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Towards integration 
of 64Cu‑DOTA‑trastuzumab PET‑CT 
and MRI with mathematical 
modeling to predict response 
to neoadjuvant therapy 
in HER2 + breast cancer
Angela M. Jarrett1,2, David A. Hormuth1,2, Vikram Adhikarla6, Prativa Sahoo6, 
Daniel Abler6,10, Lusine Tumyan7, Daniel Schmolze8, Joanne Mortimer9,12, 
Russell C. Rockne6,12* & Thomas E. Yankeelov1,2,3,4,5,11,12*

While targeted therapies exist for human epidermal growth factor receptor 2 positive (HER2 +) 
breast cancer, HER2 + patients do not always respond to therapy. We present the results of utilizing 
a biophysical mathematical model to predict tumor response for two HER2 + breast cancer patients 
treated with the same therapeutic regimen but who achieved different treatment outcomes. 
Quantitative data from magnetic resonance imaging (MRI) and 64Cu‑DOTA‑trastuzumab positron 
emission tomography (PET) are used to estimate tumor density, perfusion, and distribution of HER2‑
targeted antibodies for each individual patient. MRI and PET data are collected prior to therapy, 
and follow‑up MRI scans are acquired at a midpoint in therapy. Given these data types, we align the 
data sets to a common image space to enable model calibration. Once the model is parameterized 
with these data, we forecast treatment response with and without HER2‑targeted therapy. By 
incorporating targeted therapy into the model, the resulting predictions are able to distinguish 
between the two different patient responses, increasing the difference in tumor volume change 
between the two patients by > 40%. This work provides a proof‑of‑concept strategy for processing and 
integrating PET and MRI modalities into a predictive, clinical‑mathematical framework to provide 
patient‑specific predictions of HER2 + treatment response.

There is growing evidence that imaging-informed, mechanism-based mathematical models can accurately predict 
the development of cancers of the  kidney1,  brain2–5,  lung6,7, and  pancreas8–11. Importantly, these studies often aim 
to evaluate tumor growth or response to therapy on a patient-specific basis. A particular example of an imaging 
modality that can and has been utilized for mathematical modeling of tumor response is magnetic resonance 
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imaging (MRI), which can be used to quantitatively characterize (for example) blood flow, vessel permeability, 
tissue volume fractions, cellularity, pH, and  pO2

12. Additionally, positron emission tomography (PET) can quan-
titatively characterize molecular events related to (for example) metabolism, proliferation, hypoxia, and various 
cell surface  receptors13. The strength of these imaging measurements is that they can be collected (with minimal 
invasion) at the time of diagnosis and then at multiple time points throughout treatment. Furthermore, imaging 
allows mathematical models to be initialized and constrained with patient-specific data rather than, for example, 
population data from the literature or animal data. Therefore, the ability to parameterize models with data that 
are readily accessible and specific to the individual enables mathematical modelling to potentially be integrated 
into clinical trials and, ultimately, translated to clinical practice.

For the particular case of breast cancer, we have previously developed mathematical models using patient-
specific MRI data to calibrate the model’s parameters to the unique characteristics of each  patient14–20, thereby 
enabling patient-specific predictions. Recently, we presented a proof-of-principle study that extended a model 
to include estimates of drug delivery to each voxel via dynamic contrast-enhanced MRI (DCE-MRI), enabling a 
more accurate assessment of local tumor cell death due to therapy on a patient-specific  basis20. Further assessment 
of this model’s predictive ability revealed that it could reliably distinguish between patients that would respond or 
not to therapy regimens—as defined by the response evaluation criteria in solid tumors (RECIST)21. However, the 
model did not perform as well for patients who also received targeted therapies in addition to chemotherapies. 
Specifically, for patients with tumors that overexpress the human epidermal growth factor receptor 2 (HER2) 
treated with antibodies targeted to this receptor (i.e., trastuzumab and/or pertuzumab), the model was not able 
to reliably distinguish tumors that would or would not respond to neoadjuvant therapy (NAT)—regimens that 
occur prior to surgery. This strongly suggests that the model must be amended to incorporate the effects of 
targeted therapies. Of course, extending a model results in a larger number of free parameters, which, in turn, 
requires more data to initialize and constrain the model. It is the overall goal of this study to develop a multi-
modal imaging acquisition and analysis protocol that would enable patient-specific predictions of the response 
of HER2 + breast cancer to combination targeted and non-targeted therapies.

Breast cancers that overexpress the HER2 protein have a uniquely aggressive natural history and determine 
candidacy for HER2-directed  therapies22. Trastuzumab is a humanized antibody that binds to the extracellular 
domain of HER2 and prevents intracellular signaling for proliferation. The addition of pertuzumab further inhib-
its downstream signaling by preventing the heterodimerization of  HER223. The determination of HER2 status 
is made on a pre-treatment tumor biopsy specimen, which is a small sample of a larger tumor and may not be 
representative of the entire tumor and provides minimal information about heterogeneity of HER2 expression. 
Moreover, heterogeneity of HER2 expression and distribution of the HER2 antibody may play a role in HER2-
directed treatment failure, when a patient does not achieve a complete response to therapy (unrelated to drug 
resistance). Several imaging modalities, including PET and MRI, can be used to assess tumor heterogeneity, 
density, perfusion, and therapy delivery as potential factors in determining response to HER2-directed therapy 
in vivo, in individual patients. Radiolabeled trastuzumab, 64Cu-DOTA-trastuzumab (64Cu-DT), has been used 
as PET imaging agent to characterize the delivery of HER2 targeted  therapies24. We have previously utilized 
64Cu-DT-PET to estimate the spatial distribution of trastuzumab in women with metastatic HER2 positive breast 
cancer. In this study, we use pretreatment MRI and 64Cu-DT PET-CT to predict response at surgery to the com-
bination of cytotoxic chemotherapy with the humanized monoclonal antibodies, trastuzumab and pertuzumab, 
in women with locally advanced HER2 + breast cancer (clinical trial NCT02827877).

Here, we first describe two patients from NCT02827877, one of whom had a complete response to therapy 
and another who did not. Second, we present the details of the image processing and analysis to yield data types 
that can be directly incorporated into the mathematical model. Third, we present the mathematical model and 
strategy for implementation. Fourth, we present the results of the predictions for the model with and without 
the HER2 therapy component to provide early evidence on the relative importance of these terms. Finally, we 
place the results in the context of the field, and discuss limitations of the study, and identify future avenues of 
investigations at the interface of multi-modality imaging and mathematical oncology.

Methods
Patient cohort. Patients with locally advanced breast cancer were considered eligible for clinical trials 
provided that they had biopsy confirmation of HER2 overexpression, ECOG (Eastern Cooperative Oncology 
Group) performance status 0–2, normal cardiac function, a primary tumor ≥ 2 cm or axillary lymph nodes ≥ 2 cm 
in diameter, and planned neoadjuvant chemotherapy with trastuzumab, pertuzumab, docetaxel and carbopl-
atin. Participants could not have evidence of metastatic disease as determined by 18F-fluorodeoxyglucose (18F-
FDG-) PET/CT and could not have received prior  to HER2 directed therapy. The City of Hope Institutional 
Review Board approved the study, and all patients provided written and informed consent before participating 
(NCT02827877). All methods were performed in accordance with the relevant guidelines and regulations.

Prior to institution of chemotherapy, breast MRI, 18F-FDG- and 64Cu-DT-PET were performed. Patients 
received intravenous trastuzumab, pertuzumab, docetaxel and carboplatin every 3 weeks for 6 cycles in the 
absence of disease progression or unacceptable toxicity. Response status was determined by surgical pathol-
ogy after the completion of NAT. See Fig. 1 for details on the study design with respect to the NAT regimens. 
In particular, a pathological complete response (pCR) is defined as finding no viable tumor cells present in the 
primary tumor or lymph nodes at the time of surgery following completion of neoadjuvant systemic therapy.

Prior to therapy, a diagnostic biopsy was performed. For both patients, their diagnostic biopsies received an 
immunohistochemistry (IHC) HER2-overexpression score of 3 + (scores range from 0 to 3 + for different inten-
sity levels of IHC staining), indicating that the tumors display complete, intense circumferential membranous 
staining in > 10% of tumor cells. Further inspection and processing of the biopsy slides supports that the cancer 
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cells have fairly uniform HER2 expression (see Supplemental Materials for images of the IHC staining results 
for each patient), an important point we return to in the discussion.

In this study, to illustrate our multi-modal imaging based mathematical modeling approach, we selected 
two patients from NCT02827877 with contrasting tumor responses; where, at the time of surgery, one patient 
achieved a pCR (patient 1) while the second patient had residual disease (non-pCR, patient 2).

MRI data acquisition. MRI data were acquired at baseline after diagnosis but prior to treatment and also 
at a midpoint of NAT prior to surgery (for patient 1, after four cycles of therapy and for patient 2, after three 
cycles of therapy). MRI was performed using a 1.5 T GE scanner with the body coil and a four-channel bilateral 
phased-array breast coil as the transmitter and receiver, respectively. Each MRI session began with pilot scans, 
axial T2-weighted MRI with fat-saturation, and axial T1-weighted without fat-saturation, before proceeding to 
diffusion-weighted (DW)-MRI and contrast enhanced (CE)-MRI and sagittal delayed T1 weighted acquisitions. 
The bilateral DW-MRI was acquired in the axial plane with a single-shot spin echo planar imaging sequence, 
with b-values of 0, 600, 800, 1000 and 1500 s/mm2, TR/TE = 6675 ms/97.3 ms, and 5 signal averages. The acquisi-
tion matrix was 128 × 128 (reconstructed to 256 × 256) over a 360 × 360  mm2 field of view, and a slice thickness 
of 5 mm. Then bilateral, full breast, axial CE-MRI was acquired with a fat suppressed, gradient echo-based 3D 
VIBRANT (Volume Image Breast Assessment) sequence. CE-MRI acquisition parameters were TR/TE/α = 4 
6.6 ms/3.19 ms/10°, and an acquisition matrix of 420 × 420 (reconstructed to 512 × 512) over a 340 × 340  mm2 
field of view, and a slice thickness of 1.8 mm. The intravenous injection of Gd-BOPTA (Multihance, Bracco, 
Italy) was 0.2 mmol/kg at 2 ml/s delivered by a programmable power injector followed by a 20 ml saline flush. 
One baseline and three post contrast image volumes were acquired with temporal resolution of 180 s per acquisi-
tion. The acquisition time for the CE-MRI was approximately 20 min, depending on the number of slices needed 
(112–120) in each image volume for full breast coverage. See Fig. 2 for examples of both patient’s DW- and CE-
MRI data.

PET data acquisition. PET data acquisition occurred at baseline after diagnosis but prior to treatment. 
Images were collected using a Discovery STE clinical PET/CT scanner (GE Healthcare, Waukesha, WI, USA). 
Data were acquired in the prone position using a custom-built padded  support25–28. A low-mAs CT scan was 
acquired using the smart mA setting for attenuation correction of the emission data. Standard-of-care 18F-FDG 
PET/CT scan was acquired to evaluate patient eligibility.

64Cu was provided by the Mallinckrodt Institute of Radiology, Washington University School of Medicine). 
64Cu radiolabeled trastuzumab was prepared according to an investigational new Drug Application (IND 109971). 
The procedure includes heating at 43 °C for 45 min followed by incubation with an excess of diethylenetriamine-
pentaacetic acid, which eliminates 64Cu binding to secondary chelating sites on the antibody while maintaining 

Figure 1.  Schematic of the integrated mathematical-experimental approach employed in the study. Prior to 
NAT, several imaging and biopsy data types were collected for each individual patient, including 18F-FDG 
PET-CT, but it is not being utilized in this current study. At a midpoint of NAT, follow-up MRI scans were 
also performed. At surgery, tissue was collected and sent to pathology for evaluation. The first two sets of 
data (pre-NAT and at the midpoint of NAT) were used to calibrate the mathematical model’s parameters for 
each individual patient. With the patient-specific parameters, the model was reinitialized at each patient’s 
second imaging session data and run forward to predict tumor status at the time of surgery. Then the model’s 
predictions were compared to the clinical outcome determined at the time of surgery.
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the immunoreactivity of the radiolabeled product. The 64Cu-DT (trastuzumab dose, 5 mg) was mixed with saline 
(25 mL). Fifteen minutes prior to administration of the radiolabeled trastuzumab, 45 mg of trastuzumab was 
administered IV to decrease the hepatic uptake of 64Cu without affecting tumor  uptake29. HER2 is expressed 
in both healthy and cancerous cells albeit to different extents; therefore, the administration of a cold dose of 
trastuzumab prior to imaging is required to saturate normal tissues taking up the  antibody30. After 60–90 min 
post-injection of the cold antibody, patients receive 15 mCi of 64Cu-DT administered intravenously over 10 min 
and undergo a PET/CT scan within 28–30 h. Attenuation and scatter corrected 64Cu-DT scans were reconstructed 
on a 128 × 128 matrix over a 700 mm square field of view using an ordered subset expectation maximization 
algorithm (GE VUE point HD) with two iterations and 20 subsets. Voxel resolution of the reconstructed image 
was 5.5 × 5.5 × 3.3  mm3. See Fig. 2 for central slice examples of both patient’s 64Cu-DT- and 18F-FDG-PET data. 
While the standard-of-care 18F-FDG-PET data was collected, it was not used for this modeling study.

Image analysis. Our approach to imaging-based modeling requires that all image sets be registered to the 
same imaging space. Thus, the first step in the data processing protocol consists of registering the DW-MRI 
and CE-MRI data for each scan session for motion correction followed by registering the PET-CT data to the 
MRI data. For each patient, the MR images acquired at each session (intra-visit) were registered using a rigid 
algorithm where the diffusion-weighted images were linearly interpolated in 3D to match the resolution of the 
CE-MRI data and registered to the contrast-enhanced images. The interpolation of images was implemented 
using MATLAB’s (MathWorks, Natick, MA) function interp3 and the rigid algorithm used for the intra-visit 
registration via the function imregister. A deformable intra-visit registration was employed to align the PET/CT 
and MRI data via the MATLAB function imregdemons, where the field of view for the corresponding CT scan 
was trimmed and registered to the contrast-enhanced images, and the resulting deformation field was applied to 
the PET images (linearly interpolated in 3D to match the CE-MRI resolution). See Fig. 3 for example images of 
the 64Cu-DT-PET to MRI registration for patient 1.

The second step encompasses the preliminary processing of the data including calculating the apparent dif-
fusion coefficient (ADC) of water maps, identifying the tumor regions of interest (ROIs), and approximating 
the drug distributions for each patient. The ADC of water was calculated from the DW-MRI data using all five 
b-values via standard  methods31. Using the CE-MRI data, a fuzzy c-means (FCM)-based algorithm is applied to 
a manually drawn, conservative ROI to identify the boundaries of the  tumor32. The FCM algorithm is a clustering 
method that not only partitions the voxels into classes but also assigns a weighting based on probability of a voxel 
belonging to the tumor. See Fig. 3 for an example of applying this approach to patient 2. Also using the CE-MRI 

Figure 2.  Example MRI and PET data for a central slice from both patients with the tumor region boxed in 
red. Note that MRI and PET data were acquired in the prone position as opposed to the usual supine position 
using our novel breast support device (see text for details), and these example images are prior to intra-scan 
registration that aligns the data to one common space for modeling. Note that in the CE-MRI data (a,e), the 
tumor enhances more than the surrounding tissues. The DW-MRI data is represented here by the calculated 
apparent diffusion coefficient map (overlaid on an anatomical image) in (b,f). Note that low apparent diffusion 
coefficients (blue) are indictive of areas of higher cellularity. (c,g) Shows the 64Cu-DT-PET data, while (d,h) 
present the 18F-FDG-PET data. Note that due to the tumor location and arm positioning, for patient 2, part of 
her arm is out of view in the cropped image. For both a high signal intensity was observed within the tumors 
for the 64Cu-DT-PET data, whereas for the 18F-FDG-PET data the signal was not as strong for patient 1 for this 
slice. (While the 18F-FDG-PET data was collected with the data in this study and is part of the image processing 
pipeline, it was not used for this modeling study).
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Figure 3.  Example images of data processing for intra-scan registration of PET data to MRI data (upper panel) 
and generation of tumor ROIs (lower panel). Upper panel, deformable intra-scan registration for PET data to 
MRI data. Note that these images were all acquired in the prone position as opposed to the usual supine position 
using our novel breast support device (see text for details). The top row depicts a central slice for patient 1 at 
baseline for the CE-MRI (a), 64Cu-DT-PET (b), and the 64Cu-DT PET-CT (c). After the CT data is trimmed to 
only include breast tissue (i.e., the chest cavity and breast support was removed from the original images), the 
CT images were registered to the CE-MRI data using a fully deformable registration algorithm. (d–i) depict the 
resulting overlap between the CE-MRI data and registered CT-PET data for three central slices (green represents 
the CE-MRI data and pink represents the cropped 64Cu-DT PET-CT and 64Cu-DT-PET for (d–f) and (g–i), 
respectively). Lower panel, example images for generating tumor ROIs from CE-MRI data using the FCM 
method (patient 2). (j) Depicts a central slice of the CE-MRI data. (k) Shows a manually drawn, conservative 
ROI (red) on the CE-MRI data. (l) Depicts the FCM generated ROI (red).
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data, to approximate the distribution of chemotherapy drug throughout the tissue for each patient, a normalized 
map of the vasculature was calculated by: (1st) subtracting the average baseline signal from the pre-contrast 
dynamics, (2nd) computing the area under the curve (AUC) for each voxel post injection of the contrast agent, 
and (3rd) dividing by the maximum AUC over the whole ROI. This normalized AUC map was used to define 
the initial systemic drug distribution throughout the tumor and surrounding tissue at the time of each therapy 
dose. The 64Cu-DT-PET data is used to define a normalized map of the distribution of the targeted anti-HER2 
therapy trastuzumab based on the dosage of the radiotracer the patients received. See Fig. 4 for the resulting drug 
distribution maps in the breast domain for a central slice of each patient’s tumor at baseline.

The third step is a registration that aligns the images and calculated maps of both of the patients’ scans (across 
time, inter-visit) to one common spatial coordinate system (co-registered). A non-rigid registration algorithm 
(an adaptive basis algorithm) with a constraint that preserves the tumor volumes at each time point was  used33. 
This was accomplished using the open source toolbox  Elastix34,35.

The final step is calculating the modeling quantities, including defining maps of the different tissues of the 
breast and calculating the number of tumor cells in the ROIs from the ADC of each voxel. The CE-MRI data 
were used for the tissue segmentation. The fibroglandular and adipose tissues were segmented using a k-means 
clustering algorithm that partitions the tissues of the breast into separate clusters. The resulting masks are used 
for the assignment of tissue stiffness properties in the mathematical model (see below). The ADC value for each 
voxel within the tumor (as segmented using the above methods) was converted to an estimate for the number of 
tumor cells per voxel at each 3D position x and time t, NTC(x, t) , via our established  methods16–18,20,31:

 where ADCw is the ADC of free water (3×10−3 mm2/s at 37 °C)36, ADC(x, t ) is the ADC value for the voxel at 
position x and time t, and ADCmin is the minimum ADC value over all tumor voxels for the  patient14,37. The 
parameter θ is the carrying capacity describing the maximum number of tumor cells that can physically fit within 
a voxel; its numerical value is determined by assuming a spherical packing fraction of 0.7438, a nominal tumor 
cell radius of 10 μm, and the voxel volume (2.18  mm3). See Fig. 4 for the resulting tissue segmentation and tumor 
cell maps in the breast domain for a central slice of each patient’s tumor at baseline.

The tumor volume was approximated as the product of the total number of voxels within the segmented tumor 
ROI and the voxel volume. This measure of volume was also applied to all the modeling prediction results for 

NTC(x, t) = θ

(
ADCw − ADC(x, t)

ADCw − ADCmin

)

,

Figure 4.  The central slide of each tumor for both patients are shown to depict the tissue segmentation (a,e), 
number of tumor cells (b,f), and the normalized estimates of the systemic (c,g) and targeted (d,h) therapies 
used in the model. The tissue segmentation identifies the tumor (dark area), fibroglandular (white), and adipose 
(grey) tissues within the breast. For the remaining columns, the parameter maps (i.e., the colored pixels) are 
overlaid on anatomical images of the breasts (grey). At surgery, patient 1 was designated as a pCR, while patient 
2 had residual disease and was designated as non-pCR. Both patient’s tumor exhibit areas of high cellularity, and 
the approximate drug distribution of the systemic therapies have similar intensities. Comparing the targeted 
distribution maps, patient 1 appears to have had greater drug distribution compared to patient 2 for this central 
slice.
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direct comparison to the experimentally measured data. Note that for patient 1 (the pCR patient), there is no 
DW-MRI data available for scan 2. However, we do have confidence in the volume estimate at this time point, so 
we simulated a tumor cell map for the ROI at scan 2 in the following manner. The cellularity map was generated 
by randomly selecting a number of cells for each voxel in the CE-MRI defined ROI from a normal distribution of 
values between zero and the maximum number of tumor cells possible per voxel ( θ ). Further, it was determined 
that this simulated map of cellularity did not bias the subsequent predictions, where the map had a similar percent 
reduction in cells compared to patient 2 (i.e., the non-pCR patient). Specifically, for the period of time between 
scans 1 and 2, patient 1 had a ~ 0.5% cell reduction per day, and patient 2 had a ~ 0.8% cell reduction per day. 
While a generated map of cellularity was used for patient 1 (the pCR patient), we also report the experimentally 
measured tumor volume—serving as an internal check of the approach.

Mathematical model. We have previously developed a 3D mathematical model that includes the mechani-
cal coupling of tissue properties to tumor growth and the delivery of systemic  therapy20,21. This model was 
designed to be initialized with patient-specific, imaging data to the response of breast cancer patients to  NAT17–19. 
The governing equation (a reaction–diffusion type partial differential equation) for the spatiotemporal evolution 
of tumor cells, NTC (x, t) , with respect to time, t, and per voxel, x , is:

 where the first term on the right-hand side describes the effects of tumor cell movement, the second term 
describes the growth of the cells, and the third term describes the effect of chemotherapy. All model parameters 
and functions are described in Table 1, and the reader is encouraged to refer to it as they move through the 
description of the mathematical model. This model has been well documented through its  evolution14–20, but we 
describe the established features (diffusion and growth) and discuss the expanded therapy term, Cdrug(x, t) , all 
together here. The first term on the right-hand side of Eq. (1), representing the random diffusion (movement) 
of the tumor cells, D (x, t) , is mechanically linked to the breast tissue’s material properties via:

  where D0 is the diffusion coefficient in the absence of external forces, and the exponential term damps D0 
through the von Mises stress, σvm(x, t) , which is calculated for the fibroglandular and adipose tissues within the 
breast—where fibroglandular tissue has greater stiffness compared to  adipose39. This mechanical coupling to the 
diffusion is subject to an equilibrium dependent upon changes in tumor cell number:

(1)∂NTC(x, t)

∂t
=

diffusion
︷ ︸︸ ︷

∇ · (D(x, t)∇NTC(x, t))+

logistic growth
︷ ︸︸ ︷

k(x)(1− NTC(x, t)/θ)NTC(x, t)−

therapy
︷ ︸︸ ︷

Cdrug (x, t)NTC(x, t),

(2)D(x, t) = D0 exp(−γ σvm(x, t)),

(3)∇ · G∇
⇀
u +∇

G

1− 2ν
(∇ ·

⇀
u )− �∇NTC(x, t) = 0,

Table 1.  Description of the variables and parameters for the model system including the assigned parameter 
values and specification of units.

Variable Description

NTC (x, t) Number of tumor cells in the voxel at position x at time t

D(x, t)
Diffusion coefficient of tumor cells, where D (x, t) = D0 exp(−γ σvm(x, t))
(mm2/day)

σvm Von Mises stress (kPa)
⇀
u Displacement vector due to tumor cell growth (mm)

G
Shear modulus due to breast tissue properties, where G = E/(2(1− ν)) 
(kPa)

C
drug
tissue(x, t)

Concentration of drug in the tissue in the voxel at position x at time t  
(dimensionless)

Parameter Description Value

D0 Diffusion coefficient of tumor cells without stress Calibrated,  mm2/day

γ Mechanical coupling coefficient for stress Assigned at 2.0 × 10–3 (1/kPa)

ν Poisson’s ratio Assigned, 0.45 (dimensionless)

E Young’s modulus for adipose, fibroglandular, and tumor tissues Assigned, 2 kPa, 4 kPa, and 20 kPa, respectively

� Coupling constant for displacement of tumor cells Assigned as 2.5 × 10–3 (dimensionless)39

k(x) Proliferation rate of tumor cells per voxel Calibrated, 1/day

θ Carrying capacity of tumor cells in the voxel at position x Calculated, 2.02 × 106 cells

α Efficacy of the chemotherapy Calibrated, 1/day

β Drug exponential decay rate Calibrated, 1/day

µ Efficacy of the targeted therapy Calibrated, 1/day
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 where G the shear modulus, where G = E/(2(1− ν )) for the Young’s modulus (E) and Poisson’s ratio (ν) material 
properties, ⇀u  is the displacement due to tumor cell growth, and � is another empirical coupling  constant17–19,40–45. 
Therefore, the diffusion term encompasses tumor changes such as growth or response to therapy that can cause 
deformations in the surrounding healthy tissues (i.e., fibroglandular and adipose tissues), thereby changing the 
stress field and the associated expansion of the tumor.

The second term on the right-hand side of Eq. (1) is the reaction term that describes tumor proliferation 
through logistic growth at the rate k and up to a carrying capacity, θ . The carrying capacity is defined per voxel 
using approximate cell size and packing density (as described above in the calculation of tumor cells, “Image 
analysis”), while the proliferation rate is calibrated per voxel for each individual patient (the numerical details 
on model calibration are detailed below in “Model parametrization and evaluation of predictions”).

The final term on the right-hand side of Eq. (1)—the therapy term—describes the spatiotemporal distribution 
of each systemic drug in the tissue and its effect on the cells of each voxel using the following equation,

 where αi is the efficacy of each chemotherapy on the tumor cells; Cdrugi
 is the initial distribution of each drug for 

each dose (changing with time t∗ , described below), and the exponential decay terms, exp(−βit) , represent the 
eventual washout of drug over time after each dose. The αi and βi parameters are calibrated for each patient and 
chemotherapy, where the βi calibration is restricted using bounds defined from ranges found in the literature 
for the terminal elimination half-lives of each  drug46–51. Previously, Cdrugi

 , was approximated using a pharma-
cokinetic analysis of dynamic CE-MRI20; however, the present data set does not have the requisite temporal 
resolution or number of time points for such an analysis. Thus, we use the normalized AUC map (described 
in “Image analysis”) for each voxel post injection of the contrast agent. This drug distribution is dependent on 
the time t∗ , indicating that for the calibration of the model the drug distribution map is derived from scan 1, 
but an updated drug distribution map from scan 2 is provided to the model to predict the tumor at the time of 
surgery. Therefore, the drug effect in the tumor tissue is spatially non-uniform and temporally varying based on 
the individual patient’s response to therapy and NAT schedule.

Equations (1)–(4) do not account for targeted therapies. To overcome this limitation, Eq. (1) was modified 
to account for the change in proliferation rate due to trastuzumab and pertuzumab binding. As described in the 
introduction, the primary mechanism of action for these two targeted antibodies is the reduction in proliferation 
by binding to HER2, interrupting intracellular signaling. Therefore, similar to our previous in vitro modeling 
of  trastuzumab52, Eq. (1) becomes:

 w h e r e  k H  d e p e n d s  o n  t h e  c o n c e n t r a t i o n  o f  t h e  t a r g e t e d  t h e r a p i e s ,  k H 
(x, t) = k(x) · g(

[
trastuzumab], [pertuzumab

]
)
δy
δx . The proliferation kH includes the spatially defined 

proliferation map k (x) as well as a function dependent on the distribution of the two targeted drugs g 
(
[
trastuzumab], [pertuzumab

]
) . As the 64Cu-DT-PET data is specific to the trastuzumab antibody, we make the 

simplifying assumption that this data can be used to also approximate the distribution of pertuzumab and define 
the growth modulation function as:

 where [trastuzumab] and [pertuzumab] indicate the concentrations of trastuzumab and pertuzumab, respec-
tively, and μ represents the effectiveness of the targeted therapies. Note that we assume that the targeted therapies 
have a constant effect once administered (i.e., drug clearance is not accounted for in this initial study, and we 
return to this important point in the Discussion section). Additionally, we assume the reduction in proliferation 
is linear with concentration and that the entire tumor burden may be affected by the targeted therapies. From 
here we refer to the model without the effect of the targeted therapy explicitly incorporated as the “MRI-based 
model” (i.e., Eqs. (1)–(4)), while the model that explicitly incorporates the targeted therapy as the “PET/MRI-
based model” (i.e., Eqs. (2)–(6)). Note that the MRI-based model is the same as the PET/MRI-based model when 
the concentrations of the targeted therapies are set to zero.

Model parametrization and evaluation of predictions. All simulation codes and numerical calcula-
tions were written and executed in MATLAB (MathWorks, Natick, MA). The model was implemented in three 
dimensions (3D) with a fully explicit finite difference scheme with ∆t = 0.25  day with the mesh dimensions 
defined by the size of the CE-MRI voxels. The size of the computational domain is set by a rectangle whose 
dimensions are determined by the size of the breast for each patient. A no flux boundary condition was pre-
scribed at the boundary of the breast.

Our modeling approach used the two MRI data sets for each patient to calibrate the mathematical model and 
then simulate the model to the time of surgery to make a prediction of tumor response. See Fig. 1 for a graphical 
depiction of the implementation of our modeling approach. Specifically, we used the cellularity maps of each 
tumor (derived from the ADC of the DW-MRI data—see “Image analysis”) to calibrate model parameters (D0, 
α , β , and µ parameters are global; k is spatially determined). For the calibration, a Levenberg–Marquardt least 
squares non-linear optimization was used, where the sum of squared errors between the simulated tumor cell 
numbers from the model and the calculated number of tumor cells from the imaging data was minimized. To 

(4)
Cdrug(x, t) =

chemotherapy1
︷ ︸︸ ︷

α1Cdrug1
(x, t∗) exp(−β1t)+

chemotherapy2
︷ ︸︸ ︷

α2Cdrug2
(x, t∗) exp(−β2t),

(5)∂NTC(x, t)

∂t
=

diffusion
︷ ︸︸ ︷

∇ · (D(x, t)∇NTC(x, t))+

logistic growth
︷ ︸︸ ︷

kH(x)(1− NTC(x, t)/θ(x))NTC(x, t)−

therapy
︷ ︸︸ ︷

Cdrug(x, t)NTC(x, t),

(6)g(
[
trastuzumab], [pertuzumab

]
) = 1− 2µ[trastuzumab],
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reduce computation time for all calibrations, the voxel matrix within this designated rectangular domain was 
down sampled by a factor of four.  See42 for additional details on the full development of these numerical methods.

Using these patient-specific, calibrated parameters, the model was reinitialized with the tumor cellularity, 
tissue, and drug distribution maps from scan 2 and run forward to the time of surgery to predict tumor response. 
We applied this approach with and without HER2-directed targeted therapy incorporated into the model, where 
the predictions of each model were evaluated by comparing two measures quantifying tumor response—total 
tumor cellularity and total tumor volume. Using these measures, the predicted percent change in the tumor 
responses from baseline (scan 1) to surgery as well as scan 2 to surgery were compared between the two models.

Results
Figure 5 depicts a central tumor slice of the resulting prediction for the time of surgery for each version of the 
model for both patients. Tumor cell number is overlaid in color on an anatomical image of the breast tissue. 
Notice that the original MRI-based model predicts larger tumors with higher cellularity for both patients com-
pared to the PET/MRI-based model with the targeted therapy. In particular, for patient 1, the PET/MRI-based 
model predicts a tumor approximately 25% of the total tumor cellularity of that of the MRI-based model’s 
prediction.

For both patients, the MRI-based model (i.e., Eqs. (1)–(4) that do not explicitly incorporate the HER2-
targeted therapies) predicted that from baseline to surgery the tumors would shrink by > 50% in cellularity and 
volume as listed in Table 2. Specifically, the predicted overall tumor reduction by the MRI-based model was -59% 
and -51% for total cellularity and -63% and -62% for volume, for patients 1 and 2, respectively. However, the 
model predicted that both patients will experience an increase in cellularity (203% and 86% for patients 1 and 

Figure 5.  Central slice examples of the predicted tumor cellularity by the MRI-based model compared to the 
PET/MRI-based model. The number of tumor cells is overlaid (color) on an anatomical image of the breast 
(grey). At surgery patient 1′s (left column) tumor response was designated as pCR and for patient 2 (right 
column) the tumor response was designated as non-pCR. Notice that the PET/MRI-based model predicts 
overall smaller tumors and for patient 1 specifically, lower overall cellularity.

Table 2.  Modeling results for the predicted percent change in tumor response from baseline and scan 2 to the 
time of surgery.

Cellularity Volume

From baseline From scan 2 From baseline From scan 2

Patient → 
1
(%)

2
(%)

1
(%)

2
(%)

1
(%)

2
(%)

1
(%)

2
(%)

MRI-based model − 59 − 51 203 86 − 63 − 62 46 37

PET/MRI-based model − 90 − 61 − 24 47 − 88 − 69 − 38 12
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2, respectively) and volume (46% and 37% for patients 1 and 2, respectively) from scan 2 to the time of surgery. 
Recall that patient 1 is the pCR patient, and patient 2 is the non-pCR patient. Thus, given the available data, the 
MRI-based model may prove difficult to use to distinguish between response types.

The expanded PET/MRI-based model also predicted for both patients that the tumors would shrink from 
baseline to surgery by > 60% in cellularity and volume. Specifically, the predicted overall tumor reduction by the 
PET/MRI-based model was -90% and -61% for total cellularity and -88% and -69% for volume, for patients 1 and 
2, respectively. Note that patient 1′s tumor was predicted to have a greater decrease in total cellularity and volume 
when compared to the predicted response of patient 2 (by almost 30% and 20%, respectively). For the percent 
change from MRI 2 to the time of surgery, the model predicted opposite responses between the two patients; 
the model predicted the tumor cellularity and volume would decrease for the pCR patient (patient 1), while the 
tumor cellularity and volume would increase for the non-pCR patient (patient 2). The predicted percent change 
from scan 2 to the time of surgery for the PET/MRI-based model was -24% and 47% for total cellularity and 
-38% and 12% for volume, for patients 1 and 2, respectively. See Fig. 6 for the predicted tumor response curves 
for total cellularity from scan 2 to the time of surgery. Notice that the MRI-based model predicted overall tumor 
control for both patients during therapy (oscillating between approximately 10–30% and 10–50% of the baseline 
total tumor cellularity for patients 1 and 2, respectively). On the other hand, the PET/MRI-based model predicted 
overall tumor reduction with therapy for patient 1 (progressively decreasing with each dose) and overall tumor 
control for patient 2 (oscillating between 20–30% percent of the baseline total tumor cellularity).

Discussion
While there is a developing literature on integrating imaging data (and, in particular, MRI data) to generate 
patient-specific predictions of tumor  response16–20,43,53, relatively few modeling frameworks have been proposed 
to integrate multiple imaging  modalities54. Despite our previous successes with predicting the response of locally-
advanced breast cancer to broad-spectrum  chemotherapies20,21, we have struggled to capture the effect of targeted 
therapies. As the dynamics of targeted therapy distribution are not necessarily captured by commonly available 
MRI techniques, we utilized PET imaging with a novel imaging agent (64Cu-DT) to approximate the distribution 
of the anti-HER2 antibody. We then compared the predictions of the MRI-based model to the PET/MRI-based 
model that includes the effect of targeted therapy on the proliferation of tumor cells using the PET imaging data 
to indicate targeted drug distribution. We found that the expanded, PET/MRI-based model gave distinctly dif-
ferent predictions for the two patients that more closely agreed with clinical outcome than the MRI-based model. 
Specifically, the MRI-based model predicted that both tumors would regrow (as indicated by both cellularity 
and volume) after scan 2. As surgical pathology determined that these two patients had very different outcomes 
(pCR and non-pCR for patient 1 and 2, respectively), the MRI-based mathematical model failed to capture key 
patient-specific characteristics when making its forecast. Conversely, with the incorporation of the targeted 
therapy data and corresponding model modification, the PET/MRI-based model provides distinct predictions 
for the two patients that more closely agree with clinical outcome.

To the best of our knowledge this represents the first study to combine MRI and PET data for breast cancer 
in a predictive mathematical model. However, previous theoretical work has shown that the linking of several 

Figure 6.  Tumor response curves for total cellularity predicted by the MRI-based (blue curve) and PET/
MRI-based model (orange curve) for each patient. Each panel depicts the predictions for total tumor cellularity 
from the time of scan 2 (day 0) to the time of surgery (end of simulation) for patient 1 (panel a) and patient 
2 (panel b). Note that patient 1 received two doses of therapy between her second scan and surgery, while 
patient 2 received three doses of therapy during that time. The period of tumor regrowth after the completion 
of NAT occurs during the time patients were no longer receiving systemic therapy. Comparing the timing of 
each patient’s treatment schedule, patients 1 and 2 underwent surgery 73 days and 92 days, respectively, after 
their second scan. From their last cycle of therapy, patients 1 and 2 underwent surgery after 38 and 36 days, 
respectively. While both models predicted an oscillatory behavior in relation to when therapy was delivered, the 
MRI-based model (blue curves) predicted greater tumor regrowth during the refractory periods than the PET/
MRI based model (orange curves). We conjecture this reflects the modified proliferation due to targeted therapy 
incorporated into the model.
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different modalities of data to quantify tumor size, proliferation, metabolism, and vascularity using simple 
tumor growth models is not only plausible but also fundamental to capturing and understanding the biological 
phenomena that is  cancer55. One example is the more recent work where MRI and PET data were combined in 
a clinical model of  glioblastoma54. By using 18F-fluoromisonidazole (FMISO-) PET data to quantify the hypoxic 
areas of the tumor, the authors were able to couple this information to the effectiveness of radiation treatment 
and found that it decreased the error between the model’s predictions and the patient’s actual response by an 
order of magnitude. This result is very similar to what we observed in this breast cancer study by including the 
effects of targeted therapy explicitly using 64Cu-DT-PET.

This study has several technical limitations related to both data acquisition and mathematical modeling that 
should be systematically investigated in future efforts. Considering data acquisition, we are limited by the pau-
city of time points at which the PET and MRI are collected, and this places substantial demands on our model 
calibration. Additional time points prior to and during therapy would enable a more precise calibration of model 
parameters, potentially yielding more accurate predictions; furthermore, additional, pre-surgical, imaging data 
would provide a means to directly validate the model’s predictions as we have done in previous  studies18,20,56,57. 
However, such data is not available for this particular clinical trial, and the burden placed on patients as well as 
the associated expense involved in additional scans, fundamentally limits the practical feasibility of acquiring 
additional time points.

The present data set enabled an initial effort to integrate multiple imaging data types into a mechanism-based 
predictive framework and determine that the ability of the methodology to distinguish pCR from non-pCR 
patients should continue to be investigated. One advantage of mechanism-based modeling is that the model 
is calibrated on the individual patient’s data, and then the prediction is checked against the outcome of that 
individual patient. This is an important distinction from other mathematical or computational modeling efforts 
that require large sets of data to train models/algorithms to then be tested against additional  data58,59. While the 
primary aim of this effort was to establish a framework for integrating PET and MRI data for individual breast 
cancer patients, future efforts using a larger cohort of data should assess whether the model has statistically 
significant power for predicting response on an individual patient basis.

Another consideration regarding the PET data, concerns the debate over which radiolabeled version of 
trastuzumab is most appropriate for clinical application, 64Cu or 89Zr labelled trastuzumab. The longer half-life 
of 89Zr (78 h) makes it more appealing from an imaging perspective, but this does expose patients to roughly 
2.5 × the radiation dose associated with (for example) a standard 18F-FDG-PET  scan60,61. While 64Cu has a shorter 
half-life (12.7 h), it is still sufficiently long for imaging up to 48 h. Therefore, the copper isotope is attractive for 
PET imaging as well as patient  safety62,63.

On the MRI side, a limitation we have previously discussed in detail is estimating cellularity with the 
ADC20,41,56. While there is good data indicating that the ADC is linearly correlated with  cellularity64, future 
efforts are needed to eliminate some of the ambiguity in the interpretation of ADC. Many other factors (cell 
membrane  permeability65, cell size, tissue  tortuosity66, and gradient non-linearity67,68) can also effect the ADC, 
and therefore, estimating cellularity with ADC is simply an approximation. Additionally, MRI can incorrectly 
estimate tumor  size69, and future efforts are required to characterize this error so that a corrective term could 
potentially be incorporated into any modeling strategies.

We now discuss limitations from a modeling perspective. As it is well known that breast tumors are quite 
heterogeneous at all spatial and temporal scales, a limitation of the modeling approach is the assumption that 
there is only one tumor cell phenotype. While the spatially defined proliferation map allows the model to bet-
ter capture local behavior of the tumor cells, a simplifying assumption was made that all tumor cells respond 
similarly to drug therapy with the global α and µ parameters. The immunohistochemistry data from the biopsy 
samples indicate that all of the cancerous cells (highly) overexpress HER2. Therefore, our simplifying assump-
tion of the tumor being composed of one HER2 + cell population is supported by the fact that the biopsy data 
suggests that the tumors have low intratumoral variability of HER2 expression. This is also in agreement with 
other studies evaluating the homogeneity of HER2 staining in cancerous cells of HER2 + tumors70,71. However, 
in patients that exhibit HER2 expression heterogeneity on the biopsy specimens, the model could be extended 
to include a fraction of HER2 negative cells within the tumor. The spatial distribution of HER2 negative cells 
in the tumor mass may be estimated with other imaging modalities, for example 18F-FDG, or with simplifying 
assumptions of well mixed populations.

Other modeling limitations stem from the incorporation of therapies into the model. First, it is important 
to note that assigning the delivery of drug in the mathematical model via CE-MRI data is only a first order 
approximation, not unlike other efforts that have attempted to estimate heterogeneous drug delivery to  tissue72–75. 
However, we do not account for differences in the mechanisms of transport of the chemotherapy and antibodies 
separately or account for potential drug synergy. We also assume that the antibody concentration in the tumor is 
constant throughout treatment. While it is known that antibodies circulate in the body for long periods of time, 
evidenced by up to 7-day post administration imaging of 89Zr labeled trastuzumab  studies63,76,77, future studies 
should consider decay in antibody concentration and/or increased drug resistance. For our study, we assumed the 
efficacy of trastuzumab was directly proportional to its local concentration, and that 64Cu-DOTA-trastuzumab 
uptake is a reasonable surrogate for trastuzumab  localization63. However, this may be an oversimplification as 
mechanisms of treatment failure other than delivery of the drug are certainly possible. Additional methods of 
characterizing the efficacy of trastuzumab should also be investigated in future efforts. Finally, another opportu-
nity to advance the model is to include an evolving vasculature, which will directly affect drug delivery. Adding 
an evolving vasculature would require a significant expansion to the model (with a new governing equation for 
the vasculature component alone) and, while we have had some success with this in the pre-clinical setting, this 
approach requires more data than currently available to calibrate the  model56,57.
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In spite of these limitations, it is important to note that the model is both spatially and temporally resolved 
and can be calibrated almost entirely with data obtained from individual patients in the clinical setting to simulate 
tumor response to therapy. The ability to predict individual patient response using non-invasive imaging meas-
ures is difficult to overstate in oncology. By building clinical-mathematical frameworks capable of being calibrated 
and constrained with patient-specific data, we can begin to not only simulate differing patient responses but begin 
to identify negative outcomes early in the course of therapy. With this framework, one can expand the model to 
include additional data types, including (the more widely available) 18F-FDG-PET data that reports on tumor 
metabolism. Furthermore, additional therapies can be incorporated into the mathematical system via Eq. (4), and 
therefore, multiple modalities of data must be considered despite the challenges of interlacing these data types.

Conclusions
We have provided a proof-of-concept study to demonstrate how two imaging modalities (MRI and PET) can be 
combined in a mathematical model to provide patient-specific predictions of response to neoadjuvant chemo-
therapy and targeted therapy. Considering an initial two patients, we find incorporating both MRI and PET 
imaging data into a mathematical model allows the model to better distinguish between pCR and non-pCR 
outcomes. These results represent a first step to combining multiple modalities of clinically-relevant imaging 
data in a mathematical model for individualized predictions of therapy response.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
authors upon request.
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