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Neural substrates underlying
rhythmic coupling of female
reproductive and
thermoregulatory circuits

Azure D. Grant1 and Lance J. Kriegsfeld2,3,4,5*
1Levels Health Inc, New York, NY, United States, 2Department of Psychology, University of California,
Berkeley, CA, United States, 3The HelenWills Neuroscience Institute, University of California, Berkeley, CA,
United States, 4Department of Integrative Biology, University of California, Berkeley, CA, United States,
5Graduate Group in Endocrinology, University of California, Berkeley, CA, United States

Coordinated fluctuations in female reproductive physiology and
thermoregulatory output have been reported for over a century. These
changes occur rhythmically at the hourly (ultradian), daily (circadian), and
multi-day (ovulatory) timescales, are critical for reproductive function, and
have led to the use of temperature patterns as a proxy for female reproductive
state. The mechanisms underlying coupling between reproductive and
thermoregulatory systems are not fully established, hindering the expansion of
inferences that body temperature can provide about female reproductive status.
At present, numerous digital tools rely on temperature to infer the timing of
ovulation and additional applications (e.g., monitoring ovulatory irregularities and
progression of puberty, pregnancy, and menopause are developed based on the
assumption that reproductive-thermoregulatory coupling occurs across
timescales and life stages. However, without clear understanding of the
mechanisms and degree of coupling among the neural substrates regulating
temperature and the reproductive axis, whether such approaches will bear fruit
in particular domains is uncertain. In this overview, we present evidence
supporting broad coupling among the central circuits governing reproduction,
thermoregulation, and broader systemic physiology, focusing on timing at
ultradian frequencies. Future work characterizing the dynamics of
reproductive-thermoregulatory coupling across the lifespan, and of conditions
that may decouple these circuits (e.g., circadian disruption, metabolic disease) and
compromise female reproductive health, will aid in the development of strategies
for early detection of reproductive irregularities and monitoring the efficacy of
fertility treatments.
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Introduction

Female endocrine and thermoregulatory outputs exhibit coordinated rhythms at within-
a-day (ultradian; UR) (Sanchez-Alavez et al., 2011; Smarr et al., 2017; Goh et al., 2019; Grant
et al., 2020), daily (circadian; CR) (Kerdelhué et al., 2002), and ovulatory (OR) timescales
(van de Velde, 1926; de Mouzon et al., 1984). This broad pattern of rhythmic harmony
suggests that neuroendocrine physiology operates as a network of coupled oscillators across
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systems and timescales (Brandenberger et al., 1987; Van Cauter,
1990; Shannahoff-Khalsa et al., 1996; Bourguignon and Storch,
2017; Grant et al., 2018; Goh et al., 2019). Although numerous
commercial tools have been developed based on this assumption,
whether rhythmic patterns are generalizable across individuals in
real-world settings, and stable across life stages, is unknown. Most of
the work to date has focused on the utility of temperature patterns in
ovulatory cycle and fertility tracking, with substantial success in both
domains (Goeckenjan et al., 2020; Grant et al., 2020; Alzueta et al.,
2022). More recent work has extended the use of rhythmic
temperature patterns to successful detection of pregnancy and
early prediction of pregnancy complications (Smarr et al., 2016b;
Webster and Smarr, 2020; Grant and Smarr, 2022). The use of
temperature fluctuations to monitor the menopausal transition, in
the presence or absence of hormone replacement therapy, is more
limited but represents a topic of broad importance for female health
during older age (van de Velde, 1905; Murphy and Campbell, 2007;
Grant et al., 2020). The present overview describes direct and
indirect evidence of coupling among the female reproductive
axis, thermoregulatory circuits, and system-wide physiology, and
argues for the utility of non-invasive temperature monitoring to
characterize normative rhythmic patterns across the lifespan, detect
deviations from typical trajectories, and monitor the impact of
reproductive clinical treatments.

The study of temporal coupling among body temperature and
reproductive state dates to over a century ago with the Dutch
gynecologist and author, Theodor Van de Velde. Van de Velde
documented the use of daily oral temperature to monitor the
ovulatory cycle, pregnancy, and the transition to menopause (van
de Velde, 1905; van de Velde, 1926). The work revealed a
temperature rise during the luteal phase in premenopausal
women, the absence of this pattern in menopause, and a
sustained temperature rise in early pregnancy. These changes
have since been ascribed to the temperature-lowering effect of
estrogen, and the temperature-elevating effect of progesterone
(Buxton and Atkinson, 1948; Silva and Boulant, 1986;
Charkoudian and Johnson, 2000; Stachenfeld et al., 2000;
Mittelman-Smith et al., 2012; Zhang et al., 2021). Although
this coupling between reproductive state and thermoregulation
is often observed and utilized on the order of weeks to months,
more recent work has revealed coupling at ultradian timescales
(Shannahoff-Khalsa et al., 1996; Grant et al., 2018; 2020; Goh
et al., 2019). Together, findings over the last several decades in
reproductive neuroendocrinology, thermoregulation, and
biological rhythms revealed that temperature and reproductive
output exhibit multi-scale rhythms that drive reproductive
function (e.g., ovulation), and that these rhythms may be
coupled on the order of hours, consistent with the ability of
temperature to report pulsatile hormone secretion. Monitoring
such coupling through non-invasive metrics like temperature
could not only provide regular readouts of reproductive state, but
also enable prediction of future reproductive state and potential
fertility issues without hormone sampling (e.g. (Smarr et al.,
2016b; Erickson et al., 2023)). As a result, the study of continuous
temperature and hormones in females represents an important
opportunity to further understand endocrine and metabolic
network dynamics, with rapid, real-world translational
applications (Shannahoff-Khalsa et al., 1996; Bashan et al.,

2012; Bartsch et al., 2015; Webster et al., 2015; Grant et al.,
2018; Goodale et al., 2019; Grant et al., 2020; Webster and Smarr,
2020).

If patterns of hormonal change over time (URs, CRs, and ORs)
are strongly coupled to patterns in easy-to-measure outputs such as
temperature, then wearable sensors could be broadly applied to
provide information about reproductive state. Potential applications
include personalized prediction or detection of pubertal onset and
progression, ovulation, pregnancy and potential complications,
labor onset, sub- and infertility, reproductive aging, and
guidance/monitoring during hormone replacement (Farris, 1947;
Buxton and Atkinson, 1948; Cohen et al., 1976; Grant et al., 2020;
Webster and Smarr, 2020; Grant et al., 2021; Grant and Erickson,
2022; Grant and Smarr, 2022). Of these potential applications, once-
daily ovulatory cycle monitoring has been realized at scale (Bull
et al., 2019), with daily oral or skin temperature commonly used as
an approximate marker of ovulation for the purposes of family
planning (van de Velde, 1905; van de Velde, 1926; Buxton and
Atkinson, 1948; de Mouzon et al., 1984; Bull et al., 2019; Maijala
et al., 2019).

Recent work by our group and others revealed that it is possible
to anticipate ovulation through continuous monitoring of ultradian
rhythms in body temperature that presumably mirror underlying
changes in estrogen and progesterone release patterns across the
ovulatory cycle (Prendergast et al., 2012; Smarr et al., 2017; Grant
et al., 2020) (Figure 1). Although such findings are promising, it
cannot be assumed that the coupled oscillator hypothesis is reliable
across time scales, individuals, and stages of reproductive life. For
example, coupling observed at the timescale on the order of months,
such as that of basal body temperature and progesterone during the
menstrual cycle, does not imply that coupling between temperature
and sex steroid hormones occurs at circadian or ultradian
timescales. Additionally, in modern society, individuals are
subject to rhythmic disruption in many forms (e.g., light at night,
blue-light-emitting devices) and may exhibit weaker relationships
between hormones and body temperature as a result. Finally,
physiological states resulting from exogenous hormone
administration such as birth control and post-menopausal
hormone replacement therapy, might perturb coupling and
negatively impact the ability of temperature to report hormonal
state. The stronger the coupling between thermoregulation and
reproduction, the more likely that coupling occurs across
timescales and is resilient to disruption. To begin to consider
these possibilities, it is instructive to review evidence for central
coupling among reproductive and thermoregulatory loci, as well as
the origins of reproductive and thermoregulatory pulsatility. Our
hope is that this overview will stimulate future studies evaluating the
nature of andmechanisms underlying putative coupling pathways to
help guide consideration of ideal, non-invasive proxy metrics for
reproductive health across the female lifespan.

Hypothalamic organization of reproduction

Multiple hypothalamic subregions coordinate the release of
reproductive neuropeptides and hormones (Plant, 2015),
including kisspeptin within the arcuate (ARC) and anteroventral
paraventricular (AVPV) nuclei, gonadotropin releasing hormone
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(GnRH) within the preoptic area (POA) and anterior hypothalamus,
and RFamide-related peptide 3 (the mammalian ortholog of avian
gonadotropin-inhibitory hormone) within the dorsomedial nucleus
of the hypothalamus (Ubuka et al., 2018; Angelopoulou et al., 2019).
These populations integrate with the central clock in the
suprachiasmatic nucleus (SCN) and extrahypothalamic regions to
generate an exquisitely coordinated circadian-, ovulatory phase-,
pulse-, and environmentally-modulated GnRH signal (reviewed in
(Moeller et al., 2022; Piet, 2023)). GnRH is released to the portal
vasculature of the anterior pituitary where it triggers the release of
the gonadotropins, luteinizing hormone (LH) and follicle
stimulating hormone (FSH). LH and FSH act on the gonads to
stimulate the synthesis and release of sex steroids and gamete
maturation, respectively. Sex steroids and gonadotropins provide
feedback both locally and at the levels of the pituitary and
hypothalamus to regulate hypothalamo-pituitary-gonadal (HPG)
axis activity (Plant, 2015; Herbison, 2018).

URs are integral to the functioning of the HPG axis and across
the ovulatory cycle (Backstrom et al., 1982; Herbison, 2018). Much
of the data on GnRH pulsatile release has been garnered from ewes
as GnRH can be more easily sampled in this large ungulate relative
to rodents. In ewes, each GnRH UR or “pulse” consists of rapid rise,

sustained elevation with a 4 or 5 min variable plateau, and a
precipitous ~3 min decline (Moenter et al., 1991; Moenter et al.,
1992; Goodman et al., 1995). This pattern repeats with stereotyped
frequency modulation across the ovulatory cycle. The pulsatile
signal generated by these complex interactions propagates down
the HPG axis, resulting in URs of LH, estrogens, progesterone, and
testosterone (Backstrom et al., 1982; Albertsson-Wikland et al.,
1997; Grant et al., 2018). This patterning is required for normal
pituitary gonadotropin secretion (Thompson and Kaiser, 2014;
Zavala et al., 2019), and its disruption may contribute to
polycystic ovarian syndrome (PCOS) (Chaudhari et al., 2018;
Coutinho and Kauffman, 2019; Hunjan and Abbara, 2019),
hypothalamic amenorrhea (Meczekalski et al., 2014; Fourman
and Fazeli, 2015), hypogonadotropic hypogonadism (Belchetz
et al., 1978; Gronier et al., 2014; Hao et al., 2021), and
menopause (Hunjan and Abbara, 2019).

In women, HPG axis pulse frequency increases from about once
per 1–2 h, to slightly more than once per hour, across the pre-
ovulatory or follicular phase of the cycle (Backstrom et al., 1982;
Grant et al., 2018). This change is coincident with rising levels of
estradiol that peak prior to ovulation, and low concentrations of
progesterone. In spontaneously-ovulating rodents, sufficiently

FIGURE 1
Ultradian power of distal BT and heart rate variability (HRV) anticipates LH surge onset. Mean BT (A) and root mean squared standard deviation
(RMSSD, a measure of HRV) (C) ultradian power (z-scored) ± standard deviation for cycles within 1 week of the LH surge in women. BT UR power peaks
exhibit an inflection point 5.82 (±1.82) days prior to LH onset, a peak amean of 2.58 (±1.89) days before LH onset and a subsequent trough 2.6 (±1.02) days
after surge onset (Grant et al., 2020) (A). Ultradian HRV power inflects an average of 5.82 (±1.53) nights prior to LH surge onset, exhibits a subsequent
peak 2.58 (±1.59) days prior to the surge onset and a trough 2.11 (±1.27) days after surge onset (C). Representative individual example of raw BT ultradian
power within 1 week of LH surge onset (B) and raw HRV one week before the LH surge (D). Black squares in B and D correspond to Boxes 1 and 2 that
show linear waking BT and HRV from which ultradian power in B and D were generated. (from (Grant et al., 2020)).
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elevated estradiol integrates with SCN vasopressin (AVP)-ergic
circadian signaling at kisspeptin neurons of the AVPV to
stimulate the LH surge that initiates ovulation (Moeller et al.,
2022; Moralia et al., 2022; Tonsfeldt et al., 2022; Piet, 2023). In
addition, SCN vasoactive-intestinal polypeptide (VIP)-ergic
projections to the POA also contribute to the LH surge via direct
communication to GnRH cells (Moeller et al., 2022; Moralia et al.,
2022; Tonsfeldt et al., 2022; Piet, 2023). Although numerous lines of
evidence point to the negative impact of circadian disruption on
ovulation in women, the SCN does not appear to be necessary for the
LH surge in women and higher primates (reviewed in (Moeller et al.,
2022)). Despite a role for circadian coordination of ovulation timing,
and reports of post-ovulatory reductions in circadian amplitude of
body-temperature CRs (Webster and Smarr, 2020), CR stability does
not appear to change stereotypically across the ovulatory cycle in
women (Grant et al., 2020). Following the LH surge and ovulation,
pulsatility slows to one pulse per 3 or 4 h (Moenter et al., 1991;
Goodman and Inskeep, 2015; Grant et al., 2018). This post-
ovulatory, luteal phase of the cycle is associated with elevated
progesterone and a relatively small elevation in estradiol. In the
absence of pregnancy, progesterone declines in the latter portion of
the luteal phase, leading to the onset of menses and the eventual
beginning of a new cycle.

Ultradian rhythmicity in the HPG axis appears to originate, at
least in part, from a kisspeptin pulse generator located in the ARC
(Lehman et al., 2010; Herbison, 2018), a region of the hypothalamus
also implicated as a broader source of hormonal and behavioral URs
(Prendergast and Zucker, 2016). The key to understanding GnRH
pulsatility came with the identification of triple-phenotype neurons
in the ewe ARC that express kisspeptin/Neurokinin/Dynorphin, or
KNDy, neurons (Goodman et al., 2007; Nestor et al., 2023). With
reciprocal connectivity among ARC kisspeptin neurons, it appears
that neurokinin (NKB) communication initiates a pulse whereas
dynorphin suppresses kisspeptin neuronal activity to terminate a
pulse, and that these rhythms neuronal activity stimulate GnRH cells
via kisspeptin release (Lehman et al., 2010; Lehman et al., 2019;
Nestor et al., 2023). One recent finding suggests a potential
modification to this hypothesis wherein pulses originate from
glutamate-AMPA mediated spontaneous synchronization among
kisspeptin neurons. Under this proposed model, dynorphin-kappa
opioid tone gates the initiation of synchronization to drive pulsatility
and facilitate kisspeptin cell synchrony (Han et al., 2023).

Arcuate KNDy neurons appear to be common across species,
and were recently shown to form close, non-synaptic appositions to
GnRH cell “dendrons”. These unique structures are positioned at the
median eminence (ME), resemble both an axon and dendrite, and
release kisspeptin to control GnRH activity (Liu et al., 2021). In
mice, KNDy neurons exhibit synchronized bursting correlated with
pulsatile LH secretion (Clarkson et al., 2017). Likewise, optogenetic
stimulation of KNDy cells results in corresponding LH pulses (Han
et al., 2015) and their selective suppression inhibits LH pulses
(Clarkson et al., 2017). Although these circuits are frequently
studied in rodents and ewes, kisspeptin neurons in the rostral
POA, infundibular nucleus, and ARC (Hrabovszky et al., 2010)
potentially take on the role of pulse generation in humans, although
more data are needed to reveal the neurochemical mechanisms of
pulse generation in women (Jayasena et al., 2009; Chan et al., 2012;
Skrapits et al., 2015; Lehman et al., 2019). Additional mechanisms

contribute to the in vivo oscillatory dynamics of GnRH neurons,
including extra-hypothalamic input (Soper and Weick, 1980).
Finally, cultured adult or embryonic GnRH neurons exhibit
synchronized pulsatility, suggesting a contribution of intrinsic
pulse-generation by these cells (Weiner et al., 1992; Terasawa
et al., 1999; Duittoz and Batailler, 2000; Funabashi et al., 2000;
Moore et al., 2002; Gore et al., 2004). Together, these observations
strongly support kisspeptin-cell-mediated ultradian stimulation of
the GnRH system with contributions from extrahypothalamic loci
and intrinsic rhythm generation. Precisely how synchronicity is
maintained within the pulse generator, as well as mechanisms
behind the frequency modulation of pulsatility observed across
the ovulatory cycle, remain to be fully understood (Czieselsky
et al., 2016; Herbison, 2018).

Hypothalamic organization of
thermoregulation

Body temperature (BT) is a non-stationary signal that is influenced
by a variety of temporal, endocrine, autonomic, behavioral, and species-
specific factors. Mammalian BT exhibits URs, CRs, and ORs; as well as
distinct rhythmic structures at different locations on the body (Krauchi
and Wirz-Justice, 1994; Krauchi et al., 2014; Grant et al., 2018; Grant
et al., 2021). Although each part of the body comprises a “micro-
climate”, BT is traditionally divided into the skin or “shell”, and the
“core” or interior of the body (Childs, 2018; Romanovsky, 2018).
During the active phase, core temperature is elevated relative to the
shell (Krauchi and Wirz-Justice, 1994; Krauchi et al., 2014). During the
inactive phase, vasodilation sends blood from the core to the shell,
thereby reducing core temperature and heating the shell through heat
dissipation (Charkoudian et al., 2017; Tan and Knight, 2018). In larger
mammals, including humans, the gradient from shell to core is more
exaggerated than in smaller animals, such as mice and rats (Weiss et al.,
2017; van der Vinne et al., 2020; Reid et al., 2021), suggesting that
findings from rodent core and shell may not translate directly to human
core and shell temperature (Krauchi et al., 2014; Webster and Smarr,
2020). For simplicity, the present discussion will be limited to central
regulation of core temperature (CBT) (Batinga et al., 2015;Maijala et al.,
2019; Grant et al., 2020). For reviews on behavioral and environmental
influences on body temperature, see (Charkoudian and Stachenfeld,
2011; Morrison and Nakamura, 2011; Krauchi et al., 2014;Webster and
Smarr, 2020).

Thermoregulation is centrally controlled by neural populations
within the POA (Tan and Knight, 2018). Activity across the rat
POA, which includes both reproductive and thermoregulatory cell
populations, is pulsatile during estrus and diestrus (Pardey-Borrero
et al., 1985), with some POA neurons exhibiting ultradian bouts
associated with REM sleep and sinusoidal ultradian waking bouts
(Miyamoto et al., 2012). “Warm-sensitive” neurons, named due to
their activation at high temperatures via transient receptor potential,
or TRP, channels (Wang and Siemens, 2015) make up ~30% of the
POA (Boulant and Dean, 1986; Tan et al., 2016). Warm-sensitive
neurons appear to reciprocally inhibit or override a much smaller
population of “cold-sensitive” neurons, which may occupy ~5–10%
of the POA (Boulant and Dean, 1986; Nakamura and Morrison,
2008; Tan et al., 2016) and extend into the dorsomedial
hypothalamus (DMH) (Zhao et al., 2017). Additionally,
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GABAergic interneurons within the POA serve to inhibit warm-
sensitive neurons in response to cold stimuli (Morrison et al., 2008).
Control of heat dissipation is accomplished via the impact of these
neurons on autonomic tone at cutaneous arterioles, and heat
generation is accomplished via impact on brown adipose tissue
(BAT) and skeletal and erector pili muscle activity. Environmental
feedback to thermoregulatory populations comes from sensory
neurons in the trigeminal and dorsal root ganglia that sample
temperature from specific tissues in the abdomen, spine, skin,
and within the brain itself (Wit and Wang, 1968; Boulant and
Hardy, 1974; Silva and Boulant, 1986; Vriens et al., 2014; Tan and
Knight, 2018).

Interaction among thermoregulatory and
reproductive circuits

In animal models, the association between increased core and
skin temperature measurements have given rise to the term “in heat”
for sexually receptive females (Marrone et al., 1976). Acutely, high
levels of estradiol around the time of ovulation promote peripheral
vasodilation, followed by high progesterone concentrations during
the luteal phase leading to peripheral vasoconstriction
(Charkoudian et al., 2017). Accordingly, estradiol lowers core and
skin temperature in females (Williams et al., 2010; Mittelman-Smith
et al., 2012; Rance et al., 2013), and ovariectomized mice (in which
the dominant estradiol source is removed) exhibit a sustained
increase in tail temperature that can be reversed with estradiol
treatment (Ding et al., 2013). In males, testosterone acutely raises
muscle temperature while lowering adipose temperature, but this
hormone can also be aromatized to estradiol, thereby affecting body
temperature through similar mechanisms as estradiol in females
(Mauvais-Jarvis, 2011; Clarke et al., 2012). Conversely, progesterone,
either alone or combined with estradiol, raises body temperature. In
rodents, the pre-ovulatory spike in estradiol and progesterone on
estrous days is associated with high CBT (Sanchez-Alavez et al.,
2010; Szawka et al., 2010; Prendergast et al., 2012; Smarr et al., 2017).
This phenomenon has also been observed in humans following
ovulation (Maijala et al., 2019; Grant et al., 2020). Additionally,
recent work has identified various patterns of pre-ovulatory
temperature depression followed by a peri-ovulatory temperature
rise, although confounding factors (e.g., assuming LH surges directly
report ovulation) limit the interpretation of such findings (Berglund
Scherwitzl et al., 2015; Shilaih et al., 2018; Goodale et al., 2019;
Kleinschmidt et al., 2019). Our recent work identified consistent
increases in peripheral temperature ultradian amplitude and
frequency just prior to the onset of the LH surge in women
(Grant et al., 2020) (Figure 1), mirroring changes in LH pulse
frequency across the menstrual cycle previously reported
(Backstrom et al., 1982). As described below, changes in
thermogenesis associated with sex steroids throughout the
ovulatory cycle likely occur through co-influence on
hypothalamic neurons that regulate pulsatile release of GnRH as
well as body temperature, and through direct synaptic coupling
(Mittelman-Smith et al., 2012; Rance et al., 2013).

First, a distinct population of non-thermosensitive neurokinin
3 receptor (NK3R) -expressing neurons in the POA are modulated
by estrogen-responsive ARC KNDy neurons that release neurokinin

(Mittelman-Smith et al., 2012; Mittelman-Smith et al., 2015; Padilla
et al., 2018; Krajewski-Hall et al., 2019) (Figure 2). These NK3R-
positive neurons are glutamatergic and reduce core temperature
following local injections of the NK3R receptor agonist, senktide, or
following ablation of these cells, providing a pathway for the
changing impact of estrogen on body temperature throughout
the ovulatory cycle (Mittelman-Smith et al., 2015; Krajewski-Hall
et al., 2019). These cells are not impacted by temperature-sensitive
neurons in skin or viscera, and are not warm-responsive POA
neurons, pointing to KNDy cells in regulating ultradian
temperature patterning indirectly via NK3R-expressing cells in
the POA (Krajewski-Hall et al., 2019). In accord with this
reasoning, female Kiss1r (the gene for the kisspeptin receptor)
knockout mice exhibit lower amplitude circadian rhythms in
body temperature, likely due to reduction in the frequency of
active-phase ultradian temperature events that would normally
boost circadian amplitude (Kavanagh et al., 2022). These effects
appear to be both centrally and peripherally mediated as mice
lacking Kiss1r in brown adipose tissue display increased CBT
(Tolson et al., 2020). The impact of female reproductive state on
BAT is further regulated indirectly via estrogen-responsive
sympathetic nervous system (SNS) outflow originating from the
ventromedial hypothalamus and the POA (Figure 2) (reviewed in
(Zhang et al., 2021)).

In addition to KNDy regulation of temperature via NK3R POA
cells, GnRH can excite warm-sensitive neurons in rats, potentially
lowering body temperature in an ultradian fashion (Inagaki et al.,
1985). To our knowledge, GnRH receptors have not been localized
to warm-sensitive neurons and effects of GnRH are likely indirect.
Additionally, hot flashes are maintained in postmenopausal women
with Kallmann syndrome, a disorder in which GnRH neurons fail to
differentiate and migrate from the olfactory mucosa to the
hypothalamus, suggesting contributions of GnRH to temperature-
sensitive neurons are likely negligible under typical physiological
circumstances (Gambone et al., 1984; Rance et al., 2013). Potentially
further contributing to ovulatory cycle changes in rhythmic
temperature around the time of the LH surge, progesterone
largely inhibits warm-sensitive neurons in slice (Tsai et al., 1988;
Tsai et al., 1992). Additionally, prostaglandin E2, which is released in
response to progesterone (and, canonically, in sickness) generally
increases temperature, likely by binding to EP3 receptors on
GABAergic neurons in the POA that subsequently communicate
to warm-sensitive neurons (Morrison and Nakamura, 2011;
Rusyniak et al., 2011).

In addition to these central mechanisms of control, sex steroid
hormones feed back to the brain to influence temperature, with
about half of warm-sensitive POA neurons affected by estrogens or
testosterone (Silva and Boulant, 1986; Zhang et al., 2021). These
findings suggest that periodic release of sex steroids could further
reinforce ultradian temperature patterns. As might be expected, in
ovariectomized animals, the pattern of temperature (Kobayashi
et al., 2000; Opas et al., 2004) and the activity of temperature-
sensitive cells in the POA is both reduced and disordered (Wang
et al., 2014). Conversely, their pattern of activity can be rescued, in
part, by phytoestrogen-rich food (e.g., black cohosh) and by direct
estradiol replacement (Opas et al., 2004; Hui et al., 2012). Notably,
although temperature level is commonly reduced by these
interventions, effects on ultradian temperature patterning are
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more variable, suggesting that tonic administration of estrogens can
impact temperature setpoint and ultradian patterning differentially
(Opas et al., 2004; Grant et al., 2022). It is likely that temporal
patterns of sex-steroid receptor expression are altered at hormone-
responsive thermoregulatory loci, leading to changes in ultradian
patterning, a possibility requiring further investigation. Together,
the activity profile and reciprocal connections among
thermoregulatory neurons in the POA, reproductive circuits in
the ARC, and sex steroids, suggest that reproductive-
thermoregulatory coupling is both centrally generated and
peripherally reinforced through feedback to the brain (Figure 2).

Modulation of URs by phase of the ovulatory
cycle: A potential role for the dopaminergic
ultradian oscillator, TIDA neurons, and the
arcuate pulse generator

In 1980, Soper and Weick suggested that an extrahypothalamic
region, and the ARC, may provide two independent mechanisms for
the generation of LH pulsatility in ovariectomized rats (Soper and
Weick, 1980). Thus, an additional locus may contribute to UR

generation across the ARC pulse generator and POA. Twenty five
years after the findings by Soper and Weick, the ventral tegmental
area (VTA) was compellingly presented as an tunable regulator of
URs in dopamine, behavior, and temperature (Blum et al., 2014;
Bourguignon and Storch, 2017). This system, dubbed the
“Dopamine Ultradian Oscillator”, or DUO, may be responsible
for reinforcement of URs and modulation of UR periodicity
across the ovulatory cycle. The VTA exhibits URs in dopamine
that are tightly correlated to URs in CBT and locomotor activity
(Blum et al., 2014; Bourguignon and Storch, 2017). Additionally,
endogenous and pharmacological increases in dopamine lengthen
UR period, whereas endogenous and pharmacological decreases in
dopamine shorten UR period (Blum et al., 2014; Bourguignon and
Storch, 2017). Subsequent experiments established that the VTA is a
key area for generation and coordination of URs across systems,
including motivation, locomotor activity, feeding, and hippocampal
activity (Blum et al., 2014; Blessing and Ootsuka, 2016; Bourguignon
and Storch, 2017). The VTA sends projections to the anterior,
lateral, and posterior hypothalamus (Aransay et al., 2015),
providing a means for broad communication of ultradian
signaling. Inputs to the VTA likely act to fine-tune dopaminergic
ultradian activity. For example, pro-opiomelanocortin (POMC) (Qu

FIGURE 2
Model of interactions among reproductive and thermoregulatory output in ultradian rhythm generation. Hypothalamic and subcortical structures
proposed to enable ultradian coupling of reproductive and thermoregulatory outputs. The KNDy ARC pulse generator conveys a pulsatile GnRH signal to
the anterior pituitary, stimulating pulsatile release of LH and FSH. KNDy input to TIDA neuronsmay act to generate ultradian patterns of dopamine release
into the pituitary to temporally influence prolactin secretion.Whether TIDA neurons are capable of intrinsic ultradian rhythmic generation remains to
be determined. The KNDy UR network influences warm- (and potentially cold-) thermosensitive-neurons through NK3R glutamatergic POA neurons.
The SCN and the dopaminergic ultradian oscillator of the VTA may further impose both time of day (SCN) and time of cycle (VTA via NAcc not shown)
regulation of ultradian rhythms in body temperature. These actions may further be achieved through influence on the ARC pulse generator, POA/AVPV
kisspeptin and GnRH populations, impact of ARC POMC and NPY/AgRP neuronal communication, and VTA projections to more diverse hypothalamic
subregions. Likewise, feedback from estrogens throughout the cycle likely acts directly on kisspeptin cells in the AVPV/ARC, on warm-sensitive neurons
in the POA, and at the level of the pituitary to further regulate the pattern of URs in temperature. Colors of neuronal projections for clarity only. See text for
further details. Created with BioRender.com.
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et al., 2020) neurons of the ARC send projections to the VTA that
inhibit dopaminergic activity (Gumbs et al., 2019), and these cells
are impacted by kisspeptin (Fu and van den Pol, 2010), providing a
mechanism for altering POMC cell input to the VTA based on
reproductive/metabolic state. Likewise, agouti-related peptide/
neuropeptide Y (AgRP/NPY) neurons project to the VTA,
express the Kiss1r, and oppose the actions of POMC neuron
communication (Kim et al., 2010; Gumbs et al., 2019; Vohra
et al., 2022). Finally, the nucleus accumbens (NAcc), a major
target of VTA dopamine, projects to both the VTA (Qi et al.,
2022) and ARC, potentially to reinforce their coupling (reviewed
in (Prendergast and Zucker, 2016)). Together, dopaminergic URs
may be an important reinforcer of reproductive-thermoregulatory
coupling and have direct neural substrate for communicating with
reproductively relevant hypothalamic circuits. However, an
additional dopaminergic population within the ARC,
tuberoinfundibular dopaminergic (TIDA) neurons, likely further
contributes to the integration of reproductive, thermoregulatory,
and ovulatory-phase-dependent URs.

TIDA neurons are known to play an important role in
reproduction by releasing dopamine into the median eminence to
inhibit prolactin secretion (Lyons and Broberger, 2014), with SCN
VIP-ergic projections targeting TIDA neurons to time their activity
(Freeman et al., 2000), but they may also contribute to the broader
pulsatile network. KNDy neurons contact TIDA cells (Sawai et al.,
2014; Ozawa, 2021) and, consistent with this connectivity,
intracerebroventricular injections of kisspeptin increase prolactin
secretion (through inhibition of dopamine release) in an estrogen-
and progesterone-dependent manner (Aquino et al., 2019).
Moreover, dopaminergic fibers closely appose GnRH fibers at the
median eminence (Jennes et al., 1983; Mitchell et al., 2003). In
addition, in anestrous ewes, dopamine appears to inhibit GnRH by
suppressing KNDy neuron activity via D2 receptors (Goodman
et al., 2012; Weems et al., 2017). More specifically, E2 increases
expression of D2R, and D2R antagonist infusion in the ARC
increases LH pulse frequency (Goodman et al., 2012; Weems
et al., 2017). Thus, TIDA neurons may both receive pulsatile
input and contribute to the pattern of KNDy and GnRH cell
activity (Jennes et al., 1983; Mitchell et al., 2003; Goodman et al.,
2012; Sawai et al., 2014; Weems et al., 2017). Dopamine release
occurs at intervals ranging from 100 m in to hours, consistent with a
role in the ultradian regulation of prolactin (Romanò et al., 2017).
Finally, in women, 70% of prolactin (which acts to stimulate TIDA
DA release (Moore et al., 1980) pulses occur coincident (within
15 min) with LH pulses, and kisspeptin may act directly on a
proportion of TIDA neurons (Aquino et al., 2019), supporting
coupled timing of dopamine and kisspeptin pulsatility
(Backstrom et al., 1982). These findings point to a putative
mechanism whereby dopaminergic output, potentially from the
ARC, may reinforce synchronized URs within KNDy, GnRH,
LH, and prolactin cells. Together, dopamine from TIDA neurons
may synergize with that of the VTA to reinforce coupling among
pulses of reproductive hormones and body temperature, as well as
potentially contribute to modulation of UR period across the
ovulatory cycle.

The mechanisms underlying stereotyped modulation of UR
periodicity across the ovulatory cycle are as yet unexplained, but
Prendergast and Zucker proposed that changes in dopaminergic

tone across the ovulatory cycle could be responsible (Prendergast
and Zucker, 2016). If so, one would expect higher dopaminergic tone
to be coincident with times of body temperature UR period
lengthening, and hormonal output, as well as elevated
temperature levels (e.g., the post-ovulatory luteal phase).
Likewise, one would expect reduced dopaminergic tone to be
associated with increasing frequency of these URs (i.e., the
phenotype observed in the pre-ovulatory follicular phase).
Consistent with these predictions, prolactin is elevated around
ovulation (when UR frequency is high and dopaminergic tone
likely reduced), and reduced during the early follicular phase
(when UR frequency is low and dopaminergic tone is likely
increased) (Franchimont et al., 1976). Moreover, under natural
conditions, increases in dopaminergic tone are inversely
proportional to increases in LH pulse frequency, potentially from
either the VTA or TIDA neurons. Together, recent work reinforces
the intriguing possibility that the DUO (Blum et al., 2014) and the
ARC hypotheses of ultradian rhythm generation (Prendergast and
Zucker, 2016) could be united by direct or indirect communication
among the ARC pulse generator, VTA, and TIDA neuron
populations (Prendergast and Zucker, 2016).

Perturbation of coupling

As described herein, central reproductive and thermoregulatory
circuits are coupled within the hypothalamus and dopaminergic circuits
within the hypothalamus, VTA, and NAcc may enable modulation of
ultradian frequency of temperature and reproductive output across the
ovulatory cycle. However, numerous other factors contribute to
thermoregulation that may perturb this harmony. For example,
brown adipose tissue deposition is positively correlated with
progesterone secretion across the cycle, inversely correlated with
estrogen during the follicular phase, and is heavily influenced by
cortisol (Baker et al., 2020; Fuller-Jackson et al., 2020). Unlike the
HPG axis, URs in the hypothalamic-pituitary-adrenal axis can be
preserved in the absence of URs in their hypothalamic releasing
hormone, corticotropin-releasing hormone (Walker et al., 2012). As
HPA axis activity contributes to the regulation of body temperature
(Hampl et al., 2006; Ramage et al., 2016), and has been observed in
limited cases to time-lock with ultradian rhythms of CBT (Smarr et al.,
2016a), central reproductive-thermoregulatory coupling is not likely to
generate an isolated, 1:1 relationship between these systems, but may
mask the relationship between reproductive status and temperature
oscillations. The impacts of stress, environment, and behavior on
thermoregulation and reproduction have been reviewed recently
(McMurray and Katz, 1990; Charkoudian and Stachenfeld, 2011;
Morrison and Nakamura, 2011), and lend insight into the
complexities of understanding and mapping the coupling between
these systems.

If peripheral factors could perturb coupling, this dysregulation
could lead to false inferences made from temperature about
reproductive state, especially in cases of rhythmic instability (e.g.,
in shift workers, individuals with diabetes, in stress disorders, or
during the perimenopausal period) (Boyle et al., 2018; Katulski et al.,
2018; Grant et al., 2020). In particular, the unpleasant side effects of
rhythmic disruptors, such as shift work, are due to dissociation of
rhythmicity among systems in the body. When the brain and body
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are required to “adjust” to a new time zone, different systems adjust
at different rates, leading to decoupling and suboptimal function
during the readjustment period, and the associated malaise of jetlag
(Evans and Davidson, 2013; Casper and Gladanac, 2014). Although
physical time zone shifts are the most well-known example of
rhythmic disruption, many common behaviors and medical
interventions are associated with such internal desynchrony.
These include insufficient light during the day, blue light
exposure at night, late meals, and pharmaceuticals such as
hormonal contraception, which together impose “pharmaceutical”
or “social” jetlag on an alarming proportion of the population
(Rutters et al., 2014; Wong et al., 2015; Smarr and Schirmer,
2018; Grant et al., 2021). The result of these other forms of de-
coupling events on thermoregulation make it challenging to apply
temperature as a reliable proxy for reproductive state (Smarr et al.,
2016a; Grant et al., 2020). Thus, it is important to consider
temperature-reproductive ultradian rhythms in the context of
perturbing events.

Summary and conclusions

Reproductive and thermoregulatory hypothalamic circuits
are coupled, and both have pulsatile output. Multiple
hypotheses have been proposed for how such coupling may be
achieved, including the ARC pulse generator and KNDy neurons,
the DUO, and decentralized mechanisms. We propose that
pulsatility is likely to be of central origin in the case of
reproductive-thermoregulatory coupling, that peripheral
factors likely reinforce this coupling, and that existing theories
about the origins of URs may be complementary. Future studies
will help to resolve the specific interplay among the DUO and
ARC pulse generators and reproductive and thermoregulatory
circuits. Dopamine represents a likely substrate for
communication among pulse generators in ARC and the VTA.
These systems working together may tune ultradian periodicity

across the ovulatory cycle through frequency modulation of
ultradian rhythms. There is strong evidence to support the
development of continuous temperature-based proxies for
reproductive system output, but these proxies may be
disrupted by desynchronizing behavioral, environmental, or
pharmacological interventions, making interpretation and
diagnostics challenging. However, by considering and
computationally filtering the contribution of these
perturbations, continuous temperature monitoring has broad
applications in tracking adolescent development, fertility and
infertility, pregnancy, and menopause.
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