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Bovine Aerodynamics In Terms 

Of Fuzzy Lagrangian Dynamics 

 Physicists often work in the realm of smooth surfaces, 
massless ropes, and spherical cows. When asked to tackle a 
problem, physicists usually make assumptions that simplify the 
math, and more often than not, the theoretical result is close to the 
experimental one.  We assume that the wind resistance of a falling 
object is negligible, that the inertia of a rope won’t noticeably affect 
the motion of a pulley, or that a cow’s uneven weight distribution 
won’t affect its trajectory when launched from a catapult. These 
assumptions work well for simple systems, so we can apply 
Newton’s Second Law to find the equations of motion. However, 
these simplified models start to fail for complex systems. For more 
complicated systems, we can apply a new set of tools called Fuzzy 
Lagrangian Dynamics, which not only allow physicists to tackle 
complicated physical systems, but also allows scientists in other 
disciplines to analyze nonphysical systems as well. These new tools 
may be the basis for a plethora of possible future applications, 
ranging from the dynamics of a catapult to the dynamics of an 
economy.   

 Sir Isaac Newton gets a lot of credit for his equation 
governing motion, reproduced below, where F is the net force on 
an object, p-dot is the time derivative of its momentum, m is the 
mass of the object, and a is its acceleration: 

Unfortunately, this equation has one major shortcoming. It 
works fine in standard “x, y, z”, or Cartesian, coordinates, but 
the math gets messy if you introduce rotations. While not 
necessarily impossible, it can get cumbersome and tedious to 
make the necessary transformations between Cartesian and 
spherical coordinates, like carving a turkey with a pocket knife. 



There have been several attempts to reformulate Newtonian 
mechanics to more easily accommodate spinning, and one of 
the more famous attempts was that of Joseph-Louis Lagrange, 
an Italian mathematician who lived in Berlin in the late 18th 
century. Lagrange formulated a new equation, reproduced 
below, that can accept any coordinate system without requiring 
transformations, making it much more adaptable, but also requires 
more complicated math. In the equations below, q is the general 
coordinate, q-dot is that coordinate’s velocity, and L is a quantity 
called the Lagrangian, given by the kinetic energy T minus the 
potential energy V:

 

Referring to the elegance of Lagrangian Mechanics, Dr. Robert 
Adair, in his book The Great Design: Particles, Fields, and Creation, 
asserted that “Indeed, at the present time it appears that we can 
describe all the fundamental forces in terms of a Lagrangian. 
The search for Nature’s One Equation, which rules all of the 
universe, has been largely a search for an adequate Lagrangian.” 
In other words, Adair is arguing that this equation allows us to 
describe complex motion in relatively simple terms, given the 
system’s energy. An adequate Lagrangian that describes the energy 
of the entire universe, once found, would allow us to derive the 
behavior of the universe, and all things in it, in terms of whatever 
coordinate system is convenient. 

 How do Lagrangian mechanics actually work, though? 
Lagrange’s equations work based on an idea called the principle of 
least action. It works a little like this: Imagine that you want to go 
to a friend’s house. There are infinitely many paths that lead from 
your house to theirs. You could walk there directly. You could walk 
down the street and take a bus. You could drive down the street 
and then turn onto theirs. You could ride in a wagon pulled by a 



bear around the city a few times before heading to their house.  If 
you ask your GPS for directions, though, it will suggest the path 
that takes the least amount of time. Lagrange’s equation works 
similarly. There are infinitely many ways that a system could have 
a specific energy, but Lagrange’s equation finds the most efficient 
path, which minimizes a quantity called the “action”. This means 
that, knowing the initial conditions of a system, we can accurately 
predict what it will do. 

 However, precisely understanding the starting parameters 
is the sticking point in most experiments. If you were to model a 
cow catapulted off of a building, you could easily predict where 
the cow will land. Now suppose that you actually conduct the 
experiment with 100 cows. After you finish explaining to the 
authorities why you thought this was a good idea, you’ll notice 
that the cows didn’t all land in precisely the same spot. There are 
many unknowns acting on the system that you, the experimenter, 
have little to no control over. Each time you launch a cow, 
something will be different: each cow varies in mass and shape, 
the catapult isn’t always compressed the exact same amount, the 
catapult might shift a little between firings, the wind may blow 
sporadically, and the cow could tumble in mid-flight, all of which 
would affect the trajectory of the cow. This means that there’s 
a certain amount of ambiguity in exactly how much we can 
understand about the behavior of a system. This kind of ambiguity 
creates a problem for scientists, since we have to find different ways 
to accurately model a system’s behavior.  

 One of the ways we can tackle ambiguity is with 
something called a fuzzy set. Fuzzy sets were introduced in 1965 
by Dr. Lofti A. Zadeh, a mathematician from UC Berkeley, to 
help better understand systems that we only have an approximate, 
or ‘fuzzy’, grasp on. Instead of containing a specific set of points, 
they describe a relationship between points, given by a relationship 
function. It’s like two different ways to give someone an address. 
You can give the accurate street address, or you can say their 
destination is between two landmarks. While the latter isn’t as 



precise as the former, you may not have the knowledge to give the 
precise answer, and the person will eventually find their destination 
either way.  

 Dr. Uziel Sandler, a professor at the Jerusalem College 
of Technology in Israel, recently published a paper merging 
the concepts of Lagrangian Mechanics and Fuzzy Set Theory.  
According to Sandler, when we do not precisely understand a 
system’s initial parameters, it makes sense to instead describe the 
results as a domain. Applying it to our cow example from earlier, 
instead of saying that we think the cow will land on a specific 
point, we can accurately say that the cow will land somewhere 
in a specific region. Taking this a step further, instead of saying 
that the cow is at a position x at some time t, we say that there 
is a probability it is near position x at time t.  We can apply the 
same thing to the velocity, and now we have physical quantities 
as probabilities and relationships. Using Dr. Sandler’s equations, 
we can predict the flight of the cow knowing only imprecise 
parameters about the cow’s initial condition. 

 Launching cows is one thing, but warfare has long since 
surpassed the need for controlled aerial heifers. Instead, the 
military favors missiles, mortar shells, and more recently, rail-
guns.  While launching an explosive piece of metal at someone 
we don’t like is an art that has been well-explored, more advanced 
technology means we can create smarter, more complicated 
weapons. Some anti-tank missiles, for example, launch several 
smaller munitions after the main payload has been shot, and then 
each individual payload drops molten copper onto the targets 
below. This system exhibits a complicated chaotic behavior, and 
Dr. Sandler’s equations could help model such behavior, allowing 
weapon designers to create more efficient payloads that minimize 
collateral damage and civilian casualties.  

 The beauty of these equations, though, is that they are 
generalized; they are not bound to the realm of corporeal matter. 
We are not restricted only to farm animals launched in increasingly 



complicated ways. Consider a stock market, an abstract system 
which at first has little resemblance to either a hypothetically 
propelled heifer or the realities of aerial warfare. A stock market 
has position in terms of money the way a concrete, physical system 
has position in terms of meters. An economy is a system with 
quantifiable characteristics and identifiable trends that affect long 
term behavior, so why not model it the same way you’d model a 
physical system with forces acting on it? The field of econophysics 
came about for this very reason, although it had traditionally 
suffered from ambiguity in how much you can truly understand 
about not only what the current state of a market is, but what 
its future state will be. This is where Fuzzy Dynamics comes in, 
lowering its shades as it calmly says “Stand back, I’ve got this.” The 
ambiguous nature of economics lends itself perfectly to Sandler’s 
probabilistic model, where we can now account for wide range of 
initial and future conditions. 

 Why limit ourselves to economics, though? In politics, for 
example, we say that candidates “race” to win votes for an election, 
the same way that runners race across physical distances during a 
competition. If we can find a runner’s velocity during a race, then 
we could also model the rate at which candidates acquire votes. 
This analogy only works, however, if we assume that the runners 
are constantly hurling banana peels at each other. The tumultuous 
nature of political machinations does not lend itself to the simple 
analysis we’d use to model the relatively constant motion of 
someone running in a straight line, but does lend itself to the 
probabilistic model used in Fuzzy Dynamics. We can use historical 
data to create a model of the “motion” of a campaign based on the 
rate at which money is spent and the quality of the people running 
it, like a NASCAR race that runs on lies instead of gasoline. 

 There is, however, a minor caveat to all of this. The 
probabilistic nature of Fuzzy Sets means that Fuzzy Dynamics 
produces something called a differential inclusion, which is a 
strange type of solution that we have little understanding of, like 
a mathematical platypus. The only solutions we can meaningfully 



obtain usually come from numeric methods, which is a fancy term 
for having a computer crunch numbers. The newness of Fuzzy 
Dynamics also means that its membership functions will need to 
be derived from experimentation, or analysis of historical data. 

Although these details will need to be addressed, the 
framework of Fuzzy Dynamics is still a strong foundation. A 
foundation for what, though, is still yet to be discovered. It may 
become the new industry standard for weapon engineering firms. 
It may be the basis for all future stock market analysis. It could be 
used to model the spread of a disease, and save millions of lives 
during major outbreaks. It could even be used as an excuse to 
launch cows out of catapults. The possibilities are truly endless. 
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