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PhD2, Matei Zaharia, PhD2, Paul J. Wang, MD1, Wouter-Jan Rappel, PhD3, Sanjiv M. 
Narayan, MD PhD*,1

1Department of Medicine, Stanford University, Stanford, USA;

2Department of Computer Science, Stanford University, Stanford, USA

3Department of Physics, University of California, San Diego, USA

Abstract

Introduction: Advances in ablation for atrial fibrillation (AF) continue to be hindered by 

ambiguities in mapping, even between experts. We hypothesized that convolutional neural 

networks (CNN) may enable objective analysis of intracardiac activation in AF, which could be 

applied clinically if CNN classifications could also be explained.

Methods: We performed panoramic recording of bi-atrial electrical signals in AF. We used the 

Hilbert-transform to produce 175,000 image grids in 35 patients, labeled for rotational activation 

by experts who showed consistency but with variability (kappa=0.79). In each patient, ablation 

terminated AF. A CNN was developed and trained on 100,000 AF image grids, validated on 

25,000 grids, then tested on a separate 50,000 grids.

Results: In the separate test cohort (50,000 grids), CNN reproducibly classified AF image grids 

into those with/without rotational sites with 95.0% accuracy (CI 94.8–95.2%). This accuracy 

exceeded that of support vector machines, traditional linear discriminant and k-nearest neighbor 

statistical analyses. To probe the CNN, we applied Gradient-weighted Class Activation Mapping 

which revealed that the decision logic closely mimicked rules used by experts (C-statistic 0.96).
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Conclusions: Convolutional neural networks improved the classification of intracardiac AF 

maps compared to other analyses, and agreed with expert evaluation. Novel explainability analyses 

revealed that the CNN operated using a decision logic similar to rules used by experts, even 

though these rules were not provided in training. We thus describe a scaleable platform for robust 

comparisons of complex AF data from multiple systems, which may provide immediate clinical 

utility to guide ablation.
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Arrhythmia; Atrial Fibrillation; Deep Learning; Machine Learning

Introduction

The success of ablation therapy for atrial fibrillation (AF) remains at 40–70% despite 

advances in mechanistic understanding and technology1, 2. It has been difficult to improve 

upon pulmonary vein isolation (PVI) using anatomical lines or even posterior wall 

isolation1, 2. Intuitively, AF ablation could be personalized to intracardiac patterns, yet there 

is considerable ambiguity in interpreting AF electrograms (complex fractionated 

electrograms3, high dominant frequency4) or spatial maps of AF5–7. Machine learning (ML) 

offers the potential to reduce ambiguity in analyzing complex intracardiac data in AF, 

interpret mechanisms and guide therapy.

Numerous approaches are emerging to use intracardiac AF electrograms to identify ablation 

targets outside the pulmonary veins (PV) by dipole density mapping8, 9, electrographic flow 

mapping10, 11, CartoFinder12–14, Stochastic Trajectory Analysis of Ranked Signals15 and 

other approaches16–19. However, it is unclear how to reconcile differences in AF maps by 

these approaches. While some AF mapping systems have been compared10, 19, 20, and one 

validated directly against optical maps of human AF21, most have not been objectively 

compared. A major limitation of current AF mapping is that it requires human interpretation 

which introduces variability and is difficult to scale. A truly automated method that is as 

accurate as a group of human experts might improve the results of map guided AF ablation.

We hypothesized that machine learning (ML) provides a computational platform to classify 

AF maps and automatically identify potential ablation targets. ML is a rapidly developing 

branch of computer science which can reveal hidden data structures in complex data22, 23. 

ML has been applied to the ECG to diagnose arrhythmias24, 2526, yet has rarely been applied 

to intracardiac AF data. Moreover, ML is often considered a ‘black box’ with unclear 

rationale behind its decisions22, 23, which may limit its clinical use. We further hypothesized 

that explainability analyses may reveal how ML makes its classification decisions.

We tested our hypotheses by developing supervised ML to classify panoramic intracardiac 

AF data, in a well characterized cohort of persistent AF patients in whom ablation 

terminated AF. To broaden applicability, we trained ML on AF maps created by a freely 

available mapping approach. We also compared results of a CNN to traditional statistics and 

ML methods. Finally, we applied novel methods from computer science to explain how 

trained machines arrive at their classification in an attempt to demystify the ‘black box’ and 

increase clinical confidence.
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Methods

Patient Inclusions

We included 35 patients with persistent AF from the COMPARE-AF registry (COMParison 

of Algorithms for Rotational Evaluation in Atrial Fibrillation, NCT02997254) undergoing 

panoramic mapping of AF with ablation that terminated persistent AF to sinus rhythm or 

atrial tachycardia. Persistent AF was defined by guidelines18, and AF was refractory to ≥ 1 

anti-arrhythmic medication.

Cases were performed after written informed consent of each subject under protocols 

approved by the Human Research Protection Program at each center. All methods were 

performed in accordance with relevant guidelines and regulations. Sample online data, 

videos, and non-proprietary AF mapping software code used in this project are available to 

researchers for the purposes of verifying the results or procedures on http://

narayanlab.stanford.edu.

Electrophysiological Study and Ablation

Patients were studied in the post-absorptive state. Class I and III anti-arrhythmic medications 

were discontinued for > 5 half-lives (>30 days for amiodarone). Catheters were advanced to 

the right atrium (RA), coronary sinus and trans-septally to left atrium (LA). Basket catheters 

(64 poles, Abbott, St. Paul, MN) were positioned in right then left atria for AF mapping. 

These newer baskets capture >80% of atrial area in recent studies27.

Radiofrequency energy was delivered via an irrigated catheter (SmartTouch, Biosense-

Webster; or Tacticath, Abbott, St. Paul, MN) at 25–35 watts. All patients had prospective 

ablation at regions identified by a clinical mapping system (Rhythmview™, Abbott, St. Paul, 

MN) that may reveal sites of sustained rotational activity in AF as validated in simultaneous 

optical mapping of human hearts21.

Ablation lesions were applied for 15–30 seconds at each site, successively, to cover areas of 

2–3 cm2 as described by Miller et al.28 The precise electrode where prospective ablation 

acutely terminated persistent AF was labeled. PVI was performed comprising 

circumferential ablation of left and right PV pairs with verification of PV isolation using 

dedicated circular mapping catheters.

Data Flow in the Study

Figure 1 shows data flow in this study. Intracardiac voltage time-series data from the heart 

(fig. 1a) were recorded using basket catheters positioned in left then right atrium (fig. 1b). 

Unipolar electrograms were recorded at 0.05 to 500 Hz bandpass, at 1 kHz sampling with 

electroanatomic location turned off to reduce electromagnetic interference. Analysis used 1 

minute of data focusing on the 4 seconds used clinically to guide ablation. Raw electrograms 

comprising 64 basket and other channels were exported from Bard (LabSystem Pro), Prucka 

(GE Cardiolab) or Siemens recorders. Raw basket recordings of AF are available at http://

narayanlab.stanford.edu.
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In each patient, AF terminated acutely by ablation at one rotational activation site (fig. 1b,c). 

Multi-electrode arrays produced electrograms at 8 electrodes on each of 8 splines, shown in 

fig. 1c at the site of AF termination.

Data Processing and Featurization

We pre-processed AF signals at 64 sites (8X8 grids) in each atrium. Briefly, we subtracted a 

mean QRS complex (ventricular activation) from each atrial electrogram. Signals were 

filtered at 1.5–25 Hz to compute period (cycle length) in AF, which was used to recompose 

sinusoids, and the Hilbert transform was then used to compute phase maps.

In figure 1d, AF maps represent phase values (0 to 2π) for the entire atrium, created using a 

published non-proprietary algorithm which identifies areas of interest20, 29 with few false-

positives30 (https://narayanlab.stanford.edu). Using this approach, each patient demonstrated 

2.0±0.4 sites of rotational activity, defined as complete rotations (> 2 π radians) for a 

duration of >20% of the mapped segment20 (fig. 1e). Figure 1f indicates time sequences of 

these tiles. Notably, the variable expert interpretation of phase maps between clinicians may 

contribute to documented variability in ablation results between centers5–7.

We trained ML on spatial subregions designed to encompass the spatial scale of drivers 

shown in optical mapping studies21 of human AF. From each original 8X8 grid (X3 channels 

for RGB colors), we generated 25 overlapping 4×4 tiles (fig 1e) using a sliding window with 

stride 4 (spatial shift of 1 electrode). We repeated this process every 5 ms for 1000 ms to 

generate 200 maps for each tile, representing 5–7 cycles or beats of AF (fig. 1e), or 5000 

tiles/patient (175,000 tiles for 35 patients). Each tile was assigned a binary label (1/0) based 

on whether rotational activity was present or not, based on the expert reviewer’s 

determination blind to termination status. We did not analyze sites of focal activation which 

may represent intramural breakthroughs from optical mapping of human AF21, and are a 

minority of potential drivers16, 17. To study reliability, a randomly selected subset of 1050 

AF tiles from all patients were labeled by 3 blinded readers, showing 90% agreement yet 

some variability (Kappa = 0.79).

We analyzed all driver sites to avoid bias, as studies of different methods show AF 

termination at sites of stable and varying as well as transient repeating rotational 

activation16, 17, and because ablation at a non-terminating site could potentially facilitate AF 

termination at a subsequent ablation site29.

Convolutional Neural Networks

We first developed a CNN in Python consisting of 5 convolutional layers and 3 fully 

connected layers, an input layer, an output layer, as well as multiple activation, max-pooling, 

and batch normalization layers. We used the TensorFlow deep learning library adapted from 

a validated design31. Details of the architecture are provided in Supplemental methods, and 

Figure 2 shows each layer and its characteristics.

We trained the CNN on interpolated subsamples (13×13×3) of inputs, to provide a higher-

resolution input to the CNN for better feature extraction. These inputs were fed through the 
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5 convolutional and 3 fully connected CNN layers to compute the forward pass output, 

which was backpropagated to compute gradients and update weights of the CNN.

For development and testing, labeled data were randomly partitioned into independent 

training (57%, 100,000 tiles, 20 patients), validation (14%, 25,000 tiles, 5 patients), and 

testing (29%, 50,000 tiles, 10 patients) sets, each from distinct patients. The ratio of 

rotational to non-rotational tiles in the training and test cohorts were balanced (training 

1.16:1; testing 1:1.04). The validation set was used to tune hyperparameters to reduce over-

fitting.

Traditional Statistical and Machine Learning Algorithms

We compared the accuracy of the CNN in classifying intracardiac AF data to traditional 

statistical analyses. We first used techniques to reduce data size, i.e. dimensionality. 

Increased dimensionality causes exponential increases in parameter space, which makes data 

sparse and reduces the robustness of results. We thus took steps to avoid this ‘curse of 

dimensionality’ for all statistical analyses32.

We first applied principal component analysis (PCA) to the AF mapping data and saved the 

principal components (PCs, also known as factor scores) for each tile to use as the input 

dataset. We used the first 36 PCs as they accounted for >95% of variance in the dataset, 

which we used to reduce dimensionality of the tiles32. The reduced dimensionality tiles, 

standardized using their absolute values, were used as inputs for all of the following 

methods.

We initially performed unsupervised k-means cluster analysis on the entire dimensionality 

reduced tiles as input data (175,000 samples), to examine the relationships of clusters (with 

varying values of k = 2 to 20 clusters) to the expert labels.

We used 3 traditional supervised approaches: linear discriminant analysis (LDA),k-nearest-

neighbor analysis (k-NN), and support vector machines (SVM). LDA is a parametric 

procedure that seeks a weighted combination of variables to optimize prediction, k-NN 

seeks to optimize subsets based on proximity, and SVM creates a decision boundary to 

separate classes using a limited number of input examples (the support vectors). LDA was 

applied to determine the optimal linear combination of dimension-reduced tiles that 

separates them into 2 classes (non-rotational and rotational) based on the expert labels. The 

k-NN method was applied to the same input data with k varied to identify the optimal 

solution. The SVM was trained on the same input data using a linear kernel and a 

regularization factor (C = 1) to separate the classes.

Probing How CNNs Classify AF Electrical Patterns

Explaining ML classifications is critical for clinical use22, 23 yet rarely achieved. We used 

Gradient-weighted Class Activation Mapping (Grad-CAM)33, which has recently been 

applied to probe CNN classifications of images in fields outside medicine, to identify which 

input data within the heart were most critical to the final classification of trained CNNs.
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Figure 3 shows our approach. Input tiles are first presented with known output labels to train 

the CNN. Explainability can be applied once the CNN is trained. We applied explainability 

to the final convolutional layer 5, which better represent partitions of the input data (higher-

level semantics)33 than earlier convolution layers 1–4. We identified weights (i.e. output 

features) for layer 5, generated by forward propagation (figure 3a), and computed 

backpropagated gradients of the output with respect to the final convolutional layer 5, 
∂youtput
∂ Conv5

. The backpropagated weight, 
∂youtput
∂ Conv5

, of size (m × n × k, equivalent to the 

convolutional layer size) was averaged along the 1st (m, rows) and 2nd (n, columns) 

dimensions, producing a k × 1 array of averaged backpropagated weights. An inner product 

between the array and the output of the convolutional layer along the 3rd (k) dimension was 

then performed, resulting in an m × n matrix in which higher values represent inputs with 

greater significance in determining classification. For visualization, the matrix was 

normalized from 0 to 1, then plotted as a heatmap of the importance of input regions to the 

CNN classification (fig. 3c).

Heatmaps were compared to 1050 tiles graded by all expert reviewers, and all heatmap 

regions were compared to the majority diagnosis between experts.

Statistics

Continuous clinical data are represented as mean ± standard deviation (SD) or as median 

[quartiles]. Normality was evaluated using the Kolmogorov-Smirnov test. Nominal values 

were expressed as n (%). Comparisons between the expert rater and each classification 

scheme were made by quantifying decision statistics (sensitivity, specificity, positive and 

negative predictive value, and accuracy) with their exact 95% confidence intervals and 

quantified by kappa. Group comparisons were made using chi-square, ANOVA, or Kruskal-

Wallis test as appropriate. Differences in mean accuracy per patient were tested using t-tests 

for independent samples. Correlations with mean accuracy were computed using Pearson’s 

or Spearman’s correlation as appropriate. A probability of < 0.05 was considered 

statistically significant. Agreement of the consensus of expert raters with Grad-CAM 

heatmap values was evaluated using a receiver operating characteristic analysis setting a cut-

point at the maximum Youden index.

Results

Clinical details of the population are presented in Table 1. Of the 175,000 total tiles, 49.5% 

were expert-classified as rotational and 50.5% were classified as non-rotational. Of these 

tiles, 55% represented sites where AF termination was achieved by ablation.

Supervised CNN to Identify AF Regions of Interest

We first determined the data requirements for CNN to classify intracardiac AF data, which is 

previously unreported. Classification accuracy of CNN for the training set converged to 

100% and loss converged to zero (fig 4a) for training sets of >30,000 image tiles. Notably, 

accuracy of the CNN in the test cohort varied with the size of the previous training cohort. In 

figure 4b, CNN had <80% accuracy in the test cohort when models had been trained on 
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10,000 tiles (10% of training cohort), but rapidly passed 90% accuracy when models had 

been trained on >20,000 tiles.

The CNN model trained on the complete training set was used, as it provided highest 

accuracy (figure 4b). Accuracy of classification in the test cohort was 95.0% (CI 94.8–

95.2%; Table 2). Misclassified tiles (5.0%; 2508/50,000) were present in all test patients 

(251±173 tiles per patient).

Univariate analysis using t-tests and correlation revealed no significant relationship between 

CNN accuracy and any clinical and demographic variable in table 1 (all p>0.15). CNN 

accuracy was 97.3% for tiles in which the raters were in unanimous agreement and 85.1% in 

more difficulty cases where only a majority of raters agreed in the reliability study. Thus, the 

model was able to interpret even ambiguous intracardiac AF maps. CNN accuracy in the test 

set was similar for tiles containing termination sites (95.6%) compared to other sites 

(94.2%).

Traditional Statistics and Machine Learning to Classify AF Data

Table 2 summarizes unsupervised and supervised classification of AF data for 36 principal 

components.

In k-means clustering with k=2 and k=12, each cluster was classified as rotational or non-

rotational, whichever represented a higher proportion of the two expert label classes. 

Accuracy (cluster purity) was 76.4% for 2 clusters and highest for 12 clusters (79.4%).

Applying linear discriminant analysis (LDA) to dimensionality-reduced tiles34 separated the 

two classes with an accuracy of 79.7% in the test set, slightly higher than the best k-means 

clustering result (k = 12).

k-nearest neighbors (k-NN) was also applied to dimensionality reduced tiles, analogous to k-

means and LDA analyses. We tuned the setting of k based on the performance on the 

validation set; we found that k = 109 yielded the best validation accuracy (84.0%). In the test 

cohort, this model achieved an accuracy of 78.9% with a sensitivity and specificity of 75.3% 

and 84.0%, respectively (Table 2).

The SVM model achieved an accuracy of 80.3% and 84.0% in training and validation, 

respectively. In the test cohort, the SVM model achieved an accuracy of 79.7% with a 

sensitivity and specificity of 82.9 and 76.7%, respectively (Table 2).

Probing the “Black Box” of trained Machine Learning Models

Grad-CAM33 heatmaps were used to probe trained CNNs to identify which input regions 

were most critical to classification. Heatmaps in Figures 3 and 5 show the last convolutional 

layer. Fig. 5 shows rotational activation during AF for 3 patients and lack of rotation in a 4th. 

In each case, Grad-CAM identified functional units in the trained CNN (layer 5) that 

mapped to the precise location of rotational sites identified by experts in the input data. This 

was true whether tiles showed one (figure 5a) or multiple concurrent (figs 5b, 5c) sites.
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Comparing Explainability Analyses of CNN to Experts

We explored Grad-CAM in a subset of 105 tiles (3 selected randomly per patient) in which 3 

expert reviewers marked the precise location(s) of rotational activity. Reviewers identified 

58 tiles as showing rotational elements, some showing 2 or more for a total of 77 sites. 

Figure 5 shows that Grad-CAM heatmaps correlated with input regions used by experts to 

code a driver (i.e. rotational core).

Gradings by Grad-CAM were compared to expert consensus based on input tile grid 

location. Grad-CAM matched expert-identified sites with an area under the receiver-

operating curve (C-statistic) of 0.961 (95% CI 0.939–0.984). Setting a cut-point using the 

maximum Youden index yielded a sensitivity of 93.5% (85.4–97.5) and a specificity of 

90.8% (89.8–91.7) for the expert identified features, respectively.

Discussion

Convolutional neural networks can classify complex intracardiac AF data to identify 

organized regions from disorganized activity, including sites where ablation terminates 

persistent AF. We show that this approach was superior to support vector machines, and to 

several traditional statistical approaches. We used novel explainability analyses from 

computer sciences to show that, during training, CNNs developed a logic similar to rules 

applied by experts. This is notable since these rules were neither codified nor used for ML 

training. These data provide a potentially scaleable foundation to analyze complex 

intracardiac AF data, by defining data sizes and structures for ML, by comparing ML 

architectures, and by showing interpretation of its ‘black box’. These results may be used 

directly to reduce ambiguity in interpreting current AF mapping approaches and ultimately 

to improve clinical care.

Convolutional Neural Networks and Explainability in Heart Rhythms

CNNs have reliably identified data structures in fields as complex as voice recognition, 

image classification, and robot-motion planning22, 23, yet have not previously been used to 

interpret electrical patterns from inside the heart. Recent studies show that CNNs can detect 

AF from the ECG24, 2526, although these studies did not pinpoint regions of interest for 

therapy, nor of potential pathophysiological interest, and were degraded by noise25 which is 

common in intracardiac electrograms. This sensitivity to non-physiological factors, and the 

inherent ambiguity of AF signals, emphasizes the need to explain ML classification prior to 

clinical use.

Explainability analysis used Grad-CAM, which does not require retraining or post-hoc 
modifications to the CNN. Earlier layers of the CNN extract lower level features such as 

lines, edges or specific colors such as red, green, or blue. Later convolutional layers extract 

higher level features such as circular patterns or color progression. Grad-CAM uses these 

trained weights to identify the location where features most relevant for classification are 

present in the input. Other explainability approaches could also be used. One approach is to 

visualize the layer activations and/or weights for the different convolutional layers in the 

network35, 36. Sensitivity analyses, such as LIME37, have also been proposed, in which 
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portions of the input are systematically omitted, and their importance inferred by examining 

the resulting changes in classification. Such methods may be limited as multiple concurrent 

regions are difficult to probe simultaneously, yet achieved by Grad-CAM in figure 5b and c, 

and because omitting portions of the input may create artifacts that impact classification. 

Moreover, altering the representation may fundamentally change confidence in network 

predictions38.

Future studies may delineate additional cardiovascular applications in which machine 

learning classifies physiological data in a manner analogous to experts, increasing 

confidence for clinical use. Conversely, such studies may also identify disease states or 

specific questions for which trained ML diverges from expert logic. While less immediately 

applicable clinically, this may provide a starting point for novel mechanistic studies.

Importance of Mapped Features for Atrial Fibrillation

We selected to apply ML to identify organized AF regions in this study because their 

subjective interpretation may contribute to varied results of mapping and ablation between 

centers5–7. It would ultimately be useful to apply ML directly to AF electrograms. Currently, 

however, there is little consensus on interpreting raw AF electrograms. Electrogram 

dispersion introduced by Seitz et al.39 is promising, but requires additional validation such 

as for unipolar and bipolar signals or other technical factors. Alternatively, one may examine 

organized electrograms near drivers, yet such sites also may represent passive activation40. 

Similarly, disorganized electrograms may lie near the core of drivers41 yet could also 

represent wavefront collision or noise42.

AF drivers have been shown directly by optical imaging of human AF21, yet meta-analyses 

of ablation vary from excellent to dismal5–7. Intention-to-treat analysis of the recent 

REAFFIRM trial showed no benefit of ablating drivers, yet many off-protocol strategies 

were used which may have caused both intention-to-treat groups to overlap. Indeed, on-

treatment analysis of REAFFIRM revealed a trend that PVI+driver ablation was superior to 

PVI alone (77.7% vs 65.5% success; p=0.09)43.

Nevertheless, subjectivity in interpreting AF maps is a real limitation of existing 

technologies3, 5, 6. These factors motivated our hypothesis to use ML to analyze AF maps by 

open source methods. The numerical computation of phase renders such sites ideal for 

probing how they are learned by CNN. While meta-analyses suggest that phase mapping 

may be superior to activation mapping of AF7, this also remains controversial.

Our results provide a scaleable foundation to analyze complex AF maps by multiple 

approaches, and could be applied to several systems. We therefore focused on results from a 

non-proprietary freely available system in this study. Future studies could also tailor results 

to clinical data from individual patients, such as demographic, metabolic and structural 

elements.

Limitations

Further studies should extend to patients in whom therapy was not acutely successful. Such 

studies may analyze if differences can be detected in intracardiac AF mapping features 
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and/or patient characteristics. AF termination does not always predict long-term success, yet 

it is one of the few acute markers of ablation success for persistent AF. Future studies should 

apply ML to predict long term outcome, which is difficult to assess in this observational 

registry in which subjects were treated by different protocols. For this study, we elected to 

analyze and train to AF maps, where there is some consensus on what constitutes an 

organized rotation, or focal activation, or no organization. This provides a practical tool to 

reconcile AF maps for emerging AF mapping systems. Future studies should examine raw 

intracardiac electrograms, acknowledging that this introduces separate limitations44. The 

multi-electrode recording basket has spatial resolution limits, although it may be sufficient to 

map organized AF drivers27. Future studies should extend to higher resolution catheters. 

Further research should be done to explore other ML architectures such as deeper CNN 

networks with residual connections, other optimization methods, such as Adam, RMSProp, 

or other stochastic optimization techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Non-Standard Abbreviations and Acronyms

AF Atrial Fibrillation

CNN Convolutional Neural Networks

Grad-CAM Gradient-weighted Class Activation Mapping

k-NN K-Nearest-Neighbor analysis

LA Left Atrium

LDA Linear Discriminant Analysis

ML Machine learning

PCA Principal Component Analysis

PCs Principal Components

PV Pulmonary Vein

PVI Pulmonary Vein Isolation

RA Right Atrium
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SVM Support Vector Machines
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Figure 1: Data Acquisition and Preprocessing
Study Flow. a. Left and Right Atria in the Heart and Torso. b. Basket Catheters used to 

record signals globally within both atria in a 67-year-old woman with persistent AF, showing 

atrial shell and therapy (ablation) site. c. AF termination on 64 electrodes inside the heart 

by treating site in b., terminating to normal (sinus) rhythm. d. Spatial maps of activation 

phase in AF in the entire left atrium, shown as 8×8 grids (interpolated for clarity) colorized 

from 0 to 2π. Sampled 4×4 tiles may show e. presence of rotational features, such as 

where therapy terminated AF, or their absence. f. Spatial maps of phase every 5 ms for 

1000 ms (200 total per patient).
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Figure 2: Detailed convolutional neural network (CNN) architecture
showing all the layers in the network and their respective dimensions.
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Figure 3: Explainability Analysis to Probe How the CNN Interprets Intracardiac AF Patterns.
In training, the ML uses forward propagation of an input tile, creating weights w (red), 
then backward propagation to update internal weights using gradients x (green). This 

training process matches each input with its known output label (0,1). Explainability can be 
applied once the CNN is trained. (a) Weights w and (b) Gradients x of the output of the 

5th convolutional layer are combined by the dot-product operation. (c) Grad-CAM 
Heatmap plots the importance of each input pixel to the CNN classification. Brighter 

(higher value) pixels have a greater influence on the CNN.
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Figure 4. Neural Network Accuracy for Intracardiac AF Electrical patterns in training and test 
cohorts.
a. CNN training and validation set accuracy and loss as a function of training iterations 
(epochs). When trained with 100,000 input tiles, CNN accuracy and loss converged to 100% 

and 0, respectively. In the validation cohort, accuracy and loss converged to 98% and 0, 

respectively. b. Network Accuracy in the independent Test Cohort Varies with the Size 
of Prior Training Cohorts. Accuracy for the desired outputs (region of interest Y/N) 

increased dramatically with the number of tiles used in training, exceeding 90% at >20,000 

training tiles and exceeding 95% at >90,000 training tiles.
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Figure 5: Grad-CAM Heatmaps of trained CNN empirically detect AF features identified by 
experts with domain knowledge.
(a) Input vector showing site of interest in AF in a 49-year-old female. The heatmap site in 

Conv 5 coincides with the precise location in the heart coded by experts as a site of rotation. 

(b) AF in a 63-year-old female with AF, showing two concurrent regions of interest. (c) AF 

in a 64-year-old man, showing 3 regions of interest. (d) AF in 74 year-old-female showing 

no region of interest. In each case, Grad-CAM heatmaps empirically identified tile regions 

identified by experts with physiological knowledge, although CNN were not explicitly 

trained in expert rules.
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Table 1.

Clinical Demographics

Entire Cohort (n=35) Training (n=20) Validation (n=5) Testing (n=10) P-Value

Age (years) 65 ± 9.3 66 ± 9.3 64 ± 10.0 65 ± 10.0 0.941

Male N (%) 23 (66%) 12 (60%) 3 (60%) 8 (80%) 0.530

Persistent AF N (%) 35 (100%) 20 (100%) 5 (100%) 10 (100%) 1.000

Prior AF Ablation N (%) 16 (46%) 10 (50%) 3 (60%) 3 (30%) 0.460

AF History (days) 96 [31–133] 100 [38–130] 47 [28–734] 120 [15–830] 0.544

Hypertension N (%) 22 (63%) 13 (65%) 3 (60%) 6 (60%) 0.955

LA diameter (mm) 46 ± 8.1 45 ± 9.6 51 ± 5.3 47 ± 4.7 0.494

LV ejection fraction (%) 55 ± 10 56 ± 10 48 ± 8.8 57 ± 9.1 0.235

CHADSVASc score 2 ± 1.3 2 ± 1.4 2 ± 2.1 2 ± 1.2 0.999

Coronary disease N (%) 6 (17%) 4 (20%) 1 (20%) 1 (10%) 0.778

*
Values are mean ± SD, median [quartiles], or N (%)
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Table 2.

Accuracy of Classification Models for Regions of Interest in AF

Classification
Kappa†

Sensitivity Specificity PPV NPV Accuracy

Method % % % % %

Supervised Convolutional Neural Network

CNN,
0.982

99.6 98.5 98.7 99.5 99.1

Train (99.5–99.7) (98.4–98.6) (98.6–98.8) (99.5–99.6) (99.0–99.2)

CNN,
0.966

96.7 99.4 98.8 98.4 98.5

Validation (96.3–97.1) (99.3–99.5) (98.5–99.0) (98.2–98.6) (98.3–98.7)

CNN,
0.900

97.0 93.0 93.1 97 95

Test (96.8–97.1) (92.7–93.3) (92.7–93.4) (96.8–97.2) (94.8–95.2)

Unsupervised Cluster Analysis

k-means, k=2
0.530

69.1 92.0 94.9 58.3 76.4

All data (68.8–69.3) (91.8–92.3) (94.7–95.0) (58.0–58.6) (76.2–76.6)

k-means, k=12
0.589

77.0 82.3 83.5 75.5 79.4

All data (76.7–77.2) (82.0–82.6) (83.2–83.7) (75.2–75.8) (79.3–79.6)

Supervised Classical Machine Learning Methods

LDA,
0.617

85.8 76 77.9 84.4 80.9

Train (85.0–86.1) (75.6–76.3) (77.6–78.2) (84.1–84.7) (80.6–81.1)

LDA,
0.595

85.0 74.6 76.4 83.7 79.7

Test (84.6–85.5) (74.1–75.1) (75.9–76.9) (83.3–84.2) (79.4–80.1)

k-NN, k=109
0.647

77.0 88.2 87.9 77.4 82.3

Train (76.7–77.4) (87.9–88.4) (87.6–88.2) (77.0–77.7) (82.0–82.5)

k-NN, k=109
0.615

83.4 86 94.9 62.4 84

Validation (82.8–83.9) (85.1–86.9) (94.6–95.2) (61.3–63.4) (83.5–84.5)

k-NN, k=109
0.576

75.3 84.0 87.1 70.3 78.9

Test (74.8–75.7) (83.5–84.5) (86.7–87.5) (69.8–70.9) (78.5–79.2)

SVM,
0.601

85.8 74.3 79.4 81.5 80.3

Train (85.1–85.8) (73.9–74.7) (79.1–79.7) (81.1–81.9) (80.0–80.5)

SVM,
0.638

74.7 88.7 76.8 87.5 84

Validation (73.8–75.7) (88.2–89.1) (75.9–77.7) (86.9–87.9) (83.5–84.4)

SVM,
0.595

82.9 76.7 77.4 82.3 79.7

Test (82.4–83.4) (76.1–77.2) (76.9–77.9) (81.8–82.8) (79.4–80.1)

*
Values are percent (95% confidence intervals)

†
p-value for all <0.001
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