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Abstract

Background

A nonsputum blood test capable of predicting progression of healthy individuals to active

tuberculosis (TB) before clinical symptoms manifest would allow targeted treatment to curb

transmission. We aimed to develop a proteomic biomarker of risk of TB progression for ulti-

mate translation into a point-of-care diagnostic.

Methods and findings

Proteomic TB risk signatures were discovered in a longitudinal cohort of 6,363 Mycobacte-

rium tuberculosis-infected, HIV-negative South African adolescents aged 12–18 years (68%

female) who participated in the Adolescent Cohort Study (ACS) between July 6, 2005 and

April 23, 2007, through either active (every 6 months) or passive follow-up over 2 years.

Forty-six individuals developed microbiologically confirmed TB disease within 2 years of fol-

low-up and were selected as progressors; 106 nonprogressors, who remained healthy,

were matched to progressors. Over 3,000 human proteins were quantified in plasma with a

highly multiplexed proteomic assay (SOMAscan). Three hundred sixty-one proteins of dif-

ferential abundance between progressors and nonprogressors were identified. A 5-protein

signature, TB Risk Model 5 (TRM5), was discovered in the ACS training set and verified by

blind prediction in the ACS test set. Poor performance on samples 13–24 months before TB

diagnosis motivated discovery of a second 3-protein signature, 3-protein pair-ratio (3PR)
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developed using an orthogonal strategy on the full ACS subcohort. Prognostic performance

of both signatures was validated in an independent cohort of 1,948 HIV-negative household

TB contacts from The Gambia (aged 15–60 years, 66% female), longitudinally followed up

for 2 years between March 5, 2007 and October 21, 2010, sampled at baseline, month 6,

and month 18. Amongst these contacts, 34 individuals progressed to microbiologically con-

firmed TB disease and were included as progressors, and 115 nonprogressors were

included as controls. Prognostic performance of the TRM5 signature in the ACS training set

was excellent within 6 months of TB diagnosis (area under the receiver operating character-

istic curve [AUC] 0.96 [95% confidence interval, 0.93–0.99]) and 6–12 months (AUC 0.76

[0.65–0.87]) before TB diagnosis. TRM5 validated with an AUC of 0.66 (0.56–0.75) within 1

year of TB diagnosis in the Gambian validation cohort. The 3PR signature yielded an AUC

of 0.89 (0.84–0.95) within 6 months of TB diagnosis and 0.72 (0.64–0.81) 7–12 months

before TB diagnosis in the entire South African discovery cohort and validated with an AUC

of 0.65 (0.55–0.75) within 1 year of TB diagnosis in the Gambian validation cohort. Signa-

ture validation may have been limited by a systematic shift in signal magnitudes generated

by differences between the validation assay when compared to the discovery assay. Further

validation, especially in cohorts from non-African countries, is necessary to determine how

generalizable signature performance is.

Conclusions

Both proteomic TB risk signatures predicted progression to incident TB within a year of diag-

nosis. To our knowledge, these are the first validated prognostic proteomic signatures. Nei-

ther meet the minimum criteria as defined in the WHO Target Product Profile for a

progression test. More work is required to develop such a test for practical identification of

individuals for investigation of incipient, subclinical, or active TB disease for appropriate

treatment and care.

Author summary

Why was this study done?

• Tuberculosis (TB) is currently the leading cause of death by an infectious disease, yet

diagnosis of TB is still hampered by poor tools that require a sputum sample.

• An accurate, affordable, and easy-to-use diagnostic test would allow targeted antibiotic

treatment before symptoms develop and the person becomes infectious, thus providing

an opportunity to curb transmission and halt the global epidemic.

What did the researchers do and find?

• In this study, we sought to develop a blood test that can predict if a healthy individual is

likely to progress to active TB disease before clinical symptoms manifest.

• We analyzed plasma from healthy South African adolescents who were followed over 2

years. By comparing abundance of over 3,000 different plasma proteins from individuals

Proteomic signature of TB disease risk
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who developed TB disease and others who remained healthy, we identified 2 biomarkers

that comprised combinations of either 3 or 5 proteins and predicted onset of TB a year

before traditional diagnosis was possible.

• The protein biomarkers were validated for accuracy in an independent cohort of indi-

viduals from The Gambia.

What do these findings mean?

• To our knowledge, these are the first validated protein biomarkers with prognostic

value for TB; however, neither meet the minimum performance criteria as set out by

WHO for a TB progression test.

• More work is required to improve the performance of such tests for practical identifica-

tion of individuals for investigation of incipient, subclinical, or active TB disease.

Introduction

Global efforts to control the tuberculosis (TB) epidemic depend on new, more efficacious TB

vaccines and drugs in addition to better diagnostic tests to accurately diagnose those with TB

disease. Earlier identification of individuals during incipient or subclinical stages of TB disease

progression holds great promise for targeted preventive therapy, which may provide a strategy

to curb onward transmission of M. tuberculosis. Such a strategy requires prognostic tests that

can accurately identify those at risk of TB disease before the onset of symptoms and further

transmission. In 2017, 10 million cases of TB and 1.6 million deaths (more than any other

infectious agent) were reported [1–3]. It is estimated that up to 40% of these TB cases are

missed and thus not treated, highlighting the limitations of current diagnostic strategies and

emphasizing the need for better, faster, and more tractable diagnostic tests [2].

In people with asymptomatic M. tuberculosis infection, the infecting organisms are primar-

ily contained within lung granulomas and/or draining lymph nodes, making direct detection

of the bacterium virtually impossible. However, host signals in the blood compartment, such

as inflammatory markers, have been shown to reflect the host–pathogen interactions at the site

of disease, which can be used to identify those who are progressing from M. tuberculosis infec-

tion to active TB disease. For example, we validated blood transcriptomic signatures of TB risk

that identified those who progressed to active disease up to 18 months before TB diagnosis

[4,5]. Although these RNA-based biomarkers show promise, measurement of plasma proteins

is more amenable to development of point-of-care tests, as exemplified by lateral flow tests

based on capillary blood collected by needle prick. Indeed, profound changes in abundance of

many plasma proteins have been reported in TB patients, and we and others have described

protein-based diagnostic TB signatures [6–9]. Further, by measuring kinetic changes in plasma

proteins in TB progressors, we observed that proteins involved in inflammatory pathology, tis-

sue repair, matrix-remodeling, elevated interferon responses, and activation of the comple-

ment pathway revealed stages of TB disease progression [10]. Similarly, Esmail and colleagues

showed that HIV-infected individuals with subclinical TB had elevated plasma levels of

immune complexes and blood signatures of complement activation [11].

Proteomic signature of TB disease risk
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In this study, we proposed to identify and validate parsimonious proteomic signatures of

TB disease risk. We measured >3,000 proteins by multiplexed slow off-rate modified DNA

aptamers (SOMAmers) in plasma from M. tuberculosis-infected progressors and nonprogres-

sors and identified 2 proteomic signatures of TB progression, which were validated in an inde-

pendent cohort.

Methods and materials

Participant selection

Discovery cohort. The discovery cohort comprised a subset of 6,363 healthy South Afri-

can adolescents, aged 12–18 years, who were enrolled into the Adolescent Cohort Study (ACS)

between July 6, 2005 and April 23, 2007 [4,12]. The study protocols were approved by the

Human Research Ethics Committee of the University of Cape Town (045/2005). Adolescents

whose parents or legal guardians provided written, informed consent and who provided writ-

ten, informed assent themselves were eligible for enrollment. Participants were followed for 2

years, with 50.9% (3,236 of 6,363) assessed every 6 months after enrollment, and the other

49.1% (3,127 of 6,363) at baseline and at 2 years (passive follow-up group). These 2 follow-up

strategies were applied to determine whether a passive follow-up design would allow efficient

TB case finding in this setting in preparation for large vaccine trials [13]. At enrollment and at

each visit, clinical data were collected, and plasma from heparin containing Cell Preparation

Tubes (CPT, BD Biosciences) was collected, stored at −80˚C, and later used for proteomic

analysis. Only adolescents with immunological sensitization to M. tuberculosis were included

in the analysis, diagnosed by a positive QuantiFERON TB Gold In-tube assay, a positive tuber-

culin skin test (TST), or both, as previously described [4]. Further details about the prevalence

of M. tuberculosis infection and disease in the ACS have been published [12,13], while clinical

and epidemiological attributes and the selection of progressors and nonprogressors are in S2

Text and S1 Table. According to South African policy, adolescents positive on these tests were

not offered therapy to prevent TB disease [14].

During follow up, 46 individuals developed intrathroracic TB disease, diagnosed by either 2

consecutive sputum smears positive on microscopy for acid-fast bacilli or 1 positive sputum

culture confirmed as M. tuberculosis complex (Mycobacterial growth indicator tube, BD Bio-

Sciences). These TB “progressors” were each matched to 2 “nonprogressors” (individuals who

did not develop TB disease) during follow-up by accounting for age, gender, ethnicity, school

of attendance, and prior history of TB disease. Adolescents who were known to be HIV-

infected and those who developed TB disease within 6 months of ACS enrollment were

excluded from the progressor/nonprogressor subcohort on the basis that they may represent

individuals with active but as yet asymptomatic TB disease. To our knowledge, participants

did not have any other underlying diseases.

Discovery of the TB Risk Model 5 (TRM5) signature was initially performed on a partition

of 67% of the ACS progressor/nonprogressor cohort, while the remaining 33% was held back

as a blinded test set. As reported in the Results section, application of the TRM5 signature to

the ACS test set provided evidence for the viability of a predictive proteomic signature. How-

ever, the TRM5 signature did not significantly discriminate between progressor and nonpro-

gressor samples collected more than 1 year before TB diagnosis. Our previous work on

transcriptomic signatures, which showed that a 16-gene mRNA signature allowed significant

discrimination between samples from progressors and nonprogressors at time points more

than 12 months before TB diagnosis [4], suggested that a larger training set, which incorpo-

rated more progressor samples collected 13–24 months before TB, may allow discovery of a

superior signature. We therefore sought to refine the proteomic signature using the combined

Proteomic signature of TB disease risk
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ACS training and test set under the hypothesis that a larger training set could help bolster per-

formance more than a year from diagnosis. Having demonstrated predictive capacity using the

TRM5 signature, at this point we also sought to construct a maximally parsimonious signature

that could more simply be translated into a point-of-care test. We therefore constructed the

3-protein pair-ratio (3PR) signature from the entire ACS progressor/nonprogressor cohort,

using a methodology designed to lead to parsimonious signatures that are robust to translation

from an omics to a targeted platform.

The script for computing the TRM5 signature is available from SomaLogic upon request.

The script for computing for the 3PR signature is available at BitBucket (https://bitbucket.org/

satvi/3pr). Both signatures were validated by blind prediction in the validation cohort.

Validation cohort. The validation cohort comprised a subset of Gambian participants of

the Grand Challenges 6–74 (GC6–74) project, as previously described [4,5,15]. Briefly,

between March 5, 2007 and October 21, 2010, household contacts of TB cases were longitudi-

nally followed for up to 2 years, with assessments at baseline, at 6 months, and at 18 months.

Immunological sensitization to M. tuberculosis was performed by TST. TB progressors who

developed microbiologically confirmed pulmomary TB during follow-up were retrospectively

identified and matched 1:4 to healthy nonprogressors. Individuals in whom TB disease devel-

oped within 3 months of baseline were excluded. Blood and plasma were collected in lithium

heparin tubes (Becton Dickinson) at enrollment, month 6, and month 18 of the GC6–74 proj-

ect, and 254 plasma samples from 34 progressors and 115 nonprogressors were included for

validation. Further details about clinical and epidemiological attributes and the selection of

progressors and nonprogressors are provided in S2 Text and S2 Table. Participants provided

written, informed consent, and the protocols were approved by the Joint Medical Research

Council and Gambian Government ethics review committee, Banjul, The Gambia

(SCC.1141vs2).

Multiplex proteomic detection. Proteomic analysis was performed using SOMAscan, a

proprietary multiplexed assay to detect the abundance of 3,040 proteins recognized by slow

off-rate modified aptamer (SOMAmer) reagents, as previously described [16]. Samples from

the validation cohort were assayed using a custom SOMAscan assay with smaller content, as

described below. Plasma was analyzed at 3 different dilutions (0.005%, 1%, and 40% of original

plasma) using separate SOMAmer reagent mixes to accommodate high-, medium-, and low-

abundant plasma proteins [16]. Quality control procedures used control aptamers for data

normalization, hybridization control probes to measure hybridization efficiency, and calibra-

tion samples to control inter- and intra-assay variability. Assay quality control and data stan-

dardization was performed following SOMAscan data normalization standard operating

procedures [17]. Briefly, calibration samples were used to control for assay variability, and

hybridization normalization is used to remove potential biases introduced by differential

hybridization efficiency within and across assay runs.

Focused hybridization arrays for validation study. A customized, focused panel array

was designed based on findings from the discovery phase of the project [4,10] and was used for

validation sample sets. The strategy and analysis plan for signature discovery, verification, and

validation is outlined in S2 Text, and a schematic of the approach is shown in S1 Fig. This

panel consisted of 150 SOMAmers common to the >3,000-plex discovery array, including tar-

gets for human, M. tuberculosis, and array normalization proteins.

The 254 GC6–74 validation samples were assayed on the validation panel along with the

standard SOMAscan calibration (n = 20), quality control (n = 12), and buffer samples (n = 12).

In addition, 45 ACS samples from the discovery cohort (15 progressors), which were previ-

ously analyzed on the discovery assay, were included as bridging samples to assess and adjust

for potential biases due to differences in the assay format or reagent changes since the

Proteomic signature of TB disease risk
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discovery assays were performed. The slides for the focused array were manufactured by

Applied Microarrays Inc. (Tempe, Arizona). Although custom SOMAmer mixes were pre-

pared for the smaller content hybridization arrays, no other assay format changes were intro-

duced. Internal assay method development studies had previously established the performance

of these smaller hybridization arrays.

Blinding procedure. Samples from the ACS test set (33% of the progressor and nonpro-

gressor cohort) were blinded through nonsequential randomly generated codes, held in a locked

database by the project manager. Unblinding occurred in a staged manner; once models and

scripts were locked down and each partner institute had validated that results obtained on the

blinded set were identical and reproducible, an interim analysis of longitudinally collected sam-

ples from the same participants were performed without revealing case/control status. Subse-

quently, progressor and nonprogressor status were unblinded to all sites simultaneously and

performance of models were independently calculated and confirmed.

All 254 GC6–74 plasma samples were deidentified and provided nonsequential randomly

generated codes, which were held in a locked database by the project manager. Unblinding of

samples, matched participants, and progressor/nonprogressor status occurred simultaneously.

A detailed description of the analysis strategy for signature discovery, verification, and valida-

tion is available in S2 Text.

Statistical analysis and model development. Proteomic data were log10 transformed to

stabilize the variance and reduce heteroscedasticity. Of the 3,040 proteins, 2,872 passed quality

control in both the ACS training and test set assays (S3 and S4 Tables and S2 Text). The non-

parametric Kolmogorov–Smirnov test was used to identify proteins differentially expressed

between progressors and nonprogressors. In addition, we sought “responsive proteins,” those

with differential temporal responses across time, using the nonparametric Mack–Wolfe [18]

test with discrete 6-month bins to identify proteins with time-varying expression levels in

either progressors or nonprogressors (see S2 Text for more detail). Differentially expressed

proteins for hypothesis generation and for multivariate predicitive model building were identi-

fied using 1% and 5% Benjamini–Hochberg (BH) corrected false discovery rates, respectively.

The TRM5 is a Mahalanobis distance classifier (see S2 Text for more detail). Model parame-

ters were estimated using protein measurements from the nonprogressors only (the model

functions as an anomaly detector), and samples with protein levels that are anomalous with

respect to the joint distribution of model proteins in the “nonprogressor” class were consid-

ered progressors. All possible combinations of 1-, 2-, 3-, 4-, and 5-protein models were fit, and

performance was estimated using 5 rounds of 5-fold cross-validation, with a progression time-

weighted AUC measure as the cost function.

The 3-protein model of risk for TB disease progression was developed by applying the Pair

Ratios algorithm to the ACS progressor and nonprogressor cohort from the combined training

and test sets, in a variation on the pairwise approach used to discover the 16-gene ACS COR

and the RISK4 signatures [4,5,19,20]. The Pair Ratios algorithm results in an ensemble of pro-

tein pairs, which each provide a risk score for each sample (see S2 Text for detailed methods).

The final model score for each sample is then computed as the average over the scores gener-

ated from each pair. The final 3-protein signature was selected based on a balance between sig-

nature size and performance. Out of all 3-protein signatures, the 3PR signature optimally

stratified the training set, and 3PR performance did not significantly differ statistically from

the optimal larger signatures. Because the 3PR signature is ratiometric and involves only 3 pro-

teins, it is ideally suited for translation to a targeted platform.

After unblinding, an ANOVA model was used to assess differences in distributions of pro-

tein signature scores between the ACS training set control samples (from which the TRM5

model was fit) and the GC6–74 control samples.

Proteomic signature of TB disease risk
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Results

Sample availability and distribution

Plasma samples were available for 37 progressors and 106 nonprogressors from the ACS and

were primarily distributed between 1–18 months before TB diagnosis (Tables 1 and S1 and Fig

1A and S2 Text). Participants were randomly split into training and test sets for TRM5 signa-

ture discovery at a ratio of 2:1 (Fig 1A). Longitudinally collected samples from each participant

were retained in each set and evaluated to ensure sufficient distribution of progressor samples

in each 6-month time window approaching the diagnosis of TB disease.

Similarly, plasma samples from 34 progressors and 115 nonprogressors from the Gambian

GC6–74 cohort were available for blind validation and distributed between 1–24 months

before TB diagnosis [4,5] (Tables 1 and S2 and Fig 1B and S2 Text). A sample-by-sample

hybridization normalization was first applied to control for differential hybridization of

SOMAmers to the readout microarrays. An intraplate median signal normalization was then

applied to control for bulk signal differences between samples. Finally, between-plate signal

differences were corrected by calibrating each plate using replicate calibrator samples. For the

GC6–74 samples, an additional 45 bridging samples were selected from the ACS cohort and

were used to bring the distributions into alignment using a linear transformation.

Protein abundance data are presented in S4 and S6 Tables and S2 Text.

Identification of differentially expressed proteins in TB progressor and

nonprogressor plasma samples

To identify host proteins with differential abundance, we compared all 197 nonprogressor

plasma samples with 56 progressor samples from the ACS training set. One hundred thirty-

five proteins were found to be different at a 1% Benjamini–Hochberg False Discovery Rate

(bhFDR). Of these, 105 proteins were significantly more abundant and 30 proteins less abun-

dant in progressors relative to nonprogressors (Fig 1C and S5 Table and S2 Text). The most

differentially abundant protein between progressors and nonprogressors was Galactose-

1-phosphate uridyl transferase 1 (GALT-1, log2 fold change = 0.112; P = 2.40 x 10−10; S5 Table

and S2 Text), which is involved in galactose metabolism pathways, followed by Matrix Metallo-

proteinase 1 (MMP-1, log2 fold change = 0.680; P = 2.86 x 10−9), both of which were more

Table 1. Participant demographics for the progressor and nonprogressor cohorts with available plasma samples in ACS training and test sets and the GC6–74 vali-

dation cohort.

Participants Age Male Black African Cape Mixed Ancestry Prior TB

n Mean, (min–max) n, (%) n, (%) n, (%) n
ACS Training

Progressors 24 15.83 (13–18) 6 (25%) 0 (0%) 24 (100%) 3 (12.5%)

Nonprogressors 70 15.67 (13–18) 20 (28.57%) 4 (5.71%) 66 (94.29%) 10 (14.29%)

ACS Test

Progressors 13 15.15 (12–18) 3 (23.08%) 1 (7.69%) 12 (93.31%) 2 (15.38%)

Nonprogressors 36 15.58 (13–18) 17 (47.22%) 5 (13.89%) 31 (86.11%) 6 (16.67%)

GC6–74 Validation Cohort

Progressors 34 26.91 (15–56) 15 (44.12%) 34 (100%) 0 (0%) N/A�

Nonprogressors 115 27.27 (15–60) 52 (45.22%) 115 (100%) 0 (0%) N/A�

Abbreviations: ACS, Adolescent Cohort Study; GC6–74, Grand Challenges 6–74; N/A, not available;TB, tuberculosis.

�Prior TB was an exclusion criterion in the GC6–74 study.

https://doi.org/10.1371/journal.pmed.1002781.t001
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abundant in progressors than nonprogressors. The protein found to be most abundant in pro-

gressors relative to nonprogressors was the acute-phase marker C-reactive protein (CRP, log2

fold change = 1.31; P = 1.17 x 10−5). The protein found at lowest levels in progressors relative

to nonprogressors was Creatine Kinase type M/type B (CK-MB, log2 fold change = −0.528;

P = 1.66 x 10−5).

Discovery of a 5-protein signature of risk in the ACS training cohort

Amongst all possible signatures with 1, 2, 3, 4, or 5 proteins, the signature with the highest

AUC in cross-validation on the ACS training set was a 5-protein signature called TRM5, con-

sisting of complement factor C9, insulin-like growth factor-binding protein 2 (IGFBP-2); B-

cell antigen receptor complex–associated protein (CD79A), Matrix-Remodeling Associated 7

protein (MXRA-7), and neuronal cell-adhesion molecule (NrCAM). TRM5 signature scores

were higher in progressors than nonprogressors, and the signature readily discriminated pro-

gressor from nonprogressor samples collected 1 to 180 days before TB diagnosis (AUC 0.961;

95% CI 0.931–0.99, Fig 2A and Table 2). Prognostic performance decreased for samples col-

lected between 181 and 360 days before TB diagnosis, with an AUC of 0.761 (95% CI 0.648–

0.874, Fig 2A and Table 2). The TRM5 signature did not significantly discriminate between

progressor and nonprogressor samples collected more than 1 year before TB diagnosis (AUC

0.55; 95% CI 0.414–0.691, Fig 2A and Table 2).

Verification of TRM5 signature on the ACS test cohort

To assess performance of the TRM5 signature on an unseen verification partition of the ACS

progressors and nonprogressors, we applied it to blinded plasma samples from the ACS test

set, comprising 13 progressors and 36 nonprogressors who were not included in the model

discovery training set. The TRM5 signature discriminated progressor from nonprogressor

samples spanning 1–720 days before TB with an AUC of 0.76 (95% CI 0.67–0.86, P< 0.001,

Fig 2B), verifying the performance observed in the training set.

Discovery of a 3PR signature of risk

Our work on transcriptomic signatures showed that a 16-gene mRNA signature allowed sig-

nificant discrimination between samples from progressors and nonprogressors at time points

more than 12 months before TB diagnosis [4]. We therefore employed a different discovery

approach that combined the ACS training and test sets to develop a signature that may provide

better discrimination in samples collected more than a year before TB diagnosis. In this strat-

egy, we also sought to make the signature as parsimonious as possible; we employed a pair-

ratio strategy that incorporates a small ensemble of pairwise models, each comprising 1 protein

with higher and 1 with lower abundance in progressors relative to nonprogressors. Using

leave-one-out cross-validation, 3 proteins were selected, including C9 (higher in progressors

Fig 1. Sample distribution and relative differences in protein abundance between progressors and nonprogressors. (A)

Distribution of progressor and nonprogressor samples from the discovery training and test set of South African adolescents

and (B) progressor and nonprogressor samples from Gambian household contacts of TB cases used for validation. Progressor

and nonprogressor samples are represented by filled and open dots, respectively. The x-axis indicates time of prospective

sample collection before the diagnosis of active TB disease. Nonprogressor samples were matched to progressors, as

previously described [4,5], and aligned with time to TB diagnosis. (C) Volcano plot of 2,872 proteins from a univariate KS

analysis comparing all TB progressor samples and all nonprogressor controls. The negative log10-transformed P values versus

the log2 of the median TB RFU value over the median control RFU value. A value of 1 on the horizontal axis corresponds to a

2-fold change in RFU. Protein abundance data are in S4 and S6 Tables, and proteins ranked according to their differential

abundances are in S5 Table (training set), S7 Table (training and test set), and S2 Text. KS, Kolmogorov–Smirnov; RFU, raw

fluorescence unit; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1002781.g001
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Fig 2. Receiver operator characteristic AUC analysis of the TRM5 signature for (A) ACS training set and (B) test set

progressor and nonprogressor plasma samples, stratified by the time interval of each prospectively collected sample

before the date of TB disease diagnosis. ACS, Adolescent Cohort Study; AUC, area under the curve; TB, tuberculosis;

TRM5, TB Risk Model 5.

https://doi.org/10.1371/journal.pmed.1002781.g002
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than nonprogressors), CK-MB, and Complement C1q Tumor Necrosis Factor-Related Protein

3 (C1qTNF3/CTNFF3) (both lower in progressors than nonprogressors), which together

formed the 3PR signature, an ensemble of 2 protein pairs (Fig 3A). Only 1 protein, C9, was

common to the TRM5 and 3PR signatures. Proteins with differential abundance in the ACS

training and test sets combined are in S7 Table and S2 Text.

Performance of the 3PR signature in the combined training plus test set was comparable to

that of the TRM5 model (AUC 0.89, 95% CI 0.84–0.95) in samples between 1 and 180 days

before TB diagnosis and in samples between 181 and 360 days before TB (AUC 0.72, 95% CI

0.64–0.81, Fig 3B). Notably, the 3PR signature also significantly discriminated between pro-

gressor and nonprogressor samples collected 361 to 720 days before TB, with an AUC of 0.71

(95% CI, 0.63–0.80). This enhanced performance at time points distal to TB may be due to a

larger sample size of the discovery cohort used for the 3PR signature than that used for discov-

ery of TRM5.

Table 2. Prognostic performance of the TRM5 and 3PR signatures on samples from the ACS (discovery) and GC6–74 (validation) cohorts.

Time to TB (months) No. progressor samples AUC (95% CI) P Sensitivity (95% CI) Specificity (95% CI)� Threshold

TRM5 ACS Training

0–12 33 0.84 (0.75–0.92) N/A# 75.76 (57.74–88.91) 75.0 (67.22–81.75) 4.18

0–6 12 0.96 (0.93–0.99) N/A 100 (73.54–100) 75.0 (67.22–81.75) 4.18

7–12 21 0.76 (0.65–0.87) N/A 61.9 (38.44–81.89) 75.0 (67.22–81.75) 4.18

13–>24 24 0.55 (0.41–0.69) N/A 37.5 (18.8–59.41) 70.27 (62.21–77.5) 4.18

ACS Test

0–12 19 0.80 (0.70–0.89) <0.0001 78.95 (54.43–93.95) 75.27 (65.24–83.63) 4.28

0–6 10 0.85 (0.75–0.96) 0.0003 90 (55.5–99.75) 75.27 (65.24–83.63) 4.28

7–12 9 0.73 (0.62–0.85) 0.0208 66.67 (29.93–92.5) 75.27 (65.24–83.63) 4.28

13–>24 8 0.69 (0.53–0.84) 0.076 37.5 (8.52–75.51) 75.27 (65.24–83.63) 4.28

GC6 Validation

0–12 41 0.66 (0.56–0.75) 0.0016 48.78 (32.88–64.87) 75.0 (68.26–80.96) 16.45

0–6 23 0.69 (0.57–0.82) 0.0026 60.87 (38.54–80.29) 75.0 (68.26–80.96) 16.45

7–12 18 0.61 (0.48–0.74) 0.1146 33.33 (13.34–59.01) 75.0 (68.26–80.96) 16.45

13–24 19 0.61 (0.47–0.75) 0.1179 36.84 (16.29–61.64) 75.0 (68.26–80.96) 16.45

3PR ACS Training + Test

0–12 52 0.80 (0.74–0.86) N/A# 75 (61.05–85.97) 70.69 (65.09–75.87) 0.51

0–6 22 0.89 (0.84–0.95) N/A 90.91 (70.84–98.88) 70.69 (65.09–75.87) 0.51

7–12 30 0.72 (0.64–0.81) N/A 63.33 (43.86–80.07) 70.69 (65.09–75.87) 0.51

13–>24 32 0.71 (0.63–0.80) N/A 57.14 (37.18–75.54) 70.69 (65.09–75.87) 0.51

GC6 Validation

0–12 41 0.65 (0.55–0.75) 0.0022 46.34 (30.66–62.58) 75.0 (68.2–80.96) 0.28

0–6 23 0.64 (0.50–0.78) 0.0266 47.83 (26.82–69.41) 75.0 (68.26–80.96) 0.28

7–12 18 0.67 (0.55–0.79) 0.0194 44.44 (21.53–69.24) 75.0 (68.26–80.96) 0.28

13–24 19 0.62 (0.48–0.76) 0.0873 42.11 (20.25–66.5) 75.0 (68.26–80.96) 0.28

Abbreviations: 3PR, 3-protein pair-ratio; ACS, Adolescent Cohort Study; GC6, Grand Challenge 6; TB, tuberculosis.

�Specificity has been set to 75% (or the closest possible value) based on the minimum performance criteria set out in the target product profile of WHO and FIND. The

corresponding sensitivities and test threshold of each risk signature are reported.
#P values are not reported for model fit to the training cohorts.

https://doi.org/10.1371/journal.pmed.1002781.t002
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Blind validation in an independent TB progressor and nonprogressor

cohort

To validate the TRM5 and 3PR proteomic TB risk signatures in an independent cohort, we

retrieved plasma samples from Gambian adult household contacts of TB cases who partici-

pated in the GC6–74 study [4,5] (S2 Table and S2 Text). Assignment of samples to progressor

status, draw date, and participant were blinded. Raw fluorescence unit (RFU) signal levels in

45 ACS samples that were run on both the original SOMAscan discovery assay and the custom

SOMAscan assay for bridging indicated a systematic intensity shift between signal levels.

Despite the shift in mean signal intensity, most protein measurements generated with the ACS

discovery array were well correlated with the original SOMAscan measurements, and the bulk

intensity change was removed using the standard SOMAscan assay bridging procedure, which

transforms the raw concentration ranges generated by the 45 ACS bridging samples on the val-

idation array into the concentration ranges generated on the original discovery array. Fig 4 dis-

plays cumulative distribution functions of the TRM5 and 3PR analytes for the GC6–74

samples before and after assay bridging. A single progressor sample (of 61) and a single

Fig 3. (A) Graphical representation of pairwise structure of the 3PR signature. Proteins that are expressed at higher

levels in TB progressors, compared to nonprogressors, are shown in red. Proteins expressed at levels lower in

progressors than nonprogressors are shown in blue. (B) Area under the receiver operator characteristic curve analysis

of the 3PR signature for all ACS progressor and nonprogressor plasma samples, stratified by the time of each

prospectively collected sample before the date of TB disease diagnosis. 3PR, 3-protein pair-ratio; ACS, Adolescent

Cohort Study; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1002781.g003
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nonprogressor sample (of 193) failed SOMAscan operating procedure QC criteria—all other

samples were deemed fit for analysis with the risk models. Distribution of progressor and non-

progressor signature scores in the ACS and GC6 cohorts was not different for the TRM5

model, although they were significantly different for the 3PR signature across discovery and

validation assays (S4 Fig). Protein abundance data in the GC6 validation samples are in S6

Table and S2 Text.

Prognostic performance of both TRM5 and 3PR was determined on samples collected up to

2 years before the diagnosis of TB disease in the GC6–74 validation cohort (Fig 5). Both TRM5

and 3PR discriminated between Gambian progressors and nonprogressors within 1 year of TB

diagnosis (TRM5: AUC 0.66 [95% CI 0.56–0.75]; 3PR: AUC 0.65 [0.55–0.75]).

Prognostic performance by both signatures was generally poor for samples collected from

1–2 years before diagnosis. When substratified into 6-month time windows before diagnosis

of TB disease, performance of both models was, as anticipated, strongest most proximal to

diagnosis (Table 2). The 3PR signature discriminated between progressor and nonprogressor

samples collected 7–12 months before TB (AUC 0.67 [0.55–0.79], P = 0.019), and the TRM5

signature discriminated between progressor and nonprogressor samples 13–18 months before

TB (AUC 0.75 [0.59–0.91], P = 0.0078). Neither signature showed significant performance for

samples collected more than 18 months before TB diagnosis. After the bridge calibration pro-

cedure, only C9 and NrCAM were observed to have mean RFU values that were significantly

different (Bonferroni P< 0.05) in the GC6–74 data set when explored in the ANOVA posthoc

analysis for directionality of bias.

A target product profile for a test that predicts progression from TB infection to active dis-

ease, or an incipient TB test (ITT), was recently developed by FIND and WHO [21], which

benchmarked the minimum sensitivity and specificity for such a test at�75% and�75%,

respectively (optimal sensitivity and specificity were�90% and�90%). Neither TRM5 nor

3PR achieved these minimum criteria when tested for progression to incident TB diagnosed

within a year of testing in the GC6 cohort; TRM5 achieved a sensitivity of 49% (95% CI 33%–

65%) at a specificity of 75% (95% CI 68%–81%) and 3PR a sensitivity of 46% (95% CI 31%–

63%) at a specificity of 75% (95% CI 68%–81%). By comparison, prognostic performance of

CRP, the protein with the highest differential abundance between ACS progressors and non-

progressors, was promising in the combined ACS training and test sets in samples within 1

year of diagnosis (AUC 0.76; 95% CI 0.69–0.83) (S3A Fig). However, validation in the GC6–74

Fig 4. Cumulative distribution of select model proteins run on the custom validation slide arrays. Curves demonstrate a spectrum of distributions of RFU

in the ACS versus the GC6–74 cohorts. Red curves represent GC6–74 samples prior to bridging, yellow curves represent GC6–74 postbridging, and blue

curves represent ACS samples. ACS, Adolescent Cohort Study; GC6–74, Grand Challenges 6–74; RFU, raw fluoresence unit.

https://doi.org/10.1371/journal.pmed.1002781.g004
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Fig 5. ROC-AUC analysis of the TRM5 and 3PR signatures for all GC6–74 validation set plasma samples, for (A) all prospectively collected

samples, and (B–E) stratified by the time interval of each prospectively collected sample before TB diagnosis. 3PR, 3-protein pair-ratio; GC6–

74, Grand Challenges 6–74; ROC-AUC, area under the receiver operator characteristic curve; TB, tuberculosis; TRM5, TB Risk Model 5.

https://doi.org/10.1371/journal.pmed.1002781.g005
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cohort was not statistically significant (AUC 0.62; 95% CI 0.49–0.74, P = 0.058). Despite this,

CRP had a similar sensitivity of 41% (95 CI 22%–61%) at a specificity of 75% (95% CI 67%–

82%) in the GC6–74 cohort (S3B and S3C Fig).

Discussion

Using a well-characterized prospective longitudinal cohort of M. tuberculosis-infected South

African adolescents, we discovered 2 prognostic protein signatures, TRM5 and 3PR, that suc-

cessfully identified individuals at risk of incident TB disease risk within a year of the onset of

disease symptoms. Validation of the prognostic performance of these signatures in an inde-

pendent cohort of household contacts of TB patients from the Gambia represents a first step to

an affordable and practical prognostic biomarker for TB.

While other proteomic biomarkers have been discovered with diagnostic potential for

symptomatic TB disease [6–9], this outcome represents only one stage within the spectrum of

M. tuberculosis infection. A biomarker with prognostic value that can identify asymptomatic

individuals with incipient or subclinical disease would open the opportunity for early, targeted

preventive treatment and the potential to curb M. tuberculosis transmission. A recent review of

incipient or subclinical disease suggested that the number of individuals with these early stages

of disease progression must be at least equivalent to the number of active TB cases: 10 million

[22]. The only current tests that can identify those at risk of TB are interferon gamma release

assays (IGRAs) or TSTs, which detect immunological sensitization to M. tuberculosis. These

tests have low positive predictive value (PPV) for prognostic application [23,24], and the prev-

alence of TST+ or QFT+ people can be as high as 80% in countries endemic for TB. In fact,

epidemiological models suggest that up to 23% of the global population may be infected with

M. tuberculosis [25] and thus are at risk of disease progression, although a recent analysis has

suggested that the proportion of individuals truly at risk of progression is likely smaller than

the TST models suggest [26]. Regardless, these studies highlight the need for a prognostic test

for incident TB that is more sensitive and specific than IGRAs and TSTs.

Neither TRM5 nor 3PR achieved the minimum criteria for an incipient TB test (ITT) set

out by FIND and WHO [21], and it is clear that more work is needed to improve the perfor-

mance of prognostic signatures based on proteins. The same was true of the prognostic perfor-

mance of CRP. Notably, a recent diagnostic accuracy study conducted in 2 Ugandan HIV/

AIDS clinics showed that point-of-care CRP screening of HIV-infected people with CD4

counts <351 cells per μL who were initiating antiretroviral therapy yielded 89% sensitivity and

72% specificity for culture confirmed TB [27]. The study supported use of CRP as a TB screen-

ing test to improve efficiency of case finding.

Nevertheless, our study reports, to the best of our knowledge, the first proteomic prognostic

signature for TB and demonstrates feasibility of the approach. Prognostic transcriptomic sig-

natures of TB risk have been developed using RNA sequencing [4,5], microarrays, in silico

analysis of published data sets, as well as PCR-based methods [15,28]. While such transcrip-

tomic signatures possess immense potential, their access to the market is hindered by high cost

and the need to translate measurement of mRNA-based signatures to practical point-of-care

devices for use in community healthcare or surveillance settings. A parsimonious proteomic

signature could, in principal, be more amenable for adaptation to a portable and low-cost test,

such as a lateral flow–based assay.

Interpretation of our results would benefit from verification with a different protein quanti-

fication technology, such as sandwich ELISA as proof-of-principle of antibody-based detection

of proteins identified with SOMAmers, although commercial ELISA antibodies for detection

of some of the proteins in the TRM5 and 3PR signatures at the appropriate biological range
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are limited. Ultimately, aptamer-based sandwich assays for analyte quantitation may be a via-

ble alternative for point-of-care assays since aptamers can be manufactured reproducibly and

do not require a cold chain. Translation to commercial methodologies would also allow easier

uptake and external validation of these signatures in other populations and settings. This

would also allow analysis of the effect on signature performance derived during the transition

from the>3,000-plex SOMAscan discovery assay to the custom SOMAscan assay used for val-

idation. We observed a systematic shift in signal magnitudes generated by the validation assay

compared to the>3,000-plex discovery assay. Though the bridge calibration removed most of

this artifact, there was still some residual shift in mean signal intensity for C9 and NrCAM,

which may have contributed to the decrease in prognostic performance of TRM5 and 3PR in

the GC6 validation cohort. Additionally, differences in disease epidemiology in the underlying

populations, country of residence, strain of circulating M. tuberculosis, and/or the amount of

heparin or other preanalytic processing variables in the plasma samples may also have contrib-

uted to a difference in performance between the ACS and GC6 cohorts. Regardless, our results

showed that both proteomic signatures validated in the GC6 cohort and provide proof-of-

principle that a prospective protein-based biomarker for incident TB is possible.

Our results of relative abundances of 2,872 plasma proteins in progressors and nonprogres-

sors provide an opportunity to reflect on the biological pathways underlying progression from

M. tuberculosis infection to active TB disease. We have previously shown that proteins associ-

ated with type I/II interferon responses (e.g., interferon gamma-inducible protein 10 [IP-10])

and complement cascade activation were elevated early during progression, up to 12 months

before TB diagnosis, and are likely biomarkers of early incipient disease [10]. Elevated plasma

proteins associated with myeloid inflammation, tissue repair, matrix remodeling, coagulation,

and platelet activation were detected more proximal to TB diagnosis and suggestive of underly-

ing pathology consistent with subclinical or active TB disease [10]. It was noteworthy that the

methods employed to discover the TRM5 and 3PR signatures, which were completely agnostic

to underlying biology, selected complement component C9 for inclusion in both proteomic sig-

natures. This, along with the inclusion of C1qTNF3 in 3PR, further signifies the role of comple-

ment activation in TB disease progression, as shown by recent transcriptomic and proteomic

studies [9–11]. C1qTNF3, which was less abundant in plasma from progressors than nonpro-

gressors, has been shown to be inversely correlated with BMI and a proinflammatory obese

state [29]. C1qTNF3 is a metabolic hormone with beneficial anti-inflammatory properties [30–

32], and prior studies have found that obese individuals are at lower risk of incident TB [33] but

greater risk of diabetes, which in itself is suggested as a TB risk factor [34]. The antidiabetes

drug metformin, which has shown therapeutic potential in controling growth of M. tuberculosis
[35], acts to increase C1qTNF3 levels [36]. Other studies have implicated low levels of

C1qTNF3 in other inflammatory diseases such as rheumatoid arthritis [37], heart disease, lipid

dysregulation, and apoptosis. Similarly, activation of the complement cascade in general and

elevated C9 levels likely reflect the acute inflammatory responses and high type I interferon

expression during TB disease progression [4,5,10,38]. The IGFBP-2 protein is implicated in

growth and metabolism and was observed to increase during progressing infections [39], while

plasma levels of insulin-like growth factor–binding proteins have been shown to change during

TB treatment [40]. NrCAM is a member of the immunoglobulin superfamily and is important

in cell adhesion and thought to be involved in immunity and pulmonary fibrosis [41,42]. While

these inflammatory, immune activation, and tissue repair molecules provide some interpreta-

tion behind the biology of TB disease progression, the role of other differentially abundant pro-

teins in the signatures, such as the dentin-associated ameloblastin (AMBN) and neuronal cell–

associated NrCAM, are less clear and will require further investigation.
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Our study had a number of limitations. Greater statistical power for signature discovery

and validation would have been achieved with larger cohort sizes. It is critical that more pro-

gressor cohorts are assembled for future work on prognostic biomarkers for TB. In this light,

the prospectively collected samples from the 76 progressors in both the ACS and GC6–74

cohorts—collected from 8,314 enrolled individuals—are of immense value. As such, the highly

multiplexed SOMAscan assay was well suited for discovery, and the resulting data set is a valu-

able resource for the TB research community (S2 Text). The systematic shift in signal magni-

tudes generated by the validation assay compared to the discovery assay may be an important

factor in the performance of TRM5 and 3PR in the validation cohort, as discussed above. New

discovery using the entire ACS and GC6–74 data sets may allow discovery of a more universal

signature, and it will be important to confirm the performance of these proteomic models on

alternative platforms.

The performance of these signatures as diagnostic screening or triage tests should be further

explored and compared with other protein-based diagnostic signatures [6–9], as such a signature

with diagnostic utility would be an ideal tool for advancing the clinical care for TB. A next step is

evaluation of the diagnostic performance in individuals with presumptive TB disease compared

to those without confirmed TB but presenting with respiratory symptoms.

Successful validation of these proteomic signatures suggests that a simple proteomic test to

predict progression to active TB disease is achievable. With further refinement and validation,

the prospect of an affordable, point-of-care device to provide a tool to curb transmission is

possible. While performance demonstrated here is not sufficient to meet minimal WHO

guidelines for predicting progression of TB [1], the novelty of these prognostic signatures and

the theoretical simplicity and robustness of a proteomic lateral flow test provides renewed

hope in a prognostic marker for point-of-care.

Supporting information

S1 Text. The ACS and GC6–74 cohort study teams. ACS, Adolescent Cohort Study; GC6–

74, Grand Challenges 6–74.

(DOCX)

S2 Text. Supplementary text.

(DOCX)

S1 Fig. Schematic of the approach taken for discovery of the TRM5 and 3PR signatures.

The TRM5 signature was discovered on a subset (the training set) of the ACS and then vali-

dated by blind prediction on the test set of the ACS. The 3PR signature was discovered on the

full ACS set (training and test set combined). Both TRM5 and 3PR were validated by blind pre-

diction on the GC6–74 cohort. 3PR, 3-protein pair-ratio; ACS, Adolescent Cohort Study;

GC6–74, Grand Challenges 6–74; TRM5, TB Risk Model 5.

(TIF)

S2 Fig. Q-Q plot displaying expected and observed KS P values for plasma protein abun-

dances between progressors and nonprogressors. KS, Kolmogorov–Smirnov.

(TIF)

S3 Fig. Receiver operator characteristic AUC analysis of CRP. (A) ACS training and test set

progressor and nonprogressor plasma samples and GC6 validation set plasma samples from

time points within 1 year of TB diagnosis. Sensitivity and specificity of CRP for the (B) ACS

training and test set and (C) GC6 validation set. ACS, Adolescent Cohort Study; AUC, area

under the curve; CRP, C-reactive protein; GC6, Grand Challenge 6; RFU, relative fluorescence

Proteomic signature of TB disease risk

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002781 April 16, 2019 17 / 21

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s001
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s002
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s003
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s004
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s005
https://doi.org/10.1371/journal.pmed.1002781


units; TB, tuberculosis.

(TIF)

S4 Fig. Distribution of signature scores for the TRM5 and 3PR in the combined ACS train-

ing and test cohorts and the GC6–74 validation cohort. Mann–Whitney test P values are

shown for comparison of each signature on different progressor and nonprogressor samples

run on the different SOMAscan assays. 3PR, 3-protein pair-ratio; ACS, Adolescent Cohort

Study; GC6–74, Grand Challenges 6–74; SOMAscan; TRM5, TB Risk Model 5.

(TIF)

S1 Table. Metadata of the ACS progressor and nonprogessor (control) cohort. ACS, Ado-

lescent Cohort Study.

(XLSX)

S2 Table. Metadata of the Gambian household contact progressor and nonprogressor

(control) validation cohort.

(XLSX)

S3 Table. Annotation of proteins measured by SOMAscan.

(XLSX)

S4 Table. Raw abundances of proteins measured in samples from progressors and nonpro-

gressors from the ACS. ACS, Adolescent Cohort Study.

(XLSX)

S5 Table. Differential protein abundances between progressors and nonprogressors in the

training set from the ACS, ranked by ascending bhFDR. ACS, Adolescent Cohort Study;

bhFDR, Benjamini–Hochberg False Discovery Rate.

(XLSX)

S6 Table. Raw abundances of 150 proteins measured in the GC6–74 Gambian validation

cohort. GC6–74, Grand Challenges 6–74.

(XLSX)

S7 Table. Differential protein abundances between progressors and nonprogressors in the

training and test sets (combined) from the ACS, ranked by ascending bhFDR. ACS, Adoles-

cent Cohort Study; bhFDR, Benjamini–Hochberg False Discovery Rate.

(XLSX)

S1 TRIPOD checklist. TRIPOD, transparent reporting of a multivariable prediction

model for individual prognosis or diagnosis.

(DOCX)

Acknowledgments

We are grateful to the participants and their families for participation in this study. We

acknowledge the invaluable role of the large clinical and laboratory study teams in completion

of this project. A full list of study team members can be found in S1 Text. We thank SomaLogic

Assay Services, Applied Modelling, and Production Bioinformatics teams for their assistance

with the assay and data quality checks. SOMAscan and SOMAmer reagents are a trademark of

SomaLogic, Inc.

Proteomic signature of TB disease risk

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002781 April 16, 2019 18 / 21

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s006
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s007
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s008
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s009
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s010
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s011
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s012
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s013
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002781.s014
https://doi.org/10.1371/journal.pmed.1002781


Author Contributions

Conceptualization: Adam Penn-Nicholson, Willem A. Hanekom, Stefan H. E. Kaufmann,

Urs Ochsner, Daniel E. Zak, Thomas J. Scriba.

Data curation: Thomas Hraha, Ethan G. Thompson, David Sterling, Stanley Kimbung

Mbandi, Kirsten M. Wall, Sara Suliman, Stefan H. E. Kaufmann, Gerhard Walzl, Daniel E.

Zak.

Formal analysis: Adam Penn-Nicholson, Thomas Hraha, Ethan G. Thompson, David Ster-

ling, Stanley Kimbung Mbandi, Smitha Shankar, Nebojsa Janjic, Mary Ann De Groote, Urs

Ochsner, Daniel E. Zak.

Funding acquisition: Willem A. Hanekom, Mark Hatherill, Stefan H. E. Kaufmann, Gerhard

Walzl, Urs Ochsner, Daniel E. Zak, Thomas J. Scriba.

Investigation: Adam Penn-Nicholson, Michelle Fisher, Willem A. Hanekom, Mark Hatherill,

Jayne Sutherland, Gerhard Walzl.

Methodology: Adam Penn-Nicholson, Thomas Hraha, Ethan G. Thompson, David Sterling,

Stanley Kimbung Mbandi, Kirsten M. Wall, Willem A. Hanekom, Jayne Sutherland, Urs

Ochsner, Thomas J. Scriba.

Project administration: Kirsten M. Wall, Michelle Fisher, Sara Suliman, Willem A. Hanekom,

Nebojsa Janjic, Stefan H. E. Kaufmann, Jayne Sutherland, Gerhard Walzl, Urs Ochsner.

Resources: Jayne Sutherland, Gerhard Walzl, Thomas J. Scriba.

Supervision: Willem A. Hanekom, Mark Hatherill, Stefan H. E. Kaufmann, Jayne Sutherland,

Gerhard Walzl, Mary Ann De Groote, Daniel E. Zak, Thomas J. Scriba.

Writing – original draft: Adam Penn-Nicholson, Mary Ann De Groote, Thomas J. Scriba.

Writing – review & editing: Adam Penn-Nicholson, Thomas Hraha, Ethan G. Thompson,

David Sterling, Stanley Kimbung Mbandi, Kirsten M. Wall, Michelle Fisher, Sara Suliman,

Smitha Shankar, Willem A. Hanekom, Nebojsa Janjic, Mark Hatherill, Stefan H. E. Kauf-

mann, Jayne Sutherland, Gerhard Walzl, Mary Ann De Groote, Urs Ochsner, Daniel E.

Zak, Thomas J. Scriba.

References
1. World Health Organization. GLOBAL TUBERCULOSIS REPORT 2018. 2018;: 1–243.

2. World Health Organization. Global tuberculosis report 2015. 2015.

3. Ottenhoff THM, Ellner JJ, Kaufmann SHE. Ten challenges for TB biomarkers. Tuberculosis (Edinb).

2012; 92 Suppl 1: S17–20. https://doi.org/10.1016/S1472-9792(12)70007-0

4. Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S, Amon LM, et al. A blood RNA signature

for tuberculosis disease risk: a prospective cohort study. Lancet. 2016; 387: 2312–2322. https://doi.org/

10.1016/S0140-6736(15)01316-1 PMID: 27017310

5. Suliman S, Thompson E, Sutherland J, Weiner Rd J, Ota MOC, Shankar S, et al. Four-gene Pan-Afri-

can Blood Signature Predicts Progression to Tuberculosis. Am J Respir Crit Care Med. 2018; 197:

1198–1208. https://doi.org/10.1164/rccm.201711-2340OC PMID: 29624071

6. Yoon C, Chaisson LH, Patel SM, Allen IE, Drain PK, Wilson D, et al. Diagnostic accuracy of C-reactive

protein for active pulmonary tuberculosis: a meta-analysis. Int J Tuberc Lung Dis. 2017; 21: 1013–1019.

https://doi.org/10.5588/ijtld.17.0078 PMID: 28826451

7. Chegou NN, Sutherland JS, Malherbe S, Crampin AC, Corstjens PLAM, Geluk A, et al. Diagnostic per-

formance of a seven-marker serum protein biosignature for the diagnosis of active TB disease in African

primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax. 2016;: thor-

axjnl–2015–207999. https://doi.org/10.1136/thoraxjnl-2015-207999 PMID: 27146200

Proteomic signature of TB disease risk

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002781 April 16, 2019 19 / 21

https://doi.org/10.1016/S1472-9792(12)70007-0
https://doi.org/10.1016/S0140-6736(15)01316-1
https://doi.org/10.1016/S0140-6736(15)01316-1
http://www.ncbi.nlm.nih.gov/pubmed/27017310
https://doi.org/10.1164/rccm.201711-2340OC
http://www.ncbi.nlm.nih.gov/pubmed/29624071
https://doi.org/10.5588/ijtld.17.0078
http://www.ncbi.nlm.nih.gov/pubmed/28826451
https://doi.org/10.1136/thoraxjnl-2015-207999
http://www.ncbi.nlm.nih.gov/pubmed/27146200
https://doi.org/10.1371/journal.pmed.1002781


8. De Groote MA, Nahid P, Jarlsberg L, Johnson JL, Weiner M, Muzanyi G, et al. Elucidating novel serum

biomarkers associated with pulmonary tuberculosis treatment. PLoS ONE. 2013; 8: e61002. https://doi.

org/10.1371/journal.pone.0061002 PMID: 23637781

9. De Groote MA, Sterling DG, Hraha T, Russell TM, Green LS, Wall K, et al. Discovery and Validation of

a Six-Marker Serum Protein Signature for the Diagnosis of Active Pulmonary Tuberculosis. Land GA,

editor. J Clin Microbiol. 2017; 55: 3057–3071. https://doi.org/10.1128/JCM.00467-17 PMID: 28794177

10. Scriba TJ, Penn-Nicholson A, Shankar S, Hraha T, Thompson EG, Sterling D, et al. Sequential inflam-

matory processes define human progression from M. tuberculosis infection to tuberculosis disease.

Sassetti CM, editor. PLoS Pathog. 2017; 13: e1006687. https://doi.org/10.1371/journal.ppat.1006687

PMID: 29145483

11. Esmail H, Lai RP, Lesosky M, Wilkinson KA, Graham CM, Horswell S, et al. Complement pathway gene

activation and rising circulating immune complexes characterize early disease in HIV-associated tuber-

culosis. Proc Natl Acad Sci USA. 2018; 115: E964–E973. https://doi.org/10.1073/pnas.1711853115

PMID: 29339504

12. Mahomed H, Hawkridge T, Verver S, Geiter L, Hatherill M, Abrahams DA, et al. Predictive factors for

latent tuberculosis infection among adolescents in a high-burden area in South Africa. Int J Tuberc Lung

Dis. 2011; 15: 331–336. PMID: 21333099

13. Mahomed H, Ehrlich R, Hawkridge T, Hatherill M, Geiter L, Kafaar F, et al. TB Incidence in an Adoles-

cent Cohort in South Africa. PLoS ONE; 2013; 8: e59652. https://doi.org/10.1371/journal.pone.

0059652 PMID: 23533639

14. Health SADO. National Tuberculosis Management Guidelines 2014. South African Family Practice.

2014. pp. 3–4. https://doi.org/10.1080/20786204.2007.10873647

15. Duffy FJ, Thompson E, Downing K, Suliman S, Mayanja-Kizza H, Boom WH, et al. A Serum Circulating

miRNA Signature for Short-Term Risk of Progression to Active Tuberculosis Among Household Con-

tacts. Front Immunol. 2018; 9: 661. https://doi.org/10.3389/fimmu.2018.00661 PMID: 29706954

16. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, et al. Aptamer-based multiplexed proteomic

technology for biomarker discovery. PLoS ONE. 2010; 5: e15004. https://doi.org/10.1371/journal.pone.

0015004 PMID: 21165148

17. Ganz P, Heidecker B, Hveem K, Jonasson C, Kato S, Segal MR, et al. Development and Validation of a

Protein-Based Risk Score for Cardiovascular Outcomes Among Patients With Stable Coronary Heart

Disease. JAMA. 2016; 315: 2532–2541. https://doi.org/10.1001/jama.2016.5951 PMID: 27327800

18. Mack GA, Wolfe DA. K-Sample Rank Tests for Umbrella Alternatives. J Am Stat Ass. Taylor & Francis;

1981; 76: 175–181. https://doi.org/10.1080/01621459.1981.10477625

19. Thompson EG, Du Y, Malherbe ST, Shankar S, Braun J, Valvo J, et al. Host blood RNA signatures pre-

dict the outcome of tuberculosis treatment. Tuberculosis (Edinb). 2017; 107: 48–58. https://doi.org/10.

1016/j.tube.2017.08.004 PMID: 29050771

20. Thompson EG, Shankar S, Gideon HP, Braun J, Valvo J, Skinner JA, et al. Prospective Discrimination

of Controllers From Progressors Early After Low-Dose Mycobacterium tuberculosis Infection of Cyno-

molgus Macaques using Blood RNA Signatures. J Infect Dis. 2018; 217: 1318–1322. https://doi.org/10.

1093/infdis/jiy006 PMID: 29325117

21. World Health Organization. Consensus meeting report: development of a target product profile (TPP)

and a framework for evaluation for a test for predicting progression from tuberculosis Geneva: 2017

(WHO/HTM/TB/2017.18).

22. Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, et al. Incipient and Subclinical

Tuberculosis: a Clinical Review of Early Stages and Progression of Infection. Clin Microbiol Rev. 2018;

31. https://doi.org/10.1128/CMR.00021-18 PMID: 30021818

23. Diel R, Loddenkemper R, Nienhaus A. Predictive value of interferon-γ release assays and tuberculin

skin testing for progression from latent TB infection to disease state: a meta-analysis. Chest. 2012; 142:

63–75. https://doi.org/10.1378/chest.11-3157 PMID: 22490872

24. Rangaka MX, Wilkinson KA, Glynn JR, Ling D, Menzies D, Mwansa-Kambafwile J, et al. Predictive

value of interferon-γ release assays for incident active tuberculosis: a systematic review and meta-anal-

ysis. Lancet Infect Dis. 2012; 12: 45–55. https://doi.org/10.1016/S1473-3099(11)70210-9 PMID:

21846592

25. Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using

Mathematical Modelling. Metcalfe JZ, editor. PLoS Med. 2016; 13: e1002152. https://doi.org/10.1371/

journal.pmed.1002152 PMID: 27780211

26. Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ. 2018; 362:

k2738. https://doi.org/10.1136/bmj.k2738 PMID: 30139910

Proteomic signature of TB disease risk

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002781 April 16, 2019 20 / 21

https://doi.org/10.1371/journal.pone.0061002
https://doi.org/10.1371/journal.pone.0061002
http://www.ncbi.nlm.nih.gov/pubmed/23637781
https://doi.org/10.1128/JCM.00467-17
http://www.ncbi.nlm.nih.gov/pubmed/28794177
https://doi.org/10.1371/journal.ppat.1006687
http://www.ncbi.nlm.nih.gov/pubmed/29145483
https://doi.org/10.1073/pnas.1711853115
http://www.ncbi.nlm.nih.gov/pubmed/29339504
http://www.ncbi.nlm.nih.gov/pubmed/21333099
https://doi.org/10.1371/journal.pone.0059652
https://doi.org/10.1371/journal.pone.0059652
http://www.ncbi.nlm.nih.gov/pubmed/23533639
https://doi.org/10.1080/20786204.2007.10873647
https://doi.org/10.3389/fimmu.2018.00661
http://www.ncbi.nlm.nih.gov/pubmed/29706954
https://doi.org/10.1371/journal.pone.0015004
https://doi.org/10.1371/journal.pone.0015004
http://www.ncbi.nlm.nih.gov/pubmed/21165148
https://doi.org/10.1001/jama.2016.5951
http://www.ncbi.nlm.nih.gov/pubmed/27327800
https://doi.org/10.1080/01621459.1981.10477625
https://doi.org/10.1016/j.tube.2017.08.004
https://doi.org/10.1016/j.tube.2017.08.004
http://www.ncbi.nlm.nih.gov/pubmed/29050771
https://doi.org/10.1093/infdis/jiy006
https://doi.org/10.1093/infdis/jiy006
http://www.ncbi.nlm.nih.gov/pubmed/29325117
https://doi.org/10.1128/CMR.00021-18
http://www.ncbi.nlm.nih.gov/pubmed/30021818
https://doi.org/10.1378/chest.11-3157
http://www.ncbi.nlm.nih.gov/pubmed/22490872
https://doi.org/10.1016/S1473-3099(11)70210-9
http://www.ncbi.nlm.nih.gov/pubmed/21846592
https://doi.org/10.1371/journal.pmed.1002152
https://doi.org/10.1371/journal.pmed.1002152
http://www.ncbi.nlm.nih.gov/pubmed/27780211
https://doi.org/10.1136/bmj.k2738
http://www.ncbi.nlm.nih.gov/pubmed/30139910
https://doi.org/10.1371/journal.pmed.1002781


27. Yoon C, Semitala FC, Atuhumuza E, Katende J, Mwebe S, Asege L, et al. Point-of-care C-reactive pro-

tein-based tuberculosis screening for people living with HIV: a diagnostic accuracy study. Lancet Infect

Dis. 2017; 17: 1285–1292. https://doi.org/10.1016/S1473-3099(17)30488-7 PMID: 28847636

28. Sweeney TE, Braviak L, Tato CM, Khatri P. Genome-wide expression for diagnosis of pulmonary tuber-

culosis: a multicohort analysis. Lancet Respir Med. 2016; 4: 213–224. https://doi.org/10.1016/S2213-

2600(16)00048-5 PMID: 26907218

29. Wolf RM, Steele KE, Peterson LA, Magnuson TH, Schweitzer MA, Wong GW. Lower Circulating C1q/

TNF-Related Protein-3 (CTRP3) Levels Are Associated with Obesity: A Cross-Sectional Study. Zhang

Y, editor. PLoS ONE. 2015; 10: e0133955–11. https://doi.org/10.1371/journal.pone.0133955 PMID:

26222183
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