to shooter games show similar performance

compared to EfficientZero trained from scratch. This result indicates that (1) selecting pretraining

tasks that are relevant to the target task is key to benefit from pretraining, and (2) in the extreme

case where there are no pretraining tasks relevant to the target task, finetuning with XTRA

generally does not harm the online RL performance since it can automatically assign small

weights to the pretraining tasks.

Which components transfer in model-based RL? Next, we investigate which model

component(s) are important to the success of cross-task transfer. We answer this question by only

transferring a subset of the different model components – representation h, dynamics function g,

and prediction head f – to the online finetuning stage and simply using a random initialization

98

0 20 40 60 80 100
Environment steps (×103)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d
Sc

or
e

Model Components

Load None
Load h+ g

Load h
Load h+ g+ f

Figure 5.5: Effectiveness of model components. The aggregated scores from 5 shooter games
by loading parameters of different pretrained model components. Mean of 5 seeds; shaded area
indicates 95% CIs.

for the remaining components. Results are shown in Figure 5.5. Interestingly, we find that only

transferring the pretrained representation h to the online RL stage only improves slightly over

learning from scratch, especially in the early stages of online RL. In comparison, loading both the

pretrained representation and dynamics function accounts for the majority of the gains in XTRA,

whereas loading the prediction heads has no significant impact on sample-efficiency (but matters

for zero-shot performance). We conjecture that this is because learning a good dynamics function

is relatively more difficult from few samples than learning a task-specific visual representation,

and that the prediction head accounts for only a small amount of the overall parameters in the

model. Finally, we hypothesize that the visual representation learned during pretraining will

be susceptible to distribution shifts as it is transferred to an unseen target task. To verify this

hypothesis, we consider an additional experiment where we transfer all components to new tasks,

but freeze the representation h during finetuning, i.e., it remains fixed. Results for this experiment

are shown in Figure 5.4 (b). We find that, although this variant of our framework improves over

training from scratch in the early stages of training, the frozen representation eventually hinders

the model from converging to a good model, which is consistent with observations made in

(supervised) imitation learning [PRPG22].

Scaling model size. In this experiment, we investigate whether XTRA benefits from

99

larger model sizes. Since dynamics network g and prediction network f are used in MCTS search,

increasing the parameter counts for these two networks would increase inference/training time

complexity significantly. However, increasing the size of the representation network h has a

relatively small impact on overall inference/training time. We compare the performance of our

method and EfficientZero trained from scratch with each of our two model sizes, the original

EfficientZero architecture and a larger variant (denoted EfficientZero-L); results are shown in

Figure 5.4 (c). We find that our default, larger variant of XTRA (denoted XTRA-L in the figure) is

slightly better than the smaller model size. In comparison, EfficientZero-L, performs significantly

worse than the smaller variant of EfficientZero.

Relative improvement vs. environment steps. Finally, we visualize the average im-

provement over EfficientZero throughout training in Figure 5.4 (d). Results show that XTRA is

particularly useful in the early stages of training, i.e., in an extremely limited data setting. We

therefore envision that cross-task pretraining could benefit many real-world applications of RL,

where environment interactions are typically constrained due to physical constraints.

3. When can we empirically expect finetuning to be successful?

Based on Table 5.1 and 5.2, we conclude that cross-task transfer with model-based RL is

feasible. Further, Figure 5.4 (a) shows that our XTRA framework benefits from online finetuning

when pretraining tasks are relevant, and both representation and dynamics networks contribute to

its success (Figure 5.5).

5.5 Related Work
Pretrained representations are widely used to improve downstream performance in

learning tasks with limited data or resources available, and have been adopted across a multitude

of areas such as computer vision [GDDM14, DGE15, HFW+20], natural language processing

[DCLT19c, BMR+20], and audio [vdOLV18]. By first learning a good representation on a large

dataset, the representation can quickly be finetuned with, e.g., supervised learning on a small

100

labelled dataset to solve a given task [PY10]. For example, [HFW+20] show that contrastive

pretraining on a large, unlabelled dataset learns good features for ImageNet classification, and

[BMR+20] show that a generative model trained on large-scale natural language data can be

used to solve unseen tasks given only a few examples. While this is a common paradigm for

problems that can be cast as (self-)supervised learning problems, it has seen comparably little

adoption in RL literature. This discrepancy is, in part, attributed to optimization challenges in RL

[BHDAJ20, HSW21, XRDM22, WLRL22], as well as a lack of large-scale datasets that capture

both the visual, temporal, and control-relevant (actions, rewards) properties of RL [HYZ+22]. In

this work, we show that – despite these challenges – modern model-based RL algorithms can still

benefit substantially from pretraining on multi-task datasets, but require a more careful treatment

during finetuning.

Sample-efficient RL. Improving the sample-efficiency of visual RL algorithms is a

long-standing problem and has been approached from many – largely orthogonal – perspec-

tives, including representation learning [KGI+19, YZK+19, SLA20, SAG+21], data augmen-

tation [LLS+20, KYF21, HSW21], bootstrapping from demonstrations [ZZP+20] or offline

datasets [WLRL22, ZZG22, BAZ+22], using pretrained visual representations for model-free RL

[SK21, XRDM22, ZHC+22], and model-based RL [HS18a, FL17, NPD+18, HLF+19, KBM+20,

SAH+20a, HLNB21, YLK+21, HWS22, SLJA22, HLS+23]. We choose to focus our efforts on

sample-efficiency from the perspective of pretraining in a model-based context, i.e., jointly learn-

ing perception and dynamics. Several prior works consider these problems independently from

each other: [XRDM22] shows that model-free policies can be trained with a frozen pretrained

visual backbone, and [SLJA22] shows that learning a world model on top of features from a

visual backbone pretrained with video prediction can improve model learning. Our work differs

from prior work in that we show it is possible to pretrain and finetune both the representation and

the dynamics using model-based RL.

Finetuning in RL. Gradient-based finetuning is a well-studied technique for adaptation

101

in (predominantly model-free) RL, and has been used to adapt to either changes in visuals or

dynamics [MRCA17, YCBI19, DSC+16, JSS+20, HJS+21, BHDAJ20, WLRL22, ZHC+22], or

task specification [XF21, WYY+22]. For example, [JSS+20] shows that a model-free policy for

robotic manipulation can adapt to changes in lighting and object shape by finetuning via rewards

on a mixture of data from the new and old environment, and recover original performance in less

than 800 trials. Similarly, [HJS+21] shows that model-free policies can (to some extent) also

adapt to small domain shifts by self-supervised finetuning within a single episode. Other works

show that pretraining with offline RL on a dataset from a specific task improve sample-efficiency

during online finetuning on the same task [ZZG22, WLRL22]. Finally, [LNY+22] shows that

offline multi-task RL pretraining via sequence modelling can improve offline finetuning on data

from unseen tasks. Our approach is most similar to [JSS+20] in that we finetune via rewards on

a mixture of datasets. However, our problem setting is fundamentally different: we investigate

whether multi-task pretraining can improve online RL on an unseen task across multiple axes of

variation.

5.6 Conclusion

In this paper, we propose Model-Based Cross-Task Transfer (XTRA), a framework for

sample-efficient online RL with scalable pretraining and finetuning of learned world models

using extra, auxiliary data from other tasks. We find that XTRA improves sample-efficiency

substantially across most tasks, improving mean and median performance of EfficientZero by

23% and 25%, respectively, overall. As a feasibility study, we hope that our empirical analysis

and findings on cross-task transfer with model-based RL will inspire further research in this

direction.

102

5.7 Appendix

5.7.1 XTRA/EfficientZero Objectives

XTRA uses the same learning objective as EfficientZero during both offline pretraining

and online finetuning, except the quantity targets are predicted by the teacher model during

distillation and concurrent learning for pretrained games instead of Muzero Reanalysis procedure.

Here, we explain the objectives of EfficientZero [YLK+21] and its predecessor MuZero

[SAH+20a]. To warrant the latent dynamics that can mirror the true states of the environment,

MuZero is trained to predict three necessary quantities directly relevant for planning: (1) the

policy target π obtained from visit count distribution of the MCTS (2) immediate reward u from

environment (3) bootstrapped value target z where z = ∑
k−1
i=0 γiui + γkvt+k. On top of MuZero,

EfficientZero adds a self-supervised consistency loss term, and predicts sum of environment

rewards from next k steps, ∑
k−1
i=0 γiui, instead of single-step reward. We refer reader to the original

manuscripts for implementation details. We present the learning objective for EfficientZero at

time step t with k unroll steps:

Lez
t (θ) =

K

∑
k=0
∥Lr(ut+k , r̂

k
t)∥22︸ ︷︷ ︸

reward

+λ1∥L p(πt+k , p̂k
t)∥22︸ ︷︷ ︸

policy

+λ2∥Lv(zt+k , v̂
k
t)∥22︸ ︷︷ ︸

value

+λ3∥Ls(st+1, ŝt+1)∥22︸ ︷︷ ︸
consistency

+ c||θ|| (5.3)

5.7.2 Task Weights Computation

Within the N-steps update, we maintain a task-specific counter si and update the counter

by ∆si
n at each step n as follows:

∆si
n =

 1, if Sim(M̃ i,M)> 0.1

0, otherwise

si = si +∆si
n (5.4)

103

At every N steps, the new task weights ηi are updated by ηi = si

N , and used in subsequent

finetuning objectives according to Equation 5.1. In practice, we start task weight updates at

10k steps to ensure enough data from the online target task has been collected for a meaningful

similarity measure. All task weights are initialized as 1 for the first 10k steps.

Figure 5.6 shows how task weights are adaptively adjusted by the model during 100k

environment steps during online finetuning stage for 10 games reported in Figure 5.9. Figure 5.7

shows the adjustments of task weights for 5 games reported in Figure 5.10.

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 W
ei

gh
ts

Assault Carnival Centipede DemonAttack Phoenix

0 20 40 60 80 100
Environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 W
ei

gh
ts

Alien

0 20 40 60 80 100
Environment steps (×103)

Amidar

0 20 40 60 80 100
Environment steps (×103)

BankHeist

0 20 40 60 80 100
Environment steps (×103)

MsPacman

0 20 40 60 80 100
Environment steps (×103)

WizardOfWor

Assault
Alien

Carnival
Amidar

Centipede
BankHeist

DemonAttack
MsPacman

Phoenix
WizardOfWor

Figure 5.6: Visualization of periodic task re-weighting with similar pretraining tasks. We
visualize task weights as a function of environment steps for each of our 10 tasks from Table
5.1. First row corresponds to shooter games and the bottom row corresponds to maze games.
We evaluate task weights on all tasks from the same category except for the target task itself.

0 20 40 60 80 100
Environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 W
ei

gh
ts

Assault

0 20 40 60 80 100
Environment steps (×103)

BattleZone

0 20 40 60 80 100
Environment steps (×103)

Hero

0 20 40 60 80 100
Environment steps (×103)

Krull

0 20 40 60 80 100
Environment steps (×103)

Seaquest

Carnival
Centipede

Phoenix
Pooyan

YarsRevenge
VideoPinball

WizardOfWor
Riverraid

Figure 5.7: Visualization of periodic task re-weighting with diverse pretraining tasks. We
visualize task weights as a function of environment steps for each of our 5 tasks from Table 5.2.
We evaluate task weights on all 8 tasks used during pretraining.

104

5.7.3 Distillation vs. Multi-Game Offline RL

Our method learns a multi-game world model from offline data via distillation of task-

specific world models trained with offline RL. An alternative way to obtain such a multi-game

model would be to directly train a single world model on the multi-game dataset with offline

RL. However, we find that learning such a model is difficult. A comparison between the two

approaches on four different pretraining games is shown in Figure 5.8. We observe that multi-

game offline RL (green) achieves low scores in all four pretraining games, whereas our wold

model obtained by distillation (orange) performs comparably to single-task world models (blue)

in 3 out of 4 tasks.

10 30 50 70 90 110
Environment steps (×103)

0

250

500

750

1000

1250

Ga
m

e
Sc

or
e

Alien

10 30 50 70 90 110
Environment steps (×103)

0

50

100

150

200
Amidar

10 30 50 70 90 110
Environment steps (×103)

0

100

200

300
BankHeist

10 30 50 70 90 110
Environment steps (×103)

0

1000

2000

3000 MsPacman

Offline Single Game Offline Multigame Distill Multigame

Figure 5.8: Distillation vs. multi-game offline RL. Results are shown on four pretraining tasks.
Single-game models (blue) are trained via offline RL on each individual task, whereas results for
multi-game offline RL (green) and our proposed distillation (orange) are obtained by evaluating
a single set of pretraining parameters. Distillation nearly matches single-task performance.

5.7.4 Scores for Individual Seeds

Our results in Table 5.1 are aggregated across 5 seeds. In Table 5.3, we report game scores

for each individual seed, as well as the mean, median, and standard deviation of game scores

for each game. We also list random and human scores obtained from [BPK+20], and calculate

the Human Normalized Score based on the formula: (scoreagent− scorerandom)/(scorehuman−

scorerandom) as in prior work. To the best of our knowledge, there are no human performance

results for the Carnival game, and we therefore exclude this game from the aggregate Human

105

0

500

1000

Ga
m

e
Sc

or
e

Assault

0

2000

4000

Carnival

0

2000

4000

6000

Centipede

0

5000

10000

15000

20000
DemonAttack

0

5000

10000

15000

Phoenix

0 20 40 60 80 100
Environment steps (×103)

0

500

1000

Ga
m

e
Sc

or
e

Alien

0 20 40 60 80 100
Environment steps (×103)

0

50

100

150
Amidar

0 20 40 60 80 100
Environment steps (×103)

0

100

200

300

BankHeist

0 20 40 60 80 100
Environment steps (×103)

0

500

1000

1500

MsPacman

0 20 40 60 80 100
Environment steps (×103)

0

500

1000

1500
WizardOfWor

BC XTRA (ours, zero-shot) EfficientZero EfficientZero-L XTRA (ours)

Figure 5.9: Atari100k benchmark results (similar pretraining tasks). We report unnor-
malized scores, aggregated across 5 seeds per game. Shaded area indicates 95% confidence
intervals.

Normalized Mean and Median Scores computed in Table 5.3.

Table 5.3: Scores for individual seeds. Per-seed game scores for our method, a random
behavior baseline, and human performance. We report both unnormalized and normalized scores
(Human Normalized Scores), as well as their aggregate results. Random and human scores are
obtained from [BPK+20]. We evaluate each random seed on 32 evaluation episodes at 100k
steps.

Game Score per Seed Aggregated Metrics References
Game Human

Seed 0 Seed 1 Seed 2 Seed 3 Seed 4 Mean Median Std Random Human Normed

Assault 1450.19 1356.53 1236.19 1215.12 1214.72 1294.55 1236.19 105.06 222.40 742.00 2.06
Carnival 3865.31 4867.50 4155.62 2601.88 3814.38 3860.94 3865.31 819.67 - -

Centipede 7596.38 6179.25 5380.41 5300.03 3950.88 5681.39 5380.41 1336.58 2090.90 12017.00 0.36
DemonAttack 10470.78 8051.25 27574.06 8117.81 16490.47 14140.88 10470.78 8258.35 152.10 1971.00 7.69

Phoenix 20875.94 10988.44 10521.88 15803.44 14709.06 14579.75 14709.06 4198.81 761.40 7242.60 2.13
Alien 569.69 807.50 814.06 1388.12 1194.38 954.75 814.06 329.77 227.80 7127.70 0.11

Amidar 93.00 104.34 76.47 97.38 79.59 90.16 93.00 11.84 5.80 1719.50 0.05
BankHeist 303.12 316.56 270.62 270.00 364.06 304.88 303.12 38.83 14.20 753.10 0.39
MsPacman 1109.69 1960.00 1865.94 1228.44 1134.38 1459.69 1228.44 417.48 307.30 6951.60 0.17

WizardOfWor 1275.00 687.50 1056.25 990.62 915.62 985.00 990.62 213.62 563.50 4756.50 0.10

Human Normed Mean 1.45
Human Normed Median 0.36

5.7.5 Additional Evaluation curves of XTRA on Atari100k benchmark

For completeness, Figure 5.9 and 5.10 include evaluation curves of XTRA on the games

for which we report final performance in Table 5.1 and 5.2.

106

0 20 40 60 80 100 120
Training steps (×103)

0

500

1000

1500

2000
Ga

m
e

Sc
or

e
Assault

0 20 40 60 80 100 120
Training steps (×103)

0

5000

10000

15000
BattleZone

0 20 40 60 80 100 120
Training steps (×103)

0

2500

5000

7500

10000

Hero

0 20 40 60 80 100 120
Training steps (×103)

0

2000

4000

6000

8000
Krull

0 20 40 60 80 100 120
Training steps (×103)

0

200

400

600

800
Seaquest

XTRA (ours) End of Environment steps

Figure 5.10: Atari100k benchmark results (diverse pretraining tasks). We report unnor-
malized scores, aggregated across 5 seeds per game. Shaded area indicates 95% confidence
intervals.

5.7.6 Offline Data Preparation

To train the model in offline multi-task pretraining stage, we use trajectories collected by

EfficientZero [YLK+21] on the Atari100k benchmark. For each pretraining game, we assume we

can access model checkpoints obtained every 10k steps from 120k training steps (the environment

step is capped at 100k), resulting in 12 model checkpoints. For each checkpoint, we evaluate the

model performance on the Atari environment following the same procedure from EfficientZero

and collect 64 trajectories. This translates to an average of 1M transitions per game, but varies

depending on episode length – for example, this only results in 636k transitions for the game

of Assault. Since trajectories are collected from model checkpoints both at the early and late

training stage within the 120k training steps, the collected data does not necessarily come from

an expert agent. Thus, we show that XTRA is effective even when pretraining data is suboptimal,

allowing us to learn from very diverse data sources.

5.7.7 Pretraining + Finetuning in Model-free RL

We compare the effectiveness of our framework, XTRA, with a strong model-free baseline,

CURL, that we also implement following a similar pretraining and finetuning scheme. This is in

contrast to the original formulation of CURL that does not leverage pretraining. We implement

our training scheme for CURL with the following setup: (1) pretrain a multi-task CURL model

on the same pretraining tasks as our framework uses (using offline data generated from training

107

individual CURL agents), and (2) directly finetune the pretrained model on the target task with

online RL for 100k environment steps.
Table 5.4: Comparison to the model-free method with diverse pretraining tasks The model
is pretrained with Carnival, Centipede, Phoenix, Pooyan, Riverraid, VideoPinball, WizardOfWor,
and YarsRevenge. Results for EfficientZero, CURL, Random, and Human are adopted from
EfficientZero [YLK+21]. All other results are based on the average of 5 runs.

Game
Model-Based Model-Free

Efficient XTRA CURL CURLft Random Human
Zero (Ours)

Assault 1263.1 1742.2 600.6 588.6 222.4 742.0
BattleZone 13871.2 14631.3 14870.0 16450.0 2360.0 37187.5
Hero 9315.9 10631.8 6279.3 6294.5 1027.0 30826.4
Krull 5663.3 7735.8 4229.6 3472.8 1598.0 2665.5
Seaquest 1100.2 749.5 384.5 385.5 68.4 42054.7

Normed Mean 1.29 1.87 0.75 0.60 0.00 1.00
Normed Median 0.33 0.35 0.36 0.40 0.00 1.00

5.7.8 XTRA Ablations for Tasks with Diverse Game Mechanics

We perform the same set of ablations for tasks that share diverse game mechanics as we

do for tasks that share similar game mechanics for XTRA. Results are shown in Table 5.6. Details

of each ablation can be found in Section 5.4.1.

5.7.9 Effects of Number of Tasks in Pretraining and Cross-Tasks in Fine-

tuning

We perform an additional ablation for tasks that share diverse game mechanics – whether

changing the number of tasks during pretraining would help or hurt the performance in later

cross-task finetuning. By reducing the number of tasks in pretraining, the model is exposed

to (1) less diverse game mechanics and (2) less offline training data in pretraining, and fewer

cross-tasks in finetuning. In this ablation, we gradually reduce the number of pretrained tasks

108

Table 5.5: Comparison to the model-free method with diverse pretraining tasks. For each
target game for finetuning, the model is first pretrained on all other 4 games from the same
category. All results are based on the average of 5 runs.

Category Game
Model-Based Model-Free

Efficient XTRA CURL CURLft

Zero (Ours)
Shooter Assault 1027.1 1294.6 590.2 461.2

Carnival 3022.1 3860.9 591.6 714.8
Centipede 3322.7 5681.4 4137.7 3731.0
DemonAttack 11523.0 14140.9 908.3 638.9
Phoenix 10954.9 14579.8 901.2 1168.4

Mean Improvement 1.00 1.36 0.44 0.39
Median Improvement 1.00 1.28 0.20 0.24

Maze Alien 695.0 954.8 905.2 782.6
Amidar 109.7 90.2 109.7 169.9
BankHeist 246.1 304.9 151.8 86.2
MsPacman 1281.4 1459.7 1421.6 1234.1
WizardOfWor 1033.1 985 1262.0 1244.4

Mean Improvement 1.00 1.11 1.05 1.04
Median Improvement 1.00 1.14 1.11 1.13

Overall Mean Improvement 1.00 1.23 0.74 0.72
Median Improvement 1.00 1.25 0.81 0.71

from 8 (Carnival, Centipede, Phoenix, Pooyan, Riverraid, VideoPinball, WizardOfWor, and

YarsRevenge), to 4 (Phoenix, WizardOfWor, VideoPinball, YarsRevenge), and to 2 (Phoenix,

VideoPinball). XTRA is reduced to EfficientZero-L when the number of pretrained tasks and

cross-tasks during finetuning is set to 0. We find that increasing the number of tasks during

pretraining (and later cross-task finetuning) mostly consistently improves XTRA performance.

5.7.10 Architectural Details

We adopt the architecture of EfficientZero [YLK+21]. For EfficientZero-L and XTRA, we

increase the number of residual blocks from 1 (default) to 4 (ours) in the representation network,

which we find to improve pretraining slightly for XTRA. However, we find that our baseline

109

Table 5.6: XTRA ablation with diverse pretraining tasks. Results for EfficientZero, Random,
and Human are adopted from EfficientZero [YLK+21]. All other results are based on the average
of 5 runs.

Game
Ablations (XTRA)

Efficient XTRA w.o. w.o. w.o. task Random Human

Zero (Ours) cross-task pretraining weights

Assault 1263.1 1742.2 1716.11 1183.58 1605.07 222.4 742.0
BattleZone 13871.2 14631.3 12918.8 8718.8 10087.5 2360.0 37187.5
Hero 9315.9 10631.8 8275.3 8672.9 7755.4 1027.0 30826.4
Krull 5663.3 7735.8 5910.7 6767.3 7104.7 1598.0 2665.5
Seaquest 1100.2 749.5 811.4 540.6 493.1 68.4 42054.7

Normed Mean 1.29 1.87 1.50 1.43 1.66 0.00 1.00
Normed Median 0.33 0.35 0.30 0.26 0.23 0.00 1.00

Table 5.7: XTRA ablation with different number of tasks in pretraining. Results for
EfficientZero are adopted from EfficientZero [YLK+21]. All other results are based on the
average of 5 runs.

Game XTRA Ablations (XTRA) EfficientZero

8 Games 4 Games 2 Games 0 Games 0 Games
Assault 1742.2 1676.7 1463.8 1255.9 1263.1
BattleZone 14631.3 9581.3 9550.0 10125.0 13871.2
Hero 10631.8 9654.9 8506.5 6815.1 9315.9
Krull 7735.8 7375.6 7348.9 5590.6 5663.3
Seaquest 749.5 656.4 627.5 770.8 1100.2
Normed Mean 1.87 1.74 1.65 1.23 1.29
Normed Median 0.35 0.29 0.25 0.22 0.33

EfficientZero (without pretraining) performs significantly worse with a larger representation

network. Therefore, we use the default EfficientZero as the main point of comparison throughout

this work and only include Efficient-L for completeness.

The architecture of the representation networks is as follows:

• 1 convolution with stride 2 and 32 output planes, output resolution 48x48. (BN + ReLU)

• 1 residual block with 32 planes.

• 1 residual downsample block with stride 2 and 64 output planes, output resolution 24x24.

• 1 residual block with 64 planes.

110

• Average pooling with stride 2, output resolution 12x12. (BN + ReLU)

• 1 residual block with 64 planes.

• Average pooling with stride 2, output resolution 6x6. (BN + ReLU)

• 1 residual block with 64 planes.

, where the kernel size is 3×3 for all operations.

The architecture of the dynamics networks is as follows:

• Concatenate the input states and input actions into 65 planes.

• 1 convolution with stride 2 and 64 output planes. (BN)

• A residual link: add up the output and the input states. (ReLU)

• 1 residual block with 64 planes.

The architecture of the reward prediction network is as follows:

• 1 1x1convolution and 16 output planes. (BN + ReLU)

• Flatten.

• LSTM with 512 hidden size. (BN + ReLU)

• 1 fully connected layers and 32 output dimensions. (BN + ReLU)

• 1 fully connected layers and 601 output dimensions.

The architecture of the value and policy prediction networks is as follows:

• 1 residual block with 64 planes.

• 1 1x1convolution and 16 output planes. (BN + ReLU)

• Flatten.

• 1 fully connected layers and 32 output dimensions. (BN + ReLU)

• 1 fully connected layers and D output dimensions.

where D = 601 in the value prediction network and D = |A | in the policy prediction network.

111

5.7.11 Hyper-parameters

We adopt our hyper-parameters from EfficientZero [YLK+21] with minimal modification.

Because XTRA uses data from offline tasks to perform cross-task transfer during online finetuning,

we have an additional hyper-parameter for mini-batch size for offline tasks, which is set to 256

(default). We list all hyper-parameters in Table 5.8 for completeness. Lastly, we note that

EfficientZero performs an additional 20k gradient steps at 100k environment steps, with a 10×

smaller learning rate. We follow this procedure when comparing to previous state-of-the-art

methods (Table 5.2), but for simplicity we omit these additional gradient steps in the remainder

of our experiments for both XTRA and baselines.

112

5.7.12 Effect of Mini-Batch Size

0 20 40 60 80 100
Environment steps (×103)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d
Sc

or
e

Batch Size

EfficientZero (BZ=256)
EfficientZero-L (BZ=256)
EfficientZero-L (BZ=512)
XTRA (Ours, BZT=256, BZO=256)

Figure 5.11: Effect of mini-batch size(BZ). For XTRA, we denote the batch size of the Target
task and Offline tasks as BZT and BZO, respectively.

During online finetuning (stage 2), we finetune both with data from the target task, and

data from the pretraining tasks. We maintain the same batch size (256) for the target task data

as the non-pretraining baselines, but add additional data from the pretraining tasks with a 1:1

ratio. Thus, our effective batch size is 2× that of the baselines. To verify that performance

improvements stem from our pretraining (stage 1) and not the larger batch size, we compare our

method to a variant of our EfficientZero-L baseline that uses a 2× larger batch size (512). Results

are shown in Figure 5.11. We do not observe any significant change in performance by doubling

the batch size for the baseline. Thus, we conclude that a larger (effective) batch size is not the

source of our performance gains, but rather our pretraining and inclusion of pretraining tasks

during the online finetuning.

5.7.13 Game Information

In this section, we aim to provide additional context about the games that we consider

during both pretraining and finetuning. Table 5.9 lists core properties for each game. The

Similar Task column marks all games used in Table 5.1 (similar games), and the two Diverse

113

Task columns mark all games used in Table 5.2 (diverse games) for pretraining and finetuning,

respectively. We further categorize games into five categories based on game mechanics: Maze,

Shooter, Tank, Adventure, and Ball Tracking, and also report whether the scene is static or

dynamic, as well the (valid) action space for each task. The maximum dimensionality of the

action space is 18 for Atari games.

5.7.14 Behavioral Cloning Baseline

We use the representation + prediction network in XTRA for the behavioral cloning

(BC) study. The BC (finetune) from Table 5.1 follows an offline pretraining + offline finetuning

paradigm. The model is finetuned on offline data for the target task (also generated by the

EfficientZero baseline). We find BC (finetune) underperforms the EfficientZero baseline. We also

report zero-shot performance of the pretrained BC on their designated target tasks directly.

Acknowledgements

This chapter is based on the material "On the Feasibility of Cross-Task Transfer with

Model-Based Reinforcement Learning" by Yifan Xu*, Nicklas Hansen*, Zirui Wang, Yung-

Chieh Chan, Hao Su, Zhuowen Tu, which appears in International Conference on Learning

Representations (ICLR) 2023. The dissertation author is the co-primary investigator and author

of this material.

114

Table 5.8: XTRA Hyper-parameters. We list all relevant hyper-parameters below. Values are
adopted from [YLK+21] with minimal modification but included here for completeness.

Parameter Setting

Observation down-sampling 96 × 96
Frames stacked 4
Frames skip 4
Reward clipping True
Terminal on loss of life True
Max frames per episode 108K
Discount factor 0.9974

Minibatch size (offline tasks) 256
Minibatch size (target task) 256
Optimizer SGD
Optimizer: learning rate 0.2
Optimizer: momentum 0.9
Optimizer: weight decay (c) 0.0001
Learning rate schedule 0.2→ 0.02
Max gradient norm 5
Priority exponent (α) 0.6
Priority correction (β) 0.4→ 1
Training steps 100K/120K
Evaluation episodes 32
Min replay size for sampling 2000
Self-play network updating inerval 100
Target network updating interval 200
Unroll steps (lunroll) 5
TD steps (k) 5
Policy loss coefficient (λ1) 1
Value loss coefficient (λ2) 0.25
Self-supervised consistency loss coefficient (λ3) 2
LSTM horizontal length (ζ) 5
Dirichlet noise ratio (ξ) 0.3
Number of simulations in MCTS (Nsim) 50
Reanalyzed policy ratio 1.0

115

Table 5.9: Atari Game information. We consider a variety of games in our experiments. Here,
we provide more context to our selection of games. In our similar experiments (Table 5.1), we
finetune model to each game after pretraining it on the other games within the same category. In
diverse experiments (Table 5.2), we finetune a single model pretrained on all eight games to
each of the target games.

Games Similar Task Diverse Task Diverse Task Category Scene Action
(Pretrain & Fine Tune) (Pretrain) (Fine Tune) Continuity Space

Alien ✓ Maze 18
Amidar ✓ Maze ✓ 10
Assault ✓ ✓ Shooter ✓ 7

Bank Heist ✓ Maze 18
Carnival ✓ ✓ Shooter ✓ 6

Centipede ✓ ✓ Shooter ✓ 18
DemonAttack ✓ Shooter ✓ 6

MsPacman ✓ Maze 9
Phoenix ✓ ✓ Shooter 8

WizardOfWor ✓ ✓ Maze 10
BattleZone ✓ Tank ✓ 18

Hero ✓ Adventure 18
Krull ✓ Adventure 18

Seaquest ✓ Shooter ✓ 18
Pooyan ✓ Shooter 6

Riverraid ✓ Shooter ✓ 18
VideoPinball ✓ Ball Tracking 9
YarsRevenge ✓ Shooter 18

116

Chapter 6

Discussion and Future Directions

In conclusion, we have described the state of attention research in computer vision and

its connections to visual attention in neuroscience and cognitive science. We study the attention

mechanism in visual representation learning in various computer vision tasks, including line

segment detection, image recognition, object detection, semantic segmentation, and few-shot

learning. Beyond computer vision, attention-based models offer a promising direction towards

general artificial intelligence by creating a unified framework for studying cognitive functions

such as visual processing [DBK+21], language understanding [DCLT19a], speech [DXX18]

memory [BKPS20], and decision making [CLR+21].

Recently, research has shown that the success of attention-based models in computer

vision and natural language processing can be extended to the RL decision-making domain

[CLR+21, JLL21]. Initial success using a vanilla transformer has been demonstrated in modeling

trajectories of future states, actions, and rewards with less compounding prediction errors on

Atari, OpenAI Gym, and Key-to-Door tasks [CLR+21]. We expect planning with attention-based

models to increase in the next few years, and the study on attention mechanisms discussed in

Chapters 2, 3, and 4 will be of great value to this development.

The development of world models in AI has significantly contributed to connecting

117

visual perception with higher-level cognitive processes and enhancing learning efficiency across

various tasks [HS18b, HLBN19, SAH+20b, KBM+20, YLK+21, HWS22]. Our work on the

Model-Based Cross-Task Transfer (XTRA) framework, introduced in Chapter 5, exemplifies this

progress. By leveraging learned internal world models, XTRA accelerates the learning of new

and distinctly different tasks, paving the way for studying scalable systems capable of learning

generalized world representations. In parallel, advancements in attention-based models have

shown promise in developing more generalized and efficient AI systems. A key opportunity lies

in the integration of attention mechanisms and world models within a unified framework, creating

more versatile, adaptable, and efficient AI systems that can handle complex decision-making and

planning tasks, much like the human brain.

118

Bibliography

[Abr87] Bruce D. Abramson. The Expected-Outcome Model of Two-Player Games. PhD
thesis, Columbia University, 1987. AAI8827528.

[ADBB17] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[ADL+22] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana
Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman
Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei,
Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida
Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol
Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language
model for few-shot learning. In NeurIPS, 2022.

[AEC13] Katharina Anton-Erxleben and Marisa Carrasco. Attentional enhancement of spatial
resolution: linking behavioural and neurophysiological evidence. Nature Reviews
Neuroscience, 14(3):188–200, 2013.

[BAZ+22] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet,
Brandon Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt):
Learning to act by watching unlabeled online videos. In NeurIPS, 2022.

[BBC+19] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christo-
pher Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub W. Pachocki,
Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans,
Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip
Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
ArXiv, abs/1912.06680, 2019.

[BCB15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. In ICLR, 2015.

119

[Bel57] Richard Bellman. A markovian decision process. Journal of Mathematics and
Mechanics, 6(5):679–684, 1957.

[Bel21] Irwan Bello. Lambdanetworks: Modeling long-range interactions without attention.
In ICLR, 2021.

[BHDAJ20] Cristian Bodnar, Karol Hausman, Gabriel Dulac-Arnold, and Rico Jonschkowski.
A geometric perspective on self-supervised policy adaptation. ArXiv, 2020.

[BHR86] J. Brian Burns, Allen R. Hanson, and Edward M. Riseman. Extracting straight
lines. IEEE Trans. Pattern Anal. Mach. Intell., 8(4):425–455, 1986.

[BHTV19] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-
learning with differentiable closed-form solvers. In ICLR, 2019.

[BKPS20] Mikhail S Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V Sapunov. Memory
transformer. arXiv preprint arXiv:2006.11527, 2020.

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

[BNVB13] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[BPK+20] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann,
Alex Vitvitskyi, Daniel Guo, and Charles Blundell. Agent57: Outperforming the
atari human benchmark. In ICML, 2020.

[BWR89] Michael Boldt, Richard Weiss, and Edward Riseman. Token-based extraction of
straight lines. IEEE Transactions on Systems, Man, and Cybernetics, 19(6):1581–
1594, 1989.

[Can86] John Canny. A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence, pages 679–698, 1986.

[Che12] Zhe Chen. Object-based attention: A tutorial review. Attention, Perception, &
Psychophysics, 74(5):784–802, 2012.

[CHHS20] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging
procedural generation to benchmark reinforcement learning. In ICML, 2020.

120

[CLD+21] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, An-
dreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz
Kaiser, et al. Rethinking attention with performers. In ICLR, 2021.

[CLR+21] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer:
Reinforcement learning via sequence modeling. In NeurIPS, 2021.

[CMS+20] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In
ECCV, 2020.

[CN12] Adam Coates and Andrew Y Ng. Learning feature representations with k-means.
In Neural networks: Tricks of the trade, pages 561–580. Springer, 2012.

[CND+22] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

[Cou06] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search.
In International conference on computers and games, pages 72–83. Springer, 2006.

[CT17] Le Chang and Doris Y Tsao. The code for facial identity in the primate brain. Cell,
169(6):1013–1028, 2017.

[CV19] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High quality object detection
and instance segmentation. TPAMI, 2019.

[CWL+20] Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu, and Trevor Darrell. A new
meta-baseline for few-shot learning. arXiv preprint arXiv:2003.04390, 2020.

[CWP+19] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li,
Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng,
Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and
Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155, 2019.

[CZT+21] Xiangxiang Chu, Bo Zhang, Zhi Tian, Xiaolin Wei, and Huaxia Xia. Conditional
positional encodings for vision transformers. arXiv preprint arXiv:2102.10882,
2021.

[DAP+18] Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L. Griffiths, and Alexei A.
Efros. Investigating human priors for playing video games. In ICML, 2018.

121

[DBK+21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

[DCLT19a] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In NAACL-
HLT, 2019.

[DCLT19b] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In NAACL-
HLT, 2019.

[DCLT19c] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. ArXiv,
abs/1810.04805, 2019.

[DD95] Robert Desimone and John Duncan. Neural mechanisms of selective visual atten-
tion. Annual review of neuroscience, 18(1):193–222, 1995.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. Ieee, 2009.

[DEE08] Patrick Denis, James H Elder, and Francisco J Estrada. Efficient edge-based
methods for estimating manhattan frames in urban imagery. In ECCV, 2008.

[DGE15] Carl Doersch, Abhinav Kumar Gupta, and Alexei A. Efros. Unsupervised visual
representation learning by context prediction. 2015 IEEE International Conference
on Computer Vision (ICCV), pages 1422–1430, 2015.

[DH72] Richard O Duda and Peter E Hart. Use of the hough transformation to detect lines
and curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

[DL02] Gustavo Deco and Tai Sing Lee. A unified model of spatial and object attention
based on inter-cortical biased competition. Neurocomputing, 44:775–781, 2002.

[DSC+16] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and
P. Abbeel. Rl2: Fast reinforcement learning via slow reinforcement learning.
ArXiv, abs/1611.02779, 2016.

[DT05] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-
tion. In CVPR, 2005.

[DTB06] Piotr Dollár, Zhuowen Tu, and Serge Belongie. Supervised learning of edges and
object boundaries. In CVPR, 2006.

122

[DXX18] Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-recurrence
sequence-to-sequence model for speech recognition. In Proc. IEEE Int. Conf.
Acoust. Sph. Sig Process., 2018.

[DZ13] Piotr Dollár and C Lawrence Zitnick. Structured forests for fast edge detection. In
CVPR, 2013.

[EG02] James H Elder and Richard M Goldberg. Ecological statistics of gestalt laws for
the perceptual organization of contours. Journal of Vision, 2(4):5–5, 2002.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In ICML, 2017.

[FFFP06] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories.
IEEE transactions on pattern analysis and machine intelligence, 28(4):594–611,
2006.

[FGMR09] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Ob-
ject detection with discriminatively trained part-based models. IEEE transactions
on pattern analysis and machine intelligence, 32(9):1627–1645, 2009.

[FH05] Pedro F Felzenszwalb and Daniel P Huttenlocher. Pictorial structures for object
recognition. International journal of computer vision, 61(1):55–79, 2005.

[FL17] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion.
2017 IEEE International Conference on Robotics and Automation (ICRA), pages
2786–2793, 2017.

[FLT+19] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing
Lu. Dual attention network for scene segmentation. In CVPR, 2019.

[FPZ03] Robert Fergus, Pietro Perona, and Andrew Zisserman. Object class recognition by
unsupervised scale-invariant learning. In CVPR, 2003.

[FS03] Yasutaka Furukawa and Yoshihisa Shinagawa. Accurate and robust line segment
extraction by analyzing distribution around peaks in hough space. Computer Vision
and Image Understanding, 92(1):1–25, 2003.

[FVE91] Daniel J Felleman and David C Van Essen. Distributed hierarchical processing
in the primate cerebral cortex. Cerebral cortex (New York, NY: 1991), 1(1):1–47,
1991.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[GDDM14] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In CVPR,
pages 580–587, 2014.

123

[GL13] Charles D Gilbert and Wu Li. Top-down influences on visual processing. Nature
Reviews Neuroscience, 14(5):350–363, 2013.

[GLY19] Weifeng Ge, Xiangru Lin, and Yizhou Yu. Weakly supervised complementary parts
models for fine-grained image classification from the bottom up. In CVPR, 2019.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
NeurIPS, volume 27, 2014.

[GVZ95] Nicolas Guil, Julio Villalba, and Emilio L Zapata. A fast hough transform for
segment detection. IEEE Transactions on Image Processing, 4(11):1541–1548,
1995.

[HB05] Mary Hayhoe and Dana Ballard. Eye movements in natural behavior. Trends in
cognitive sciences, 9(4):188–194, 2005.

[HBNH+20] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel
Soudry. Augment your batch: Improving generalization through instance repetition.
In CVPR, 2020.

[HCB+19] Ruibing Hou, Hong Chang, MA Bingpeng, Shiguang Shan, and Xilin Chen. Cross
attention network for few-shot classification. In NeurIPS, pages 4005–4016, 2019.

[HCX+21] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377,
2021.

[HFW+20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum
contrast for unsupervised visual representation learning. In CVPR, 2020.

[HG09] Benjamin Y Hayden and Jack L Gallant. Combined effects of spatial and feature-
based attention on responses of v4 neurons. Vision research, 49(10):1182–1187,
2009.

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
ICCV, 2017.

[HJS+21] Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A.
Efros, Lerrel Pinto, and Xiaolong Wang. Self-supervised policy adaptation during
deployment. In ICLR, 2021.

[HLBN19] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi.
Dream to control: Learning behaviors by latent imagination. arXiv preprint
arXiv:1912.01603, 2019.

124

[HLF+19] Danijar Hafner, Timothy P. Lillicrap, Ian S. Fischer, Ruben Villegas, David R Ha,
Honglak Lee, and James Davidson. Learning latent dynamics for planning from
pixels. ArXiv, abs/1811.04551, 2019.

[HLNB21] Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Master-
ing atari with discrete world models. ArXiv, abs/2010.02193, 2021.

[HLS+23] Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, and Aravind
Rajeswaran. Modem: Accelerating visual model-based reinforcement learning with
demonstrations. In ICLR, 2023.

[HMX+20] Shell Xu Hu, Pablo G Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D
Lawrence, and Andreas Damianou. Empirical bayes transductive meta-learning
with synthetic gradients. arXiv preprint arXiv:2004.12696, 2020.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[HS18a] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy
evolution. In NeurIPS, volume 31, 2018.

[HS18b] David Ha and Jürgen Schmidhuber. World models. arXiv preprint
arXiv:1803.10122, 2018.

[HSF18] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em
routing. In ICLR, 2018.

[HSW21] Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep q-learning with
convnets and vision transformers under data augmentation. In NeurIPS, 2021.

[HWS22] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for
model predictive control. In ICML, 2022.

[HWZ+18] Kun Huang, Yifan Wang, Zihan Zhou, Tianjiao Ding, Shenghua Gao, and Yi Ma.
Learning to parse wireframes in images of man-made environments. In CVPR,
pages 626–635, 2018.

[HYZ+22] Nicklas Hansen, Zhecheng Yuan, Yanjie Ze, Tongzhou Mu, Aravind Rajeswaran,
Hao Su, Huazhe Xu, and Xiaolong Wang. On pre-training for visuo-motor control:
Revisiting a learning-from-scratch baseline, 2022.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[HZXL19] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local relation networks for
image recognition. In ICCV, 2019.

125

[IK01] Laurent Itti and Christof Koch. Computational modelling of visual attention. Nature
reviews neuroscience, 2(3):194–203, 2001.

[JLL21] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as
one big sequence modeling problem. In NeurIPS, volume 34, 2021.

[JSS+20] Ryan C. Julian, Benjamin Swanson, Gaurav S. Sukhatme, Sergey Levine, Chelsea
Finn, and Karol Hausman. Efficient adaptation for end-to-end vision-based robotic
manipulation. ArXiv, abs/2004.10190, 2020.

[KBM+20] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H.
Campbell, K. Czechowski, D. Erhan, Chelsea Finn, Piotr Kozakowski, Sergey
Levine, Ryan Sepassi, G. Tucker, and Henryk Michalewski. Model-based rein-
forcement learning for atari. ArXiv, abs/1903.00374, 2020.

[KDDD15] Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor Darrell. Data-
dependent initializations of convolutional neural networks. arXiv preprint
arXiv:1511.06856, 2015.

[KGI+19] Tejas D. Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm
Reynolds, Andrew Zisserman, and Volodymyr Mnih. Unsupervised learning of
object keypoints for perception and control. ArXiv, abs/1906.11883, 2019.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[KLC98] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning
and acting in partially observable stochastic domains. Artificial Intelligence, 1998.

[KLM96] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In NeurIPS, 2012.

[KSTH19] Adam Kosiorek, Sara Sabour, Yee Whye Teh, and Geoffrey E Hinton. Stacked
capsule autoencoders. In NeurIPS, pages 15486–15496, 2019.

[KYF21] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need:
Regularizing deep reinforcement learning from pixels. ArXiv, abs/2004.13649,
2021.

[KZTL20] Aviral Kumar, Aurick Zhou, G. Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. ArXiv, abs/2006.04779, 2020.

[Lan14] Michael F Land. Do we have an internal model of the outside world? Philosophical
Transactions of the Royal Society B: Biological Sciences, 369(1636):20130045,
2014.

126

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[LCL+20] Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Mingsheng Long, and Han Hu.
Negative margin matters: Understanding margin in few-shot classification. arXiv
preprint arXiv:2003.12060, 2020.

[Lee03] Tai Sing Lee. Computations in the early visual cortex. Journal of Physiology-Paris,
97(2-3):121–139, 2003.

[LGG+17] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal
loss for dense object detection. In ICCV, pages 2999–3007, 2017.

[LH19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR,
2019.

[LHL+20] Aoxue Li, Weiran Huang, Xu Lan, Jiashi Feng, Zhenguo Li, and Liwei Wang.
Boosting few-shot learning with adaptive margin loss. In CVPR, 2020.

[LHS20] Hankook Lee, Sung Ju Hwang, and Jinwoo Shin. Self-supervised label augmenta-
tion via input transformations. In ICML, 2020.

[Lin20] Grace W Lindsay. Attention in psychology, neuroscience, and machine learning.
Frontiers in computational neuroscience, page 29, 2020.

[LLC+21] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. In ICCV, 2021.

[LLL+22] Chunyuan Li, Haotian Liu, Liunian Harold Li, Pengchuan Zhang, Jyoti Aneja,
Jianwei Yang, Ping Jin, Yong Jae Lee, Houdong Hu, Zicheng Liu, et al. Elevater:
A benchmark and toolkit for evaluating language-augmented visual models. arXiv
preprint arXiv:2204.08790, 2022.

[LLP+18] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang,
and Yi Yang. Learning to propagate labels: Transductive propagation network for
few-shot learning. arXiv preprint arXiv:1805.10002, 2018.

[LLS+20] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, P. Abbeel, and A. Srinivas.
Reinforcement learning with augmented data. ArXiv, abs/2004.14990, 2020.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In ECCV, 2014.

127

[LMGH22] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision
transformer backbones for object detection. arXiv preprint arXiv:2203.16527,
2022.

[LMRS19] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-
learning with differentiable convex optimization. In CVPR, pages 10657–10665,
2019.

[LNY+22] Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, L. Y. Lee, Daniel Freeman, Winnie
Xu, Sergio Guadarrama, Ian S. Fischer, Eric Jang, Henryk Michalewski, and Igor
Mordatch. Multi-game decision transformers. ArXiv, 2022.

[Low04] David G Lowe. Distinctive image features from scale-invariant keypoints. IJCV,
60(2):91–110, 2004.

[LPM15] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 1412–1421, Lisbon,
Portugal, September 2015. Association for Computational Linguistics.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In CVPR, 2015.

[LSP06] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.

[LXG+15] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu.
Deeply-supervised nets. In Proc. Int. Conf. Artificial Intell. & Stat., 2015.

[LYLL15] Xiaohu Lu, Jian Yao, Kai Li, and Li Li. Cannylines: A parameter-free line segment
detector. In 2015 IEEE International Conference on Image Processing (ICIP),
pages 507–511. IEEE, 2015.

[Mar82] David Marr. Vision: A computational investigation into the human representation
and processing of visual information, henry holt and co. Inc., New York, NY, 2(4.2),
1982.

[MFM04] David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning to detect natural
image boundaries using local brightness, color, and texture cues. IEEE transactions
on pattern analysis and machine intelligence, 26(5):530–549, 2004.

[MGK00] Jiri Matas, Charles Galambos, and Josef Kittler. Robust detection of lines us-
ing the progressive probabilistic hough transform. Computer vision and image
understanding, 78(1):119–137, 2000.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602, 2013.

128

[MRCA17] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and P. Abbeel. Meta-learning with
temporal convolutions. ArXiv, abs/1707.03141, 2017.

[MRCA18] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural
attentive meta-learner. arXiv preprint arXiv:1707.03141, 2018.

[MYMT17] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and Adam Trischler. Rapid
adaptation with conditionally shifted neurons. arXiv preprint arXiv:1712.09926,
2017.

[NCSG11] Marcos Nieto, Carlos Cuevas, Luis Salgado, and Narciso García. Line segment
detection using weighted mean shift procedures on a 2d slice sampling strategy.
Pattern Analysis and Applications, 14(2):149–163, 2011.

[NPD+18] Ashvin Nair, Vitchyr H. Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey
Levine. Visual reinforcement learning with imagined goals. In NeurIPS, 2018.

[NRO+15] Nora Nortmann, Sascha Rekauzke, Selim Onat, Peter König, and Dirk Jancke.
Primary visual cortex represents the difference between past and present. Cerebral
Cortex, 25(6):1427–1440, 2015.

[OLR18] Boris N Oreshkin, Alexandre Lacoste, and Pau Rodriguez. Tadam: Task dependent
adaptive metric for improved few-shot learning. arXiv preprint arXiv:1805.10123,
2018.

[PBS16] Emilio Parisotto, Lei Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep
multitask and transfer reinforcement learning. In ICLR (Poster), 2016.

[PHZ17] Yuxin Peng, Xiangteng He, and Junjie Zhao. Object-part attention model for fine-
grained image classification. IEEE Transactions on Image Processing, 27(3):1487–
1500, 2017.

[PRPG22] Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Kumar
Gupta. The unsurprising effectiveness of pre-trained vision models for control. In
ICML, 2022.

[PY10] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22:1345–1359, 2010.

[QLL19] Lei Qi, Xiaoqiang Lu, and Xuelong Li. Exploiting spatial relation for fine-grained
image classification. Pattern Recognition, 91:47–55, 2019.

[QRK+05] R Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof Koch, and Itzhak Fried.
Invariant visual representation by single neurons in the human brain. Nature,
435(7045):1102–1107, 2005.

129

[RB99] Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects. Nature
neuroscience, 2(1):79–87, 1999.

[RCG+16] Andrei A Rusu, Sergio Gomez Colmenarejo, Çaglar Gülçehre, Guillaume Des-
jardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu,
and Raia Hadsell. Policy distillation. In ICLR, 2016.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV,
115(3):211–252, 2015.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI, 2015.

[RH09] John H Reynolds and David J Heeger. The normalization model of attention.
Neuron, 61(2):168–185, 2009.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In NeurIPS, pages 91–99,
2015.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[RKH+21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision. In
ICML, pages 8748–8763, 2021.

[RL17] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning.
In ICLR, 2017.

[RNSS18] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. OpenAI, 2018.

[RP95] Andrew F Rossi and Michael A Paradiso. Feature-specific effects of selective visual
attention. Vision research, 35(5):621–634, 1995.

[RPV+19] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya,
and Jonathon Shlens. Stand-alone self-attention in vision models. In NeurIPS,
2019.

[RRDU87] Giacomo Rizzolatti, Lucia Riggio, Isabella Dascola, and Carlo Umiltá. Reorienting
attention across the horizontal and vertical meridians: evidence in favor of a
premotor theory of attention. Neuropsychologia, 25(1):31–40, 1987.

130

[RZP+22a] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander
Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias
Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess,
Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[RZP+22b] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander
Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias
Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley D. Edwards, Nicolas
Manfred Otto Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar,
and Nando de Freitas. A generalist agent. ArXiv, abs/2205.06175, 2022.

[SAG+21] Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville,
and Philip Bachman. Data-efficient reinforcement learning with self-predictive
representations. In ICLR, 2021.

[SAH+20a] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
L. Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore
Graepel, Timothy P. Lillicrap, and David Silver. Mastering atari, go, chess and
shogi by planning with a learned model. Nature, 2020.

[SAH+20b] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Lau-
rent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore
Graepel, et al. Mastering atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020.

[SB97] Stephen M Smith and J Michael Brady. Susan—a new approach to low level image
processing. International journal of computer vision, 23(1):45–78, 1997.

[Scu10] David Sculley. Web-scale k-means clustering. In Proceedings of the 19th interna-
tional conference on World wide web, pages 1177–1178, 2010.

[SFH17] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between
capsules. In NeurIPS, 2017.

[SHM+16a] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and
tree search. nature, 529(7587):484–489, 2016.

[SHM+16b] David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre,
George Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks
and tree search. Nature, 529:484–489, 01 2016.

131

[SHM+21] Julian Schrittwieser, Thomas K Hubert, Amol Mandhane, Mohammadamin
Barekatain, Ioannis Antonoglou, and David Silver. Online and offline reinforce-
ment learning by planning with a learned model. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, NeurIPS, 2021.

[SK21] Rutav Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement
learning. ArXiv, abs/2107.03380, 2021.

[SLA20] A. Srinivas, Michael Laskin, and P. Abbeel. Curl: Contrastive unsupervised
representations for reinforcement learning. In ICML, 2020.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In CVPR, 2015.

[SLJA22] Younggyo Seo, Kimin Lee, Stephen James, and P. Abbeel. Reinforcement learning
with action-free pre-training from videos. In ICML, 2022.

[SR15] Marcel Simon and Erik Rodner. Neural activation constellations: Unsupervised
part model discovery with convolutional networks. In ICCV, 2015.

[SSZ17] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot
learning. In NeurIPS, 2017.

[STFW05] Erik B Sudderth, Antonio Torralba, William T Freeman, and Alan S Willsky.
Learning hierarchical models of scenes, objects, and parts. In ICCV, volume 2,
2005.

[STT12] Ruslan Salakhutdinov, Joshua B Tenenbaum, and Antonio Torralba. Learning with
hierarchical-deep models. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1958–1971, 2012.

[SUV18] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative
position representations. In NAACL-HLT, 2018.

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In CVPR, 2016.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In NeurIPS, 2014.

[SYZ+18] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. Learning to compare: Relation network for few-shot learning. In
CVPR, 2018.

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

132

[SZZ+21] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Effi-
cient attention: Attention with linear complexities. In WACV, pages 3531–3539,
2021.

[TBG05] Benjamin W Tatler, Roland J Baddeley, and Iain D Gilchrist. Visual correlates of
fixation selection: Effects of scale and time. Vision research, 45(5):643–659, 2005.

[TCD+20] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. Training data-efficient image transformers &
distillation through attention. arXiv preprint arXiv:2012.12877, 2020.

[TL19] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In ICML, 2019.

[TSGS20] Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh, and Ruslan Salakhut-
dinov. Capsules with inverted dot-product attention routing. arXiv preprint
arXiv:2002.04764, 2020.

[Tu08] Zhuowen Tu. Auto-context and its application to high-level vision tasks. In CVPR,
2008.

[TWH19] Pavel Tokmakov, Yu-Xiong Wang, and Martial Hebert. Learning compositional
representations for few-shot recognition. In ICCV, 2019.

[UN96] Marius Usher and Ernst Niebur. Modeling the temporal dynamics of it neurons in
visual search: A mechanism for top-down selective attention. Journal of cognitive
neuroscience, 8(4):311–327, 1996.

[VBL+16] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching
networks for one shot learning. In NeurIPS, pages 3630–3638, 2016.

[vdOLV18] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. ArXiv, abs/1807.03748, 2018.

[vGJMR10] R G von Gioi, J Jakubowicz, J M Morel, and G Randall. LSD: A Fast Line Segment
Detector with a False Detection Control. IEEE Trans. Pattern Anal. Mach. Intell.,
32(4):722–732, 2010.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
NeurIPS, 2017.

[vZD05] Wieske van Zoest and Mieke Donk. The effects of salience on saccadic target
selection. Visual Cognition, 12(2):353–375, 2005.

[WGGH18] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural
networks. In CVPR, 2018.

133

[Wit84] Andrew Witkin. Scale-space filtering: A new approach to multi-scale description.
In Proc. IEEE Int. Conf. Acoust. Sph. Sig Process., volume 9, pages 150–153, 1984.

[WLRL22] Che Wang, Xufang Luo, Keith W. Ross, and Dongsheng Li. Vrl3: A data-driven
framework for visual deep reinforcement learning. ArXiv, abs/2202.10324, 2022.

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144, 2016.

[WSC+20] J Wang, K Sun, T Cheng, B Jiang, C Deng, Y Zhao, D Liu, Y Mu, M Tan, X Wang,
et al. Deep high-resolution representation learning for visual recognition. TPAMI,
2020.

[WWP00] Markus Weber, Max Welling, and Pietro Perona. Unsupervised learning of models
for recognition. In ECCV, 2000.

[WXL+21] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong
Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. In ICCV, 2021.

[WYY+22] Homer Walke, Jonathan Yang, Albert Yu, Aviral Kumar, Jedrzej Orbik, Avi Singh,
and Sergey Levine. Don’t start from scratch: Leveraging prior data to automate
robotic reinforcement learning. ArXiv, abs/2207.04703, 2022.

[XBK+15] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In ICML, 2015.

[XBW+19] Nan Xue, Song Bai, Fudong Wang, Gui-Song Xia, Tianfu Wu, and Liangpei Zhang.
Learning attraction field representation for robust line segment detection. In CVPR,
2019.

[XF21] Annie Xie and Chelsea Finn. Lifelong robotic reinforcement learning by retaining
experiences. ArXiv, abs/2109.09180, 2021.

[XGD+17] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggre-
gated residual transformations for deep neural networks. In CVPR, 2017.

[XLC+20] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou.
Layoutlm: Pre-training of text and layout for document image understanding. In
SIGKDD, 2020.

[XLCT18] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. Attentional shapecontextnet
for point cloud recognition. In CVPR, 2018.

134

[XRDM22] Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual
pre-training for motor control. ArXiv, abs/2203.06173, 2022.

[XROOP19] Chen Xing, Negar Rostamzadeh, Boris Oreshkin, and Pedro O O Pinheiro. Adaptive
cross-modal few-shot learning. In NeurIPS, 2019.

[XT15] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In ICCV, pages
1395–1403, 2015.

[XWB+20] Nan Xue, Tianfu Wu, Song Bai, Fudong Wang, Gui-Song Xia, Liangpei Zhang,
and Philip HS Torr. Holistically-attracted wireframe parsing. In CVPR, pages
2788–2797, 2020.

[YCBI19] Lin Yen-Chen, Maria Bauza, and Phillip Isola. Experience-embedded visual
foresight. In Conference on Robot Learning, 2019.

[YCW+21] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from
scratch on imagenet. In ICCV, 2021.

[YHC92] Alan L Yuille, Peter W Hallinan, and David S Cohen. Feature extraction from faces
using deformable templates. International journal of computer vision, 8(2):99–111,
1992.

[YHO+19] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with
localizable features. In ICCV, 2019.

[YKG+20] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and
Chelsea Finn. Gradient surgery for multi-task learning. In NeurIPS, volume 33,
pages 5824–5836, 2020.

[YLK+21] Weirui Ye, Shaohuai Liu, Thanard Kurutach, P. Abbeel, and Yang Gao. Mastering
atari games with limited data. In NeurIPS, 2021.

[YSM19] Sung Whan Yoon, Jun Seo, and Jaekyun Moon. Tapnet: Neural network aug-
mented with task-adaptive projection for few-shot learning. arXiv preprint
arXiv:1905.06549, 2019.

[YZK+19] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob
Fergus. Improving sample efficiency in model-free reinforcement learning from
images. arXiv, 2019.

[ZCDLP18] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In ICLR, 2018.

[ZD11] Huihui Zhou and Robert Desimone. Feature-based attention in the frontal eye field
and area v4 during visual search. Neuron, 70(6):1205–1217, 2011.

135

[ZF14] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In ECCV, 2014.

[ZGMO19] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention
generative adversarial networks. In ICML, 2019.

[ZHC+22] Yanjie Ze, Nicklas Hansen, Yinbo Chen, Mohit Jain, and Xiaolong Wang. Visual
reinforcement learning with self-supervised 3d representations. arXiv preprint
arXiv:2210.07241, 2022.

[ZJK20] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for
image recognition. In CVPR, 2020.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[ZLB+19] Ziheng Zhang, Zhengxin Li, Ning Bi, Jia Zheng, Jinlei Wang, Kun Huang, Weixin
Luo, Yanyu Xu, and Shenghua Gao. Ppgnet: Learning point-pair graph for line
segment detection. In CVPR, 2019.

[ZM07] Song-Chun Zhu and David Mumford. A stochastic grammar of images. Now
Publishers Inc, 2007.

[ZQM19] Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end wireframe parsing. In ICCV,
pages 962–971, 2019.

[ZSL+21] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. De-
formable detr: Deformable transformers for end-to-end object detection. In ICLR,
2021.

[ZZG22] Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In
ICML, 2022.

[ZZK+20] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random
erasing data augmentation. In AAAI, 2020.

[ZZLS18] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile devices. In CVPR, 2018.

[ZZN+19] Jian Zhang, Chenglong Zhao, Bingbing Ni, Minghao Xu, and Xiaokang Yang.
Variational few-shot learning. In ICCV, pages 1685–1694, 2019.

[ZZP+20] Albert Zhan, Philip Zhao, Lerrel Pinto, P. Abbeel, and Michael Laskin. A frame-
work for efficient robotic manipulation. ArXiv, abs/2012.07975, 2020.

[ZZW+17] Yousong Zhu, Chaoyang Zhao, Jinqiao Wang, Xu Zhao, Yi Wu, and Hanqing Lu.
Couplenet: Coupling global structure with local parts for object detection. In ICCV,
2017.

136

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Visual Attention
	Human Visual Attention and Its Mechanisms
	The Rise of Self-Attention and Transformer Models
	Relationship between Self-Attention and Visual Attention

	World Models
	Internal Model Theory for Human Perception
	Renaissance of Model-Based Reinforcement Learning
	Connection Between Human Internal Model and Model-Based RL

	Overview

	Line Segment Detection Using Transformers without Edges
	Introduction
	Related Works
	Line Segment Detection
	Transformer Architecture

	Line Segment Detection with Transformers
	Motivation
	Overview
	Coarse-to-Fine Strategy
	Line Segment Prediction
	Line Segment Losses

	Experiments
	Datasets
	Implementation
	Evaluation Metric
	Results and Comparisons

	Ablation Study
	Visualization
	Conclusion

	Co-Scale Conv-Attentional Image Transformers
	Introduction
	Related Works
	Revisited Scaled Dot-Product Attention
	Conv-Attention Module
	Factorized Attention Mechanism
	Convolution as Position Encoding

	Co-Scale Conv-Attentional Transformers
	Co-Scale Mechanism
	Model Architecture

	Experiments
	Experiment Details
	CoaT for ImageNet Classification
	Object Detection and Instance Segmentation
	Ablation Study

	Conclusion

	Attentional Constellation Nets for Few-Shot Learning
	Introduction
	Related Work
	Few-shot learning
	Constellation Model
	Cell Feature Clustering
	Cell Relation and Spatial Configuration Modeling
	Integrate Constellation Model with CNNs
	Why clustering and self-attention (clustering map + positional encoding)?

	Experiment
	Datasets
	Network with Multi-Branch
	Results on Standard Benchmarks

	Model Analysis
	Architecture alternatives
	Modules Analysis
	Visualization

	Conclusion
	Appendix
	Few-Shot Learning Framework
	Datasets
	Network Backbone
	Constellation Module Configuration
	Self-attention settings
	Training Details
	Ablation Study on the Number of Clusters
	Additional Experiments with Negative Margin
	Clarification on Clustering Procedure
	Multi-Branch Details
	Connection with Capsule Networks

	On the Feasibility of Cross-Task Transfer with Model-Based Reinforcement Learning
	Introduction
	Background
	Model-Based Cross-Task Transfer
	Offline Multi-Task Pretraining
	Online Finetuning on a Target Task

	Experiments
	Results & Discussion

	Related Work
	Conclusion
	Appendix
	XTRA/EfficientZero Objectives
	Task Weights Computation
	Distillation vs. Multi-Game Offline RL
	Scores for Individual Seeds
	Additional Evaluation curves of XTRA on Atari100k benchmark
	Offline Data Preparation
	Pretraining + Finetuning in Model-free RL
	XTRA Ablations for Tasks with Diverse Game Mechanics
	Effects of Number of Tasks in Pretraining and Cross-Tasks in Finetuning
	Architectural Details
	Hyper-parameters
	Effect of Mini-Batch Size
	Game Information
	Behavioral Cloning Baseline

	Discussion and Future Directions
	Bibliography

