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ABSTRACT OF THE DISSERTATION

Shadows and Intersections

by
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This thesis makes contributions to extremal combinatorics, specifically extremal

set theory questions and their analogs in other structures. Extremal set theory studies

how large or small a family of subsets of a finite setX can be under various constraints.

By replacing the setX with another finite object, one can pose similar questions about

families of other structures. Remarkably, a question and its analogs essentially have the

same answer, regardless of the object. Despite these similarities, not much is known

about analogs because standard techniques do not always apply. Our main results es-

tablish analogs of extremal set theory results for structures such as vector spaces and

subsums of a finite sum. We also study intersecting families and shadows in their clas-

sical context of sets by researching a conjecture of Frankl and Füredi.
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Chapter 1

Introduction

This thesis makes contributions to the field of extremal combinatorics, specifi-

cally extremal set theory questions and their analogs for other discrete structures. Given

a finite setX, the general problem in extremal set theory asks how large or small a family

of subsets ofX can be if it satisfies certain restrictions. Naturally, this type of question

appears throughout mathematics, and so extremal set theory can be applied in areas

ranging from topology [74] to theoretical computer science [40]. On the other hand,

extremal set theory borrows tools from algebra and probability, and its connections to

other branches of mathematics is one of its most beautiful features.

Two core concepts in extremal set theory are intersecting families and shadows.

The main results for intersecting families are the Erdős-Ko-Rado and Hilton-Milner the-

orems, and the principal result for shadows is the Kruskal-Katona theorem. By defining

suitable notions of “intersecting" and “shadow," one can find remarkable analogs of

these theorems for other structures such as vector spaces and permutations. Tantaliz-

ingly, while many results about sets should generalize to different settings, not much is

known about analogs because standard techniques do not always apply.

This thesis aims to further understanding of shadows and intersecting families in

sets and other structures. In the latter case, the goals are to identify objects with analogs

of the Erd̋os-Ko-Rado, Hilton-Milner, and Kruskal-Katona theorems and to find inte-

grated approaches to their proofs. The ultimate objective is to have a unified theory that

characterizes the structures for which analogs exist and that proves results simultane-

ously for broad classes of objects.

1
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Since this research applies to a variety of structures, it injects new questions,

applications, and techniques into many areas. Vector space analogs, for example, influ-

ence the fields of finite geometry, algebraic combinatorics, and coding theory; analogs

for permutations affect the theory of group representations. Each new object with an

analog touches further areas.

1.1 Outline of Thesis

We now outline the chapters of this thesis. We first present our main results in

Section 1.2 and compile a list of frequently used notation in Section 1.3. In Chapter 2,

we discuss combinatorial methods in extremal set theory, paying particular attention to

the shifting technique. We then examine the use of algebraic methods in extremal set

theory in Chapter 3. Next, we give background on vector spaces over finite fields in

Chapter 4; we also highlight the difficulties in generalizing purely combinatorial tech-

niques in extremal set theory to vector spaces, and discuss algebraic methods that have

been successfully used to prove theorems about both sets and vector spaces. In Chap-

ter 5, we demonstrate new combinatorial techniques for vector spaces by proving vector

space analogs of both Lovász’s version of the Kruskal-Katona theorem and Frankl’s

r-wise intersection theorem; our proof of the latter also yields a new proof of the Erdős-

Ko-Rado theorem for vector spaces. We end Chapter 5 with remarks on three of our

favorite open problems in this area. In Chapter 6, we discuss our results on a conjecture

of Frankl and Füredi. Finally, in Chapter 7, we end by presenting some new results on

the Manickam-Miklós-Singhi conjecture and discussing some related open problems.

1.2 Main Results and Significance

A classical question in extremal set theory is to bound the size of a family of

subsets ofX whose members have sizek and pairwise intersect; such a family is called

intersecting. Erdős, Ko, and Rado [47] showed that ifX is large enough, then the unique

intersecting family of maximum size consists of thek-element subsets containing a fixed

point. If no point ofX may lie in all sets, then the Hilton-Milner theorem [70] determines
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the largest intersecting family in this case.

Another important property of a familyF of k-element subsets ofX is its

shadow, which consists of all(k− 1)-element subsets ofX contained in at least one

member ofF . Kruskal and Katona [75, 80] determined the minimum size of the

shadow, and their result implies many others, such as the Erdős-Ko-Rado theorem. In

practice, however, their theorem is not used in its full generality and a weaker but more

convenient version due to Lovász [84, Ex 13.31(b)] is applied.

1.2.1 Shadows and Intersections in Vector Spaces

In Chapter 5, our main results show that striking analogs of extremal set theory

results exist for vector spaces. Our proofs are not straightforward generalizations of

the corresponding ones for sets because standard techniques do not often apply; one

example is that the complement of a subset ofX is another subset while the complement

of a subspace ofV is not another subspace. Consequently, we develop new methods.

1.2.1.1 Results

Patkós and I [27] discovered a unified proof of Lovász’s version of the Kruskal-

Katona theorem that works for sets and vector spaces [77]. Our result, Theorem 5.0.12,

is one of the first about shadows in vector spaces although the problem is over thirty

years old [67]. Since Lovász’s theorem has many corollaries, its analog provides a way

to extend them to vector spaces. Applications are not straightforward, however, because

combinatorial techniques do not often apply. Our Theorem 5.0.14 yields unified proofs

of the Erd̋os-Ko-Rado and Frankl’sr-wise intersecting theorems for sets and vector

spaces as corollaries. Three nice features of our proofs are that they are inductive, don’t

involve tedious computations, and characterize the case of equality.

We also state, but do not prove our other results in this area, namely obtaining

a vector space analog of the Hilton-Milner theorem, Theorem 5.4.1, and determining

the chromatic number of theq-Kneser graph, Theorem 5.4.5 and Theorem 5.4.6. The

latter results were motivated by the longstanding problem of coloring the Kneser graph,

whose solution involved a novel use of algebraic topology [9, 83].



4

1.2.1.2 Significance

Vector space analogs bring new questions and techniques to finite geometry since

many of its problems can be reformulated in these terms. They also provide applications

for theq-analog identities studied by algebraic combinatorialists. Recently, coding the-

orists such as Vardy are studying vector space analogs because they imply results about

projective codes [18, 49, 50]. Since codes are used in communication systems, research

in this area may yield practical applications.

1.2.1.3 Future Work

Our Lovász analog, Theorem 5.0.12, establishes shadows as a viable method

for proving vector space analogs such as Theorem 5.0.14, and more applications are

expected. Recently, Wang [113] used Theorem 5.0.12 to prove a conjecture of Erdős,

Faigle, and Kern [48]. The method of proof in our Frankl analog, Theorem 5.0.14, has

also been used to prove results onr-cross intersecting families of sets [58]; Patkós and I

are currently working with Frankl and Tokushige to extend these results to vector spaces.

1.2.2 On a Conjecture of Frankl and Füredi

Fisher’s Inequality bounds the size ofλ -intersecting families, which are families

of subsets ofX whose members pairwise intersect in exactlyλ points. Fisher’s Inequal-

ity proves that ifF is λ -intersecting, then the number of points inX that are covered by

a set inF is at least|F |. Inspired by Fisher’s Inequality, Frankl and Füredi conjectured

that if F is aλ -intersecting family, for which no point inX lies in all the sets inF , then

the number of pairs of points inX that are covered by some set inF is at least
(|F |

2

)
.

1.2.2.1 Results

We reformulated the Frankl-Füredi conjecture in terms of shadows, and proved

it in some special cases using linear programming [25]. We first show in Theorem 6.1.1

that Frankl and Füredi’s conjecture holds for nontrivialλ -intersecting families that sat-

isfy a reasonable extra condition and characterize the extremal families. If a conjecture
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of Hall [68] is true, Theorem 6.1.1 would verify the Frankl-Füredi conjecture forλ -

intersecting families whose members have fixed sizek, whenk is large with respect to

λ . While Hall’s conjecture remains open, we applied Theorem 6.1.1 in Theorem 6.1.2

to prove the Frankl-Füredi conjecture, whenF is additionally required to be uniform

andλ is small.

1.2.2.2 Significance

Theλ -intersecting family in the Frankl-Füredi conjecture is a central concept in

coding theory so any new results about it may have applications in communication sys-

tems. A proof of the Frankl-Füredi conjecture would be interesting from a mathematical

standpoint because it would yield a new proof of Fisher’s Inequality. As we have seen,

it also relates to many other conjectures in design theory such as Hall’s.

1.2.2.3 Future Work

Not much is known about the Frankl-Füredi conjecture, although it is twenty

years old, and my paper is the first to consider it since it was published. I pose a con-

jecture about 2-intersecting families in my paper, and if this conjecture is true, it would

imply the Frankl-Füredi conjecture whenλ = 2. I intend to continue working on both

of these conjectures.

1.2.3 On the Manickam-Miklós-Singhi Conjecture

We used combinatorial and algebraic methods for the previous two questions.

The probabilistic method, however, also plays a role in extremal set theory problems and

their analogs. Alon, Huang, and Sudakov’s recent work [1] on the Manickam-Miklós-

Singhi conjecture [88, 89] uses probabilistic arguments to prove partial analogs of the

Erdős-Ko-Rado and Hilton-Milner theorems for subsums of a finite sum. More pre-

cisely, they showed that ifn≥ 33k2, then every set ofn real numbers with nonnegative

sum has at least
(n−1

k−1

)
k-element subsets whose sum is also nonnegative. The conjecture

is thought to hold whenn≥ 4k, and Chapter 7 presents ideas for verifying it whenk is

small and for improving Alon, Huang, and Sudakov’s result.
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1.2.3.1 Results

For k ∈ Z+, let f (k) be the minimum integerN ∈ Z+ such that for alln≥ N,

every set ofn real numbers with nonnegative sum has at least
(n−1

k−1

)
k-element subsets

whose sum is also nonnegative. Manickam, Miklós, and Singhi [88, 89] proved thatf (k)

exists and conjectured thatf (k) ≤ 4k. Alon, Huang, and Sudakov [1] recently showed

that f (k) ≤ min{33k2,2k3}, which substantially improves previous bounds. We prove

f (3) = 11 andf (4)≤ 24, which improves the previous upper bounds off (3)≤ 12 from

[87, 91] andf (4)≤ 128 from [1]. Although Conjecture 7.1.1 fork = 3 was previously

tackled, our result is stronger because we determinef (3) exactly and we character-

ize the case of equality; moreover our proof is simpler and gives a nice application of

the Kruskal-Katona theorem. We also show how our method could potentially yield

a quadratic upper bound onf (k) that improves on that of Alon, Huang, and Sudakov.

We end Chapter 7 by discussing a related open problem, the vector space analog of the

Manickam-Miklós-Singhi conjecture.

1.3 Notation and Terminology

Here, we collect a list of frequently used notation and terminology.

• Number Systems

1. Z denotes the integers.Z+ denotes the positive integers.

2. If a,b∈ Z, thena|b if there existsx∈ Z such thatax= b.

3. N = {0,1, . . .} denotes the natural numbers.

4. Q denotes the rationals.

5. R denotes the real numbers.R+ denotes the positive real numbers.

6. R≥0 := {x∈ R : x≥ 0}

7. If a,b∈ R anda < b, then[a,b] := {x∈ R : a≤ x≤ b}.

8. Fq denotes the finite field of orderq.

9. If A is a set, thenAd = A×·· ·×A denotes thed-fold product of A with itself.
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• Sets.

1. X := [n] = {1,2, . . . ,n}.

2. /0 denotes theempty set.

3. SX denotes the family of all permutations of the setX.

4. |X| denotes thecardinality of X.

5. x∈ X denotes anelement of X.

6. X∪Y denotes theunion of X andY.

7. X∩Y denotes theintersection of X andY.

8. X \Y denotes theset complement of Y with respect toX.

• Families of Sets

1. 2X is the family of all subsets ofX.

2. F ⊂ 2X denotes a family of sets. When using the notationF = {F1, . . . ,Fm},
the setsFi are assumed to be distinct, unless otherwise stated.

3.
(X

k

)
denotes the family of allk-element subsets ofX. We also call

(X
k

)
the

completek-uniform hypergraph onn vertices.

4.
(n

k

)
= n(n−1)···(n−k+1)

k! is the binomial coefficient. Note|
(X

k

)
|= |

(n
k

)
|.

5. C m
k denotes the firstm sets of

(X
k

)
in the colex order.

• Properties of Families of Sets

1. A family F ⊂ 2X is k-uniform if F ⊂
(X

k

)
.

2. ForF ⊂ 2X andx∈ X, thedegree of x is deg(x) := |{F ∈F : x∈ F}|, the

number of elements inF that containx.

3. ForF ⊂ 2X andS⊂X, theco-degree of Sis codeg(S) := |{F ∈F : S⊂F}|,
the number of sets inF that containS.

4. A family F ⊂ 2X is r-regular if deg(x) = r for all x∈ X.

5. A family F ⊂ 2X is trivial if there existsx∈ X with deg(x) = |F |, and is

nontrivial otherwise.
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• Intersection Properties of Families of Sets

1. A family F ⊂ 2X is intersecting if F ∩F ′ 6= /0 for anyF,F ′ ∈F .

2. A family F ⊂ 2X is r-wise intersecting if, for all F1, . . . ,Fr ∈ F , we have⋂r
i=1Fi 6= /0.

3. Fort ∈Z+, a familyF ⊂ 2X is t-intersecting if |F∩F ′| ≥ t whenF,F ′ ∈F .

4. For λ ∈ N, a family F ⊂ 2X is λ -intersecting if |F1 ∩ F2| = λ for any

{F1,F2} ∈
(F

2

)
.

5. For a finite setL⊂ N, a familyF ⊂ 2X is L-intersecting if |F1∩F2| ∈ L for

any{F1,F2} ∈
(F

2

)
.

• Operators on Families of Sets

1. If F ⊂ 2X then∂ iF :=
{

E ∈
(X

i

)
: E ⊂ F ∈F

}
is thei-shadow of F .

2. If F ⊂ 2X and{i, j} ∈
(X

2

)
, thenS̃i j (F ) is theshift operator that replaces

the elementj by the elementi whenever possible.

3. A family F ⊂ 2X has an associated|F |× |X| incidence matrixM.

• Graphs

1. G = (V,E) denotes an undirectedgraph.

2. V(G) = V denotes the set ofvertices in the context of a graph.

3. E ⊂
(V

2

)
denotes the family ofedges of a graph.

4. v∼ w denotes vertexadjacency.

5. A graphG = (V,E) has an associated|V|× |V| adjacency matrixA.

6. χ(G) denotes the chromatic number of a graph.

7. If G = (V,E) is a graph, then thedegree of a vertexv∈ G, denoted deg(v),

is the number of vertices adjacent tov; that is, deg(v) := |{w : v∼ w}|.

8. A graphG = (V,E) is k-regular if all verticesv∈V have degree deg(v) = k.

9. Kn:k denotes the Kneser graph.

10. qKn:k denotes theq-Kneser graph.
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• Digraphs

1. D = (V,A) denotes adigraph

2. A⊂V×V is a family of ordered pairs of vertices calledarcs.

3. If a = (v,w) is an arc in the digraphD = (V,A), thena is said to be directed

from v to w. We callv thetail of a andw thehead.

4. A digraphD = (V,A) has an associated|V|× |A| incidence matrixM.

• Vector Spaces

1. V denotes ann-dimensional vector space over the finite fieldFq in the con-

text of vector spaces.

2. {0} denotes thezero subspace.

3. dimV denotes the dimension of the vector spaceV over its underlying field.

4.
[V

k

]
denotes the family of allk-dimensional subspaces ofV.

5. Fora∈ R, q∈ R+, andk ∈ Z+, the symbol
[a

k

]
q := ∏0≤i<k

qa−i−1
qk−i−1

denotes

theq-binomial coefficient. Whenk = 1, we write[a]q :=
[a
1

]
q.

6. If A⊂V is a subspace ofV, let A⊥ denote theorthogonal complement of A.

7. If A,B⊂V are subspaces ofV, thenA∨B denotes thelinear span of A and

B. That is,A∨B is the smallest subspace that contains bothA andB.

8. GL(V) denotes the family of all nonsingular linear transformations ofV.

• Intersection Properties of Families of Subspaces

1. A family F ⊂
[V

k

]
is intersecting if dim(F ∩F ′) 6= 0 for anyF,F ′ ∈F .

2. A family F ⊂
[V

k

]
is calledr-wise intersecting if dim(

⋂r
i=1Fi) 6= 0 whenever

F1, . . . ,Fr ∈F .

3. For t ∈ Z+, a family F ⊂
[V

k

]
is t-intersecting if dim(F ∩ F ′) ≥ t when

F,F ′ ∈F .



Chapter 2

Combinatorial Techniques

Let X denote the set[n] := {1, . . . ,n}, which we take as our underlying set, and

let 2X denote the family of all subsets ofX. The general problem in extremal set theory

asks for the maximum or minimum size of a familyF ⊂ 2X of subsets ofX that satisfies

certain restrictions. It is common, for example, to restrict the family to bek-uniform;

that is, all sets in the family have sizek. We use the symbol
(X

k

)
to denote the family of

all k-subsets ofX.

The sections of this chapter fall into three major themes. The first topic is shad-

ows, and we shall discuss the Kruskal-Katona theorem [75, 80]. We next discuss inter-

section theorems such as the Erdős-Ko-Rado theorem [47] and its generalizations. Both

of these topics allow us to demonstrate the power of the shifting technique. In this chap-

ter, we stress the importance and usefulness of the shifting technique in extremal theory

because we will see in Chapter 4 that no analog of it for vector spaces exists yet despite

several attempts.

The last theme of this chapter is Fisher’s inequality [17, 51, 73, 85]. We give

de Bruijn and Erd̋os’ proof [34] of the nonuniform Fisher inequality in the caseλ = 1.

Finally, we end the chapter with a proof of a special case of a conjecture of Frankl and

Füredi [55], which generalizes de Bruijn and Erdős’ result and proof, and makes use of

convexity arguments. Our aim in this chapter is to give an overview of some combina-

torial techniques that are frequently used in extremal set theory and in this thesis.

10
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2.1 Shadows

Shadows are a fundamental concept in extremal set theory and appear through-

out this thesis. For example, we will use shadows in the proofs of the Erdős-Ko-Rado

theorem and Frankl’s r-wise intersection theorem [52] in Section 2.2.4 and Section 2.2.6

respectively. We will generalize shadows to vector spaces in Chapter 5, study a conjec-

ture of Frankl and Füredi on shadows in Chapter 6, and finally use them to prove special

cases of the Manickam-Miklós-Singhi conjecture [88, 89] in Chapter 7.

In Section 2.1.1, we formally define shadows and state the main result on them,

the Kruskal-Katona theorem, in its full generality. While we will need the complete

Kruskal-Katona theorem in Chapter 7, in practice, it suffices to use a weaker but more

convenient version of the theorem due to Lovász [84, Ex 13.31(b)]. In Section 2.1.2,

we explain the statement of Lovász’s version of the Kruskal-Katona theorem. We will

give two proofs of Lovász’s version of the Kruskal-Katona theorem in Section 2.1.5 and

Section 2.1.6 respectively. The first proof is due to Frankl [53] and will make use of the

shifting technique. The second is a recent and elegant proof due to Keevash [77], which

we will generalize to vector spaces in Chapter 5.

2.1.1 The Kruskal-Katona Theorem

The Kruskal-Katona theorem [75, 80] gives a tight lower bound on the size of

the shadow of a familyF ⊂
(X

k

)
.

Definition 2.1.1. For a familyF ⊂ 2X, we define the i-shadowof F , denoted∂ iF , to

consist of those i-subsets of X contained in at least one member ofF ,

∂
iF :=

{
E ∈

(
X
i

)
: E ⊂ F ∈F

}
.

WhenF ⊂
(X

k

)
, we define the shadowof F , denoted∂F , to be∂F = ∂ k−1F .

The Kruskal-Katona theorem also describes the structure of set-systems with

minimum shadow over all set-systems with the same cardinality. To characterize these

families, we need to define the colex order on
(X

k

)
.
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Definition 2.1.2. Given A= {a1, . . . ,ak} and B= {b1, . . . ,bk} in
(X

k

)
where ai < ai+1

and bi < bi+1 for all i ∈ [k− 1], we say that A< B in the colex orderif A 6= B, and

for s= max{t : at 6= bt}, we have as < bs. For 1≤ m≤
(n

k

)
, let C k

m denote the first m

elements of the colex order on
(X

k

)
.

Note that the colex order is a total order on
(X

k

)
, so the definition ofC k

m makes sense.

We now prove a lemma that demonstrates that every positive integerm∈ Z+ has

a k-binomial representation, and this lemma will allow us to compute the size of the

shadow of the firstm sets in the colex order on
(X

k

)
.

Lemma 2.1.3. Given positive integers m,k ∈ Z+, there exists a unique representation

of m in the form

m=
(

ak

k

)
+
(

ak−1

k−1

)
+ · · ·+

(
at

t

)
,

where ak > ak−1 > · · · > at ≥ t ≥ 1. (This representation of m is called the k-binomial

representation of m.)

Proof. We show by induction onk that such a representation exists and is unique. If

k = 1, then the theorem is trivially true. Now assume that there exists a unique such

representation for anym∈ Z+ andk = l −1. To show that a unique such representation

exists form∈Z+ andk= l , first note thatt = k andat = k is a unique such representation

for m= 1. Suppose then thatm≥ 2. Since forr ≥ k, we have

k

∑
j=1

(
r−k+ j

j

)
=
(

r +1
k

)
−1 <

(
r +1

k

)
,

we must haveak = max{r :
(r

k

)
≤ m}. If m=

(ak
k

)
then sett = k. If m>

(ak
k

)
, then by

the induction hypothesis, we have unique positive integersak−1 > · · ·> at ≥ t ≥ 1 such

that

m−
(

ak

k

)
=
(

ak−1

k

)
+ · · ·+

(
at

t

)
.

Hencem=
(ak

k

)
+
(ak−1

k

)
+ · · ·+

(at
t

)
is a unique such representation.

We are now ready to state the Kruskal-Katona theorem.



13

Theorem 2.1.4(Kruskal-Katona). LetF ⊂
(X

k

)
be a family of size m and suppose that

m= ∑k
j=t

(a j
j

)
is the k-binomial representation of m. Then

|∂F | ≥ |∂C k
m|=

k

∑
j=t

(
a j

j−1

)
;

in other words, the size of the shadow ofF is at least the size of the shadow of the first m

sets in the colex order on
(X

k

)
. Moreover, letting m′ := ∑k

j=t

( a j
j−1

)
, we have∂C k

m= C k−1
m′ ;

that is, the shadow of the first m sets in the colex order on
(X

k

)
consists of the first m′ sets

in the colex order on
( X

k−1

)
.

2.1.2 Lovász’s Version of the Kruskal-Katona Theorem

While we will need the Kruskal-Katona theorem in its full generality in Chap-

ter 7, Lovász’s weaker but more convenient version [84, Ex 13.31(b)] suffices for many

applications. For example, we will use Lovász’s version in the proofs of the Erdős-

Ko-Rado theorem and Frankl’sr-wise intersection theorem in Section 2.2.4 and Sec-

tion 2.2.6 respectively. We also generalize Lovász’s theorem to vector spaces in Chap-

ter 5. In this section, we explain the statement of Lovász’s result.

Recall that the binomial coefficient(
n
k

)
:=

n(n−1) · · ·(n−k+1)
k!

can be defined for alln∈R andk∈ Z+. If we fix k, then
(n

k

)
is a continuous function of

n that is positive and increasing; hence, by the intermediate value theorem, ifr ≥ 1 is a

real number, then there exists a unique real numbernr ≥ k such thatr =
(nr

k

)
.

Theorem 2.1.5(Lovász). Let F ⊂
(X

k

)
and let y≥ k be the real number defined by

|F | =
(y

k

)
. Then|∂F | ≥

( y
k−1

)
. If equality holds, then y∈ Z+ andF =

(Y
k

)
, where Y

is a y-subset of X.

2.1.3 Shifting

Our first proof of Lovász’s version of the Kruskal-Katona theorem will make use

of the shifting technique. Also known as compression, the method was introduced by
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Erdős, Ko, and Rado [47] and is one of the most important tools in extremal set theory.

We will use the shifting technique again in our proof of the Erdős-Ko-Rado theorem in

Section 2.2.3.

Definition 2.1.6. For F ⊂ X and distinct i, j ∈ X define

Si j (F) :=

{
(F \{ j})∪{i} if i /∈ F, j ∈ F

F otherwise.

We see thatSi j replaces the elementj by the elementi whenever possible. Note

thatSi j is not a one-to-one map since forE ⊂ X \{i, j} one has

Si j (E∪{i}) = Si j (E∪{ j}) = E∪{i}.

We would like to associate withSi j a mapS̃i j , which sends a set system to another set

system of the same size. This motivates the following definition.

Definition 2.1.7. For a familyF ⊂ 2X and distinct i, j ∈ X define the shift operator

S̃i j (F ) := {Si j (F) : F ∈F}∪{F : F, Si j (F) ∈F}.

We note two immediate properties ofSi j and its associated shift operatorS̃i j .

Proposition 2.1.8.We have|F |= |Si j (F)| and|F |= |S̃i j (F )|.

We will see in Section 2.1.1 and Section 2.2.1 that the shift operatorS̃i j allows

us to transform our original set system into a more structured one while still preserving

important properties of the original.

2.1.4 Properties of the Shift Operator

Towards a proof of Lovász’s version of the Kruskal-Katona theorem via shifting,

we first observe that the shifting operatorS̃i j does not increase the size of the shadow.

Lemma 2.1.9.For F ⊂
(X

k

)
and distinct i, j ∈ X, we have|∂F | ≥ |∂ S̃i j (F )|.

Proof. We show thatSji : ∂ S̃i j (F )\∂F → ∂F \∂ S̃i j (F ) is an injective map. Observe

that if E∈ ∂ S̃i j (F )\∂F thenE⊂Si j (F) for someF ∈F for whichSi j (F) 6= F . Hence
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j /∈ E. If i /∈ E, thenE = Si j (F)\{i}= F \{ j} soE ∈ ∂F , which is impossible by our

assumption; hencei ∈ E. We have shown that everyE ∈ ∂ S̃i j (F ) \ ∂F hasi ∈ E and

j /∈ E.

We claim thatSji (E) ∈ ∂F \ ∂ S̃i j (F ). Clearly,Sji (E) ∈ ∂F . Suppose, for a

contradiction, that(E\{i})∪{ j}= Sji (E)∈ ∂ S̃i j (F ). Hence, for somex∈X that is not

in (E \{i})∪{ j}, we have(E \{i})∪{ j,x} ∈ S̃i j (F ). If x = i, thenE∪{ j} ∈ S̃i j (F )

and Definition 2.1.7 implies thatE∪{ j} ∈F soE ∈ ∂F , which is a contradiction. If

x 6= i, then sincei /∈ (E\{i})∪{ j,x} and j ∈ (E\{i})∪{ j,x} ∈ S̃i j (F ), we must have

E∪{x}= Si j ((E \{i})∪{ j,x}) ∈F ,

soE ∈ ∂F , which is a contradiction. This proves thatSji (E) ∈ ∂F \∂ S̃i j (F ).

We showed in the first paragraph that everyE ∈ ∂ S̃i j (F ) \ ∂F hasi ∈ E and

j /∈ E. Hence, the mapSji : ∂ S̃i j (F )\F → ∂F \∂ S̃i j (F ) is injective. Consequently,

|∂F |= |F ∩∂ S̃i j (F )|+ |∂F \∂ S̃i j (F )|

≥ |∂ S̃i j (F )∩F |+ |∂ S̃i j (F )\F |= |∂ S̃i j (F )|,

as desired.

Since shifting does not increase the size of a family’s shadow, the next two lem-

mas show how we can shift our original family to one that is more structured.

Lemma 2.1.10.LetF ⊂
(X

k

)
. DefineH1 = F andHi = S̃1i(Hi−1) for i ∈ X \{1}. We

then haveS̃1i(Hn) = Hn for all i ∈ X \{1}.

Proof. Suppose, for a contradiction, that there existsi ∈X\{1} such that̃S1i(Hn) 6= Hn.

Hence, there existsH ∈ Hn such thati ∈ H, 1 /∈ H, andS1i(H) /∈ Hn. As 1 /∈ H, we

haveH ∈ Hi−1∩Hi . This impliesS1i(H) ∈ Hi and henceS1i(H) ∈ Hn, which is a

contradiction. Consequently,S̃1i(Hn) = Hn for all i ∈ X \{1}.

If F ⊂
(X

k

)
, then we can partitionF into two subfamilies according to whether

1 ∈ F ∈ F . We show that this partition has a special property, whenF ⊂
(X

k

)
is a

family that satisfies the conclusion of Lemma 2.1.10, namely thatS̃1i(F ) = F for each

i ∈ X \ {1}. We will exploit this property when we inductively prove Lovász’s version

of the Kruskal-Katona theorem.
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Lemma 2.1.11.SupposeF ⊂
(X

k

)
andS̃1i(F ) = F for each i∈ X \{1}. Let

F0 := {F ∈F : 1 /∈ F}, F1 := {F \{1} : 1∈ F ∈F}.

We then have|F1| ≥ |∂F0|.

Proof. If E ∈ ∂F0 thenE∪{i} ∈F for somei ∈ X \{1}. SinceS̃1i(F ) = F , we must

haveS1i(E∪{i}) = E∪{1} ∈F . Consequently,E ∈F1. This proves|F1| ≥ |∂F0|.

2.1.5 Lovász’s Result via Shifting

We now present Frankl’s shifting proof of Lovász’s version of the Kruskal-

Katona theorem [53].

Proof of Theorem 2.1.5. Let F ⊂
(X

k

)
and lety≥ k be the real number that is de-

fined by|F |=
(y

k

)
. DefineH1 = F andHi = S̃1i(Hi−1) for i ∈ X \{1}; for notational

convenience, letH ∗ := Hn. We have|H ∗|= |F |=
(y

k

)
and|∂F | ≥ |∂H ∗| by Propo-

sition 2.1.8 and Lemma 2.1.9. Hence, the theorem will be proved forF if we can prove

it for H ∗.

We use double induction onk andm= |F |= |H ∗|. Define

H ∗
0 := {H ∈H ∗ : 1 /∈ H}, H ∗

1 := {H \{1} : 1∈ H ∈H ∗}.

Suppose, for a contradiction, that|H ∗
1 |<

(y−1
k−1

)
. We then have

|H ∗
0 |= |H ∗|− |H ∗

1 |>
(

y
k

)
−
(

y−1
k−1

)
=
(

y−1
k

)
.

Hence, by the induction hypothesis,|∂H ∗
0 | ≥

(y−1
k−1

)
. Lemma 2.1.10 and Lemma 2.1.11

then imply that|H ∗
1 | ≥ |∂H ∗

0 | ≥
(y−1

k−1

)
, which contradicts our original assumption.

Therefore, we must have|H ∗
1 | ≥

(y−1
k−1

)
, and so|∂H ∗

1 | ≥
(y−1

k−2

)
by the induction hy-

pothesis. As∂H ∗
0 ⊂H ∗

1 by Lemma 2.1.11, we obtain the desired conclusion that

|∂F | ≥ |∂H ∗|= |H ∗
1 |+ |∂H ∗

1 | ≥
(

y−1
k−1

)
+
(

y−1
k−2

)
=
(

y
k−1

)
. (2.1.1)

We now characterize the case of equality in (2.1.1). If|∂F | =
( y

k−1

)
, then

equality holds everywhere in (2.1.1). We then have that|∂H ∗
1 | =

(y−1
k−1

)
, and hence
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|H ∗
0 |=

(y−1
k

)
. The induction hypothesis and Lemma 2.1.11 imply that|∂H ∗

0 |=
(y−1

k−1

)
and∂H ∗

0 = H ∗
1 . Since|H ∗

0 | =
(y−1

k

)
and |∂H ∗

0 | =
(y−1

k−1

)
, the induction hypothesis

implies thatH ∗
0 =

(Z
k

)
where|Z| = y−1. HenceH ∗ =

(Y′
k

)
, whereY′ = Z∪{1}, as

H ∗ = H ∗
0 ∪{H ∪{1} : H ∈H ∗

1 } and∂H ∗
0 = H ∗

1 .

If F = H ∗, then settingY = Y′, we are done since|Y|= |Y′|= y. If F 6= H ∗,

let i = min{ j : H j = H ∗}. Of coursei ≥ 2, sinceH1 = F and we have assumed that

F 6= H ∗. When we apply the shift operator̃S1i to Hi−1 only the elementi can be

deleted; we consequently have∂ 1Hi−1⊂ Z∪{i} becauseHi = H ∗ =
(Z∪{1}

k

)
. Hence,

|∂ 1Hi−1| ≤ |Z∪{i}|= y. We have that|∂F |=
( y

k−1

)
= |∂H ∗|, so Lemma 2.1.9 implies

that |∂Hi−1| =
( y

k−1

)
. By (2.1.1), we have|∂ 1Hi−1| ≥ y, so |∂ 1Hi−1| = |Z∪{i}| = y

and ∂ 1Hi−1 = Z∪ {i}. Consequently,Hi−1 =
(Z∪{i}

k

)
. Since 1/∈ Z∪ {i}, Defini-

tion 2.1.7 implies thatF =
(Z∪{i}

k

)
so settingY = Z∪{i} finishes the proof.

2.1.6 Keevash’s Proof of Lovász’s Result

As we mentioned previously, no analog of the shifting technique for vector

spaces exists yet. Consequently, it is not clear whether Frankl’s proof in Section 2.1.5

can be generalized to vector spaces. We will give more examples of problems that arise

when trying to generalize purely combinatorial proofs about sets to vector spaces in

Chapter 4. Since the techniques that tend to work for both sets and vector spaces are

typically algebraic in nature, we were pleasantly surprised to find that Keevash’s purely

combinatorial proof of Lovász’s result [77] generalizes to vector spaces. We present

Keevash’s proof now, and discuss its generalization in Chapter 5.

We first collect definitions that will be used in Keevash’s proof of Theorem 2.1.5.

Definition 2.1.12. For F ⊂
(X

k

)
and x∈ X, define

Kk
k+1(F ) :=

{
T ∈

(
X

k+1

)
:

(
T
k

)
⊂F

}
to be the family of(k+1)-subsets of X all of whose k-subsets lie inF and

Kk
k+1(x) := {T ∈ Kk

k+1(F ) : x∈ T}

to be the family of(k+1)-subsets in Kkk+1(F ) that contain x.
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Definition 2.1.13. For F ⊂ 2X and x∈ X, define the degreeof x, which is denoted by

deg(x), to be the number of elements ofF that contain x,

deg(x) := |{F ∈F : x∈ F}|.

Definition 2.1.14. For F ⊂
(X

k

)
and x∈ X, define the linkof x to be the family of

(k−1)-subsets in X\{x} whose union with x is an element ofF ,

L(x) := {A⊂ X \{x} : |A|= k−1, A∪{x} ∈F} ⊂
[

X
k−1

]
.

In Theorem 2.1.15, we establish an upper bound on|Kk
k+1(F )| in terms of|F |;

we will see that Theorem 2.1.5 follows as a simple corollary.

Theorem 2.1.15(Keevash). Let F ⊂
(X

k

)
and let y≥ k be the real number defined by

|F |=
(y

k

)
. Then

|Kk
k+1(F )| ≤

(
y

k+1

)
.

Equality holds if and only if y∈ Z+ andF =
(Y

k

)
for some y-subset Y⊂ X.

Proof. We argue by induction onk. The base casek = 1 is easy, so assume the statement

is true fork−1. We first show that ifx ∈ X, then|Kk
k+1(x)| ≤ ((y− k)/k)deg(x); we

will then sum this inequality over allx∈ X and double count to obtain the desired upper

bound on|Kk
k+1(F )|. If deg(x) = 0, then clearly|Kk

k+1(x)| ≤ ((y−k)/k)deg(x), so we

will assume that deg(x) 6= 0. We will need to consider the cases where deg(x) is large

and where deg(x) is small separately.

First, let’s consider the case when deg(x) ≥
(y−1

k−1

)
. If F ∪{x} ∈ Kk

k+1(x), then

F ∈F does not containx; consequently,

|Kk
k+1(x)| ≤ |F |−deg(x)≤

(
y
k

)
−
(

y−1
k−1

)
=
(

y−1
k

)
=

y−k
k

(
y−1
k−1

)
≤ y−k

k
deg(x). (2.1.2)

We have equality in (2.1.2) if and only if deg(x) =
(y−1

k−1

)
since deg(x) 6= 0.

Now we’ll consider the case where deg(x) ≤
(y−1

k−1

)
. If F ∪{v} ∈ Kk

k+1(x), then

F ∈ Kk−1
k (L(x)) and so|Kk

k+1(x)| ≤ |Kk
k−1(L(x))|. We define the real numberyx ≥ k
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by deg(x) =
(yx−1

k−1

)
. SinceL(x) ⊂

[ X
k−1

]
and |L(x)| = deg(x) =

(yv−1
k−1

)
, the induction

hypothesis yields that

|Kk
k+1(x)| ≤ |Kk

k−1(L(x))| ≤
(

yx−1
k

)
=

yx−k
k

(
yx−1
k−1

)
≤ y−k

k
deg(x), (2.1.3)

where the last inequality follows becauseyx≤ y, by our assumption on deg(x). We have

equality in (2.1.3) if and only if deg(x) =
(y−1

k−1

)
by our assumption that deg(x) 6= 0.

To finish the proof, we sum the inequality|Kk
k+1(x)| ≤ ((y− k)/k)deg(x) over

all x∈ X and double-count to obtain the desired inequality on|Kk
k+1(F )|. We have

(k+1)|Kk
k+1(F )|= ∑

x∈X
|Kk

k+1(x)| ≤
y−k

k ∑
x∈X

deg(x) =
y−k

k ∑
F∈F

|F | (2.1.4)

=
y−k

k
(k|F |) = (y−k)

(
y
k

)
= (k+1)

(
y

k+1

)
.

We now characterize the case of equality in (2.1.4). We see that equality holds in (2.1.4)

if and only if |Kk
k+1(x)|=

y−k
k deg(x) for all x∈X. We saw previously that if deg(x) 6= 0,

then equality holds in (2.1.2) and (2.1.3) if and only if deg(x) =
(y−1

k−1

)
. Consequently,

|∂ 1F |
(

y−1
k−1

)
= ∑

x∈X
deg(x) = ∑

F∈F

|F |= k

(
y
k

)

so|∂ 1F |= y. As
(y

k

)
= |F | ≤

(|∂ 1F |
k

)
=
(y

k

)
, we haveF =

(Y
k

)
, whereY = ∂ 1F .

We now show that Theorem 2.1.5 follows as a corollary of Theorem 2.1.15.

Keevash’s Proof of Theorem 2.1.5Let F be as in Theorem 2.1.5, and letx≥ k−1 be

the real number defined by|∂F |=
( x

k−1

)
. By Theorem 2.1.15,(

y
k

)
= |F | ≤ |Kk−1

k (∂F )| ≤
(

x
k

)
becauseF ⊂Kk−1

k (∂F ). Hencex≥ y, so|∂F |=
( x

k−1

)
≥
( y

k−1

)
. If |∂F |=

( y
k−1

)
then

x= y. Hence,|Kk−1
k (∂F )|=

(y
k

)
andF = Kk−1

k (∂F ). By Theorem 2.1.15, this implies

y∈ Z+ and∂F =
( Y

k−1

)
for somey-subsetY ⊂ X. Clearly,

(Y
k

)
= Kk−1

k (∂F ) = F .
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2.2 Intersection Theorems

We introduce the Erd̋os-Ko-Rado theorem in Section 2.2.1 and its extension to

t-intersecting families [116] in Section 2.2.8. We will give three proofs of the Erdős-

Ko-Rado theorem in Section 2.2.3, Section 2.2.4, and Section 2.2.5. We also discuss

generalizations of the Erdős-Ko-Rado theorem such as Frankl’sr-wise intersection the-

orem [52] in Section 2.2.6 and the Hilton-Milner theorem [70] in Section 2.2.9. In

Chapter 4 and Chapter 5, we will see vector space analogs of all these theorems.

2.2.1 The Erd̋os-Ko-Rado Theorem

We present three proofs of the Erdős-Ko-Rado theorem. The first is the original

proof by Erd̋os, Ko, and Rado [47], which introduced the shifting technique. The second

is Daykin’s elegant proof [33], which shows that the Erdős-Ko-Rado theorem is a sim-

ple corollary of Lovász’s version of the Kruskal-Katona theorem. The last is a proof by

Katona [76], which uses the cyclic permutation method. In Chapter 4 and Chapter 7, we

will use arguments similar to Katona’s cyclic permutation method to prove special cases

of the Erd̋os-Ko-Rado theorem for vector spaces and the Manickam-Miklós-Singhi con-

jecture respectively.

Definition 2.2.1. We say a familyF ⊂ 2X is intersecting, if any two sets inF have

nonempty intersection; that is, for all F,F ′ ∈F we have F∩F ′ 6= /0.

The Erd̋os-Ko-Rado problem asks for the maximum size of an intersecting fam-

ily F ⊂
(X

k

)
of k-subsets ofX. Of course, the problem is interesting only whenn≥ 2k,

as otherwise any two sets of
(X

k

)
intersect.

Theorem 2.2.2(Erdős-Ko-Rado). SupposeF ⊂
(X

k

)
is intersecting and n≥ 2k. Then

|F | ≤
(n−1

k−1

)
. Equality holds if and only ifF =

{
F ∈

(X
k

)
: x∈ F

}
for some x∈ X,

excepting the case n= 2k.

2.2.2 More Properties of the Shift Operator

Towards a proof of the Erd̋os-Ko-Rado theorem using shifting, we first observe

that the shifting operator̃Si j preserves the intersecting property of set systems.
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Proposition 2.2.3. If F ⊂ 2X is intersecting, then so is its shiftS̃i j (F ).

Proof. Suppose, for a contradiction, thatF ⊂ 2X is intersecting but its shift̃Si j (F )

is not. LetF1,F2 ∈ S̃i j (F ) be disjoint sets. We cannot have bothF1,F2 ∈ F since

F is intersecting and this would contradict our assumption thatF1 andF2 are disjoint.

Observe that Definition 2.1.7 implies that ifF ∈ S̃i j (F ) and F /∈ F then i ∈ F and

there existsE ∈F such thatj ∈ E, i /∈ E, andF = Si j (E). Hence, we cannot have both

F1,F2 /∈F as theni ∈ F1∩F2. Without loss of generality, assumeF1 /∈F andF2 ∈F .

Let E1 ∈ F such thatj ∈ E1, i /∈ E1, andF1 = Si j (E1). We haveE1∩F2 6= /0 asF

is intersecting andE1,F2 ∈ F . SinceF1 = Si j (E1) = (E1 \ { j})∪{i} andF1∩F2 = /0,

we must haveE1∩F2 = { j}. Now F1 /∈ F implies thati ∈ F1; consequentlyi /∈ F2 as

F1∩F2 = /0. We have shown thati /∈ F2 and j ∈ F2 so Si j (F2) 6= F2. Definition 2.1.7

implies thatSi j (F2) ∈F asF2 ∈ S̃i j (F )∩F . Sincei /∈ E1 andE1∩F2 = { j}, we have

E1∩Si j (F2) = E1∩ ((F2\{ j})∪{i}) = (E1∩F2)\{ j}= /0,

which contradicts thatF is intersecting. Hence, ifF is intersecting then so is̃Si j (F ).

We now prove a lemma that will enable us to inductively prove the Erdős-Ko-

Rado theorem via shifting.

Lemma 2.2.4.SupposeF ⊂
(X

k

)
is an intersecting family and n≥ 2k. DefineH0 = F

andHi = S̃in(Hi−1) for 1≤ i ≤ n−1. For all H ,H ′ ∈Hn−1, we must have

H ∩H ′∩ [n−1] 6= /0.

Proof. Suppose, for a contradiction, that there existH,H ′ ∈Hn−1 such that

H ∩H ′∩ [n−1] = /0.

We haveHn−1 is intersecting by Proposition 2.2.3 and soH ∩H ′ = {n}. As n > 2k

and |H ∪H ′| = 2k− 1, there existsi ∈ [n− 1] such thati /∈ H ∪H ′. Sincen ∈ H, we

haveH ∈ F , and sinceH ∈ Hn−1, we haveH ∈ Hi−1∩Hi . Sincei /∈ H, n∈ H, and

H ∈ Hi = S̃in(Hi−1), Definition 2.1.7 implies that̂H := (H \ {n})∪{i} ∈ Hi−1 and

henceĤ ∈Hn−1. As H ∩H ′ = {n} andi /∈ H ′, we haveĤ ∩H ′ = /0 which contradicts

Hn−1 being intersecting. This proves thatH ∩H ′∩ [n−1] 6= /0 for all H,H ′ in Hn−1.
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2.2.3 Erdős-Ko-Rado via Shifting

We now prove the Erd̋os-Ko-Rado theorem via the shifting technique [47]. We

will see that Proposition 2.2.3 and Lemma 2.2.4 allow us to transform our original in-

tersecting family into a more structured intersecting family of the same size.

Proof of Theorem 2.2.2.Let F ⊂
(X

k

)
be an intersecting family. We will apply induc-

tion on n and prove the theorem simultaneously for allk ≤ n/2. Whenn = 2k, each

k-set can be paired up with its complement, which is also ak-set. Since any intersecting

family F ⊂
(X

k

)
can contain at most onek-set from each pair, we have

|F | ≤ 1
2

(
2k
k

)
=
(

2k−1
k−1

)
. (2.2.1)

This argument also shows that there are exponentially many ways for equality to hold

in (2.2.1) as anyF ⊂
(X

k

)
that chooses exactly onek-set from each pair is an extremal

intersecting family.

For n > 2k, defineH0 = F andHi = S̃in(Hi−1) for 1≤ i ≤ n−1. By Propo-

sition 2.1.8 and Proposition 2.2.3, we have|Hn−1| = |F | andHn−1 is intersecting.

Define familiesGk−1 ⊂
([n−1]

k−1

)
andGk ⊂

([n−1]
k

)
as follows:

Gk−1 = {H ∩ [n−1] : H ∈Hn−1, |H ∩ [n−1]|= k−1},

Gk = {H ∩ [n−1] : H ∈Hn−1, |H ∩ [n−1]|= k}.

Lemma 2.2.4 implies that bothGk−1 andGk are intersecting families. By the inductive

hypothesis,

|Gk−1| ≤
(

n−2
k−2

)
, |Gk| ≤

(
n−2
k−1

)
.

Observe that for fixedG ∈ Gk−1∪Gk, there is exactly onek-setH ∈ Hn−1 such that

H ∩ [n−1] = G so by Pascal’s identity

|F |= |Hn−1|= |Gk−1|+ |Gk| ≤
(

n−2
k−2

)
+
(

n−2
k−1

)
=
(

n−1
k−1

)
. (2.2.2)

We have proved that ifF ⊂
(X

k

)
is intersecting andn≥ 2k, then|F | ≤

(n−1
k−1

)
.

We now show that if equality holds andn > 2k, thenF =
{

F ∈
(X

k

)
: x∈ F

}
for somex ∈ X. We apply induction onk and prove the theorem simultaneously for
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all n > 2k. Clearly, the statement is true fork = 2 andn > 4 since, in this case, any

intersecting family is contained inF1 =
([3]

2

)
or Fx =

{
F ∈

(X
2

)
: y∈ F

}
for some

y∈ X. If |F |=
(n−1

k−1

)
then (2.2.2) implies that|Gk−1|=

(n−2
k−2

)
and|Gk|=

(n−1
k−1

)
. Since

Gk−1 ⊂
([n−1]

k−1

)
is intersecting andn− 1 > 2(k− 1), the induction hypothesis implies

that Gk−1 =
{

G∈
([n−1]

k−1

)
: y∈G

}
for somey ∈ [n− 1]. Lemma 2.2.4 implies that if

G∈ Gk−1 andG′ ∈ Gk thenG∩G′ 6= /0 so we conclude thatGk =
{

G∈
([n−1]

k

)
: y∈G

}
andHn−1 =

{
F ∈

(X
k

)
: y∈ F

}
. As a result,F =

{
F ∈

(X
k

)
: x∈ F

}
for somex∈X.

2.2.4 Erdős-Ko-Rado via Shadows

We present Daykin’s elegant proof [33] of the Erdős-Ko-Rado theorem, which

shows that it is a simple corollary of Lovász’s version of the Kruskal-Katona theorem.

We will return to this proof in Chapter 4, as it provides a simple example of a purely

combinatorial proof that does not readily generalize to vector spaces.

Proof of Theorem 2.2.2.Let F ⊂
(X

k

)
be an intersecting family. Define

G := {X \F : F ∈F} ⊂
(

X
n−k

)
to be the family of(n− k)-sets that are the complements of the sets inF . Note that

n−k≥ k under our assumption thatn≥ 2k. SinceF is intersecting, there does not exist

F ∈F such thatF ⊂G for someG∈ G . Hence,∂ kG andF are disjoint subfamilies of(X
k

)
so

|∂ kG |+ |F | ≤
(

n
k

)
. (2.2.3)

Suppose, for a contradiction, that|F | >
(n−1

k−1

)
. Hence,|G | = |F | >

(n−1
k−1

)
=
(n−1

n−k

)
.

Applying Theorem 2.1.5 repeatedly, we find

|∂ n−k−1G |>
(

n−1
n−k−1

)
, . . . , |∂ kG |>

(
n−1

k

)
. (2.2.4)

We arrive at a contradiction by (2.2.3) since(
n
k

)
≥ |∂ kG |+ |∂F |>

(
n−1

k

)
+
(

n−1
k−1

)
=
(

n
k

)
,
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and so we must have|F | ≤
(n−1

k−1

)
. We now characterize the case of equality. Suppose

that|F |=
(n−1

k−1

)
, then|G |=

(n−1
k−1

)
=
(n−1

n−k

)
. We have|∂G | ≥

( n−1
n−k−1

)
by Theorem 2.1.5.

On the other hand, (2.2.3) and (2.2.4) imply that|∂G | ≤
(n−1

k−1

)
. We consequently have

G ⊂
( X

n−k

)
, |G | =

(n−1
n−k

)
, and |∂G | =

( n−1
n−k−1

)
. Theorem 2.1.5 therefore implies that

G =
( Y

n−k

)
for someY ∈

( X
n−1

)
. Let x∈ X be the unique element inX \Y; we then have

F = {F ∈
(X

k

)
: x∈ F} as desired.

2.2.5 Erdős-Ko-Rado via Cyclic Permutations

Our final proof of the Erd̋os-Ko-Rado theorem in this chapter is via Katona’s

cyclic permutation method [76]. We will use similar arguments in Chapter 4 and Chap-

ter 7 to prove special cases of the Erdős-Ko-Rado theorem for vector spaces and the

Manickam-Miklós-Singhi conjectures respectively. LetSX denote the symmetric group

onX. We sayα ∈ SX is acyclic permutation of X if α has exactly one cycle when writ-

ten in cycle notation. Clearly, there are(n−1)! cyclic permutations ofX. If F ∈
(X

k

)
, we

say thatα contains F if the elements ofF are consecutive inα. We first prove a lemma

that shows that a cyclic permutation can contain at mostk elements of an intersecting

family F ⊂
(X

k

)
.

Lemma 2.2.5. If α ∈ SX is a cyclic permutation andF ⊂
(X

k

)
is an intersecting family,

thenα contains at most k elements ofF .

Proof. Suppose thatF ∈F appears as consecutive elementsx1, . . . ,xk of α. SinceF is

intersecting, the only sets ofk consecutive elements ofα which can be sets inF are the

k−1 sets beginning with the elementsx2, . . . ,xk−1 respectively and thek−1 sets ending

with the elementsx1, . . . ,xk−1 respectively. Without loss of generality, we can assume

that one of thek−1 sets beginning withx2, . . . ,xk lies in F ; choose the last suchx j ,

where 2≤ j ≤ k, for which this is true. SinceF is intersecting, none of the sets ofk

consecutive elements ending withx1, . . . ,x j−1 can lie inF . Hence, there are at most

j +(k− j) = k elements ofF contained inα.

Proof of Theorem 2.2.2.Let F ⊂
(X

k

)
be an intersecting family. Let

S:= {(α,F) : α ∈ SX is a cyclic permutation,F ∈F , andα containsF}.
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We will double-count the cardinality ofS. On one hand, eachF ∈ F is contained in

k!(n−k)! cyclic permutationsα because there arek! ways to arrange the elements ofF

consecutively and(n− k)! ways to arrange the elements ofX \F . On the other hand,

Lemma 2.2.5 implies that each of the(n−1)! cyclic permutationsα can contain at most

k elements ofF . Putting these observations together yields

|F |k!(n−k)! = |S| ≤ (n−1)!k,

and so|F | ≤
(n−1

k−1

)
. For a characterization of equality using the method of cyclic per-

mutations see [65, Theorem 7.8.1].

2.2.6 Frankl’s r-wise Intersection Theorem

The Erd̋os-Ko-Rado theorem asserts that ifF ⊂
(X

k

)
is an intersecting family

andn≥ 2k, then|F | ≤
(n−1

k−1

)
. Frankl [52] showed in hisr-wise intersection theorem

that we can get the same bound on|F | for smaller values ofn if the pairwise intersecting

condition is strengthened. We will prove a generalization of Frankl’s result for vector

spaces in Chapter 5.

Definition 2.2.6. A familyF ⊂ 2X is called r-wise intersectingif any r sets inF have

nonempty intersection; that is, for all F1, . . . ,Fr ∈F we have
⋂r

i=1Fi 6= /0.

Whenr = 2, thenr-wise will be omitted since, in this case, anr-wise intersecting

family is simply intersecting. We saw that the Erdős-Ko-Rado problem was only inter-

esting in the case thatn≥ 2k, otherwise any two elements of
(X

k

)
intersect. Similarly, the

question of determining the largestr-wise intersecting family is only interesting when

n≥ (r/r −1)k, otherwise anyr elements of
(X

k

)
intersect. On the other hand, since an

r-wise intersecting familyF ⊂
(X

k

)
is intersecting, the Erd̋os-Ko-Rado theorem shows

that |F | ≤
(n−1

k−1

)
whenn≥ 2k. Frankl proved that this same bound on|F | holds in the

range(r/r−1)k≤ n < 2k.

Theorem 2.2.7(Frankl). Suppose thatF ⊂
(X

k

)
is r-wise intersecting and(r−1)n≥ rk.

Then|F | ≤
(n−1

k−1

)
. Equality holds if and only ifF =

{
F ∈

(X
k

)
: x∈ F

}
for some x∈X,

excepting the case r= 2 and n= 2k.
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Note that whenr = 2, Frankl’sr-wise intersection theorem reduces to the Erdős-

Ko-Rado theorem. We will prove Frankl’s result using Lovász’s version of the Kruskal-

Katona theorem, Theorem 2.1.5. First, we need a lemma due to Kleitman.

Lemma 2.2.8(Kleitman). Let k1, . . . ,kr ∈ Z+ such that k1 + · · ·+ kr = n and suppose

Fi ⊂
(X

ki

)
is a family of ki-subsets of X for i∈ [r]. If there do not exist Fi ∈Fi with i∈ [r]

and F1∪·· ·∪Fr = X, then

∑
i∈[r]

|Fi |(n
ki

) ≤ r−1.

Moreover, equality holds if and only if for every ordered partition G1∪·· ·∪Gr = X with

|Gi |= ki , there is exactly one i∈ [r] for which Gi /∈Fi .

Proof. Consider all ordered partitionsG1∪·· ·∪Gr = X with |Gi |= ki . Say there areT

of them. Define theT× r matrixA by

A(G1∪···∪Gr ,Fi) =

{
1 if Gi ∈Fi

0 otherwise.

For a fixedF ∈
(X

ki

)
, one hasF ∈ Gi for a fraction 1/

(n
ki

)
of all these partitions. Hence,

Gi ∈Fi holds for a fraction|Fi |/
(n

ki

)
of these partitions. The number of nonzero entries

in the matrixA is thus

T ∑
i∈[r]

|Fi |(n
ki

) .

By assumption, however, there are at mostr−1 nonzero entries in each row ofA. Hence,

T ∑
i∈[r]

|Fi |(n
ki

) ≤ (r−1)T ⇒ ∑
i∈[r]

|Fi |(n
ki

) ≤ r−1,

and the characterization of equality is clear.

Now we give Frankl’s proof of hisr-wise intersection theorem [115].

Proof of Theorem 2.2.7DefineF c := {X \F : F ∈ F} ⊂
( X

n−k

)
to be the family of

complements of sets inF with respect toX. Choosek1, . . . ,kr ∈ [n− k] such that

∑i∈[r] ki = n. For i ∈ [r], defineFi := ∂ kiF c. As F ⊂
(X

k

)
is r-wise intersecting, this

implies thatF c ⊂
( X

n−k

)
does not containr sets whose union isX. ThusF1, . . . ,Fr

satisfy the assumptions of Lemma 2.2.8.
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We have assumed that(r −1)n≥ rk so first suppose that(r −1)n = rk. In this

case,(n− k)r = n so k1 = · · · = kr = n− k and F1 = · · · = Fr = F c. Hence, by

Lemma 2.2.8,

|F |= |F c| ≤ r−1
r

(
n

n−k

)
=

n
k

(
n
k

)
=
(

n−1
k−1

)
, (2.2.5)

which proves the bound in this case.

Now, we characterize the case of equality in (2.2.5). By Lemma 2.2.8, if equality

holds, then for every ordered partitionG1∪ ·· ·∪Gr = X, there is exactly onei ∈ [r] for

which Gi /∈ F c. As a result, if equality holds in (2.2.5), then there cannot exist two

disjoint sets in
( X

n−k

)
\F c, as then we could form an ordered partition ofX with two

sets missing fromF c. Hence
( X

n−k

)
\F c is an intersecting family of size∣∣∣∣( X

n−k

)
\F c

∣∣∣∣= ∣∣∣∣( X
n−k

)∣∣∣∣−|F c|=
(

n
n−k

)
−
(

n−1
n−k

)
=
(

n−1
n−k−1

)
.

Sincen = r(n−k) and
( X

n−k

)
\F c ⊂

( X
n−k

)
, we see that forr ≥ 3, the uniqueness of the

extremal families in the Erd̋os-Ko-Rado theorem implies that there existsx ∈ X such

that
( X

n−k

)
\F c = {G ∈

( X
n−k

)
: x ∈ G}. Consequently, there exists ˆx ∈ X such that

F = {F ∈
(X

k

)
: x̂∈ F}.

Now assume that(r−1)n> rk so that(n−k)r > n and someki < n−k. Suppose

that |F | ≥
(n−1

k−1

)
so that|F c| ≥

(n−1
n−k

)
. Applying Theorem 2.1.5 repeatedly yields that

|Fi | ≥
(n−1

ki

)
. Since∑i∈r ki = n, we thus have

∑
i∈[r]

|Fi |(n
ki

) ≥ ∑
i∈[r]

1− ki

n
= r−1. (2.2.6)

Lemma 2.2.8 and (2.2.6) imply that|Fi |=
(n−1

ki

)
and so|F c|=

(n−1
n−k

)
and|F |=

(n−1
k−1

)
.

Moreover, by Theorem 2.1.5, we must haveF c =
(X\{x}

n−k

)
for somex ∈ X since there

existsi ∈ [r] such thatki < n−k. Consequently,F = {F ∈
(X

k

)
: x∈ F}. We have shown

that if |F | ≥
(n−1

k−1

)
, thenF = {F ∈

(X
k

)
: x∈ F}. Hence, we always have|F | ≤

(n−1
k−1

)
,

and if equality holds thenF = {F ∈
(X

k

)
: x∈ F}.

2.2.7 Forbidding Triangles

In the Erd̋os-Ko-Rado theorem, Theorem 2.2.2, and Frankl’sr-wise intersection

theorem, Theorem 2.2.7, the extremal family has the form{F ∈
(X

k

)
: x∈ F} for some
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x∈X. Such a family is called astar. What other conditions on a uniform familyF ⊂
(X

k

)
imply that the extremal family is a star? One particularly nice example, Theorem 2.2.10,

was posed by Erd̋os and proved by Mubayi and Verstraëte [93].

Definition 2.2.9. A triangle T = {A,B,C} ⊂
(X

k

)
is a family consisting of three sets

A,B,C such that A∩B,A∩C,B∩C are each nonempty but A∩B∩C = /0.

We may ask for the size of the largest familyF ⊂
(X

k

)
not containing a triangle.

We see that the question is uninteresting unlessn≥ 3k/2, otherwise
(X

k

)
is the extremal

example. Ifk = 2, then Mantel’s theorem [90] asserts that|F | ≤ bn2/4c and that the

extremal family is a complete bipartite graph. The answer is quite different whenk≥ 3.

Theorem 2.2.10(Mubayi-Verstraëte). Suppose thatF ⊂
(X

k

)
contains no triangle and

that k≥ 3 and n≥ 3k/2. Equality holds if and only ifF =
{

F ∈
(X

k

)
: x∈ F

}
for some

x∈ X.

Note that if 3k/2≤ n < 2k andF contains no triangle, thenF is 3-wise inter-

secting. As a result, Frankl’sr-wise intersection theorem establishes Theorem 2.2.10 in

this range. We will return to Theorem 2.2.10 in Section 5.5.

2.2.8 Ont -intersecting Families

The Erd̋os-Ko-Rado theorem gives an upper bound on familiesF ⊂
(X

k

)
for

which any two sets inF have nonempty intersection. If the intersection condition is

strengthened to any two sets inF have intersection of size at leastt, wheret ∈ Z+,

then Erd̋os, Ko, and Rado [47] showed that a stronger upper bound on|F | holds for

sufficiently largen. We will see in Chapter 4 that an analog of this result holds for

vector spaces.

Definition 2.2.11.For a positive integer t∈Z+, a familyF ⊂ 2X is t-intersectingif any

two sets inF have intersection of size at least t; that is,|F ∩F ′| ≥ t for all F,F ′ ∈F .

Using algebraic methods similar to those in Section 3.3.2, Wilson [116] proved

the following generalization of the Erdős-Ko-Rado theorem. Note that whent = 1,

Wilson’s result reduces to the Erdős-Ko-Rado theorem.
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Theorem 2.2.12(Wilson). SupposeF ⊂
(X

k

)
is t-intersecting and n≥ (t +1)(k−t +1).

Then|F | ≤
(n−t

k−t

)
. Equality holds if and only ifF = {F ∈

(X
k

)
: S⊂T} for some t-subset

S∈
(X

t

)
, excepting the case n= (t +1)(k− t +1).

2.2.9 The Hilton-Milner Theorem

Finally, we state the Hilton-Milner theorem [70], which is the last generalization

of the Erd̋os-Ko-Rado theorem we will discuss. Like the other results, we will see in

Chapter 5 that Hilton and Milner’s theorem can also be generalized to vector spaces.

Frankl and Füredi [54] gave an elegant proof of the Hilton-Milner theorem using the

shifting technique.

Theorem 2.2.13(Hilton-Milner). Let F ⊂
(X

k

)
be an intersecting family with k≥ 2,

n≥ 2k+1, and such that there does not exist x∈ X such thatF ⊂ {F ∈
(X

k

)
: x∈ F}.

We then have

|F | ≤
(

n−1
k−1

)
−
(

n−k−1
k−1

)
+1.

Equality holds if and only if

(i) F = {F}∪{G∈
(X

k

)
: x∈G, F ∩G 6= /0} for some k-subset F and x∈ X \F.

(ii) F = {F ∈
(X

3

)
: |F ∩S| ≥ 2} for some 3-subset S if k= 3.

2.3 Fisher’s Inequality

In Section 2.2.1, we were concerned with an upper bound for intersecting fami-

lies, that is those familiesF ⊂
(X

k

)
for which |F1∩F2| ≥ 1 for everyF1,F2 ∈F . In this

section, we will drop the uniformity condition, but insist that distinct elementsF1,F2

of our family F ⊂ 2X satisfy |F1∩F2| = λ , whereλ ∈ N. Such families are called

λ -intersecting.

In Section 2.3.1, we present the de Bruijn-Erdős theorem [34], which bounds

the size of maximum 1-intersecting families and characterizes the extremal examples.

We then generalize the de-Bruijn Erdős theorem in Section 2.3.3 by stating Fisher’s

Inequality [17, 51, 73, 85], which handles the same question for generalλ . We will
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also state a conjecture of Frankl and Füredi [55] that generalizes Fisher’s Inequality,

and then present a proof of their conjecture in the special case thatλ = 1. Frankl and

Füredi’s proof is similar to that of de Bruijn and Erdős and will make use of convexity,

an important tool in extremal combinatorics.

2.3.1 The de Bruijn-Erdős Theorem

We will state the de Bruijn-Erd̋os theorem [34], which bounds the size of maxi-

mum 1-intersecting families and characterizes the extremal examples.

Definition 2.3.1. Givenλ ∈ N, a familyF ⊂ 2X is λ -intersectingif, for any distinct

F1,F2 ∈F , we have|F1∩F2|= λ .

Definition 2.3.2. A familyF ⊂ 2X is k-uniformif F ⊂
(X

k

)
.

Definition 2.3.3. A familyF ⊂ 2X is r-regular if deg(x) = r for all x ∈ X.

We now give some examples of 1-intersecting families.

Definition 2.3.4. We sayF is trivial if there exists x∈ X with deg(x) = |F |, and is

nontrivial otherwise.

Definition 2.3.5. A familyF ⊂ 2X is called a near-pencilif

F = {{1,2},{1,3}, . . . ,{1,n},{2,3, . . . ,n}}.

Definition 2.3.6. A familyF ⊂
(X

k

)
is called a projective planeif F is 1-intersecting,

uniform, and|F |= n.

Figure 2.1: The Fano plane is an example of a projective plane.
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Theorem 2.3.7(de Bruijn-Erd̋os). SupposeF ⊂ 2X is a 1-intersecting family of size m.

We have m≤ n. Moreover, if equality holds, then exactly one of the following is true:

(i) there is F∈F such that|F |= 1,

(ii) F is a near-pencil,

(iii) F is a projective plane.

2.3.2 Proof of the de Bruijn-Erdős Theorem

In this section, we will prove the de Bruijn-Erdős theorem, Theorem 2.3.7. First,

we state and prove a lemma to which the theorem reduces.

Lemma 2.3.8.Let F ⊂ 2X be a family of size m. Supposedeg(x) < m and|F |< n for

every x∈ X and F∈F . Assume further that if x/∈ F, thendeg(x)≤ |F |. We then have

m≤ n.

Proof. Suppose, for a contradiction, thatm> n. Given any pair(x,F) for which x /∈ F ,

we then have
deg(x)

m−deg(x)
<

|F |
n−|F |

.

Summing this inequality over all pairs(x,F) for whichx /∈ F yields a contradiction,

∑
F∈F

|F |= ∑
x∈X

deg(x) = ∑
x∈X

(m−deg(x))
deg(x)

m−deg(x)
< ∑

(x,F),x/∈F

deg(x)
m−deg(x)

< ∑
(x,F),x/∈F

|F |
n−|F |

= ∑
F∈F

(n−|F |) |F |
n−|F |

= ∑
F∈F

|F |. (2.3.1)

Hence,m≤ n. Also observe that ifm = n, then (2.3.1) yields that deg(x) = |F | if

x /∈ F .

Now we prove the de Bruijn-Erd̋os theorem [34].

Proof of Theorem 2.3.7.If there existsF ∈F such that|F |= 1, then all the other sets

containF and are disjoint otherwise. It follows thatm≤ (n−1)+1 = n.

Hence, for eachx∈ X, we can assume deg(x) < m; otherwise we can add{x} to

F if it is not there already, and since|{x}|= 1, we are done by the previous paragraph.
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We can also assume for eachF ∈F that|F |< n, otherwisem= n= 1. We claim that if

x /∈ F , then deg(x)≤ |F |. This is because everyE ∈F (x) := {E ∈F : x∈E} intersects

F in precisely one element and no two distinctE∈F (x) intersectF in the same element

asF is 1-intersecting. Hence, we are in the situation of Lemma 2.3.8, som≤ n.

We now characterize the nontrivial extremal families. We first prove that every

pair of points is contained in someF ∈F . Suppose, for a contradiction, that there exist

distinctx,y∈ X such that there is noF ∈F for which x,y∈ F . Sincem= n, we must

have deg(y) 6= 0, so chooseF ′ ∈ F such thaty∈ F ′. We havex /∈ F ′ by assumption,

so Lemma 2.3.8 implies that deg(x) = |F ′|. As F is 1-intersecting, everyE ∈ F (x)

intersectsF ′ in precisely one element and no two distinctE ∈F (x) intersectF ′ in the

same element. Consequently, deg(x) = |F ′| implies that someE ∈ F (x) must contain

y, which contradicts our initial assumption aboutx andy. This proves that ifF is a

nontrivial 1-intersecting family withm = n, then every pair of points is contained in

someF ∈F .

We distinguish two cases according to whether there exist distinctF1,F2 ∈ F

such thatX = F1∪F2. First, assume there exist distinctF1,F2∈F such thatX = F1∪F2.

Suppose, for a contradiction, that|F1|, |F2| ≥ 3. Letx = F1∩F2 and lety1,y2 andz1,z2

be two other points onF1 andF2 respectively. By the result of the previous paragraph,

there existF3,F4 ∈ F such thaty1,z1 ∈ F3 andy2,z2 ∈ F4. SinceF is 1-intersecting

and X = F1∪F2, we seeF3 = {y1,z1} and F4 = {y2,z2}. We obtain a contradiction

sinceF3∩F4 = /0. Hence, we cannot have both|F1|, |F2| ≥ 3. Without loss of generality,

assume|F1| < 3; we must have|F1| = 2 and |F2| = n− 1 sinceF is nontrivial and

X = F1∪F2. As every pair of points belongs to someF ∈F , we see thatF must be a

near-pencil.

Now suppose there does not existF1,F2 ∈ F such thatX = F1∪F2. Fix some

F ∈ F and suppose|F | = k. For any otherF ′ ∈ F , we can choosex ∈ X such that

x /∈ F ∪F ′. By Lemma 2.3.8, we have|F ′| = deg(x) = |F | = k so F is k-uniform.

HenceF is a projective plane.
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2.3.3 The Frankl-Füredi Conjecture

The de Bruijn-Erd̋os theorem proved that ifF ⊂ 2X is a 1-intersecting family of

sizem, thenm≤ n. The well-known Fisher’s Inequality establishes the same conclusion

more generally forλ -intersecting families.

Theorem 2.3.9(Fisher’s Inequality). If λ ∈ Z+ andF ⊂ 2X is a λ -intersecting family

of size m, then m≤ n.

Fisher [51] proved Theorem 2.3.9 under the additional constraint thatF is reg-

ular (and hence uniform). Bose [17] proved Theorem 2.3.9 whenF is required to be

uniform. Majindar [85] first proved Theorem 2.3.9 as stated, and his proof was later

rediscovered by Isbell [73]. We will defer a proof of Theorem 2.3.9 until Chapter 3, as

its proof was one of the first to demonstrate the power of linear algebra.

Another way to restate Fisher’s Inequality is that ifF ⊂ 2X is aλ -intersecting

family of sizem then |∂ 1F | ≥ m. Inspired by Fisher’s Inequality, Frankl and Füredi

[55] conjectured a similar inequality for|∂ 2F | and verified it whenλ = 1.

Conjecture 2.3.10(Frankl-Füredi). If λ ∈Z+ andF ⊂ 2X is a nontrivialλ -intersecting

family of size m, then

|∂ 2F | ≥
(

m
2

)
.

Theorem 2.3.11(Frankl-Füredi). If F ⊂ 2X is a nontrivial 1-intersecting family of size

m then|∂ 2F | ≥
(m

2

)
.

2.3.4 Convexity

We will give more background on Conjecture 2.3.10 in Chapter 6. In this sec-

tion, we will concern ourselves with Frankl and Füredi’s proof of Theorem 2.3.11; their

argument is similar to de Bruijn and Erdős’s proof of Theorem 2.3.7 and uses convexity.

We now define the concepts of convexity and Schur convexity and state a theorem that

will be used in the proof of Frankl and Füredi’s Conjecture 2.3.10 forλ = 1.

Definition 2.3.12. We say a function f: R → R is convexif for all x1,x2 ∈ R and any

t ∈ [0,1] we have

f (tx1 +(1− t)x2)≤ t f (x1)+(1− t) f (x2).
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Definition 2.3.13. For α := (α1 . . . ,αd) ∈ Rd, we letα∗ := (α∗
1, . . . ,α∗

d) denote the

vector with the same components asα but sorted in decreasing order. Givenα,β ∈Rd,

we sayα majorizesβ and we writeα � β if for all k ∈ [d], we have

k

∑
i=1

α
∗
i ≥

k

∑
i=1

β
∗
i ,

d

∑
i=1

α
∗
i =

d

∑
i=1

β
∗
i .

Definition 2.3.14.We say F: Rd →R is Schur convexif F (α)≥ F(β ) for all α,β ∈Rd

for whichα � β .

Theorem 2.3.15.Suppose f: R→R is a convex function. We then have that the function

F : Rd → R defined by the sum

F(x1, . . . ,xd) =
d

∑
k=1

f (xk)

is Schur convex.

For a proof of Theorem 2.3.15 see [105, Chapter 13]. We now present Frankl

and Füredi’s proof [55] of Conjecture 2.3.10 whenλ = 1.

Proof of Theorem 2.3.11Let F ⊂ 2X be a nontrivial 1-intersecting family of size

m. For xi ∈ X andFj ∈ F , let di := deg(xi) andej := |Fj |. OrderF1, . . . ,Fm so that

e1 ≥ . . .≥ em. Similarly orderx1, . . . ,xn so thatd1 ≥ . . .≥ dn. We will show that

ei ≥ di . (2.3.2)

SinceF is 1-intersecting, we have that ifx /∈ F , then deg(x)≤ |F |; this is because every

E ∈F (x) := {E ∈F : x∈ E} intersectsF in precisely one element and no two distinct

E ∈F (x) intersectF in the same element. LetFj ∈F be any set that does not contain

{x1, . . . ,xi}. Hence, for somek ∈ [i] we havexk /∈ F so ej ≥ dk ≥ di . Consequently,

(2.3.2) holds if we havei setsF ∈ F that do not contain{x1, . . . ,xi}. For i = 1, we

certainly have one setF ∈F that does not containx1 sinceF is nontrivial. Fori > 1,

suppose there are only at mosti−1 setsF ∈F that do not contain{x1, . . . ,xi}. Since

i ≥ 2 andF is 1-intersecting, there can be at most one set inF that contains{x1, . . . ,xi}
som≤ i. As there arei sets andd1 ≥ . . . ≥ di , we havedi ≤ 1 soei ≥ 2 > 1≥ di . We

see that in all cases (2.3.2) holds.
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Let δ := (d1, . . . ,dn), ε := (e1, . . . ,em,0, . . . ,0)∈Rn. We haveε � δ sinceei ≥ di

and∑m
i=1ei = ∑n

i=1di . The function f (x) =
(x

2

)
is convex so by Theorem 2.3.15, the

functionF : Rn → R defined by

F(x1, . . . ,xn) :=
n

∑
i=1

(
xi

2

)
is Schur convex. SinceF is 1-intersecting, we have

F(δ ) = F(d1, . . . ,dn) =
n

∑
i=1

(
di

2

)
= |{(x,F,F ′) : F,F ′ ∈F ,F ∩F ′ = {x}}|=

(
m
2

)
,

F(ε) = F(e1, . . . ,em,0, . . . ,0) =
m

∑
i=1

(
ei

2

)
= |{({x,y},F) : F ∈F ,x,y∈ F}|= |∂ 2F |.

We showedε � δ and so

|∂ 2F |= F(ε) > F(δ ) =
(

m
2

)
,

as desired.



Chapter 3

Algebraic Techniques

In this chapter, we describe algebraic methods that are frequently used in ex-

tremal set theory and in this thesis. First, we make good on our promise in Chapter 2

and prove Fisher’s Inequality, Theorem 2.3.9. We also discuss the major open problem

of characterizing the extremal families in Fisher’s Inequality, which is known as the

λ -design conjecture [99, 117]. Next, we discuss a generalization of Fisher’s Inequal-

ity to L-intersecting families [59], whose proof illustrates the polynomial method. This

result and its variants have powerful combinatorial and geometric consequences; they

have been used, for example, to disprove Borsuk’s conjecture in topology [74]. We then

prove the Erd̋os-Ko-Rado theorem via the eigenvalue method [66, 116]; variants of this

method have yielded Erdős-Ko-Rado analogs in many different structures. Finally, we

discuss linear programming and use this technique to prove Baranyai’s theorem [10]

on decompositions of the complete hypergraph into perfect matchings. We will use

Baranyai’s theorem in Chapter 5 and Chapter 7.

3.1 Fisher’s Inequality via Linear Algebra

We prove Fisher’s Inequality, Theorem 2.3.9, via linear algebra. Given a family

of setsF ⊂ 2X, a natural way to represent it is via its incidence matrix. Majindar’s

[85] and Isbell’s [73] ingenious proof of Fisher’s Inequality analyzes the rank of the

incidence matrix.

36
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Definition 3.1.1. If F ⊂ 2X is a family of sets with size|F | = m, then its associated

incidence matrixM is defined to be the m×n matrix with

Mi j :=

{
1 if j ∈ Fi

0 if j /∈ Fi .

Proof of Theorem 2.3.9.Let F ⊂ 2X be aλ -intersecting family. First, we consider the

case where someF ∈F has exactlyλ elements. SinceF is λ -intersecting, all the other

sets inF containF and are disjoint otherwise. Hencem≤ n+1−λ ≤ n asλ ∈ Z+.

We may thus assume that the numbersγi := |Fi |−λ are all positive for 1≤ i ≤m.

Let M be the incidence matrix ofF , and define the matrixA := MMT . Observe that

Ai j = |Fi ∩Fj |; sinceF is λ -intersecting, we haveA = λJ+C, whereJ is them×mall

ones matrix andC is the diagonal matrix with entriesCii := γi . Note thatλJ is a positive

semidefinite matrix and thatC is a positive definite matrix sinceγi > 0. Consequently,

A is a positive definite matrix som= rankA≤ rankM ≤ n.

3.1.1 The Extremal Families in Fisher’s Inequality

Characterizing the extremal familiesF ⊂ 2X in Fisher’s Inequality is a major

open problem and is known as theλ -design conjecture. In the de Bruijn-Erd̋os theorem,

Theorem 2.3.7, the crucial step in characterizing the extremal families is proving that

every pair of points in a nontrivial extremal familyF is contained in someF ∈F ; this

is the content of Frankl and Füredi’s generalization, Theorem 2.3.11. While Babai [3]

has shown that Frankl and Füredi’s Conjecture 2.3.10 is true for allλ ≥ 1 in the case

thatm= n, this does not lead to a characterization of the extremal families in Fisher’s

Inequality unfortunately. We will partition the extremal families in Fisher’s Inequality

according to whether they are uniform.

Definition 3.1.2. For λ ∈ Z+, a λ -intersecting familyF ⊂
(X

k

)
is a symmetric design

if it is uniform and has cardinality|F |= n.

Definition 3.1.3. For λ ∈ Z+, a λ -intersecting familyF ⊂ 2X is aλ -designif F is not

uniform and|F |= n.
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3.1.2 Symmetric Designs

We now give Ryser’s [98] elegant algebraic proof which shows that a symmetric

designF ⊂
(X

k

)
is k-regular and that any pair of points{x,y} ∈

(X
2

)
is contained in

exactlyλ sets inF . Ryser’s proof provides another application of incidence matrices.

Theorem 3.1.4(Ryser). If F ⊂
(X

k

)
is a symmetric design, thenF is k-regular and any

pair of points{x,y} ∈
(X

2

)
is contained in exactlyλ sets inF .

Proof. Let M be then×n incidence matrix ofF and observe that

MTMi j :=

{
deg(xi) if i = j

codeg(xi ,x j) if i 6= j,
(3.1.1)

where codeg(xi ,x j) := |{F ∈ F : {xi ,x j} ∈ F}| denotes the number of sets inF that

contain{xi ,x j}. We will show thatMTM = λJ+(k−λ )I ; hence (3.1.1) implies thatF

is k-regular and that any pair of points{x,y} ∈
(X

2

)
is contained in exactlyλ sets inF .

Note thatMMT
i j = |Fi ∩Fj | soMMT = λJ+(k−λ )I sinceF ⊂

(X
k

)
is λ -intersecting.

As in the proof of Theorem 2.3.9, we conclude thatMMT is positive definite soM−1

exists. We thus have that

MT = M−1(λJ+(k−λ )I) ⇒ MTM = λM−1JM+(k−λ )I . (3.1.2)

SinceF is k-uniform, we haveMJ = kJ, which implies thatM−1J = k−1J. Also note

thatJMi j = deg(x j). Hence, by (3.1.2), we have

MTMi j :=

{
λk−1deg(xi)+(k−λ ) if i = j

λk−1deg(x j) if i 6= j.
(3.1.3)

SinceMTM is symmetric, (3.1.3) implies that deg(x1) = deg(x j) for all 2≤ j ≤ n. We

also havenk= ∑x∈X deg(x) = ndeg(x1) since the sum of the rows ofM equals the sum

of the columns ofM; henceF is k-regular. By (3.1.1), we see

codeg(xi ,x j) = MTMi j = λk−1deg(x j) = λ .

Hence, any pair of points{x,y} ∈
(X

2

)
is contained in exactlyλ sets inF .
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Recall that projective planes are symmetric designs forλ = 1. By Theorem 3.1.4,

every pair of points in a projective planeF is contained in exactly one set so(
n
2

)
= n

(
k
2

)
⇒ n = (k−1)2 +(k−1)+1.

This observation motivates the definition of the order of a projective plane.

Definition 3.1.5. If F ⊂
(X

k

)
is a projective plane, then its orderis k−1.

The projective plane of order 1 is the triangle
([3]

2

)
and the projective plane of

order 2 is the Fano plane, Figure 2.1. We now show that ifq ∈ Z+ is a prime power,

then a projective plane of orderq exists.

Lemma 3.1.6. If q ∈ Z+ is a prime power, then a projective plane of order q exists.

Proof. Sinceq is a prime power, there exists a finite fieldFq of orderq. LetV = F3
q be a

three-dimensional vector space overFq. Let
[V

i

]
:= {S⊂V : dim(S) = i} be the family

of i-dimensional subspaces ofV for i ∈ [3]. Let X =
[V

1

]
and letF :=

[V
2

]
. We have

|X|= q3−1
q−1

= q2 +q+1 =
(q3−1)(q3−q)
(q2−1)(q2−q)

= |F |.

If F ∈ F then|F | = (q2−1)/(q−1) = q+ 1. We have dim(F1∩F2) = 1 for distinct

F1,F2 ∈ F since dimV = 3 and dimF1 = dimF2 = 2. Consequently,F ⊂
( X

q+1

)
is a

1-intersecting family with|F |= |X|, soF is a projective plane of orderq.

By Lemma 3.1.6, there is a projective plane of orderq ∈ {2,3,4,5,7,8,9}. Is

there a projective plane of order 6 or of order 10? The celebrated Bruck-Ryser-Chowla

theorem [23, 28] answers the first question in the negative, and is the definitive tool in

proving the nonexistence of symmetric designs. Note that the existence of a projective

plane of order 10 is not ruled out by the Bruck-Ryser-Chowla theorem, but has been

ruled out by a massive computer search [81].

Theorem 3.1.7(Bruck-Ryser-Chowla). LetF ⊂
(X

k

)
be a symmetric design.

(i) If |F | is even, then k−λ is a square.

(ii) If |F | is odd, then the equation z2 = (k−λ )x2 +(−1)(|F |−1)/2λy2 has a solution

in integers x,y,z, not all zero.



40

Lemma 3.1.6 proves there are infinitely many symmetric designs forλ = 1. We

do not know if the same is true forλ > 1, and a folklore conjecture asserts that the

answer is no.

Conjecture 3.1.8(Folklore). There are finitely many symmetric designs for fixedλ > 1.

3.1.3 Theλ -design Conjecture

Ryser [99] and Woodall [117] have shown that the points in aλ -design have

only two degrees, sayr1 andr2.

Theorem 3.1.9(Ryser-Woodall). If F ⊂ 2X is a λ -design, thendeg(x) ∈ {r1, r2} and

r1 + r2 = n+1.

Woodall [117] has shown that for eachλ > 1, there are only finitely manyλ

designs, which is interesting because the corresponding problem for symmetric designs,

Conjecture 3.1.8, is not yet solved.

Theorem 3.1.10(Woodall). If λ > 1, there are finitely manyλ -designs.

The only class of nontrivialλ -designs known are the point-complemented block

designs.

Definition 3.1.11.LetF ⊂
(X

k

)
be a symmetric design. Aλ -intersecting familyG ⊂ 2X

is a point-complemented block designif there exists F′ ∈F such that

G := {F ′}∪{F4F ′ : F ′ 6= F ∈F}.

In the de Bruijn-Erd̋os theorem, Theorem 2.3.7, the 1-designs of type (ii) are point

complements of the symmetric designs
( X

n−1

)
. Ryser [99] has shown that the unique

2-designF̂ is the point complement of the Fano plane,

F̂ := {{1,2,4},{1,4,6,7},{1,2,5,7},{1,2,3,6},{1,3,4,5},{2,3,4,7},{2,4,5,6}}.

Theλ -design conjecture [99, 117] asserts that all nontrivialλ -designs are of this type.

Conjecture 3.1.12(Ryser-Woodall). All nontrivial λ -designs are point-complemented

block designs.
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The de Bruijn-Erd̋os theorem, Theorem 2.3.7, proves Conjecture 3.1.12 in the

caseλ = 1. Conjecture 3.1.12 has been verified for allλ ≤ 34 [19, 20, 21, 79, 99, 101,

108, 114], and is also true for a few infinite families ofλ [102, 103].

3.2 L -intersecting Families

We now discuss a generalization of Fisher’s Inequality toL-intersecting families,

whose proof illustrates the polynomial method. This result and its many variants have

powerful combinatorial and geometric consequences; they have been used, for example,

in the counterexample to Borsuk’s conjecture from topology [74].

Definition 3.2.1. Given a finite set L⊂ N of nonnegative integers, we say a family

F ⊂ 2X is L-intersecting if for all distinct F1,F2 ∈F , we have|F1∩F2| ∈ L.

A celebrated theorem of Frankl and Wilson [59] bounds the size ofL-intersecting

families as a function of|L|.

Theorem 3.2.2(Frankl-Wilson). Suppose L⊂ N has size|L| = s. If F ⊂ 2X is an

L-intersecting family, then

|F | ≤
s

∑
i=0

(
n
i

)
. (3.2.1)

This result is best possible in terms of the parametersn ands, as demonstrated

by takingL = {0, . . . ,s−1} andF to be the family of all subsets ofX of size at mosts.

However, it is possible to get sharper bounds by specifyingL. For example, ifF ⊂ 2X is

λ -intersecting, whereλ ∈ Z+, then Fisher’s Inequality yields that|F | ≤ n, whereas the

statement of Theorem 3.2.2 gives the weaker bound|F | ≤ n+1 since|L|= |{λ}|= 1.

We shall see, however, that theproof of Theorem 3.2.2 can be modified in this case to

yield that|F | ≤ n. In general, though, it is an open problem to even determine the order

of magnitude of the largestL-intersecting family for a specific setL.

3.2.1 Polynomial Spaces

Given a fieldF, thepolynomial ring F[x1, . . . ,xn] in the indeterminatesx1, . . . ,xn

is the set of all finite sums ofmonomial terms, which are elements of the form

axd1
1 · · ·xdn

n , (3.2.2)
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wherea∈ F, anddi ∈ N. A monomial is calledmonic if a = 1. In (3.2.2), the exponent

di is called thedegree in xi of the term and the sumd = d1+ · · ·+dn is called thedegree

of the term. Apolynomial is a finite sum of nonzero monomial terms, and its degree

is the largest degree of any of its monomial terms. A polynomial ishomogeneous of

degree k if each of its monomial terms has degreek. The monomial (3.2.2) is called

multilinear if eachdi ∈ {0,1}, and amultilinear polynomial is a finite sum of nonzero

multilinear monomials. Basic properties of the polynomial ringF[x1, . . . ,xn] are covered

in standard abstract algebra texts such as [41] and will be assumed.

We will now show that certain subsets ofF[x1, . . . ,xn] form finite-dimensional

vector spaces overF and compute their dimension.

Lemma 3.2.3.The set T of multilinear homogeneous polynomials of degree k with co-

efficients inF forms a vector space overF with dimensiondimT =
(n

k

)
.

Proof. We can more concretely writeT as

T = { f ∈ F[x1, . . . ,xn] : f is multilinear and homogeneous of degreek}∪{0}.

Clearly,T forms a vector space overF and has basis{xi1 . . .xik : i1 < · · · < ik}. Hence,

dimT =
(n

k

)
.

A similar argument yields that the spaceW of multilinear polynomials of degree

at mosts and with coefficients inF has dimension dimW = ∑s
i=0

(n
i

)
.

Lemma 3.2.4. The set W:= { f ∈ F[x1, . . . ,xn] : f is multilinear of degree at most s}
forms a vector space overF with dimension

dimW =
s

∑
i=0

(
n
i

)
.

Given a finite setΩ, it is easy to see that the setFΩ := { f : Ω→F} forms a vector

space overF called thefunction space. The Triangular Criterion, Lemma 3.2.5, gives a

sufficient condition for showing that a set of functions inFΩ is linearly independent.

Lemma 3.2.5.For i ∈ [m], let fi : Ω→ F be functions and ai ∈Ω be elements such that

fi(a j)

{
6= 0 if i = j

= 0 if j < i.
(3.2.3)

Then f1, . . . , fm are linearly independent members of the function spaceFΩ.
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Proof. Suppose, for a contradiction, that there exist constantsci ∈ F not all zero such

that∑m
i=1ci fi = 0. Let i′ be the smallesti such thatci 6= 0. By (3.2.3),

0 =
m

∑
i=1

ci fi(ai′) = ci′ fi′(ai′),

which implies thatci′ = 0, a contradiction. Hence,f1, . . . , fm are linearly independent

members ofFΩ.

The last lemma we need before commencing with the proof of Theorem 3.2.2

shows that for any polynomialf ∈ F[x1, . . . ,xn] of degree at mosts, there exists a unique

multilinear polynomial f̂ ∈ F[x1, . . . ,xn], which has the same values asf on the set

{0,1}n.

Lemma 3.2.6.For any polynomial f∈ F[x1, . . . ,xn] of degree at most s, there exists a

unique multilinear polynomial̂f ∈F[x1, . . . ,xn] of degree at most s such that f(x) = f̂ (x)

for all x ∈ {0,1}n.

Proof. Expandf and use the identityx2
i = xi , which is valid over{0,1}n.

3.2.2 Proof of the Frankl-Wilson Theorem

We present Babai’s [4] elegant proof of Theorem 3.2.2. We first define the notion

of the characteristic vector of a set.

Definition 3.2.7. The characteristic vectorof a set F⊂ X, denoted vF ∈ {0,1}n, is

defined by

(vF)i :=

{
1 if i ∈ F

0 if i /∈ F.

Proof of Theorem 3.2.2Let F = {F1, . . . ,Fm}, where|F1| ≤ · · · ≤ |Fm|, and suppose

L = {l1, . . . , ls}. With each setFi ∈F , associate its characteristic vectorvi ∈ Rn. Note

thatvi ·v j = |Fi ∩Fj |. For i ∈ [m], define the polynomialfi ∈ R[x1, . . . ,xn] by

fi(x) := ∏
k:lk<|Fi |

(vi ·x− lk). (3.2.4)
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Each polynomialfi has degree at mosts because|L|= s. SinceF is L-intersecting and

|F1| ≤ · · · ≤ |Fm|, we have

fi(v j) = ∏
k:lk<|Fi |

(vi ·v j − lk) = ∏
k:lk<|Fi |

(|Fi ∩Fj |− lk){
6= 0 if i = j

= 0 if j < i.
(3.2.5)

We now use Lemma 3.2.6 to replace eachfi by the unique multilinear polyno-

mial f̂i of degree at mosts such thatfi(x) = f̂i(x) for all x∈ {0,1}n. Sincevi ∈ {0,1}n,

the polynomialsf̂1, . . . , f̂m and the elementsv1, . . . ,vm ∈ {0,1}n satisfy (3.2.5); that is

they satisfy the Triangular Criterion, Lemma 3.2.5. Hence,f̂1, . . . , f̂m are linearly inde-

pendent members ofW, the space of multilinear polynomials of degree at mosts and

with coefficients inR. By Lemma 3.2.4, we conclude that

|F |= m≤
s

∑
i=0

(
n
i

)
.

If λ ∈ Z+ andF ⊂ 2X is λ -intersecting, then Theorem 3.2.2 givesm≤ n+ 1, which

is weaker than Fisher’s Inequality. However, the proof can easily be modified to give

the correct bound. Ifλ ∈ Z+, then /0/∈ F . Hence, in (3.2.4),fi(x) = vi · x− λ is a

multilinear polynomial of degree 1. By Lemma 3.2.3, we conclude thatm≤ n.

3.3 Eigenvalues

We give Godsil’s and Newman’s [66] proof of the Erdős-Ko-Rado theorem via

eigenvalues of the Kneser graph, which is closely related to that of Wilson [116]. Vari-

ants of this method have yielded Erdős-Ko-Rado analogs for vector spaces [60] and

recently, in combination with Fourier analysis, for permutations [46, 64] and graphs

[45].

3.3.1 Independent Sets

We begin with basic graph theory terminology, and then prove the ratio bound

on independent sets [35].
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Definition 3.3.1. A graphis an ordered pair G= (V,E) comprising a set V of vertices

together with a set E⊂
(V

2

)
of edges.

Definition 3.3.2. Let G= (V,E) be a graph. Two vertices v,w∈V are adjacent, denoted

v∼ w, if {v,w} ∈ E.

Definition 3.3.3. Let G= (V,E) be a graph. A subset S⊂ V(G) is independentif no

two vertices in S are adjacent.

Definition 3.3.4. If G = (V,E) is a graph, then its associated adjacency matrixA is

defined to be the|V|× |V| matrix with

Av,w :=

{
1 if v∼ w

0 if v 6∼ w.

Definition 3.3.5. If G = (V,E) is a graph, then the degreeof a vertex v∈ G, denoted

deg(v), is the number of vertices adjacent to v; that is,deg(v) := |{w : v∼ w}|.

Definition 3.3.6. A graph G= (V,E) is k-regular if all vertices v∈ V have degree

deg(v) = k.

The ratio bound relates the size of the largest independent set in a regular graph

to the least eigenvalue of its adjacency matrix. The original proof by Delsarte uses linear

programming techniques, but we will follow Godsil’s approach [65, Lemma 9.6.2].

Theorem 3.3.7(Delsarte). Let G= (V,E) be a k-regular graph with v vertices and

suppose the adjacency matrix A of G has least eigenvalueτ. Let S⊂V be an independent

set in G with characteristic vector z. Then

|S| ≤ v

1+ k
−τ

;

if equality holds then

(A− τI)
(

z− |S|
v

1
)

= 0.

Proof. Let M be the matrix given by

M := A− τI − k− τ

v
J.
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We claim the matrixM is positive semidefinite. It suffices to show that the eigenvalues

of M are nonnegative. First observe that, sinceG is k-regular, the all ones vector,1, is

an eigenvector ofM corresponding to the zero eigenvalue. Letλ 6= 0 be an eigenvalue

of M distinct from zero. SinceM is symmetric, any eigenvectorfλ ∈ Rv corresponding

to λ must be orthogonal to1. Hence,J fλ = 0 so fλ is an eigenvector ofA− τI . As τ is

the least eigenvalue ofA, we see thatA−τI has nonnegative eigenvalues soλ ≥ 0. This

proves thatM is positive semidefinite.

Let S⊂ V be an independent set inG with characteristic vectorz. As M is

positive semidefinite, we see

0≤ zTMz= zTAz− τzTz− k− τ

v
zTJz= zTAz− τ|S|− k− τ

v
|S|2.

SinceS is independent, we havezTAz= 0, and hence

0≤−τ|S|− k− τ

v
|S|2 ⇒ |S| ≤ v

1+ k
−τ

. (3.3.1)

This yields the bound of the theorem.

If equality holds in (3.3.1), thenzTMz= 0. SinceM is positive semidefinite, this

impliesMz= 0, and accordingly

(A− τI)z=
k− τ

v
Jz=

k− τ

v
|S|1.

We also have(A− τI)1 = (k− τ)1, which yields the second claim.

3.3.2 Erdős-Ko-Rado via Eigenvalues

Godsil’s and Newman’s proof [66] of the Erdős-Ko-Rado theorem applies the

ratio bound, Theorem 3.3.7, to the Kneser graph.

Definition 3.3.8. The Kneser graph, denoted Kn:k, has vertex set V=
(X

k

)
and edge set

E = {{A,B} : A,B∈
(X

k

)
, A∩B = /0}.

Observe that independent sets in the Kneser graphKn:k are in bijective corre-

spondence with intersecting familiesF ⊂
(X

k

)
. Consequently, we can apply the ratio

bound, Theorem 3.3.7, to the Kneser graph to prove the Erdős-Ko-Rado theorem. For-

tunately, the eigenvalues and their corresponding multiplicities have been computed for

the Kneser graph; a derivation can be found in [65, Section 9.4].
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Theorem 3.3.9.Let n≥ 2k and let A denote the adjacency matrix of the Kneser graph

Kn:k. The eigenvaluesλi of A and their corresponding multiplicities mi are

λi = (−1)i
(

n−k− i
k− i

)
, mi =

(
n
i

)
−
(

n
i−1

)
, i = 0, . . . ,k.

We now give Godsil’s and Newman’s proof [66] of the Erdős-Ko-Rado theorem;

we will prove only the bound though it is possible to use these methods to characterize

the case of equality.

Proof of Theorem 2.2.2. Supposen≥ 2k. Let F ⊂
(X

k

)
be a maximum intersecting

family, and letS⊂V be the independent set in the Kneser graphKn:k corresponding to

F . By Theorem 3.3.9, the least eigenvalue of the Kneser graphKn:k is

τ = λ1 =−
(

n−k−1
k−1

)
.

Observe that the Kneser graphKn:k is
(n−k

k

)
-regular since given anyk-set, there are

(n−k
k

)
k-sets disjoint from it. Hence, the ratio bound, Theorem 3.3.7, yields

|F |= |S| ≤
(n

k

)
1+ (n−k

k )
(n−k−1

k−1 )

=
(

n−1
k−1

)
,

which establishes the bound in Theorem 2.2.2. Using the second claim of Theorem 3.3.7

and the multiplicitym1 = n−1 of the least eigenvalueλ1, it is possible to characterize

the case of equality whenn > 2k; see [94, Section 5.4] for details.

3.4 Linear Programming

We now discuss linear programming and some of its applications to extremal

set theory. In Section 3.4.1, we state and prove the weak versions of the Duality and

Complementary Slackness theorems; these results are used in Chapter 6 and provide

motivation for the strong versions of these theorems [61, 112], which we will state

but not prove. In Section 3.4.3, we state the Hoffman-Kruskal theorem [71] on totally

unimodular matrices, and use it to prove the integrality theorem on flows [32] in Sec-

tion 3.4.4. Finally, we use the flow result in Section 3.4.5 to prove Baranyai’s theorem

[10] on decompositions of the complete hypergraph into perfect matchings. We will

need Baranyai’s theorem in Chapter 5 and Chapter 7.
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3.4.1 Duality

We will prove the weak versions of the Duality and Complementary Slackness

theorems for the equality form, which we will use in Chapter 6. The strong versions of

these theorems are much more difficult to prove, so we will only state them as they will

not be needed for any of the author’s results in this thesis.

Consider the problem

Minimize
n

∑
j=1

c jx j (3.4.1)

subject to:
n

∑
j=1

ai j x j = bi i ∈ [m]

x j ≥ 0 j ∈ [n],

where all coefficients and variables take real values. Let us fix some terminology.

Definition 3.4.1. In (3.4.1), the function to be optimized is called the objective function.

Definition 3.4.2. In (3.4.1), the inequalities and equations to be satisfied are called the

constraints.

Definition 3.4.3. A feasible solutionx∈ Rn is a point that satisfies all the constraints.

Definition 3.4.4. The feasible regionis the set of all feasible solutions.

Definition 3.4.5. An optimal solutionof the minimization problem(3.4.1) is a feasi-

ble solution(x̂1, . . . , x̂n) ∈ Rn such that∑n
j=1c j x̂ j ≤ ∑n

j=1c jx j for any feasible solution

(x1, . . . ,xn) ∈ Rn.

We seek a simple way to determine whether a feasible point(x1, . . . ,xn) ∈ Rn

of the minimization problem (3.4.1) is optimal. This suggests the idea of finding lower

bounds for the minimum. Observe that if we take a real multipleyi of each equality

ai j x j = bi in (3.4.1) and add these equalities so that the resulting equality∑n
j=1d jx j = d0

satisfiesd j ≤ c j , thend0 is a lower bound for∑n
j=1c jx j . The best lower bound obtainable

in this way is given by

Maximize
m

∑
i=1

biyi (3.4.2)

subject to:
m

∑
i=1

ai j yi ≤ c j j ∈ [n].
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We call (3.4.2), thedual of (3.4.1) and refer to (3.4.1) as theprimal problem. It is a

consequence of the way we constructed the dual that every feasible solutiony∈ Rm of

the dual (3.4.2) gives a lower bound for the objective value of (3.4.1). This is the content

of the weak duality theorem, which we now formally state and prove.

Theorem 3.4.6(Weak Duality). If x ∈ Rn is a feasible solution of the primal problem

(3.4.1)and y∈ Rm is a feasible solution of the dual problem(3.4.2), then

n

∑
j=1

c jx j ≥
m

∑
i=1

biyi .

Proof. The constraints in (3.4.1) and (3.4.2) yield that

n

∑
j=1

c jx j ≥
n

∑
j=1

(
m

∑
i=1

ai j yi

)
x j =

m

∑
i=1

yi

(
n

∑
j=1

ai j x j

)
=

m

∑
i=1

biyi , (3.4.3)

which proves the theorem.

The weak duality theorem has several useful consequences.

Corollary 3.4.7. If x̂∈ Rn is a feasible solution of the primal problem(3.4.1), ŷ∈ Rm

is a feasible solution of the dual problem(3.4.2), and∑n
j=1c j x̂ j = ∑m

i=1bi ŷi , thenx̂ and

ŷ are optimal solutions of the primal and dual problems respectively.

Proof. Since∑n
j=1c jx j cannot be smaller than∑m

i=1bi ŷi for any feasiblex ∈ Rn, and

sincex̂ achieves this bound, ˆx is optimal. The same argument can be used for ˆy.

By rewriting (3.4.3), we obtain the weak complementary slackness theorem.

Theorem 3.4.8(Weak Complementary Slackness). If x̂∈Rn is a feasible solution of the

primal problem(3.4.1), ŷ ∈ Rm is a feasible solution of the dual problem(3.4.2), and

∑n
j=1c j x̂ j = ∑m

i=1bi ŷi , then for each j∈ [n],

m

∑
i=1

ai j ŷi = c j or x̂ j = 0. (3.4.4)

Proof. If ∑n
j=1c j x̂ j = ∑m

i=1bi ŷi , then equality holds everywhere in (3.4.3). In particular,

the first equality is equivalent to

n

∑
j=1

(
m

∑
i=1

c j −ai j ŷi

)
x̂ j = 0. (3.4.5)

Since all terms in this sum are nonnegative, we must have (3.4.4) holds.
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The weak duality theorem, Theorem 3.4.6, gives a sufficient condition for a fea-

sible pointx̂ ∈ Rn of (3.4.1) to be optimal, namely the existence of ˆy ∈ Rm satisfying

(3.4.3) with equality. It is much less obvious that this condition is also necessary, which

is the content of the strong duality theorem.

Theorem 3.4.9(Strong Duality). If the primal problem(3.4.1)has an optimal solution

x̂∈Rn, then the dual problem(3.4.2)has an optimal solution̂y∈Rm andx̂, ŷ satisfy the

relation ∑n
j=1c j x̂ j = ∑m

i=1bi ŷi .

The strong duality theorem implies the strong complementary slackness theorem.

Theorem 3.4.10(Strong Complementary Slackness). Feasible solutionŝx ∈ Rn and

ŷ∈Rm of the primal and dual problems respectively are optimal if and only ifx̂ j = 0 or

∑m
i=1ai j ŷi = c j for j ∈ [n].

All results in this section are due to von Neumann [112] and Gale, Kuhn, and

Tucker [61]. The proofs of Theorem 3.4.9 and Theorem 3.4.10 can be found in any good

linear programming textbook such as [30, Section 2.5].

3.4.2 The Fundamental Theorem of Linear Programming

We stated the duality and complementary slackness theorems in the equality

form because these are the results we need in Chapter 6. More generally, a linear pro-

gram has the form

Maximize cTx (3.4.6)

subject to: Ax≤ b,

wherec,x ∈ Rn, A is ann×m matrix with real entries, andb∈ Rm. Note that (3.4.1)

can be put into the form in (3.4.6) in the following way,

Maximize −cTx

subject to:


A

−A

−I

x≤


b

−b

0

 ,
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wherec,x∈ Rn, A is ann×m matrix with real entriesAi j = ai j , I is them×m identity

matrix, andb∈ Rm.

The Fundamental Theorem of Linear Programming asserts that any linear pro-

gram is exactly one of three types, and is proved in [30, Theorem 2.12]. We again fix

some terminology.

Definition 3.4.11. The linear program(3.4.6)is infeasibleif there does not exist x∈Rn

such that Ax≤ b.

Definition 3.4.12. The linear program(3.4.6) is unboundedif for each r∈ R, there

exists feasible x∈ Rn such that cTx≥ r.

Theorem 3.4.13(Fundamental Theorem of Linear Programming). The linear program

(3.4.6)is infeasible, unbounded, or has an optimal solution.

3.4.3 Integer Programming

In practical applications, we would often like to know if a linear program has an

optimal solution ˆx∈ Zn all of whose coordinates are integers. We describe a method to

find such an optimal solution. We begin with some terminology.

Definition 3.4.14. A polyhedronis the feasible region of the linear program(3.4.6).

Definition 3.4.15. A region C⊂ Rn is convexif whenever x,y ∈ C andλ ∈ [0,1], we

also haveλx+(1−λ )y∈C. In other words, C is convex if for any two points x,y∈C,

the line segment joining x and y is also contained in C.

Definition 3.4.16. An extreme pointof a convex set C⊂ Rn is a point p∈C such that

there do not exist distinct points q, r ∈C andλ ∈ (0,1) such that p= λq+(1−λ )r. In

other words, an extreme point of C is a point of C that is not in the interior of any line

segment contained in C.

Definition 3.4.17. A set L⊂ Rn is a line if there exist distinct x1,x2 ∈ Rn such that

L = {λx1 +(1−λ )x2 : λ ∈ R}.

Polyhedrons are convex, and the following result illustrates why their extreme

points are important in linear programming; a proof is in [30, Theorem 2.27].
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Theorem 3.4.18.If a linear program(3.4.6)has an optimal solution and its feasible

region contains no line, then it has an optimal solution that is an extreme point of its

feasible region.

Combined with Theorem 3.4.18, the Hoffman-Kruskal theorem [71] yields a

way of finding an integral optimal solution.

Definition 3.4.19.A matrix M with real entries Mi j is totally unimodularif every square

submatrix N of M has determinant0, 1, or−1.

Theorem 3.4.20(Hoffman-Kruskal). If A is a totally unimodular n×m matrix and

b∈ Zm, then every extreme point of the polyhedron P= {x∈ Rn : Ax≤ b} determined

by (3.4.6)has integral coordinates.

Suppose we know that then×mmatrixA is totally unimodular,b∈Zm, and that

the polyhedronP= {x∈Rn : Ax≤ b} determined by (3.4.6) has an optimal solution and

does not contain a line. The Hoffman-Kruskal theorem asserts that all extreme points

of the polyhedronP have integral coordinates, and Theorem 3.4.18 proves that one of

those integral extreme points must be an optimal solution to the linear program (3.4.6).

3.4.4 Flows

We define the notion of a transportation network, and prove the integrality theo-

rem on flows [32] using Hoffman’s and Kruskal’s Theorem 3.4.20.

Definition 3.4.21.A digraphis an ordered pair D= (V,A) comprising a set V of vertices

together with a set A⊂V×V of ordered pairs of vertices called arcs.

Definition 3.4.22. If a = (v,w) is an arc in the digraph D= (V,A), then a is said to be

directed from v to w. We call v the tailof a and w the head.

Definition 3.4.23. A transportation networkis a finite digraph D= (V,A) together with

two distinguished vertices called the source s and the sink t, and a capacity function

k : A→ R≥0 which associates a nonnegative real number k(a) to each arc a∈ A. The

source s must be the tail of all arcs which contain it and the sink t must be the head of

all arcs which contain it. We further assume that A does not contain any arcs of the form

a = (v,v) for a vertex v∈V.



53

Definition 3.4.24. Given a transportation network D= (V,A), a flowin D is a function

f : A→ R≥0 which assigns to each arc a∈ A a nonnegative real number f(a) such that

(i) 0≤ f (a)≤ k(a) for all arcs a∈ A and

(ii) for each vertex v∈V \{s, t} we have

∑
a∈A:v is head of a

f (a) = ∑
a∈A:v is tail of a

f (a).

Definition 3.4.25. If D = (V,A) is a transportation network and f: A→ R≥0 is a flow

on D then the strengthof the flow, denoted| f |, is defined to be the sum of the values of

f on the arcs leaving s,

| f | := ∑
a∈A:s∈a

f (a).

We will be interested in determining the maximum strength of a flow on a trans-

portation network, and we will show how to formulate this problem as a linear program.

In the following diagram, we illustrate an example of a transportation network with a

maximum flow f of strength| f |= 5.

Figure 3.1: A transportation network with flow and capacity denotedf/c.

To formulate the maximum flow problem as a linear program, we need to define

the concept of an incidence matrix of a digraph.

Definition 3.4.26. If D = (V,A) is a digraph, then its incidence matrixM is defined to

be the|V|× |A| matrix with

Mv,a :=


−1 if v is tail of a

1 if v is head of a

0 if v /∈ a.
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We show that the incidence matrix of a digraph is totally unimodular.

Lemma 3.4.27.The incidence matrix M of a digraph D is totally unimodular.

Proof. We must show that every square submatrixN of M satisfies det(N) ∈ {−1,0,1}.
We prove this by induction on the orderl of N. Certainly, the statement is true for

l = 1 as the entries ofM lie in {−1,0,1}. Supposel ≥ 2 and all square submatrices of

order less thanl have determinant 0 or±1. Observe that every column ofM has exactly

one+1 entry and one−1 entry. Now, ifN has a zero column, then det(N) = 0. If N

has a column with exactly one±1 entry, then we can expand its determinant on that

column, so det(N) =±det(N′), whereN′ has orderl −1. By the induction hypothesis,

we consequently have det(N) = ±det(N′) ∈ {−1,0,1}. Finally, if every column ofN

has exactly one+1 entry and one−1 entry, then its rows sum to zero, so det(N) = 0.

This proves thatM is totally unimodular.

Finally, we formulate the maximum flow problem as a linear program.

Lemma 3.4.28(Maximum Flow Problem). Let D= (V,A) be a transportation network.

Let M denote the incidence matrix of D and let cT ∈ R|A| denote the row in M corre-

sponding to s. Deleting the rows in M corresponding to the source s and the sink t yields

a (|V| −2)× |A| matrix, which we denoteM. Let k∈ R|A| denote the capacity vector

with entries ka = k(a). Finally, let Iw denote the w×w identity matrix and let~0w ∈ Rw

denote the all zero vector. The maximum strength of a flow on D is the optimal value of

the following linear program,

Maximize −cTx (3.4.7)

subject to:


M

−M

I|A|

−I|A|

x≤


~0|V|−2

~0|V|−2

k

~0|A|

 .

We now state and prove the integrality theorem on flows [32].

Theorem 3.4.29(Dantzig). If D = (V,A) is a transportation network with an integral

capacity vector k∈ Z|A|, then there is a maximum strength flow f on D such that for

each a∈ A, the value f(a) ∈ Z is integral.



55

Proof. By Lemma 3.4.27, the incidence matrixM of D is totally unimodular. Hence,

M, the matrix formed by removing the rows corresponding to the sources and the sink

t, is totally unimodular. A similar argument to the one in Lemma 3.4.27 proves that if a

matrix L is totally unimodular, then so are the matricesLT , [L|−L], [L|I ], and[L|− I ].

Hence, the matrix on the left hand side of (3.4.7) is totally unimodular. Ask ∈ Z|A| is

integral, the vector on the right hand side of (3.4.7) is integral. The Hoffman-Kruskal

theorem, Theorem 3.4.20, yields that the extreme points of the polyhedron defined by

(3.4.7) all have integral coordinates.

Observe that the linear program in (3.4.7) is not infeasible or unbounded be-

cause~0|A| is a feasible solution and the value of the objective function is bounded by

−cTk. Hence, (3.4.7) has an optimal solution by the Fundamental Theorem of Linear

Programming, Theorem 3.4.13. Moreover, observe that the polyhedron determined by

(3.4.7) does not contain a line since for eacha ∈ A, we have 0≤ xa ≤ k(a). Hence,

by Theorem 3.4.18, one of the integral extreme points must be an optimal solution of

the linear program (3.4.7). Consequently, there exists a maximum strength flowf on D

such that for eacha∈ A, the valuef (a) ∈ Z is integral by Lemma 3.4.28.

For more information on flows, see [110, Chapter 7]. We will use the integrality

theorem on flows, Theorem 3.4.29, to prove Baranyai’s theorem.

3.4.5 Baranyai’s Theorem

We prove Baranyai’s theorem [10] on decompositions of the complete hyper-

graph into perfect matchings. This result will be needed in Chapter 5 and Chapter 7.

Definition 3.4.30. A partition (respectively m-partition) of a set X is a family (respec-

tively multiset)P of subsets of X that satisfies properties (i)-(iii) (respectively (ii)-(iv)):

(i) /0 /∈P,

(ii) P∩P′ = /0 for all distinct P,P′ ∈P,

(iii)
⋃

P∈P P = X,

(iv) |P|= m.
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Definition 3.4.31. The complete k-uniform hypergraph on n verticesis the family
(X

k

)
.

Definition 3.4.32. If k|n, then a perfect matchingof the complete hypergraph
(X

k

)
is a

familyP ⊂
(X

k

)
that is an(n/k)-partition of X.

Baranyai’s theorem asserts that ifk|n, then the complete hypergraph
(X

k

)
can be

partitioned into perfect matchings. It is straightforward to verify that Baranyai’s theorem

is true fork = 2, but the casek = 3 is much more difficult [95]. We now formally state

Baranyai’s theorem and give a proof due to A.E. Brouwer and A. Schrijver [22]. All

known proofs of Baranyai’s theorem use some form or consequence of Theorem 3.4.29.

Theorem 3.4.33(Baranyai). If k|n, then the complete hypergraph
(X

k

)
can be partitioned

into
(n−1

k−1

)
perfect matchings.

Proof. We prove a seemingly stronger statement. Letm := n/k and letM :=
(n−1

k−1

)
. We

assert that for any nonnegative integerl with l ≤ n, there exists a familyA1, . . . ,AM of

m-partitions of[l ] such that each subsetS⊂ [l ] appears exactly
( n−l

k−|S|
)

times among the

m partitionsAi . Observe that the casel = n proves the theorem as then(
n− l

k−|S|

)
=
(

0
k−|S|

)
=

{
1 if k = |S|
0 otherwise.

We proceed by induction onl . The base casel = 0 is trivially true since each

Ai consists ofm copies of the empty set. Assume that, for somel < n, a family of

m-partitionsA1, . . . ,AM with the desired properties exist. We form a transportation

network with sources, sink t, vertices labeledAi for i ∈ [M], and vertices labeledS for

each subsetS⊂ [l ]. There is an arc with capacity 1 from the sources to each vertex

labeledAi . If S∈Ai , then there is an arc with capacity 1 from the vertex labeledAi to

the vertex labeledS; if S= /0 we put j arcs with capacity 1 from the vertex labeledAi to

the vertex labeled /0 if the empty set occursj times inAi . Finally, there is an arc from

each vertex labeledS to the sinkt with capacity
( n−l−1

k−|S|−1

)
.

We exhibit a flow in this network. Assign a flow value of 1 to the arcs leaving

the sources. For an arc from a vertex labeledAi to a vertex labeledS, assign the flow

value(k−|S|)/(n− l). For an arc from a vertex labeledS to the sinkt, assign the flow
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value
( n−l−1

k−|S|−1

)
. Clearly property (i) of a flow is satisfied so we verify property (ii). The

sum of the flow values on arcs leaving a vertex labeledAi is

∑
S∈Ai

k−|S|
n− l

=
1

n− l

(
mk− ∑

S∈Ai

|S|

)
=

1
n− l

(mk− l) = 1.

The sum of the flow values on the arcs entering a vertex labeledS is

∑
i:S∈Ai

k−|S|
n− l

=
k−|S|
n− l

(
n− l

k−|S|

)
=
(

n− l −1
k−|S|−1

)
.

For each arca leaving the sinks, the flow value equals the capacityf (a) = k(a), so this

is a maximum flow with strengthM. The same property holds for arcs entering into the

sinkt. Hence, for any maximum flow on this network, the flow value equals the capacity

on any arc leaving the sources or entering the sinkt.

Since all arcs have integral capacities, Theorem 3.4.29 yields anintegral -valued

maximum flow f̂ . As f̂ is maximum, for any arca from s to a vertex labeledAi , we

have f (a) = k(a) = 1. As f̂ is integral and all arcs leaving the vertex labeledAi have

capacity 1, we see that̂f sends one unit of flow from the vertex labeledAi to exactly

one vertex labeledSi , whereSi ∈ Ai . All other arcs leaving the vertex labeledAi will

have zero flow. Asf̂ is maximum, for any arca leaving a vertex labeledS to the sinkt,

we havef (a) = k(a) =
( n−l−1

k−|S|−1

)
. Consequently, we see that for each setS, the number

of i such thatSi = S is
( n−l−1

k−|S|−1

)
.

We obtain a family ofm-partitionsA ′
1, . . . ,A ′

M of the set[l +1] by lettingA ′
i be

obtained fromAi by replacing the distinguished setSi by Si ∪{l + 1} for i ∈ [M]. We

claim thatT ⊂ [l +1] appears exactly
(n−(l+1)

k−|T|
)

times amongA ′
1, . . . ,A ′

M. This is clear

if T = S∪{l +1} as the number of timesS is chosen to beSi is
( n−l−1

k−|S|−1

)
=
(n−(l+1)

k−|T|
)
.

Otherwise,T ⊂ [l ]. SinceT appears
( n−l

k−|T|
)

times amongA1, . . . ,AM and the number

of timesl +1 is added toT is
( n−l−1

k−|T|−1

)
, we see thatT appears(

n− l
k−|T|

)
−
(

n− l −1
k−|T|−1

)
=
(

n− (l +1)
k−|T|

)
times amongA ′

1, . . . ,A ′
M. This completes the induction step.
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Projective Prerequisites

We saw in Chapter 2 and Chapter 3 that intersecting families and shadows are

two core concepts in extremal set theory. We also proved and discussed fundamental

results about these concepts, such as the Erdős-Ko-Rado and Kruskal-Katona theorems.

By defining suitable notions of “intersecting" and “shadow," one can find remarkable

analogs of these theorems for other structures such as vector spaces. A tantalizing fea-

ture is that, although results from extremal set theory are often expected to be true for

vector spaces, not much is known about analogs because standard techniques do not

always apply.

We describe what vector space analogs are in Section 4.1.1 and why this area of

research is significant. To explain the analogies between sets and vector spaces, we then

introduce a generalization of the binomial coefficients called theq-binomial coefficients

in Section 4.2. Theq-binomial coefficients satisfy identities which generalize familiar

ones such as Pascal’s rule; we explore these in Section 4.3 because we will need them

for the analog of Lovász’s result, Theorem 2.1.5, in Chapter 5. We prove the Erdős-Ko-

Rado theorem for vector spaces and introduce the closely-relatedq-Kneser graphs in

Section 4.4. In Chapter 5, we will extend the Erdős-Ko-Rado theorem for vector spaces

by proving an analog of Frankl’sr-wise intersection theorem, Theorem 2.2.7. To do this,

we will need the concept of spreads, which are an analog of perfect matchings, so we

discuss these in Section 4.5. Finally we end in Section 4.6 by highlighting the difficul-

ties of adapting purely combinatorial techniques to vector spaces and dicuss algebraic

methods that have worked in both the set and vector space settings.
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4.1 Vector Space Analogs

In this section, we describe what vector spaces are and illustrate questions in

this area by using the analog of the Erdős-Ko-Rado theorem as an example. We also

discuss the significance of this area of study, and give an overview of which methods

from Chapter 2 and Chapter 3 carry over to the vector space setting.

4.1.1 What are Vector Space Analogs?

In extremal set theory, our underlying set is then-element setX. In vector space

analogs, the setX is replaced by ann-dimensional vector spaceV over a finite fieldFq.

The general question in extremal set theory concerns the maximum or minimum size

of a family of subsets ofX, which is usuallyk-uniform. In vector space analogs, the

questions will usually concern families ofk-dimensional subspaces ofV.

To visualize the situation, consider the Fano plane in Figure 2.1. HereV is a

three-dimensional vector space over the finite fieldF2. There are seven one-dimensional

subspaces represented by points and seven two-dimensional subspaces represented by

lines. In the picture, a point lies on a line if the one-dimensional subspace corresponding

to the point lies in the two-dimensional subspace corresponding to the line.

We saw in Chapter 2 that the Erdős-Ko-Rado theorem asserts that ifX is large

enough, then the unique intersecting familyF ⊂
(X

k

)
of maximum size consists of the

k-element subsets containing a fixed point. Let us try to formulate a vector space analog

of the Erd̋os-Ko-Rado theorem. On a first try, we might ask what is the maximum size

of a family F of k-dimensional subspaces ofV such that any two members ofF have

nonempty intersection. However, this doesn’t quite make sense since the zero subspace

is always contained in the intersection of any two subspaces. We instead stipulate that

the dimension of the intersection of any two members ofF is nonzero. Now, the

vector space analog of Erdős-Ko-Rado asks for the maximum size of a familyF of

k-dimensional subspaces ofV such that the intersection of any two members ofF has

nonzero dimension. The answer is strikingly similar to the original: if the dimension

of V is large enough, then the unique intersecting familyF ⊂
[V

k

]
of maximum size

consists of allk-dimensional subspaces containing a fixed one-dimensional subspace.
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4.1.2 Significance

Remarkably, questions and results about intersecting families and shadows are

valid not only for sets but for a wide range of mathematical objects such as vector

spaces, permutations, and graphs. The ultimate objective of this research is to have a

unified theory that characterizes the structures for which analogs exist and that proves

results simultaneously for broad classes of objects. As we will see in the sections that

follow, vector space analogs force us to analyze which methods from Chapter 2 and

Chapter 3 work in a more general setting.

Vector space analogs bring new questions and techniques to finite geometry since

many of its problems can be reformulated in these terms. They also provide applications

for theq-analog identities studied by algebraic combinatorialists. Recently, coding the-

orists such as Vardy are studying vector space analogs because they imply results about

projective codes [18, 49, 50]. Since codes are used in communication systems, research

in this area may yield practical applications.

4.1.3 Methods

In Chapter 2 and Chapter 3, we gave four proofs of the Erdős-Ko-Rado theo-

rem. Which of these approaches carries over to the vector space setting? In Section 4.6,

we will discuss the difficulties that arise when we try to mimic the shifting proof or

Daykin’s proof from Section 2.2.3 and Section 2.2.4 respectively. We will see that we

can mimic Katona’s proof from Section 2.2.5 to yield the Erdős-Ko-Rado theorem for

vector spaces in the special case thatk|n; this argument will also be important for the

analog of Frankl’sr-wise intersection theorem in Chapter 5 and for the Manickam-

Miklós-Singhi conjecture in Chapter 7. Finally, we will see in Section 4.4 that the

eigenvalue proof from Section 3.3.2 fully carries over to the vector space setting. In

general, algebraic techniques have been more successful than purely combinatorial ones

for vector space analogs. We will discuss some other algebraic successes in Section 4.6.

We remark that, in Chapter 5, we will give another proof of the Erdős-Ko-Rado theo-

rem for vector spaces that is surprising because it is purely combinatorial, but does not

require any tedious computations.
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4.2 Theq-binomial coefficients

Usually, q will denote the order of a finite field, but in this section, we will

allow q to be a positive real. We define theq-binomial coefficient, a generalization

of the binomial coefficient. Whenq is the order of the finite fieldFq, theq-binomial

coefficients play the same role in the enumeration of subspaces ofV that the binomial

coefficients play in the enumeration of subsets ofX.

Definition 4.2.1. If a∈R, q∈R+, and k∈Z+, define the Gaussian binomial coefficient

by [
a
k

]
q

:= ∏
0≤i<k

qa−i −1
qk−i −1

.

When k= 1, we write[a]q :=
[a
1

]
q.

Definition 4.2.2. For a∈ N and q∈ R+, define the q-torial functionby [0]! = 1 and

[a]q! :=
a

∏
j=1

[ j]q for a∈ Z+.

Observe that
(a

k

)
= limq→1

[a
k

]
q and that, whenq= 1 anda∈Z+, we have[a]1 =

a and [a]1! = a!. When a ∈ Z+, the Gaussian binomial coefficient takes the familiar

form [
a
k

]
q
=

[a]q!
[k]q![a−k]q!

.

In this chapter,V always denotes ann-dimensional vector space over the finite

field Fq. We now introduce the notation
[V

k

]
q, which is analogous to

(X
k

)
.

Definition 4.2.3. If q ∈ Z+ is the order of the finite fieldFq and k∈ Z+ is a positive in-

teger, let
[V

k

]
q := {S⊂V : dim(S) = k} denote the family of all k-dimensional subspaces

of V .

We know that the size of
(X

k

)
equals the binomial coefficient

(n
k

)
; a simple counting

argument shows that we similarly have that the size of
[V

k

]
q is
[n

k

]
q.

Lemma 4.2.4.We have
∣∣∣[Vk]∣∣∣q =

[n
k

]
q.
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Proof. There are(qn− 1)(qn− q) · · ·(qn− qk−1) ways to choosek-tuple independent

vectors fromV. Since a givenk-space has(qk−1)(qk−q) · · ·(qk−qk−1) distinct ordered

bases, the number ofk-dimensional subspaces ofV is

(qn−1)(qn−q) · · ·(qn−qk−1)
(qk−1)(qk−q) · · ·(qk−qk−1)

=
(qn−1)(qn−1−1) · · ·(qn−k+1−1)

(qk−1)(qk−1−1) · · ·(q−1)
=
[
n
k

]
q
.

4.3 Theq-Pascal Rule

Theq-binomial coefficients satisfy identities which generalize familiar ones such

as Pascal’s rule. We discuss theq-Pascal rule, which we will need for our proof of the

analog of Lovász’s result, Theorem 2.1.5, in Chapter 5. The familiar Pascal’s identity

asserts that (
n
k

)
=
(

n−1
k−1

)
+
(

n−1
k

)
for k∈ [n−1]. (4.3.1)

Often, naively changing binomial coefficients in an identity toq-binomial coefficients

yields aq-identity: for example ifa∈ Z+, then(
a
k

)
=
(

a
a−k

)
,

[
a
k

]
q
=
[

a
a−k

]
q

for k∈ [a]. (4.3.2)

In the case of Pascal’s identity, however, changing binomial coefficients toq-binomial

coefficients does not give aq-Pascal identity. Whenq 6= 1, we have[
2
1

]
q
= 1+q 6= 2 =

[
1
0

]
q
+
[
1
1

]
q
.

Interestingly, there aretwo q-Pascal identities as we will show in Lemma 4.3.1.

We will first give an arithmetic proof that holds whena∈ R, q∈ R+, andk∈ Z+. Our

second proof is more conceptual, but only holds whena ∈ Z+ andq is the order of a

finite field.

Lemma 4.3.1(Theq-Pascal Identities). If a ∈ R, q∈ R+, and k∈ Z+, then[
a
k

]
q
=
[
a−1
k−1

]
q
+qk

[
a−1

k

]
q
= qa−k

[
a−1
k−1

]
q
+
[
a−1

k

]
q
.
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Proof. We have[
a
k

]
q
=
(

qa−1
q−1

)(
(qa−1−1) · · ·(qa−k+1−1)

(q2−1) · · ·(qk−1)

)
=
(

qk−1
q−1

+qk qa−k−1
q−1

)(
(qa−1−1) · · ·(qa−k+1−1)

(q2−1) · · ·(qk−1)

)
=

(qa−1−1) · · ·(qa−k+1−1)
(q−1) · · ·(qk−1−1)

+qk (qa−1−1) · · ·(qa−k+1−1)
(q2−1) · · ·(qk−1)

=
[
a−1
k−1

]
q
+qk

[
a−1

k

]
q

The second equality is proved in a similar manner.

From now on,q will be restricted to be the order of the finite fieldFq, and we will

drop the subscriptq. Now we give a second proof of Lemma 4.3.1 using Lemma 4.2.4,

but note thata∈ Z+ must be a positive integer.

Proof. Sincea∈ Z+, let n = a and letH be an(a−1)-dimensional subspace ofV. For

the second identity, we partition thek-dimensional subspaces ofV into k-dimensional

subspaces that are contained inH andk-dimensional subspaces that are not contained

in H. By Lemma 4.2.4, there are
[a−1

k

]
k-dimensional spaces that are contained inH.

Note that if ak-dimensional subspace ofV does not lie inH, then it must intersectH

in a (k−1)-dimensional space. By Lemma 4.2.4, there are
[a−1

k−1

]
(k−1)-dimensional

subspaces inH, each of which is contained in

qa−qk−1

qk−qk−1 −
qa−1−qk−1

qk−qk−1 =
[
a−k+1

1

]
−
[
a−k

1

]
= qa−k

k-dimensional subspaces ofV that are not contained inH. Hence,[
a
k

]
=
∣∣∣∣[Vk
]∣∣∣∣= ∣∣∣∣{S∈

[
V
k

]
: S 6⊂ H

}∣∣∣∣+ ∣∣∣∣{S∈
[
V
k

]
: S⊂ H

}∣∣∣∣
= qa−k

[
a−1
k−1

]
+
[
a−1

k

]
,

which is the second identity. Sincea ∈ Z+, we can use the symmetry property of the

binomial coefficients (4.3.2) to yield the first identity.
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4.4 Theq-Kneser graphs

We formally state and prove the Erdős-Ko-Rado theorem for vector spaces, and

introduce the closely-relatedq-Kneser graphs.

Definition 4.4.1. A familyF ⊂
[V

k

]
is intersectingif the intersection of any two members

of F has nonzero dimension; that is, for all F,F ′ ∈F we havedim(F ∩F ′) 6= 0.

We discussed the analog of the Erdős-Ko-Rado question in Section 4.1.1 and

formally state it now. Hsieh [72] first proved the bound and characterized equality when

n > 2k. His proof does not work for all relevant values ofn andq, and involves many

computations. Later, Frankl and Wilson [60] proved the bound and characterized equal-

ity for n> 2k, essentially by computing the eigenvalues of a generalizedq-Kneser graph.

More recently, Godsil and Newman [66, 94] used Frankl and Wilson’s methods to char-

acterize equality in the casen = 2k.

Theorem 4.4.2(Hsieh, Frankl-Wilson, Godsil-Newman). SupposeF ⊂
[V

k

]
is inter-

secting and n≥ 2k. Then|F | ≤
[n−1

k−1

]
. Equality holds if and only if

(i) F =
{

F ∈
[V

k

]
: v⊂ F

}
for some one-dimensional subspace v⊂V or

(ii) n = 2k andF =
[H

k

]
where H is a(2k−1)-dimensional subspace of V .

Recall that in the case of sets, there were exponentially many ways to obtain an

extremal family in the casen = 2k. Since vector spaces have additional structure, the

characterization of equality is stronger and there are only two extremal families when

n = 2k. We will see further examples of results which are stronger for vector spaces

than for sets in Section 4.6.3.

As in the Erd̋os-Ko-Rado proof from Section 3.3.2, our proof of Theorem 4.4.2

hinges on computing the eigenvalues of theq-Kneser graph, which we define now.

Definition 4.4.3. The q-Kneser graph, denoted qKn:k, has vertex set
[V

k

]
and edge set

E = {{A,B} : A,B∈
[V

k

]
, A∩B = {0}}.

Many parameters of theq-Kneser graphs are given by expressions that involve

q-binomial coefficients and which reduce to those of the Kneser graph when we set
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q = 1. The next two lemmas give examples of such parameters. Recall that, as part of

the proof from Section 3.3.2, we showed that the Kneser graphKn:k has
(n

k

)
vertices and

is
(n−k

k

)
-regular. We now prove that theq-Kneser graphqKn:k has

[n
k

]
vertices and is

qk2[n−k
k

]
-regular. Observe that, whenq = 1, the expressions for the number of vertices

and the degree of theq-Kneser graph reduce to that of the Kneser graph.

Lemma 4.4.4. The q-Kneser graph qKn:k has
[n

k

]
vertices and is regular with degree

qk2[n−k
k

]
.

Proof. Lemma 4.2.4 proves that theq-Kneser graphqKn:k has
[n

k

]
vertices. Now we

show that theq-Kneser graph is regular and we determine its degree. Letα be a vertex

of qKv:k; it is a k-dimensional subspace and containsqk elements ofFn
q. There are

(qn−qk)(qn−qk+1) · · ·(qn−q2k−1) ways to choosek-tuple independent vectors inFn
q

that are not inα. Since a givenk-space has(qk− 1)(qk− q) · · ·(qk− qk−1) distinct

ordered bases, there are

(qn−qk)(qn−qk+1) · · ·(qn−q2k−1)
(qk−1)(qk−q) · · ·(qk−qk−1)

= qk2
[
n−k

k

]
k-spaces inFn

q whose intersection withα is the zero subspace. Hence, theq-Kneser

graphqKn:k is regular with degreeqk2[n−k
k

]
.

Recall that in Theorem 3.3.9, we computed the eigenvalues of the Kneser graph’s

adjacency matrix and their multiplicities. Delsarte computed the corresponding quanti-

ties for theq-Kneser graph [36]. Again, whenq= 1, the expressions for the eigenvalues

and multiplicities reduce to that of the Kneser graph. Here, we interpret
[n
0

]
= 1 and[ n

−1

]
= 0.

Theorem 4.4.5(Delsarte). Let n≥ 2k and let A be the adjacency matrix of the q-Kneser

graph qKn:k. The eigenvaluesλi of A and their corresponding multiplicities mi are

λi = (−1)iqk(k−i)
[
n−k− i

k− i

]
, mi =

[
n
i

]
−
[

n
i−1

]
, i = 0, . . . ,k.

Now we prove Theorem 4.4.2 using the eigenvalue method of Section 3.3.2. As

in the set case, the independent sets in theq-Kneser graph are in bijective correspon-

dence with intersecting familiesF ⊂
[V

k

]
.
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Proof of Theorem 4.4.2.Supposen≥ 2k. LetF ⊂
[V

k

]
be a maximum intersecting fam-

ily. We knowF is an independent set in theq-Kneser graphqKn:k. By Theorem 4.4.5,

the least eigenvalue of the Kneser graphqKn:k is

τ = λ1 =−qk(k−1)
[
n−k−1

k−1

]
.

In Lemma 4.4.4, we showed that theq-Kneser graphqKn:k is qk2[n−k
k

]
-regular so the

ratio bound, Theorem 3.3.7, yields

|F | ≤
[n

k

]
1+

qk2[n−k
k ]

qk(k−1)[n−k−1
k−1 ]

=
[
n−1
k−1

]
,

which establishes the bound in Theorem 4.4.2. Using the second claim of Theorem 3.3.7

and the multiplicitym1 = [n]−1 of the least eigenvalueλ1, it is possible to characterize

the case of equality whenn≥ 2k; see [94, Section 5.5] for details.

4.5 Spreads

Spreads are the vector space analogs of perfect matchings. We will need them

in Section 4.6, where we give a proof of the Erdős-Ko-Rado theorem for vector spaces,

Theorem 4.4.2, in the case thatk|n. We also use spreads in Chapter 5 to prove an analog

of Frankl’sr-wise intersection theorem, Theorem 2.2.7.

Definition 4.5.1. A familyS ⊂
[V

t

]
of t-dimensional subspaces of V is called a t-spread

if every one-dimensional subspace of V is contained in exactly one t-dimensional sub-

space inS .

Definition 4.5.2. If S ⊂
[V

t

]
is a spread and the elements inS that lie in a subspace

U form a t-spread of U, then we say thatS inducesa t-spread on U.

Definition 4.5.3. A t-spreadS ⊂
[V

t

]
is called geometricif S induces a t-spread on

each2t-dimensional subspace generated by a pair of elements inS .

Baer and Segre [6, 100] proved necessary and sufficient conditions for the exis-

tence of geometrict-spreads.
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Lemma 4.5.4(Baer, Segre). A geometric t-spreadS ⊂
[V

t

]
exists if and only if t|n.

Proof. If S ⊂
[V

t

]
is a spread, then the size ofS is

|S |=
[n
1

][t
1

] =
qn−1
qt −1

.

Sinceq, |S | ∈ Z+ are positive integers, we must havet|n.

Now suppose thatn = tl where l ∈ Z+. We have thatV is ann-dimensional

vector space over the fieldFq, but we can also viewV as anl -dimensional space over

the fieldFqt . Let S ⊂
[V

1

]
qt be the family of 1-dimensional subspaces ofV as a vector

space overFqt . We have that

|S |=
[

l
1

]
qt

= qt(l−1) +qt(l−2) + · · ·+qt +1 =
qtl −1
ql −1

=
qn−1
qt −1

.

If we think of V as ann-dimensional vector space overFq again, then the members of

S are nowt-dimensional spaces overFq and form a geometrict-spread ofV.

We now prove two properties of geometric spreads that we will need for our work

in Section 4.6 and Chapter 5. The first proves that a geometrict-spreadS ⊂
[V

t

]
does

not just inducet-spreads on the 2t-dimensional spaces generated by a pair of elements

in S , but also on any subspace generated by elements ofS .

Lemma 4.5.5. If S is a geometric t-spread of V , thenS induces a geometric t-spread

on any subspace of V that is generated by elements ofS .

Proof. Let {X1, . . . ,Xm} ⊂ S , wherem≤ n/t, and suppose dim(X1∨ ·· · ∨Xm) = mt.

We will show thatS induces at-spread onX1∨ ·· ·∨Xm. We proceed by induction on

m. If m∈ {1,2}, the statement is true by definition of geometric. Suppose the statement

is true form−1 and letB be the spread thatS induces onX1∨·· ·∨Xm−1.

DefineG := {Xm∨A : A ∈ B} ⊂
[V
2t

]
. We claim that every one-dimensional

subspace ofX1∨ ·· ·∨Xm lies in someG∈ G . Observe that distinctG1,G2 ∈ G satisfy

G1∩G2 = Xm and that for anyG ∈ G , the number of one-dimensional subspaces in
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G\Xm is
[2t

1

]
−
[t
1

]
. Hence, the number of one-dimensional subspaces in someG∈ G is∣∣∣∣{W ∈

[
V
1

]
: W ∈G∈ G

}∣∣∣∣= |G |
([

2t
1

]
−
[

t
1

])
+
∣∣∣∣{W ∈

[
V
1

]
: W ∈ Xm

}∣∣∣∣
=
(

qt
[
m−1

1

]
+1

)([
2t
1

]
−
[

t
1

])
+
[

t
1

]
=
[
mt
1

]
=
∣∣∣∣{W ∈

[
V
1

]
: W ∈ X1∨·· ·∨Xm

}∣∣∣∣ ,
which proves that every one-dimensional subspace ofX1∨·· ·∨Xm lies in someG∈ G .

Consequently, ifX ∈ S andX ∩ (X1∨ ·· · ∨Xm) 6= {0}, thenX ∩G 6= {0} for

someG ∈ G . SinceS is geometric, this impliesX ⊂ G⊂ X1∨ ·· · ∨Xm. Hence,S

induces at-spread onX1∨·· ·∨Xm.

The second lemma proves that an invertible linear transformation ofV maps a

geometrict-spread to another geometrict-spread.

Definition 4.5.6. The set of all invertible linear transformations of V is denoted

GL(V) := {π : V →V : π is an invertible linear transformation}.

Lemma 4.5.7. If S is a geometric t-spread of V , then for any invertible linear trans-

formationπ ∈GL(V), the familyπ(S ) := {π(S) : S∈S } is also a geometric t-spread

of V .

Proof. First we check thatπ(S ) is a spread. ForS∈S , we haveπ(S) is at-dimensional

subspace becauseπ is an isomorphism ofV. If v ∈
[V

1

]
, thenπ−1(v) ∈ S for some

S∈ S asS is a spread. Hence,v = π(π−1(v)) ∈ π(S). Also, we cannot havev in

π(S)∩π(T) for distinct S,T ∈ S as otherwiseπ−1(v) ∈ S∩T, which contradictsS

being a spread. We have shown that every one-dimensional subspace ofV lies in exactly

onet-dimensional subspace ofπ(S ) and soπ(S ) is at-spread. GivenS,T ∈S , if S ′

is the spread thatS induces onS∨T, then it is easy to check thatπ(S ′) is the spread

thatπ(S) induces onπ(S)∨π(T).

4.6 Which Tools Work?

On a first glance, it might seem as if theorems in extremal set theory should

easily extend to the vector space setting by changing identities involving binomial coef-
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ficients to their correspondingq-analogs. On closer inspection, however, we will see in

Section 4.6.1 and Section 4.6.2 that adapting combinatorial techniques to vector spaces

is often not straightforward. Generally, algebraic methods have been more successful

than combinatorial ones for vector space analogs, as we saw in Section 4.4. We will dis-

cuss further results that have been proved using algebraic techniques in Section 4.6.3.

4.6.1 Shifting and Shadows

Adapting combinatorial techniques to vector spaces is often tricky. We cite two

flawed attempts to extend the shifting technique to vector spaces. We discuss the diffi-

culties that surface when trying to adapt Daykin’s proof in Section 2.2.4 to vector spaces.

We also show that no analog of the colex order exists for shadows in vector spaces.

4.6.1.1 Shifting

There have been two published attempts [31, 39] to extend the shifting proof

from Section 2.2.3 to vector spaces, and both of these attempts are acknowledged to be

flawed by their respective authors.

4.6.1.2 Daykin’s Proof

For a simple example of the kinds of issues that occur when attempting to extend

combinatorial proofs to vector spaces, consider Daykin’s proof of the Erdős-Ko-Rado

theorem in Section 2.2.4. The definition of a family’s shadow extends naturally to vector

spaces: ifF ⊂
[V

k

]
is a family ofk-dimensional subspaces ofV, then its shadow consists

of the (k−1)-dimensional subspaces ofV contained in at least one member ofF . In

Chapter 5, we will prove an analog of Lovász’s result, Theorem 2.1.5, for vector spaces.

We cannot, however, mimic its application in Daykin’s proof.

Let F ⊂
[V

k

]
be intersecting, and suppose we try to mimic Daykin’s proof to

show that|F | ≤
[n−1

k−1

]
. It is not clear what the analog ofG should be as the set comple-

mentV \F of the subspaceF ∈F with respect toV is not itself a subspace. If we try to

defineG = {F⊥ : F ∈ F} ⊂
[ V
n−k

]
to be the family of orthogonal complements ofF ,

then it is possible thatF ⊂ G for someG∈ G . More importantly, the use of the Pascal
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identity in Daykin’s proof does not work with theq-Pascal identity.

4.6.1.3 No Analog of the Colex Order

A crucial difference between sets and vector spaces is that no analog of the

colex order exists for shadows in vector spaces. Recall that we defined the colex order

in Definition 2.1.2. We say that a set systemH ⊂
(X

k

)
is a solution to the shadow

minimization problem with parametersk and|H | if the shadow ofH is minimum over

all set-systemsF ⊂
(X

k

)
with the same cardinality,

|∂H |= min
|F |=|H |

|∂F |.

We are especially interested in the case where there are nested solutions{Hm}, i.e., such

that |Hm| = m, Hm is a solution to the shadow minimization problem with parameters

k andm, andHm−1 ⊂Hm for 1≤m≤
(n

k

)
.

The Kruskal Katona theorem, Theorem 2.1.4, shows that the colex order on
(X

k

)
satisfies the following properties:

1. For 1≤ m≤
(n

k

)
, we have{C k

m} is a family of nested solutions to the shadow

minimization problem with parametersk andm.

2. The shadow ofC k
m is an initial segment of the colex order on

( X
k−1

)
.

No analog of the colex order exists for vector spaces. For example, Bezrukov

and Blokhuis [12] showed that there is no total order of the subspaces inFn
2 satisfying

properties (i) and (ii) whenn≥ 4. Even more remarkably, Harper [69] and Ure [109]

showed that nested solutions to the shadow minimization problem for vector spaces do

not always exist.

Theorem 4.6.1(Harper, Ure). Let V = F3
8. If F ⊂

[V
2

]
has size|F |= 24and minimum

shadow over all families with the same cardinality, then there does not existF ′ ⊂ F

such that|F ′| = 22 andF ′ has minimum shadow over all families with the same car-

dinality.
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4.6.2 Katona’s Cyclic Permutation Method

Like the combinatorial methods discussed previously, Katona’s cyclic permuta-

tion technique in Section 2.2.5 does not readily adapt to give a full proof of the Erdős-

Ko-Rado theorem for vector spaces, Theorem 4.4.2. A similar argument, however, does

yield the theorem in the special case thatk|n. The proof uses spreads and is due to

Greene and Kleitman [67]. This argument will be important for the analog of Frankl’s

r-wise intersection theorem in Chapter 5 and for the Manickam-Miklós-Singhi conjec-

ture in Chapter 7. We first prove two lemmas; the first computes the size ofGL(V).

Note that, whenq = 1, the expression for the size ofGL(V) reduces to that of the size

of SX, the group of permutations onX.

Lemma 4.6.2.We have|GL(V)|= qn(n−1)/2(q−1)n[n]!

Proof. SinceV is ann-dimensional vector space overFq, there are

(qn−1)(qn−q)(qn−q2) · · ·(qn−qn−1) = qn(n−1)/2(q−1)n[n]!

ways to choose a basis ofV. The number of invertible linear transformations ofV equals

the number of distinct bases ofV so|GL(V)|= qn(n−1)/2(q−1)n[n]!.

The second lemma shows that ifA,B ∈
[V

k

]
arek-dimensional subspaces ofV,

then there areqn(n−1)/2(q−1)n[k]![n− k]! invertible linear transformationsπ ∈ GL(V)

such thatπ(A) = B. Observe that, whenq = 1, this expression reduces to the number of

permutations ofX that send a givenk-subset to another.

Lemma 4.6.3. If A,B∈
[V

k

]
are k-dimensional subspaces of V , then the number of in-

vertible linear transformations such thatπ(A) = B is qn(n−1)/2(q−1)n[k]![n−k]!

Proof. Let v1, . . . ,vk be a basis ofA. Extend this basis to a basisv1, . . . ,vk,vk+1, . . . ,vn

of V. Sinceπ(A) = B, there areqk−1 choices forπ(v1). For i ∈ [k]\{1}, we must pick

π(vi) such thatπ(vi) ∈ B but is not a linear combination ofπ(v1), . . . ,π(vi−1). Hence,

there areqk−qi−1 choices forπ(vi) wheni ∈ [k]. We must pickπ(vk+1)∈V \B so there

areqn−qk choices forπ(vk+1). For eachj ∈ [n]\ [k+1], we must chooseπ(v j) in V \B

so thatπ(v j) is not a linear combination ofπ(vk+1), . . . ,π(v j−1). Consequently, there
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areqn−q j−1 choices forπ(v j) when j ∈ [n]\ [k]. We see that the number of invertible

linear transformations such thatπ(A) = B is

(qk−1) · · ·(qk−qk−1)(qn−qk) · · ·(qn−qn−1) = qn(n−1)/2(q−1)n[k]![n−k]!

Now, we give Greene and Kleitman’s simple proof [67] of the Erdős-Ko-Rado

theorem for vector spaces, Theorem 4.4.2, in the case thatk|n.

Proof. Let F ⊂
[V

k

]
be an intersecting family and assume thatk|n. Let S ⊂

[V
k

]
be

a spread ofV and letπ ∈ GL(V) be an invertible linear transformation. The proof of

Lemma 4.5.7 shows thatπ(S ) is also a spread. SinceF ⊂
[V

k

]
is intersecting, for any

π ∈GL(V), we have|F ∩π(S )| ≤ 1. Consequently, by Lemma 4.6.2, we have

∑
π∈GL(V)

|F ∩π(S )| ≤ qn(n−1)/2(q−1)n[n]!

Now givenS∈ S andF ∈ F , there areqn(n−1)/2(q−1)n[k]![n− k]! invertible

linear transformationsπ ∈GL(V) such thatπ(S) = F by Lemma 4.6.3. Hence,(
qn−1
qk−1

)
|F |qn(n−1)/2(q−1)n[k]![n−k]! = |S ||F ||{π ∈GL(V) : π(S) = F}|

= ∑
π∈GL(V)

|F ∩π(S )|

≤ qn(n−1)/2(q−1)n[n]!

We consequently have that

|F | ≤
(

qk−1
qn−1

)
[n]!

[k]![n−k]!
=

[k]
[n]

[n]!
[k]![n−k]!

=
[
n−1
k−1

]
.

4.6.3 Algebraic Successes

In this section, we mention some other important intersection theorems for vec-

tor spaces. Common to all these results is that their proofs use algebraic techniques.

First, we discuss Frankl and Graham’s analog of the modular Frankl-Wilson

theorem from Section 3.2. As in the Erdős-Ko-Rado theorem for vector spaces, this

result provides another example of a theorem that is stronger for vector spaces than for
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sets. Frankl and Graham’s proof makes use of the algebraic machinery of higher inci-

dence matrices, and many variants of Fisher’s Inequality, Theorem 2.3.9, were originally

proved in this way as well.

Vector space analogs do not only provide applications of algebraic methods, but

also inspire new ones. Lovász, for example, introduced his wedge product technique

specifically to prove the vector space analog of Bollobás’s Two Families Theorem. We

discuss this result in Section 4.6.3.2.

Finally, in Section 4.6.3.3, we state some old and new results concerning the

analog of thet-intersection theorem in Section 2.2.8 to vector spaces.

4.6.3.1 Modular Frankl-Wilson Theorem

Recall that the Frankl-Wilson theorem, Theorem 3.2.2, asserts that ifF ⊂ 2X is

anL-intersecting family, where|L| = s, then|F | ≤ ∑s
i=0

(n
i

)
. If F ⊂

(X
k

)
is auniform

L-intersecting family, then Ray-Chaudhuri and Wilson [97] proved that the upper bound

on |F | can be strengthened.

Theorem 4.6.4(Ray-Chaudhuri – Wilson). Suppose L⊂N has size|L|= s. IfF ⊂
(X

k

)
is a uniform L-intersecting family, then|F | ≤

(n
s

)
.

Frankl and Wilson [59] showed that the conclusion of Theorem 4.6.4 holds under

the considerably weaker condition that the intersection sizes inL belong to at mosts

residue classes modulo a primep.

Theorem 4.6.5(Frankl-Wilson). Suppose p∈Z+ is a prime number and that L⊂N has

size|L|= s≤ p−1. Also suppose that k∈ Z+ satisfies k/∈ L (mod p). If F ⊂
(X

k

)
is a

uniform family such that|F∩F ′| ∈ L (mod p) for all distinct F,F ′ ∈F , then|F | ≤
(n

s

)
.

The restriction thatp be prime in Theorem 4.6.5 is crucial. If the prime numberp is

replaced byp = 6, for example, or evenq = p2, wherep≥ 7, then Theorem 4.6.5 will

be false [5, Section 5.9]!

Remarkably, Frankl and Graham [56] showed that an analog of Theorem 4.6.5

holds for vector spaces butwithout the restriction thatp be prime. As in the Erd̋os-Ko-

Rado theorem for vector spaces, Theorem 4.4.2, we obtain a stronger analog for vector

spaces because of the additional structure they have.
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Theorem 4.6.6(Frankl-Graham). Suppose b∈ Z+ is a positive integer and that L⊂ N
has size|L| = s≤ b−1. Also suppose that k∈ Z+ satisfies k/∈ L (mod b). If F ⊂

[V
k

]
is a uniform family such thatdim(F ∩F ′) ∈ L (mod b) for all distinct F,F ′ ∈F , then

|F | ≤
[
n
s

]
,

except possibly for q= 2, b= 6, s∈ {3,4}.

4.6.3.2 Bollobás’s Two Families Theorem

Bollobás’s Two Families Theorem [16] is an important combinatorial result with

many consequences [2, 44, 96]. An elegant proof of the theorem using the polynomial

method is given in [5, Section 5.1].

Theorem 4.6.7(Bollobas). Suppose that A1, . . . ,Am ∈
(X

r

)
are r-element sets and that

B1, . . . ,Bm∈
(X

s

)
are s-element sets such that

(i) Ai and Bi are disjoint for i∈ [m],

(ii) A i and Bj have nonempty intersection whenever i6= j.

Then m≤
(r+s

r

)
.

We have seen in Section 4.6.1 that adapting combinatorial techniques to vector

spaces can be challenging. In Section 4.4 and Section 4.6.3.1, we also saw examples

of algebraic proofs of extremal set theory results that generalize nicely to their vector

space analogs. In the case of Bollobás’s Two Families Theorem, neither the known

combinatorial or algebraic proofs seemed to adapt to the case of vector spaces. As a

result, Lovász [82] introduced the method of wedge products specifically to tackle the

analog of Theorem 4.6.7.

Theorem 4.6.8(Lovász). Let U1, . . . ,Um∈
[V

r

]
be r-dimensional subspaces of V and let

W1, . . . ,Wm∈
[V

s

]
be s-dimensional subspaces of V such that

(i) Ui ∩Wi = {0} for i ∈ [m],

(ii) U i ∩Wj 6= {0} whenever i6= j.

Then m≤
(r+s

r

)
.
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4.6.3.3 Ont -intersecting Families

In this section, we state some old and new results ont-intersecting families of

vector spaces.

Definition 4.6.9. For a positive integer t∈ Z+, a family F ⊂
[V

k

]
of k-dimensional

spaces is called t-intersectingif any two elements inF have intersection of dimension

at least t; that is, for all F,F ′ ∈F we havedim(F ∩F ′)≥ t.

Wilson’s proof [116] of thet-intersection theorem, Theorem 2.2.12, generalizes

nicely to vector spaces [60].

Theorem 4.6.10(Frankl-Wilson). If F ⊂
[V

k

]
is t-intersecting and n≥ 2k− t, then

|F | ≤max

{[
n− t
k− t

]
,

[
2k− t

k

]}
. (4.6.1)

We also have that

(i) if n > 2k, then equality holds in(4.6.1)if and only ifF =
{

F ∈
[V

k

]
: S⊂ F

}
for

some t-dimensional subspace S∈
[V

t

]
;

(ii) if 2k− t ≤ n < 2k, then equality holds in(4.6.1) if and only ifF =
[Y

k

]
for some

(2k− t)-dimensional subspace Y∈
[ V
2k−t

]
.

Note that whenn = 2k, we have
[n−t

k−t

]
=
[2k−t

k

]
. Hence, the two non-isomorphic

families in Theorem 4.6.10 have the same cardinality and they are conjectured to be the

only extremal families whenn = 2k. This has only been proved, however, fort = 1 by

Godsil and Newman [66, 94].

Very recently, Tokushige [106] used Wilson’s methods along with new results

by Ellis, Friedgut, and Pilpel [46] to generalize Theorem 4.6.10 to cross-intersecting

families. Another recent result is Frankl and Tokushige’s proof [57] of an analog of

Katona’st-intersection theorem using the method of higher incidence matrices discussed

in Section 4.6.3.1.



Chapter 5

Shadows and Intersections in Vector

Spaces

We [27] prove a vector space analog of Lovász’s version of the Kruskal-Katona

theorem, Theorem 2.1.5. We apply this result to extend Frankl’s theorem onr-wise in-

tersecting families, Theorem 2.2.7, to vector spaces. In particular, we obtain a short new

proof of the Erd̋os-Ko-Rado theorem for vector spaces, Theorem 4.4.2. In Section 5.4,

we cite our other results in this area, namely obtaining a vector space analog of the

Hilton-Milner theorem [14, 24] and determining the chromatic number of theq-Kneser

graph [14, 26]. Finally, we end the chapter in Section 5.5 with some open problems.

Before we can give precise statements of our results, we first formally define

the concepts of shadow andr-wise intersection for vector spaces. We see that they are

natural analogs of their set counterparts.

Definition 5.0.11. For a familyF ⊂
[V

k

]
, we define the shadow ofF , denoted∂F , to

consist of those(k−1)-dimensional subspaces of V contained in at least one member

of F ,

∂F :=
{

E ∈
[

V
k−1

]
: E ⊂ F ∈F

}
.

As in Section 4.6.1.3, we can ask for familiesH ⊂
[V

k

]
whose shadow is mini-

mum over all familiesF ⊂
[V

k

]
with the same cardinality,

|∂H |= min
|F |=|H |

|∂F |.
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In general, this is a difficult question because of the reasons discussed in Section 4.6.1.3.

Surprisingly, we can still prove an analog of Lovász’s version of the Kruskal-Katona

theorem. Recall that, in Lovász’s result, given a familyF ⊂
(X

k

)
, we could find a real

numbery ≥ k such that|F | =
(y

k

)
. The same is true forq-binomial coefficients. If

k andq are fixed, then
[a

k

]
is a continuous function ofa which is positive and strictly

increasing whena ≥ k; hence, by the intermediate value theorem, ifr ≥ 1 is a real

number, then there exists a unique real numberar ≥ k such thatr =
[ar

k

]
. Consequently,

we can formulate an analog of Lovász’s version of the Kruskal-Katona theorem, and

this is our first result.

Theorem 5.0.12(Chowdhury-Patkós). Let F ⊂
[V

k

]
and let y≥ k be the real number

defined by|F |=
[y
k

]
. Then

|∂F | ≥
[

y
k−1

]
.

If equality holds, then y∈ Z+ andF =
[Y

k

]
, where Y is a y-dimensional subspace of V .

As in Section 2.2.6, we can apply our Lovász analog, Theorem 5.0.12, to yield

an analog of Frankl’sr-wise intersection theorem, Theorem 2.2.7. Frankl’s proof from

Section 2.2.6, however, does not generalize to vector spaces for the reasons discussed in

Section 4.6.1. Hence, we will need new proof techniques.

Definition 5.0.13. A family F ⊂
[V

k

]
r-wise intersecting if the intersection of any r

members ofF has nonzero dimension; that is,dim(
⋂r

i=1Fi) 6= 0 for all F1, . . . ,Fr ∈F .

Theorem 5.0.14(Chowdhury-Patkós). Suppose thatF ⊂
[V

k

]
is r-wise intersecting and

that (r−1)n≥ rk. Then

|F | ≤
[
n−1
k−1

]
.

Equality holds if and only ifF =
{

F ∈
[V

k

]
: v⊂ F

}
for some one-dimensional sub-

space v⊂V, unless r= 2 and n= 2k.

Theorem 5.0.12 establish shadows as a viable method for proving vector space

analogs such as Theorem 5.0.14, and more applications are expected. Recently, Wang

[113] used Theorem 5.0.12 to prove a conjecture of Erdős, Faigle, and Kern [48]. The
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method of proof in Theorem 5.0.14 has also been used to prove results onr-cross in-

tersecting families of sets [58]; Patkós and I are currently working with Frankl and

Tokushige to extend these results to vector spaces.

5.1 Shadows and an Analog of Lovász’s Theorem

Recall that, in Section 2.1.6, we gave Keevash’s [77] recent and elegant proof of

Lovász’s version of the Kruskal-Katona theorem. In this section, we adapt his argument

to prove Theorem 5.0.12. We first generalize all the definitions in Section 2.1.6 to their

vector space analogs.

Definition 5.1.1. For F ⊂
[V

k

]
and v∈

[V
1

]
, define

Kk
k+1(F ) :=

{
T ∈

[
V

k+1

]
:

[
T
k

]
⊂F

}
to be the family of(k+1)-dimensional spaces of V all of whose k-dimensional subspaces

lie in F and

Kk
k+1(v) := {T ∈ Kk

k+1(F ) : v⊂ T}

to be the family of(k+1)-dimensional spaces in Kkk+1(F ) that contain v.

Definition 5.1.2. For v∈
[V

1

]
, define the degreeof v, which is denoted bydeg(v), to be

the number of elements ofF that contain v,

deg(v) := |{F ∈F : v⊂ F}|.

Definition 5.1.3. If v∈
[V

1

]
and U⊂V is an(n−1)-dimensional subspace that does not

contain v, then define the link of v in Uto be the family of(k−1)-dimensional spaces in

U whose linear span with v is an element ofF ,

LU(v) :=
{

A∈
[

U
k−1

]
: A∨v∈F

}
⊂
[

V
k−1

]
.

As in Section 2.1.6, we first establish an upper bound on|Kk
k+1(F )| in terms of

|F |; we will see that Theorem 5.0.12 follows as a simple corollary.
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Theorem 5.1.4(Chowdhury-Patkós). Let F ⊂
[V

k

]
and let y≥ k be the real number

defined by|F |=
[y
k

]
. Then

|Kk
k+1(F )| ≤

[
y

k+1

]
.

Equality holds if and only if y∈ Z+ and F =
[Y

k

]
for some y-dimensional subspace

Y ⊂V.

Proof. We argue by induction onk. The base casek = 1 is easy: SupposeF ⊂
[V

1

]
and

|F | = [y]. Since there areq+ 1 one-dimensional spaces in a two-dimensional space,

|K1
2(v)| ≤ (1/q)([y]−1) if v∈F and|K1

2(v)|= 0 otherwise. Observe that

(q+1)|K1
2(F )|= ∑

v∈[V1]
|K1

2(v)| ≤ [y]([y]−1)
q

, (5.1.1)

which implies that|K1
2(F )| ≤

[y
2

]
.

Now assume the statement is true fork−1. We first show that ifv∈
[V

1

]
, then

|Kk
k+1(v)| ≤ ([y− k]/[k])deg(v); we will then sum this inequality over allv ∈

[V
1

]
and

double count to obtain the desired upper bound on|Kk
k+1(F )|. If deg(v) = 0, then

clearly |Kk
k+1(v)| ≤ ([y− k]/[k])deg(v), so we will assume that deg(v) 6= 0. We will

need to consider the cases where deg(v) is large and where deg(v) is small separately.

First, let’s consider the case when deg(v)≥
[y−1
k−1

]
. If T ∈ Kk

k+1(v), then observe

that theqk k-dimensional subspaces inT that do not containv are elements ofF that

do not containv. By counting pairs(S,T) wherev 6⊂ S∈
[V

k

]
andS⊂ T ∈ Kk

k+1(v), the

previous observation yields

qk|Kk
k+1(v)|=

∣∣∣∣{S∈
[
V
k

]
: v 6⊂ S⊂ T ∈ Kk

k+1(v)
}∣∣∣∣≤ |F |−d(v). (5.1.2)

By rearranging (5.1.2) and applying theq-Pascal identity, Lemma 4.3.1, we obtain

|Kk
k+1(x)| ≤

|F |−deg(x)
qk ≤

[y
k

]
−
[y−1
k−1

]
qk =

qk
[y−1

k

]
qk

=
[y−k]

[k]

[
y−1
k−1

]
≤ [y−k]

[k]
deg(v). (5.1.3)

We have equality in (5.1.3) if and only if deg(v) =
[y−1
k−1

]
since deg(v) 6= 0.

Now suppose deg(v) ≤
[y−1
k−1

]
. Let U ⊂ V be an(n−1)-dimensional subspace

that does not containv, and observe that|LU(v)| = deg(v). Moreover, ifT1,T2 are dis-

tinct elements ofKk
k+1(v) thenT1∩U andT2∩U are distinctk-dimensional spaces in
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Kk−1
k (LU(v)). Consequently,|Kk

k+1(v)| ≤ |Kk−1
k (LU(v))|. Define the real numberyv ≥ k

by deg(v) =
[yv−1

k−1

]
. As LU(v) ⊂

[ V
k−1

]
and |LU(v)| = deg(v) =

[yv−1
k−1

]
, the induction

hypothesis yields that

|Kk
k+1(v)| ≤ |Kk

k−1(L(x))| ≤
[
yv−1

k

]
=

[yv−k]
[k]

[
yv−1
k−1

]
≤ [y−k]

[k]
deg(v), (5.1.4)

where the last inequality follows becauseyv≤ y, by our assumption on deg(v). We have

equality in (5.1.4) if and only if deg(v) =
[y−1
k−1

]
by our assumption that deg(v) 6= 0.

To finish the proof, we sum the inequality|Kk
k+1(v)| ≤ ([y− k]/[k])deg(v) over

all v∈
[V

1

]
and double-count to obtain the desired inequality on|Kk

k+1(F )|. We have

[k+1]|Kk
k+1(F )|= ∑

v∈[V1]
|Kk

k+1(v)| ≤
[y−k]

[k] ∑
v∈[V1]

d(v) =
[y−k]

[k]
[k]|F | (5.1.5)

= [y−k]
[
y
k

]
= [k+1]

[
y

k+1

]
.

Therefore,|Kk
k+1(F )| ≤

[ y
k+1

]
, and equality holds only when all one-dimensional sub-

spacesv with nonzero degree satisfyd(v) =
[y−1
k−1

]
.

We now characterize the case of equality. Again the proof proceeds by induction

on k. The base casek = 1 is easy: SupposeF ⊂
[V

1

]
, |F | = [y], and|K1

2(F )| =
[y
2

]
.

Then (5.1.1) implies that|K1
2(v)| = (1/q)([y]− 1) for all v ∈ F . Hence, ifv,w are

distinct elements ofF , then every one-dimensional space in the two-dimensional space

spanned byv andw lies in F . It is easy to see by induction that ifA is a subspace of

dimension 1≤ d < dye such that
[A

1

]
⊂F , then there exists a subspaceB of dimension

d+1 that containsA and for which
[B

1

]
⊂F . In particular, this proves thaty∈ Z+ and

F =
[Y

1

]
for somey-dimensional subspaceY.

Now supposeF ⊂
[V

k

]
, |F |=

[y
k

]
, and|Kk

k+1(F )|=
[ y
k+1

]
. Choosev∈

[V
1

]
for

whichd(v) 6= 0. Since|Kk
k+1(F )|=

[ y
k+1

]
, we haved(v) =

[y−1
k−1

]
and|Kk

k+1(v)|=
[y−1

k

]
.

If U ∈
[ V
n−1

]
does not containv, then|LU(v)|= d(v) =

[y−1
k−1

]
. Hence,[

y−1
k

]
= |Kk

k+1(v)| ≤ |Kk−1
k (LU(v))| ≤

[
y−1

k

]
,

which implies that|Kk−1
k (LU(v))| =

[y−1
k

]
. SinceLU(v) ⊂

[ V
k−1

]
, by the induction hy-

pothesis,LU(v) =
[ W
k−1

]
for some(y−1)-dimensional spaceW, which impliesy∈ Z+.
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Moreover, for everyk-dimensional subspaceA in Kk−1
k (LU(v)) =

[W
k

]
, we have thatA∨v

is an element ofKk
k+1(v). Hence allk-dimensional subspaces inY := W∨ v lie in F .

Since|F |=
[y
k

]
and dim(Y) = y, we must haveF =

[Y
k

]
.

5.2 Analog of Frankl’s r-wise Intersection Theorem

In this section, we prove the bound in Theorem 5.0.14 and characterize equality

when(r−1)n> rk. The proof proceeds by induction on(r−1)n− rk ∈N. For the base

case(r−1)n− rk = 0, we generalize Greene and Kleitman’s argument in Section 4.6.2.

Definition 5.2.1. A familyF ⊂
[V

k

]
is r-wise co-intersectingif any r elements ofF are

contained in a common(n−1)-dimensional space.

Supposer,n,k ∈ Z+ satisfy (r − 1)n− rk = 0 and letF ⊂
[V

k

]
be anr-wise

intersecting family. EndowV with the usual inner product, and consider the family

F⊥ := {F⊥ : F ∈F} ⊂
[

V
n−k

]
.

Let B be a geometric(n− k)-spread ofV. We want to determine the maximum num-

ber of elements ofB that lie in F⊥. SinceF is r-wise intersecting, we have that

F⊥ is r-wise co-intersecting. Ifr = 2 andn = 2k, the familyF⊥ is both intersect-

ing and co-intersecting; hence only one element of the spreadB can lie inF⊥ in this

case. Lemma 5.2.2 determines the maximum number of elements ofB that lie inF⊥

wheneverr,n,k∈ Z+ satisfy(r−1)n− rk = 0.

Lemma 5.2.2.Let r,n,k∈ Z+ satisfy(r−1)n− rk = 0. Suppose thatB is a geometric

(n−k)-spread of V . IfB′ ⊂B is a r-wise co-intersecting subfamily, then

|B′| ≤ q(r−1)(n−k)−1
qn−k−1

.

If equality holds,B′ is a (n−k)-spread of a(r−1)(n−k)-dimensional space.

Proof. Let B1, . . . ,Bm be a maximum subfamily ofB′ with dim(
∨m

i=1Bi) = m(n− k).

Hence, ifB∈B′ thenB∩
∨m

i=1Bi 6= {0}. SinceB is geometric,B induces a spread on
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∨m
i=1Bi by Lemma 4.5.5. AsB∩

∨m
i=1Bi 6= {0} for everyB in B′, all elements inB′ lie

in
∨m

i=1Bi . SinceB′ is r-wise co-intersecting, we must havem≤ r−1. Therefore,

|B′| ≤ q(r−1)(n−k)−1
qn−k−1

,

which is the number of elements in a(n− k)-spread of a(r − 1)(n− k)-dimensional

space. Also, if equality holds,B′ is a (n− k)-spread of a(r −1)(n− k)-dimensional

space.

Now we prove the base case of Theorem 5.0.14; the caser = 2 of Lemma 5.2.3

is the result of Greene and Kleitman that was presented in Section 4.6.2.

Lemma 5.2.3. Suppose r,n,k ∈ Z+ satisfy(r − 1)n− rk = 0. If F ⊂
[V

k

]
is r-wise

intersecting, then|F | ≤
[n−1

k−1

]
.

Proof. Let B be a geometric(n−k)-spread ofV and letπ ∈GL(V) be an isomorphism.

By Lemma 4.5.7, the spreadπ(B) is also geometric. Consider the familyF⊥ ⊂
[ V
n−k

]
.

SinceF is r-wise intersecting,F⊥ is r-wise co-intersecting. By Lemma 5.2.2,

|F⊥∩π(B)| ≤ q(r−1)(n−k)−1
qn−k−1

=
qk−1

qn−k−1
(5.2.1)

becauseF⊥∩π(B) is ar-wise co-intersecting subfamily ofπ(B) and because we have

k = (r−1)(n−k) whenr,n,k satisfy(r−1)n− rk = 0.

By Lemma 4.6.2, we have|GL(V)|= qn(n−1)/2(q−1)n[n]!, so

∑
π∈GL(V)

|F⊥∩π(B)| ≤ qk−1
qn−k−1

· qn(n−1)/2(q−1)n[n]!.

Now, givenF⊥ ∈ F⊥ andB∈ B there areqn(n−1)/2(q−1)n[n− k]![k]! isomorphisms

π ∈GL(V) such thatπ(B) = F⊥ by Lemma 4.6.3. Consequently,(
qn−1

qn−k−1

)
|F⊥| qn(n−1)/2(q−1)n[n−k]![k]!

= |B| |F⊥| |{π ∈GL(V) : π(B) = F⊥}|

= ∑
π∈GL(V)

|F⊥∩π(B)|

≤ qk−1
qn−k−1

· qn(n−1)/2(q−1)n[n]!.
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Since|F |= |F⊥|, we have

|F | ≤

(
qn(n−1)/2(q−1)n[n]!

qn(n−1)/2(q−1)n[n−k]![k]!

)(
qn−k−1
qn−1

)(
qk−1

qn−k−1

)
=
[
n−1
k−1

]
.

Now we prove the bound in Theorem 5.0.14 and characterize equality when

(r−1)n > rk.

Proof of Theorem 5.0.14.The proof proceeds by induction on(r−1)n− rk ∈ N. The

base case(r−1)n− rk = 0 was proved in Lemma 5.2.3. Suppose Theorem 5.0.14 holds

whenr,n,k satisfy(r −1)n− rk = p for p≥ 0. We will prove Theorem 5.0.14 holds

when r,n,k satisfy (r − 1)n− rk = p+ 1. Let F ⊂
[V

k

]
be a maximum sizer-wise

intersecting family. Now the familyP := {P ∈
[V

k

]
: v ⊂ P}, wherev ⊂ V is some

one-dimensional subspace, isr-wise intersecting so|F | ≥ |P| =
[n−1

k−1

]
. Let W be an

(n+1)-dimensional space overFq that containsV. Define the family

A :=
{

A∈
[

W
k+1

]
: ∃ F ∈F with F ⊂ A

}
to be the family of all(k+1)-dimensional spaces in W that contain someF ∈F . We

will partition A into the following subfamilies:

A1 := {A∈A : A 6⊂V} , A2 := A \A1.

First let us compute the size ofA1. Observe that ifA∈
[ W
k+1

]
andA does not lie

in V, thenA intersectsV in exactly ak-dimensional space. Therefore,A cannot contain

two distinctk-dimensional spaces inF . Note that anyF ∈ F can be extended to a

(k+1)-dimensional space inA1 in qn−k ways. Therefore,|A1|= qn−k|F | ≥ qn−k
[n−1

k−1

]
.

Now we will compute the size ofA2. By duality, we haveF ⊂ A∈A2 for some

F ∈F if and only if F⊥ ⊃ A⊥ ∈
[ V
n−k−1

]
. Therefore,|A2|=

∣∣∂F⊥∣∣. Since

|F⊥|= |F | ≥
[
n−1
k−1

]
=
[
n−1
n−k

]
, (5.2.2)

Theorem 5.0.12 yields

|A2|=
∣∣∣∂F⊥

∣∣∣≥ [ n−1
n−k−1

]
=
[
n−1

k

]
. (5.2.3)
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As A = A1∪̇A2, we have by Lemma 4.3.1 that

|A |= |A1|+ |A2| ≥ qn−k
[
n−1
k−1

]
+
[
n−1

k

]
=
[
n
k

]
. (5.2.4)

SinceF is r-wise intersecting,A is anr-wise intersecting family of(k+1)-dimensional

spaces inW. Observe thatr,n+1,k+1 satisfy

(r−1)(n+1)− r(k+1) = (r−1)n− rk−1 = (p+1)−1 = p.

By the induction hypothesis|A | ≤
[n

k

]
, which implies equality everywhere in (5.2.2),

(5.2.3), and (5.2.4). Hence,qn−k|F | = |A1| = qn−k
[n−1

k−1

]
and|F | =

[n−1
k−1

]
. Moreover,

|F⊥| =
[n−1

n−k

]
and

∣∣∂F⊥∣∣ = |A2| =
[ n−1
n−k−1

]
. ThereforeF⊥ satisfies equality in The-

orem 5.0.12, which implies thatF⊥ =
[ Y
n−k

]
for some(n− 1)-dimensional subspace

Y⊂V. By duality,F = {F ∈
[V

k

]
: v⊂ F} for some one-dimensional subspacev⊂V.

5.3 Characterizing Equality in the Base Case

We characterize equality in Theorem 5.0.14 when(r − 1)n− rk = 0. Recall

from Section 4.4 that Godsil and Newman characterized equality in the Erdős-Ko-Rado

theorem for vector spaces using the methods of [60]. In particular, they showed

Theorem 5.3.1(Godsil and Newman). If n = 2k andF ⊂
[V

k

]
is an intersecting family

of maximum size, thenF = {F ∈
[V

k

]
: v⊂F} for some one-dimensional subspace v⊂V

or F =
[U

k

]
for some(2k−1)-dimensional subspace U⊂V.

We use their result to characterize equality in Theorem 5.0.14 whenr ≥ 3 and

(r−1)n− rk = 0. The proof proceeds by induction onr; the base caser = 2 andn = 2k

is Theorem 5.3.1. LetF ⊂
[V

k

]
be a maximum sizer-wise intersecting family. In this

section, it will be more natural to state results in terms ofF⊥ ⊂
[ V
n−k

]
so we make the

following simple observation.

Lemma 5.3.2. We haveF ⊂
[V

k

]
is a maximum size r-wise intersecting family if and

only if F⊥ ⊂
[ V
n−k

]
is a maximum size r-wise co-intersecting family.
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Lemma 5.3.5 allows us to use induction. We first state two simple corollaries

of Lemma 5.2.3 that will be used in the proof of Lemma 5.3.5. Sincer,n,k satisfy

(r−1)n− rk = 0, note thatV is r(n−k)-dimensional .

Corollary 5.3.3. Suppose r,n,k satisfy(r−1)n− rk = 0 and thatF ⊂
[V

k

]
is an r-wise

intersecting family. If there is a geometric(n− k)-spreadB of V such that equality

holds in(5.2.1)for all π ∈GL(V), thenF has maximum size.

Corollary 5.3.4. Suppose r,n,k satisfy(r−1)n− rk = 0. If F ⊂
[V

k

]
is a maximum size

r-wise intersecting family, then equality holds in(5.2.1)for everyπ ∈GL(V) and every

geometric(n−k)-spreadB of V .

Lemma 5.3.5.Let F ⊂
[V

k

]
be a maximum size r-wise intersecting family. Fix F⊥ in

F⊥ and let U⊂V be an(r−1)(n−k)-dimensional space that intersects F⊥ trivially;

that is F⊥∩U = {0}. Then

F⊥|U := {E ∈F⊥ : E ⊂U}

is a maximum size(r−1)-wise co-intersecting family in
[ U
n−k

]
.

Proof. Let S be a geometric(n− k)-spread ofV. ChooseS1, . . . ,Sr in S such that∨r
i=1Si = V. SinceF⊥ ∩U = {0}, there exists an isomorphismρ ∈ GL(V) such that

ρ(S1) = F⊥ and ρ (
∨r

i=2Si) = U . The (n− k)-spreadB := ρ(S ) is geometric by

Lemma 4.5.7, andF⊥ ∈ B. MoreoverU =
∨r

i=2ρ(Si) so, by Lemma 4.5.5, we have

thatB induces a geometric(n−k)-spreadB′ onU .

Observe thatF⊥|U is (r−1)-wise co-intersecting sinceF⊥∩U = {0}. To prove

thatF⊥|U ⊂
[ U
n−k

]
is a maximum size(r−1)-wise co-intersecting family, we will apply

Lemma 5.3.2 and Corollary 5.3.3. That is, we will show that ifα ∈GL(U) then equality

holds in (5.2.1): ∣∣∣F⊥|U ∩α(B′)
∣∣∣= q(r−2)(n−k)−1

qn−k−1
.

Let π ∈ GL(V) be an invertible linear transformation such thatπ(F⊥) = F⊥,

π(U) = U , andπ|U = α. SinceF⊥ is a maximum sizer-wise co-intersecting fam-

ily, F⊥ ∩ π(B) is an (n− k)-spread of an(r − 1)(n− k)-dimensional spaceWπ by
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Lemma 5.2.2 and Corollary 5.3.4. We have thatF⊥ is contained inWπ and intersectsU

trivially so dim(Wπ ∩U) = (r−2)(n−k).

The spreadπ(B) induces the spreadF⊥∩π(B) onWπ and induces the spread

α(B′) on U . Consider the elements ofα(B′) that intersectWπ ∩U nontrivially; as

these elements are inπ(B) and intersectWπ , they must lie inWπ and hence inWπ ∩U .

Hence, the elements ofα(B′) that intersectWπ∩U nontrivially form a spread ofWπ∩U .

Moreover, these elements lie inF⊥∩π(B) so

F⊥|U ∩α(B′) = (F⊥∩π(B))∩α(B′)

is the spreadπ(B) induces onWπ ∩U . SinceWπ ∩U is (r − 2)(n− k)-dimensional,∣∣F⊥|U ∩α(B′)
∣∣ satisfies (5.2.1) with equality. By Lemma 5.3.2 and Corollary 5.3.3,

F⊥|U is a maximum size(r−1)-wise co-intersecting family in
[ U
n−k

]
.

Characterizing Equality in Theorem 5.0.14 when(r−1)n− rk = 0 andr ≥ 3: We now

characterize equality in Theorem 5.0.14 when(r −1)n− rk = 0 andr ≥ 3. The proof

proceeds by induction onr; the base caser = 2 andn = 2k is Theorem 5.3.1.

Let r ≥ 3 and suppose the statement is proved for any 2≤ r ′ < r. LetF ⊂
[V

k

]
be

a maximum sizer-wise intersecting family and observe thatF⊥ ⊂
[ V
n−k

]
is a maximum

sizer-wise co-intersecting family. Our objective is to show thatF⊥ =
[ H
n−k

]
, whereH

is a(n−1)-dimensional space ofV. By duality, this implies thatF = {F ∈
[V

k

]
: v⊂ F}

for some one-dimensional subspacev⊂V, which is the desired conclusion.

Fix someF⊥ ∈ F⊥. By Lemma 5.3.5, ifU is a (r − 1)(n− k)-dimensional

subspace that intersectsF⊥ trivially, then F⊥|U is a maximum size(r − 1)-wise co-

intersecting family in
[ U
n−k

]
. Whenr = 3, then dimU = 2(n− k) andF⊥|U is a maxi-

mum size intersecting and co-intersecting family in
[ U
n−k

]
; hence by Theorem 5.3.1

1. F⊥|U = {E ∈
[ U
n−k

]
: u⊂ E} for some one-dimensional subspaceu⊂U or

2. F⊥|U =
[ U ′

n−k

]
for some(2(n−k)−1)-dimensional subspaceU ′ ⊂U .

If r > 3 then, by the induction hypothesis and duality,F⊥|U =
[ U ′

n−k

]
, whereU ′ ⊂U is

some((r−1)(n−k)−1)-dimensional subspace.

Our first task is to eliminate the possibility thatF⊥|U = {E ∈
[ U
n−k

]
: u⊂ E}

for some one-dimensional subspaceu ⊂ U in the caser = 3. We now show that if
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F⊥|U = {E ∈
[ U
n−k

]
: u⊂ E} for some one-dimensional subspaceu⊂ U , then every

element ofF⊥ must intersectF⊥∨u nontrivially.

Claim 5.3.6. If F⊥|U = {E∈
[ U
n−k

]
: u⊂E} for some one-dimensional subspace u⊂U,

then for all G∈F⊥ we have G∩ (F⊥∨u) 6= {0}.

Proof. Suppose, for a contradiction, that there existsG ∈ F⊥ such thatG intersects

F⊥∨u trivially. We have dim((F⊥∨G)∩U) = n−k becauseF⊥ intersects bothG and

U trivially. Sinceu does not lie inF⊥∨G andF⊥|U = {E ∈
[ U
n−k

]
: u⊂E}, we can find

E′ ∈F⊥|U that intersectsF⊥∨G trivially. HenceF⊥∨G∨E′ = V, which contradicts

the fact thatF⊥ is 3-wise co-intersecting.

We now show that ifF⊥|U = {E ∈
[ U
n−k

]
: u⊂ E} for some one-dimensional

subspaceu⊂U , then any(n− k)-dimensional space that meetsF⊥ trivially but meets

F⊥∨u nontrivially must lie inF⊥.

Claim 5.3.7. SupposeF⊥|U = {E ∈
[ U
n−k

]
: u⊂E} for some one-dimensional subspace

u⊂U. If G∈
[ V
n−k

]
, G∩F⊥ = {0}, and G∩ (F⊥∨u) 6= {0}, then G∈F⊥.

Proof. There exists a geometric(n− k)-spreadB of V that contains bothG andF⊥

becauseG∩F⊥ = {0}. AsB is a spread, all subspaces in(F⊥∩B)\{F⊥}meetF⊥∨u

in a one-dimensional subspace that does not lie inF⊥ by Claim 5.3.6. Lemma 5.2.2

and Corollary 5.3.4 imply thatF⊥ ∩B is a spread of a 2(n− k)-dimensional space

so |(F⊥ ∩B) \ {F⊥}| = qn−k. There areqn−k one-dimensional subspaces inF⊥ ∨ u

that do not lie inF⊥. Hence, each one-dimensional subspace in(F⊥ ∨u) \F⊥ meets

a unique subspace in(F⊥ ∩B) \ {F⊥}. SinceG meetsF⊥ ∨u in a one-dimensional

subspace that does not lie inF⊥ andG∈B, we must haveG∈F⊥∩B ⊂F⊥.

We now eliminate the possibility thatF⊥|U = {E∈
[ U
n−k

]
: u⊂E} for some one-

dimensional subspaceu⊂ U . We will construct three(n− k)-dimensional subspaces

that together spanV, and intersectF⊥ ∨u in a one-dimensional subspace not lying in

F⊥. By Claim 5.3.7, these three spaces lie inF⊥, which contradictsF⊥ being 3-wise

co-intersecting. To build these three subspaces, we first choose three one-dimensional

subspacesv1
1,v

1
2,v

1
3 in (F⊥ ∨ u) \ F⊥ such thatv1

3 6⊂ v1
1∨ v1

2. These one-dimensional

subspaces exist because dim(F⊥∨u) = (n−k)+1≥ 3 so, after pickingv1
1 andv1

2, any
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one-dimensional subspace ofF⊥∨u not in F⊥∪ (v1
1∨v1

2) will do. Since the number of

one-dimensional subspaces in(F⊥∨u)\(F⊥∪(v1
1∨v1

2)) is qn−k−q> 0, we can indeed

choosev1
3.

We construct a family of one-dimensional subspaces

{v j
i : i ∈ {1,2,3}, j ∈ {1, . . . ,n−k}}

such that, for eachi ∈ {1,2,3}, the subspaceVi =
∨n−k

j=1v j
i intersectsF⊥∨u in the one-

dimensional subspacev1
i 6⊂ F⊥ and

∨3
i=1Vi =V. The subspacesV1,V2,V3 are the desired

three(n−k)-dimensional subspaces. We pick the one-dimensional subspaces one after

the other; we have to show that at each step there is a possible one-dimensional subspace

to pick. When picking the last one-dimensional subspacevn−k
3 we must choose a one-

dimensional subspace fromV that is not inV1∨V2∨
∨n−k−1

j=1 v j
3 nor in F⊥∨

∨n−k−1
j=1 v j

3.

By inclusion-exclusion, there areq3(n−k)−1−q2(n−k)−2 > 0 one-dimensional subspaces

in V that do not lie inV1∨V2∨
∨n−k−1

j=1 v j
3 nor in F⊥∨

∨n−k−1
j=1 v j

3; thus it is indeed pos-

sible to construct the desired three(n− k)-dimensional subspaces. Therefore, we have

eliminated the possibility thatF⊥|U = {E ∈
[ U
n−k

]
: u⊂ E} for some one-dimensional

subspaceu⊂U in the caser = 3.

We may now assume thatr ≥ 3 and that ifU is a(r−1)(n−k)-dimensional space

that intersectsF⊥ trivially thenF⊥|U =
[ U ′

n−k

]
for some((r−1)(n−k)−1)-dimensional

subspaceU ′ ⊂ U . Our ultimate goal is to prove thatF⊥ =
[F⊥∨U ′

n−k

]
. Naturally, we

first show that ifU1,U2 are two(r−1)(n−k)-dimensional subspaces that intersectF⊥

trivially, thenF⊥∨U ′
1 = F⊥∨U ′

2.

Claim 5.3.8. Let U1,U2 be two(r−1)(n−k)-dimensional subspaces of V that intersect

F⊥ trivially. Let U ′
1,U

′
2 be the((r−1)(n−k)−1)-dimensional subspaces of U1 and U2

such thatF⊥|U1 =
[ U ′

1
n−k

]
andF⊥|U2 =

[ U ′
2

n−k

]
. Then F⊥∨U ′

1 = F⊥∨U ′
2.

Proof. Suppose, for a contradiction, thatF⊥ ∨U ′
1 6= F⊥ ∨U ′

2. We choose subspaces

W1, . . . ,Wr−2 in
[ U ′

1
n−k

]
such that dim

(∨r−2
i=1 Wi

)
= (r−2)(n−k) andW1 is not contained

in F⊥∨U ′
2.

The subspaceF⊥∨
∨r−2

i=1 Wi is (r−1)(n−k)-dimensional becauseU1 intersects

F⊥ trivially. The subspaceU ′
2 is ((r − 1)(n− k)− 1)-dimensional and intersectsF⊥
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trivially so

(r−2)(n−k)−1≤ dim

(
U ′

2∩

(
F⊥∨

r−2∨
i=1

Wi

))
≤ (r−2)(n−k).

Suppose that dim
(
U ′

2∩
(
F⊥∨

∨r−2
i=1 Wi

))
= (r −2)(n− k) for a contradiction. By def-

inition of W1, we can choose a one-dimensional subspacew⊂W1 that does not lie in

F⊥∨U ′
2. The subspaceF⊥∨w is (n−k+1)-dimensional. The subspaceF⊥∨

∨r−2
i=1 Wi

is (r − 1)(n− k)-dimensional and containsF⊥ ∨w. Note thatF⊥ ∨w must intersect

U ′
2 nontrivially if dim

(
U ′

2∩
(
F⊥∨

∨r−2
i=1 Wi

))
= (r − 2)(n− k). This is a contradic-

tion becausew does not lie inF⊥ ∨U ′
2 by construction. We therefore conclude that

dim
(
U ′

2∩
(
F⊥∨

∨r−2
i=1 Wi

))
= (r−2)(n−k)−1.

SinceU ′
2 is ((r−1)(n−k)−1)-dimensional, this implies that there exists a sub-

spaceZ in
[ U ′

2
n−k

]
that intersectsF⊥ ∨

∨r−2
i=1 Wi trivially. Now F⊥,W1, . . . ,Wr−2,Z lie in

F⊥ sinceF⊥|U1 =
[ U ′

1
n−k

]
andF⊥|U2 =

[ U ′
2

n−k

]
. By construction,F⊥∨

∨r−2
i=1 Wi ∨Z = V,

which contradictsF⊥ beingr-wise co-intersecting. This provesF⊥∨U ′
1 = F⊥∨U ′

2.

Now we show that any(n−k)-dimensional subspace inF⊥∨U ′ that intersects

F⊥ trivially must lie inF⊥.

Claim 5.3.9. If G ∈
[F⊥∨U ′

n−k

]
and G∩F⊥ = {0}, then G∈F⊥.

Proof. SinceG∩F⊥ = {0}, there exists a(r−1)(n−k)-dimensional subspaceU(G) that

containsG and intersectsF⊥ trivially. Let U(G)′ be the((r−1)(n−k)−1)-dimensional

subspace ofU(G) such thatF⊥|U(G) =
[U(G)′

n−k

]
. By Claim 5.3.8,

G⊂ (F⊥∨U ′)∩U(G) = (F⊥∨U(G)′)∩U(G) = U(G)′.

HenceG∈
[U(G)′

n−k

]
⊂F⊥.

Now we are ready to proveF⊥ =
[F⊥∨U ′

n−k

]
. Suppose, for a contradiction, that

there exists a subspaceH ∈ F⊥ that is not in
[F⊥∨U ′

n−k

]
. We will constructr − 1 sub-

spaces in
[F⊥∨U ′

n−k

]
that each intersectF⊥ trivially and that together withH spanV. By

Claim 5.3.9, theser −1 subspaces lie inF⊥ which contradictsF⊥ beingr-wise co-

intersecting.
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To build theser −1 subspaces, we construct a family of one-dimensional sub-

spaces

{v j
i : i ∈ {1, . . . , r−1}, j ∈ {1, . . . ,n−k}}

such that for eachi ∈ {1, . . . , r−1}, the subspaceGi =
∨n−k

j=1v j
i lies inF⊥∨U ′, intersects

F⊥ trivially, and
∨r−1

i=1 Gi ∨H = V. The subspacesG1, . . . ,Gr−1 are the desiredr − 1

subspaces. We pick the one-dimensional subspaces one after the other; we have to show

that at each step there is a possible one-dimensional subspace to pick. When picking

the last one-dimensional subspacevn−k
r−1 we must pick a one-dimensional subspace from

F⊥∨U ′ that is not inH ∨
∨r−2

i=1 Gi ∨
∨n−k−1

j=1 v j
r−1 nor in F⊥∨

∨n−k−1
j=1 v j

r−1. SinceH is

not contained inF⊥∨U ′, we have

dim

((
F⊥∨U ′

)
∩

(
H ∨

r−2∨
i=1

Gi ∨
n−k−1∨

j=1

v j
r−1

))
= r(n−k)−2.

Hence, there are at least

qr(n−k)−2− (q2(n−k)−2 +q2(n−k)−3 + · · ·+1) > 0

one-dimensional subspaces ofF⊥∨U ′ that do not lie inH ∨
∨r−2

i=1 Gi ∨
∨n−k−1

j=1 v j
r−1 nor

in F⊥∨
∨n−k−1

j=1 v j
r−1; thus it is indeed possible to construct the desiredr−1 subspaces.

This proves thatF⊥ ⊆
[F⊥∨U ′

n−k

]
, and since|F⊥|=

[n−1
k−1

]
we haveF⊥ =

[F⊥∨U ′

n−k

]
. The

subspaceF⊥∨U ′ is (n−1)-dimensional; by duality,F = {F ∈
[V

k

]
: v⊂ F} for some

one-dimensional subspacev⊂V, which is the desired conclusion.

5.4 Other Results of the Author

In this section, we discuss the author’s other results in this area, namely obtaining

an analog of the Hilton-Milner theorem and determining the chromatic number of the

q-Kneser graphs. The results will be stated but not proved.

5.4.1 Analog of the Hilton-Milner Theorem

Recall that Hilton’s and Milner’s Theorem 2.2.13 is an extension of the Erdős-

Ko-Rado theorem, Theorem 2.2.2, that gives the size of the largest nontrivial intersecting
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family F ⊂
(X

k

)
. The Hilton-Milner theorem was first proved by Hilton and Milner [70]

using lengthy combinatorial arguments; later Frankl and Füredi produced an elegant

proof using the shifting technique. Due to the issues discussed in Section 4.6.1, none of

the known proofs of the Hilton-Milner theorem readily generalize to vector spaces.

We will see that the similarity between the Hilton-Milner theorem and its vector

space analog, Theorem 5.4.1, is remarkable. We stress, however, that the naive analog

of the extremal family (i) in Theorem 2.2.13 isnot maximally intersecting: IfE ∈
[V

1

]
is a one-dimensional subspace andU ∈

[V
k

]
is a k-dimensional subspace that does not

containE, then the family

{U}∪
{

W ∈
[
V
k

]
: E ⊂W, dim(W∩U)≥ 1

}
(5.4.1)

is not maximally intersecting, as we can add all subspaces in
[E∨U

k

]
that are not in (5.4.1).

We will say thatF is anHM-type family if

F =
{

W ∈
[
V
k

]
: E ⊂W, dim(W∩U)≥ 1

}
∪
[
E∨U

k

]
for someE ∈

[V
1

]
andU ∈

[V
k

]
with E 6⊂U .

Theorem 5.4.1(Blokhuis-Brouwer-Chowdhury-Frankl-Mussche-Patkós-Szőnyi). For

k ≥ 3, suppose q≥ 3, n≥ 2k+ 1 or q = 2, n≥ 2k+ 2. If F ⊂
[V

k

]
is an intersect-

ing family and there does not exist v∈
[V

1

]
such thatF ⊂ {F ∈

[V
k

]
: v⊂ F}, then

|F | ≤
[
n−1
k−1

]
−qk(k−1)

[
n−k−1

k−1

]
+qk.

Equality holds if and only if

(i) F is an HM-type family,

(ii) F = {F ∈
[V

k

]
: dim(S∩F)≥ 2} for some S∈

[V
2

]
if k = 3.

Variants of Theorem 5.4.1 are used to establish our next result on coloring theq-Kneser

graphs.
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5.4.2 Coloring theq-Kneser Graph

We discuss the question of coloring theq-Kneser graphs. First, we define what

is meant by a graph coloring.

Definition 5.4.2. Given a graph G= (V,E) a proper coloringof G with l colors is a map

from V to a set of colors with cardinality l such that no two adjacent vertices receive the

same color.

If V is finite, then clearlyG can be properly colored with|V| colors. We will be

interested in the least number of colors required to properly colorG.

Definition 5.4.3. Given a graph G= (V,E), the chromatic numberof G, denotedχ(G),

is the least integer l∈ Z+ such that G has a proper coloring with l colors.

Observe that a set of vertices that receives the same color in a proper coloring

must be an independent set. Hence, the chromatic number of a graph is the minimum

number of independent sets needed to partition its vertex setV.

Determining the chromatic number of a graph can be very difficult. In 1955,

Kneser [78] conjectured that, whenn≥ 2k, the chromatic number of the Kneser graph

Kn:k is χ(qKn:k) = n−2k+2. The problem remained open for twenty three years until

Lovász [83] and Bárány [9] found proofs that surprisingly use algebraic topology.

Theorem 5.4.4(Bárány, Lovász). If n≥ 2k, the chromatic number of the Kneser graph

Kn:k is χ(Kn:k) = n−2k+2.

We can easily see thatn− 2k+ 2 colors suffice to properly color the Kneser

graphKn:k. If α is a k-subset ofKn:k and its largest element is greater than 2k, define

this element to be the color ofα. Thus, thek-subsets not contained in{1, . . . ,2k} can

be colored withn−2k colors. Thek-subsets not already colored induce a copy ofK2k:k,

which is bipartite, so the remainingk-subsets can be colored with two colors. This

proves thatχ(Kn:k)≤ n−2k+2.

Kneser’s conjecture motivates the question of coloring theq-Kneser graphs. Not

surprisingly, the known proofs of Theorem 5.4.4 do not generalize to the vector space

setting. We have seen in Section 4.4 that many parameters of theq-Kneser graph reduce
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to the corresponding parameters of the Kneser graph by settingq = 1. Interestingly, we

will see that the chromatic number isnot one of these parameters. The author, Godsil,

and Royle [26] determined the chromatic number of theq-Kneser graphsqKn:2 when

n≥ 4, and characterized the minimum colorings.

Theorem 5.4.5(Chowdhury-Godsil-Royle). The chromatic number of the q-Kneser

graph qK4:2 is χ(qK4:2) = q2 +q. If n> 4, then the chromatic number of the q-Kneser

graph qKn:2 is χ(qKn:2) = [n−1].

We see that theq-Kneser graphqK5:2 has chromatic numberχ(qK5:2) = [4] by

Theorem 5.4.5. The Kneser graph,K5:2, also known as the Petersen graph, has chromatic

numberχ(K5:2) = 3, however. The relationship between the chromatic numbers of the

Kneser graph and theq-Kneser graph is thus more complex than settingq = 1.

Using variants of Theorem 5.4.1, we can determine the chromatic number of the

q-Kneser graphsqKn:k for k≥ 3, and characterize their minimum colorings.

Theorem 5.4.6(Blokhuis-Brouwer-Chowdhury-Frankl-Mussche-Patkós-Szőnyi). Sup-

pose that k≥ 3, and that either q≥ 3 and n≥ 2k+1, or q= 2 and n≥ 2k+2. Then the

chromatic number of the q-Kneser graph qKn:k is χ(qKn:k) = [n−k+1].

Some of the remaining cases have been settled; see [15].

5.5 Open Problems

As extremal set theory questions usually have natural vector space analogs, many

open problems in this area remain. We discuss three of our favorites here: the analog

of Mubayi’s and Verstraëte’s Theorem 2.2.10, the analog of Baranyai’s Theorem 3.4.33,

and the question of determining the largest clique in theq-Kneser graph. The theorems

in Chapter 4 and Chapter 5 seem to suggest that the obvious analogs of extremal set

theory results should be true in vector spaces, even if their proofs don’t readily general-

ize. The last question we discuss, that of determining the largest clique in theq-Kneser

graph, shows that this is not always true!
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5.5.1 Forbidding Triangles

Recall that Theorem 2.2.10 asserted that ifF ⊂
(X

k

)
contains no triangles and

n≥ 3k/2, then|F | ≤
(n−1

k−1

)
with equality if and only if there exists anx∈ X for which

F = {F ∈F : x∈ F}. We saw that if 3k/2≤ n < 2k, then a familyF ⊂
(X

k

)
without

triangles is necessarily 3-wise intersecting, and so the problem is solved by Frankl’s

r-wise intersection theorem, Theorem 2.2.7, in this case.

We can naturally ask for the largest familyF ⊂
[V

k

]
of k-dimensional subspaces

of V that does not contain a triangle.

Definition 5.5.1. A triangle T = {A,B,C} ⊂
[V

k

]
is a family consisting of three sets

A,B,C such that A∩B,A∩C,B∩C 6= {0} but A∩B∩C = {0}.

Question 5.5.2.What is the maximum size of a familyF ⊂
[V

k

]
that does not contain a

triangle? What are the extremal families?

As in Section 2.2.7, this question is uninteresting unlessn ≥ 3k/2. Also, if

3k/2≤ n < 2k, then a familyF ⊂
[V

k

]
that contains no triangle must be 3-wise inter-

secting. Hence, the author’s and Patkós’s analog of Frankl’s theorem, Theorem 5.0.14,

proves that, in this case,|F | ≤
[n−1

k−1

]
with equality if and only ifF = {F ∈

[V
k

]
: v⊂ F}

for somev ∈
[V

1

]
. The proof of Theorem 2.2.10 does not generalize to vector spaces

because of the issues discussed in Section 4.6.1.2.

5.5.2 Baranyai’s Theorem

Recall that Baranyai’s Theorem 3.4.33, proved that ifk|n, then the complete hy-

pergraph
(X

k

)
can be partitioned into

(n−1
k−1

)
perfect matchings. Is the same true for vector

spaces? We saw that the vector space analogs of perfect matchings are spreads. As the

number ofk-dimensional spaces in
[V

k

]
and in a spread are

[n
k

]
and[n]/[k] respectively,

the number of spreads needed to partition
[V

k

]
is
[n−1

k−1

]
.

Question 5.5.3.If k|n, can
[V

k

]
be partitioned into

[n−1
k−1

]
spreads?

This question is surprisingly difficult, even in the casek = 2. We remark that a

partition of
[V

k

]
into k-dimensional subspaces is called aparallelism by finite geometers.
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Beutelspacher [11] has constructed parallelisms whenk = 2 andn = 2l is a power of

two. Baker [7, 8] answered Question 5.5.3 affirmatively whenk = 2 andV is a vector

space overF2. No constructions of parallelisms fork> 2 were known until very recently

[107].

5.5.3 Cliques in theq-Kneser Graph

We saw in Section 3.3.1 that an independent set in a graph is a set of verticesS

such that no two vertices inS are adjacent. In this section, we will be concerned with

cliques, which are the exact opposites of independent sets.

Definition 5.5.4. Given a graph G= (V,E), a cliqueis a set of vertices C such that any

two distinct vertices in C are adjacent.

In Section 3.3.2 and Section 4.4, we were interested in determining the largest

independent sets of the Kneser andq-Kneser graphs respectively. A clique in the Kneser

graphKn:k corresponds to a family ofk-subsets ofX that are pairwise disjoint. Hence,

the largest clique in the Kneser graphKn:k has sizebn/kc. The corresponding quantity

for theq-Kneser graph is not as easily determined.

Question 5.5.5.What is the size and structure of the largest clique in the q-Kneser

graph qKn:k?

A clique in theq-Kneser graphqKn:k is a family of k-dimensional spaces ofV

that pairwise intersect in the zero subspace. Clearly, whenk|n, a spread is the largest

clique in theq-Kneser graphqKn:k and has size[n]/[k]. Hence, fork= 2, all that remains

to solve Question 5.5.5 is the case of oddn.

Theorem 5.5.6(Beutelspacher). If n is odd, the largest clique in the q-Kneser graph

qKn:2 has size
qn−q
q2−1

− (q−1).

Eisfeld and Storme [42] conjectured that ifn= ck+ r, where 1≤ r ≤ k−1, then

the largest clique in theq-Kneser graphqKn:k has size

qn−qr

qk−1
− (qr −1). (5.5.1)
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Note that Eisfeld and Storme’s conjecture (5.5.1) reduces to Theorem 5.5.6 in the case

k = 2. Very recently, El-Zanati et al. [43] disproved Eisfeld’s and Storme’s conjecture.

They showed that whenq = 2, n = 3c+2, andn≥ 8, the largest clique in theq-Kneser

graphqKn:3 has size
2n−22

23−1
−2 >

2n−22

23−1
− (22−1),

which is larger than the conjectured maximum in (5.5.1).

Chapter 5, in part, is a reprint of the material as it appears in “Shadows and

intersections in vector spaces," 2010. Chowdhury, Ameera; Patkós, Balázs.J. Com-

bin. Theory Ser. A, 117(8):1095–1106, 2010. The dissertation author was the primary

investigator and author of this paper.



Chapter 6

On a Conjecture of Frankl and Füredi

Recall that Fisher’s Inequality, Theorem 2.3.9, states that aλ -intersecting family

F ⊂ 2X of sizemhas a 1-shadow of size at leastm. Frankl and Füredi [55] conjectured

a similar inequality, Conjecture 2.3.10, for the 2-shadows of nontrivialλ -intersecting

families. Their conjecture asserts that ifF ⊂ 2X is a nontrivialλ -intersecting family

of sizem, then the number of pairs{x,y} ∈
(X

2

)
that are contained in someF ∈F is at

least
(m

2

)
. Conjecture 2.3.10 generalizes Fisher’s Inequality and easily implies it since(|∂ 1F |

2

)
≥ |∂ 2F | ≥

(m
2

)
proves|∂ 1F | ≥m.

One important difference between Fisher’s Inequality and the Frankl-Füredi con-

jecture is that the latter has a nontriviality restriction. Unfortunately, this condition is

necessary, and sunflowers are an example of a trivial family for which the Frankl-Füredi

conjecture is not valid.

Definition 6.0.7. A familyF ⊂ 2X is a sunflowerif deg(x) ∈ {1, |F |} for all x ∈ X.

If F ⊂
(X

k

)
is a λ -intersecting sunflower of sizem, then |∂ 2F | ≤ m

(k
2

)
<
(m

2

)
when

m> k(k−1)+1. We note that Conjecture 2.3.10 is equivalent to the seemingly stronger

statement that ifF ⊂ 2X is aλ -intersecting family of sizem that is not a sunflower, then

|∂ 2F | ≥
(m

2

)
. Fisher’s inequality and its variants are usually proved by the linear inde-

pendence arguments discussed in Chapter 3. One difficulty in proving Conjecture 2.3.10

in this way is understanding how to interpret the nontriviality restriction in a linear al-

gebra setting.

97
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6.1 Results

Frankl and Füredi [55] verified Conjecture 2.3.10 whenλ = 1. The author’s

work [25] appears to be the first to consider Conjecture 2.3.10 since [55] was published

over twenty years ago. Several special cases of Conjecture 2.3.10 had already been

proved, however, before [55] was published. For example, Ryser [99], Woodall [117],

and Babai [3] showed Conjecture 2.3.10 is true whenm = n. Majindar [86] proved

Conjecture 2.3.10 for regularλ -intersecting families.

The author’s main results verify the Frankl-Füredi conjecture in some special

cases. We first show that their conjecture holds for nontrivialλ -intersecting families

that satisfy a reasonable extra condition and characterize the extremal families. We then

apply this result to verify the Frankl-Füredi conjecture whenF is additionally required

to be uniform andλ is small. More precisely, we prove the following theorems.

Theorem 6.1.1(Chowdhury). Let F ⊂ 2X be aλ -intersecting family of size m. IfF

satisfies

∑
F∈F

(
|F |
2

)
≥ ∑

x∈X

(
deg(x)

2

)
= λ

(
m
2

)
, (6.1.1)

then |∂ 2F | ≥
(m

2

)
. Moreover, ifλ ≥ 2 andF ⊂

(X
k

)
is also k-uniform, then we have

|∂ 2F |=
(m

2

)
if and only ifF is a symmetric design.

Note that ifF ⊂
(X

k

)
is aλ -intersecting family of sizem, then (6.1.1) is equivalent to

m≤ k(k−1)
λ

+1. (6.1.2)

Theorem 6.1.2(Chowdhury). LetF ⊂
(X

k

)
be a nontrivialλ -intersecting family of size

m.

(i) If λ = 2, then |∂ 2F | ≥
(m

2

)
and equality holds if and only ifF is a symmetric

design.

(ii) If λ = 3 and k/∈ {8,11}, then|∂ 2F | ≥
(m

2

)
and equality holds if and only ifF is

a symmetric design.
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6.2 Old and New Conjectures

In light of (6.1.2), it is interesting to note that Stanton and Mullin [104] once

conjectured that ifF ⊂
(X

k

)
is a nontrivialλ -intersecting family of sizem, then (6.1.2)

holds. Had this conjecture been true, Theorem 6.1.1 would have implied that Conjec-

ture 2.3.10 is true for uniform families as well as characterized the case of equality.

Unfortunately, Hall [68] proved that Stanton and Mullin’s conjecture is true only for

λ ∈ {1,2} and produced counterexamples for everyλ ≥ 3.

Since (6.1.1) and (6.1.2) are equivalent for uniform families, Hall’s proof of

Stanton and Mullin’s conjecture forλ = 2 shows that (6.1.1) is true for uniform, non-

trivial, 2-intersecting families. Combined with Theorem 6.1.1, Hall’s result proves The-

orem 6.1.2 (i). If (6.1.1) were true for every nontrivial 2-intersecting family, then Theo-

rem 6.1.1 would imply that Conjecture 2.3.10 is true forλ = 2. We exhibit one nontrivial

2-intersecting family that does not satisfy (6.1.1), but feel that this may be the only coun-

terexample. Recall the unique 2-design̂F from Section 3.1.3, which was discovered by

Ryser [99]. It is easily seen that∑F∈F̂

(|F |
2

)
= 39 while 2

(m
2

)
= 42. We conjecture that

F̂ is the only nontrivial 2-intersecting family for which (6.1.1) does not hold.

Conjecture 6.2.1. If F ⊂ 2X is a nontrivial2-intersecting family of size m that is not

the unique 2-design, then(6.1.1)holds.

Frankl and Füredi [55] showed (6.1.1) holds for all nontrivial 1-intersecting fam-

ilies, and we gave their argument in Section 2.3.4.

Theorem 6.1.1 implies that a uniform counterexample to Conjecture 2.3.10 is

also a counterexample to Stanton and Mullin’s conjecture. It is not difficult to see that

Hall’s counterexamples to Stanton and Mullin’s conjecture do not give counterexamples

to Conjecture 2.3.10; for definitions see [68]. Hence, we can view Conjecture 2.3.10 as

a weakening of Stanton and Mullin’s conjecture.

A further weakening of Stanton and Mullin’s conjecture is Conjecture 6.2.2,

which is due to Hall [68]. Together with Theorem 6.1.1, we see that Conjecture 6.2.2

would imply that Conjecture 2.3.10 is true ifF is additionally required to bek-uniform

andk is sufficiently large. Deza [38] showed thatk1 = 2; Hall [68] showed thatk2 = 3;

our proof of Theorem 6.1.2 shows thatk3 ≤ 12.
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Conjecture 6.2.2(Hall, 1977). For eachλ ∈ Z+, there exists a kλ ∈ Z+ such that if

k≥ kλ andF ⊂
(X

k

)
is a nontrivialλ -intersecting family of size m, then(6.1.2)holds.

It is natural to wonder if the obvious analog of Conjecture 2.3.10 for higher

shadows holds. By consideringλ -blowups of projective planes of orderq whenq is

large enough, we have infinitely many nontrivialλ -intersecting familiesF satisfying

|∂ iF |<
(m

i

)
for eachi ≥ 3 and eachλ ∈ Z+.

6.3 Proof of Theorem 6.1.1

We use the linear programming techniques discussed in Section 3.4 to prove

Theorem 6.1.1. We will use Theorem 6.1.1 to prove Theorem 6.1.2 in Section 6.4.

Though we used codegrees in the proof of Theorem 3.1.4, we formally define them

now.

Definition 6.3.1. For a subset S⊂ X and a familyF ⊂ 2X, we define the co-degreeof

S, denotedcodeg(S), to be the number of sets inF that contain S,

codeg(S) := |{F ∈F : S⊂ F}|.

Proof of Theorem 6.1.1. Whenλ = 1, the proof of Theorem 6.1.1 is trivial because

|∂ 2F | equals the left hand side of (6.1.1). We therefore assume thatλ ≥ 2. LetF ⊂ 2X

be aλ -intersecting family of sizem. Let ai denote the number of pairs{x,y} ∈
(X

2

)
with

codeg({x,y}) = i, and observe that the following identities hold

∑
i≥1

iai = ∑
F∈F

(
|F |
2

)
, ∑

i≥1

(
i
2

)
ai =

(
λ

2

)(
m
2

)
.

The first counts pairs({x,y},F) where{x,y} ∈
(X

2

)
, F ∈F , and{x,y}⊂ F . The second

counts pairs({x,y},{F1,F2}) where{x,y} ∈
(X

2

)
, {F1,F2} ⊂ F , and{x,y} ⊂ F1∩F2.

Consequently,(a1, . . . ,am) is a feasible solution to the following linear program with
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objective value|∂ 2F |:

Minimize
m

∑
i=1

zi (6.3.1)

subject to: ∑
i≥1

izi = ∑
F∈F

(
|F |
2

)
∑
i≥1

(
i
2

)
zi =

(
λ

2

)(
m
2

)
zi ≥ 0, i ∈ {1, . . . ,m}.

The dual of this linear program is:

Maximize

(
λ

2

)(
m
2

)
x+

(
∑

F∈F

(
|F |
2

))
y (6.3.2)

subject to:

(
i
2

)
x+ iy≤ 1, i ∈ {1, . . . ,m}.

The feasible region of the dual linear program (6.3.2) has extreme points given by(
− 1( j+1

2

) , 2
j +1

)
, j ∈ {1, . . . ,m−1}. (6.3.3)

If F satisfies (6.1.1), then settingj = λ −1 in (6.3.3) and applying weak duality, The-

orem 3.4.6, yields

|∂ 2F | ≥
(

λ

2

)(
m
2

)(
− 1(

λ

2

))+

(
∑

F∈F

(
|F |
2

))(
2
λ

)
≥
(

m
2

)
, (6.3.4)

as desired. Finally, note that equality in (6.1.1) follows from counting pairs(x,{F1,F2})
such that{F1,F2} ⊂F andx∈ F1∩F2.

We now assume thatλ ≥ 2 and thatF ⊂
(X

k

)
is alsok-uniform. We prove that

|∂ 2F | =
(m

2

)
if and only if F is a symmetric design. Ryser [99], Woodall [117], and

Babai [3] showed that ifF ⊂ 2X is a λ -intersecting family of sizem = |∂ 1F | = n,

then|∂ 2F | =
(m

2

)
. Conversely, suppose|∂ 2F | =

(m
2

)
and letai denote the number of

pairs{x,y} ∈
(X

2

)
with codeg({x,y}) = i. We will show thatF is k-regular, which

immediately implies thatF is a symmetric design. By (6.3.4), we see that equality

holds in (6.1.2),(a1, . . . ,am) is an optimal solution to the primal linear program (6.3.1),
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and (6.3.3) withj = λ −1 is an optimal solution to the dual linear program (6.3.2). By

weak complementary slackness, Theorem 3.4.8, this implies

ai = 0 or

(
i
2

)(
−1(

λ

2

))+ i

(
2
λ

)
= 1.

Henceai = 0 for i /∈ {λ −1,λ} for i ∈ {1, . . .m}. The constraints in the primal linear

program (6.3.1) implyaλ−1+aλ =
(m

2

)
and

(
λ−1

2

)
aλ−1+

(
λ

2

)
aλ =

(
λ

2

)(m
2

)
, soaλ−1 = 0

andaλ =
(m

2

)
.

Let x∈ X and count pairs(y,F) such that{x,y} ⊂ F . Sinceaλ =
(m

2

)
, we have

λ |∂ 1L(x)|= (k−1)deg(x) so |∂ 1L(x)|= k−1
λ

deg(x). (6.3.5)

We will give a lower bound on|∂ 1L(x)| in terms of deg(x) that will allow us to prove

that F is k-regular. Forx ∈ X, let bx,i denote the number of verticesy ∈ X such that

codeg({x,y}) = i and observe that the following identities hold

∑
i≥1

ibx,i = (k−1)deg(x), ∑
i≥1

(
i
2

)
bx,i = (λ −1)

(
deg(x)

2

)
.

The first follows from counting pairs(y,F) where{x,y} ∈
(X

2

)
, F ∈F , and{x,y} ⊂ F .

The second follows from counting pairs(y,{F1,F2}) where{x,y} ∈
(X

2

)
, {F1,F2} ⊂F ,

and{x,y} ⊂ F1∩F2. Consequently,(bx,1, . . . ,bx,m) is a feasible solution to the following

linear program with objective value|∂ 1L(x)|:

Minimize
m

∑
i=1

wi

subject to: ∑
i≥1

iwi = (k−1)deg(x)

∑
i≥1

(
i
2

)
wi = (λ −1)

(
deg(x)

2

)
wi ≥ 0, i ∈ {1, . . . ,m}.

The dual of this linear program is:

Maximize (λ −1)
(

deg(x)
2

)
y+(k−1)deg(x)z

subject to:

(
i
2

)
y+ iz≤ 1, i ∈ {1, . . . ,m}.
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Since (6.3.3) withj = λ −1 is a feasible solution, using (6.3.5) yields

k−1
λ

deg(x) = |∂ 1L(x)| ≥ deg(x)

(
2(k−1)

λ
− (λ −1)

deg(x)−1
2

(
λ

2

)−1
)

.

Hence, deg(x)≥ k for eachx∈ X. On the other hand, letF ∈F and count pairs(x,F ′)

such thatF 6= F ′ ∈F andx∈ F ∩F ′. Since equality holds in (6.1.2), we have

k2 ≤ ∑
x∈F

deg(x) = λ (m−1)+k = k2

so deg(x) = k for all x∈ X. HenceF is k-regular and is thus a symmetric design.

6.4 Proof of Theorem 6.1.2

In light of (6.1.1) and (6.1.2), we are interested in upper bounds on the sizes

of nontrivial λ -intersecting familiesF that depend only on the sizes of the sets inF .

One of the first results of this kind is Deza’s theorem [38], which bounds the size of

λ -intersecting families that are not sunflowers. In the case whenF ⊂
(X

k

)
is k-uniform,

the upper bound onm in (6.4.1) is bigger than the upper bound onm in (6.1.2) by a

factor of roughlyλ .

Theorem 6.4.1(Deza, 1974). Let F ⊂ 2X be aλ -intersecting family of size m that is

not a sunflower. Define K:= maxF∈F |F |. Then

m≤max{λ (λ +1)+1,(K−λ )((K−λ )+1)+1}. (6.4.1)

Since nontriviality is a stronger restriction onF than not being a sunflower, it

is plausible that (6.4.1) could be improved for nontrivialF . Frankl and Füredi [55]

did exactly this when they showed that (6.1.1) holds for all nontrivial 1-intersecting

families. We mentioned in the introduction that Stanton and Mullin [104] conjectured

that (6.4.1) could be improved to (6.1.2) ifF is nontrivial andk-uniform; Theorem 6.4.1

verifies Stanton and Mullin’s conjecture forλ = 1 and Hall proved Stanton and Mullin’s

conjecture whenλ = 2.
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Theorem 6.4.2(Hall, 1977). If F ⊂
(X

k

)
is a nontrivial2-intersecting family of size m,

then

m≤
(

k
2

)
+1.

We adapt Hall’s proof of Theorem 6.4.2 to prove Theorem 6.1.2. (For the

reader’s convenience, we first reproduce Hall’s proof of Theorem 6.4.2.) In our proof,

we will use the fact that ifF ⊂
(X

k

)
is aλ -intersecting family, then deg(x) does not lie

in a certain interval. Deza [37] showed that ifF ⊂
(X

k

)
is aλ -intersecting family of size

m then, for allx∈ X,

deg(x)(m+1−deg(x))≤max{λ ,k−λ}(m+1). (6.4.2)

McCarthy and Vanstone [92] adapted an argument of Connor [29], and improved this

bound; they gave the following restriction on deg(x).

Theorem 6.4.3(McCarthy-Vanstone, 1979). LetF ⊂
(X

k

)
be aλ -intersecting family of

size m.

(i) If x ∈ X then,

deg(x)((k−λ )+λ (m−deg(x)))≤ (k−λ )((k−λ )+λm). (6.4.3)

(ii) Let {x,y} ⊂
(X

2

)
and define

(a) a11 = (k−λ )((k−λ )+λm)−deg(x)((k−λ )+λ (m−deg(x))),

(b) a12 = a21 = λ deg(x)deg(y)− ((k−λ )+λm)codeg({x,y}),

(c) a22 = (k−λ )((k−λ )+λm)−deg(y)((k−λ )+λ (m−deg(y))).

The following determinant is non-negative:

det

(
a11 a12

a21 a22

)
≥ 0. (6.4.4)

We now reproduce Hall’s proof of Theorem 6.4.2. Note that Hall had originally

used (6.4.2) in his proof, but we will use (6.4.3) instead since it makes the argument

cleaner.
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Hall’s Proof of Theorem 6.4.2Suppose, for a contradiction, that there exists a nontriv-

ial 2-intersectingF ⊂
(X

k

)
of sizem>

(k
2

)
+1. Write

m=
(

k
2

)
+1+ ε, ε ∈ Z+. (6.4.5)

Note that the left hand side of (6.4.3) is quadratic in deg(x) with roots deg(x) = 0

and deg(x) = m−1+k/2. If there exists anx∈ X with k≤ deg(x)≤ (m−1+k/2)−k,

then (6.4.3) is true for deg(x) = k; together with (6.4.5), this implies thatε ≤ 0, which

is impossible. Hence, for allx∈ X, either

deg(x)≤ k−1 or deg(x)≥m−
⌈

k
2

⌉
. (6.4.6)

We say a vertexx∈ X with deg(x)≤ k−1 is light and isheavy if deg(x)≥m−dk/2e.
By (6.4.5), for anyF ∈F , we have

∑
x∈F

deg(x) = 2(m−1)+k = k2 +2ε. (6.4.7)

Since the average degree of a vertex inF ∈F is greater thank, every setF ∈F contains

a heavy vertex. AsF is nontrivial, there are at least two heavy verticesx1,x2. Define

s := |{F ∈F : {x1,x2} ⊂F}|, t := |{F ∈F : x1 ∈ F,x2 /∈ F}|,

u := |{F ∈F : x1 /∈ F,x2 ∈ F}|, v := |{F ∈F : x1,x2 /∈ F}|.

We haves≤ k− 1 becauseλ = 2 andF is nontrivial. Sinceu+ v and t + v count

the number of setsF ∈F not onx1,x2 respectively, (6.4.6) yieldst +v,u+v≤ dk/2e.
Consequently (6.4.5) implies,(

k
2

)
+1+ ε = m= s+ t +u+v≤ s+(t +v)+(u+v)≤ (k−1)+2

⌈
k
2

⌉
≤ 2k.

As ε ∈Z+, we have a contradiction fork≥ 5. Fork = 4, Theorem 6.4.1 yieldsm≤ 7, so

we have a contradiction in this case too. We have shown that ifF ⊂
(X

k

)
is a nontrivial

2-intersecting family of sizem thenm≤
(k

2

)
+1.

For largerλ , if we knew that a nontrivialλ -intersectingF ⊂
(X

k

)
that does

not satisfy (6.1.2) has at leastλ heavy vertices, then Hall’s argument would yield a

proof of Conjecture 6.2.2. Unfortunately, Hall’s averaging argument only shows that
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any nontrivialλ -intersectingF ⊂
(X

k

)
that does not satisfy (6.1.2) has at least two heavy

vertices. In the proof of Theorem 6.1.2, we expend a lot of effort to eliminate the

possibility that there are exactly two heavy vertices whenλ = 3; the key difficulty is

getting a good bound on the number of setsF ∈F that contain both the heavy vertices.

Proof of Theorem 6.1.2. We observe that Theorem 6.4.2 together with Theorem 6.1.1

yields Theorem 6.1.2 (i).

For the rest of the proof, we assume thatλ = 3. We will show that ifF ⊂
(X

k

)
is

a nontrivial 3-intersecting family, wherek /∈ {8,11}, then (6.1.2) holds. Theorem 6.1.1

then implies that|∂ 2F | ≥
(m

2

)
and that equality holds if and only ifF is a symmetric

design. First supposek < 6. It is not difficult to see that ifF is a nontrivialk-uniform

3-intersecting family of sizem, wherek∈ {4,5}, thenm≤ 5; for proofs of these results

in a more general setting see [62], [63], and [111]. Hence, (6.1.2) holds whenk < 6.

Suppose, for a contradiction, thatk ≥ 12 and thatF ⊂
(X

k

)
is a nontrivial 3-

intersecting family of sizem for which (6.1.2) does not hold. Write

m=
k(k−1)

3
+1+ ε, ε > 0. (6.4.8)

Note that the left hand side of (6.4.3) is quadratic in deg(x) with roots deg(x) = 0

and deg(x) = m−1+k/3. If there exists anx∈ X with k≤ deg(x)≤ (m−1+k/3)−k,

then (6.4.3) is true for deg(x) = k; together with (6.4.8), this implies thatε ≤ 0, which

is impossible. Hence, for allx∈ X, either

deg(x)≤ k−1 or deg(x)≥m−
⌈

2k
3

⌉
≥m− 2k+2

3
. (6.4.9)

Following Hall [68], we say a vertexx ∈ X is light if deg(x) ≤ k− 1 and isheavy if

deg(x)≥m−d2k/3e.
By (6.4.8), for anyF ∈F , we have

∑
x∈F

deg(x) = 3(m−1)+k = k2 +3ε. (6.4.10)

Since the average degree of a vertex inF ∈F is greater thank, every setF ∈F contains

a heavy vertex. AsF is nontrivial, there are at least two heavy vertices. We consider

two cases, according to whether there are exactly two or greater than two heavy vertices.
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Case 1: There are exactly two heavy vertices. Let x1,x2 be the heavy vertices. SinceF

is nontrivial, there exists a setF1 ∈ F which containsx1 but notx2, and there exists a

setF2 ∈F which containsx2 but notx1. Let F1∩F2 := {y1,y2,y3}. Define

s := |{F ∈F : {x1,x2} ⊂F}|, t := |{F ∈F : x1 ∈ F,x2 /∈ F}|,

u := |{F ∈F : x1 /∈ F,x2 ∈ F}|,

and observe thatm= s+ t +u since everyF ∈F contains a heavy vertex. By (6.4.9),

we havet,u≤ d2k/3e ≤ (2k+2)/3.

We now show how to obtain an upper bound ons in terms ofk. Observe that any

F ∈F that contains{x1,x2} intersectsF1\{x1} in a subset of size two. Consequently,

2s= ∑
{x1,x2}⊂F

|F ∩F1\{x1}|= ∑
w∈F1\{x1}

codeg(x1,x2,w). (6.4.11)

We claim that ifw∈ X \{x1,x2} and there exists anF ∈F such that

{x1,x2} 6⊂ F, w /∈ F, (6.4.12)

then codeg({x1,x2,w})≤ (k−1)/2. SupposeF ′, F̂ ∈F are distinct sets inF that both

contain{x1,x2,w}. Sinceλ = 3, the intersections ofF ′ and F̂ with F \ {x1,x2} must

be disjoint subsets of size two. Hence, codeg({x1,x2,w}) ≤ (k−1)/2. Observe that if

w∈ F1\{x1,y1,y2,y3}, thenF2 is a set inF that satisfies (6.4.12). We will consider two

subcases according to whether for eachyi ∈ F1∩F2, there exists anF ∈F that satisfies

(6.4.12) forw = yi .

Subcase 1: For eachyi ∈ F1∩F2, there exists anF ∈F that satisfies (6.4.12) forw= yi .

Applying (6.4.9) and (6.4.11) yields

k(k−1)
3

+1+ ε = m= s+ t +u≤ (k−1)2

4
+2

⌈
2k
3

⌉
≤ 3k2 +10k+19

12
. (6.4.13)

This implies thatk2− 14k− 7+ 12ε ≤ 0, which is a contradiction fork ≥ 15 since

ε ≥ 1/3. For the remaining values ofk, we refer the reader to the appendix.

Subcase 2: There exists ayi ∈ F1∩F2 for which noF ∈F satisfies (6.4.12) forw = yi .
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Note that ifyi is in everyF ∈F that does not contain{x1,x2} then, by (6.4.9),

codeg({x1,x2,yi})≤ k−1−(t +u). Suppose that everyF ∈F , not containing{x1,x2},
containsj of the elements{y1,y2,y3} where j ∈ {1,2,3}. Applying (6.4.11) yields

k(k−1)
3

+1+ ε = m= s+ t +u (6.4.14)

≤ 1
2

(
∑

w∈F1\{x1}
codeg(x1,x2,w)

)
+ t +u

≤ 1
2

(
j(k−1− (t +u))+

(k−1− j)(k−1)
2

)
+ t +u

=
j
2
(k−1)+

(k−1− j)(k−1)
4

+(2− j)
t +u

2

≤ j
2
(k−1)+

(k−1− j)(k−1)
4

+(2− j)
2k+2

3

=−
(

k
6

+
7
6

)
j +

(k−1− j)(k−1)
4

+
4k+4

3

≤ 3k2 +5k+8
12

,

since the penultimate expression in (6.4.14) is maximized whenj = 1. This implies that

(k−1)(k−8)+12(ε−1/3)≤ 0, which is a contradiction fork≥ 9.

If k = 8 thenε = 1/3. Observe that codeg(x1,x2,w) ≤ 3 if w is not one of

the j special vertices in{y1,y2,y3}; in the bound fors in (6.4.14), we use the weaker

bound codeg(x1,x2,w)≤ 7/2 for verticesw that are not one of thej special vertices in

{y1,y2,y3}. If we replace the weaker bound on codeg(x1,x2,w) by the tighter bound,

then we get a contradiction fork = 8 as well. Finally, ifk∈ {6,7}, thenε ∈ Z+ so we

also get a contradiction in this case.

Case 2: There are greater than two heavy vertices. Let x1,x2,x3 be three heavy vertices.

Define

s := |{F ∈F : {x1,x2,x3} ⊂F}|, t := |{F ∈F : x1 ∈ F,x2,x3 /∈ F}|,

u := |{F ∈F : x2 ∈ F,x1,x3 /∈ F}|, v := |{F ∈F : x3 ∈ F,x1,x2 /∈ F}|,

w := |{F ∈F : x1,x2 ∈ F,x3 /∈ F}|, x := |{F ∈F : x1,x3 ∈ F,x2 /∈ F}|,

y := |{F ∈F : x2,x3 ∈ F,x1 /∈ F}|, z := |{F ∈F : x1,x2,x3 /∈ F}|.
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By counting the number of sets not containingx1, x2, or x3 respectively we have

u+v+y+z, t +v+x+z, t +u+w+z≤
⌈

2k
3

⌉
≤ 2k+2

3
, (6.4.15)

by (6.4.9). Asλ = 3 andF is nontrivial, we haves≤ k−2. Therefore (6.4.15) implies,

k(k−1)
3

+1+ ε = m= s+ t +u+v+w+x+y+z

≤ s+(u+v+y+z)+(t +v+x+z)+(t +u+w+z)

≤ (k−2)+3

⌈
2k
3

⌉
≤ (k−2)+(2k+2) = 3k. (6.4.16)

This impliesk2−10k+3+3ε ≤ 0, so we have a contradiction fork≥ 10 sinceε ≥ 1/3.

For the remaining values ofk, we refer the reader to the appendix.

We have shown that ifF ⊂
(X

k

)
is a nontrivial 3-intersecting family of sizemand

k /∈ {8,11}, thenF satisfies (6.1.2). By Theorem 6.1.1, this implies that ifF satisfies

the hypotheses of Theorem 6.1.2 (ii), then|∂ 2F | ≥
(m

2

)
and equality holds if and only

if F is a symmetric design.

6.5 Appendix

Here, we collect some computations that are needed to verify Theorem 6.1.2 for

small values ofk. We regret that we could not prove Theorem 6.1.2 for all values ofk.

The missing cases arek = 11,m= 40 in Case 1, Subcase 1 andk = 8,m= 20 in Case 2.

Case Analysis for Case 1, Subcase 1:

If k = 14, then codeg(x1,x2,w) ≤ 6 for w∈ F1\{x1} so (6.4.11) yieldss≤ 39.

Using this value fors in (6.4.13) yieldsε < 0, which contradicts (6.4.8).

If k = 13, then the penultimate inequality in (6.4.13) yields thatm= 54,s= 36,

andt = u = 9. Using these values in (6.4.4) yields a contradiction.

If k = 12, then codeg(x1,x2,w) ≤ 5 for w∈ F1\{x1} so (6.4.11) yieldss≤ 27.

Using this value fors in (6.4.13) yieldsε < 0, which contradicts (6.4.8).



110

If k = 11, then (6.4.13) yieldsm∈ {38,39,40,41}. If we add the constraint

zs = 1 to (6.3.1), then the dual linear program becomes

Maximize 3

(
m
2

)
w+

(
k
2

)
mx+y (6.5.1)

subject to:

(
i
2

)
w+ ix≤ 1, i ∈ {1, . . . ,m}\{s}(

s
2

)
w+sx+y≤ 1.

and any feasible solution to (6.5.1) is a lower bound on|∂ 2F |. If m= 38, then (6.4.13)

implies s≥ 22 becauset,u≤ 8. Observe that
(p

2

)(
−1

3

)
+ p

(2
3

)
≤
(q

2

)(
−1

3

)
+ q
(2

3

)
if

p > q≥ 2. We have
(22

2

)(
−1

3

)
+ 22

(2
3

)
+ 631

3 = 1, so the previous inequality implies

that (−1/3,2/3,631
3) is always a feasible solution to (6.5.1) form = 38 andk = 11.

Hence,|∂ 2F | >
(m

2

)
, which contradicts our initial assumption. A similar argument

eliminates the casem= 39. If m= 41, thens= 25 andt = u = 8 so deg(x1) = 33; this

contradicts Theorem 6.4.3.

If k = 10, then the penultimate inequality in (6.4.13) yieldsm= 32 ands= 18.

Since
(18

2

)(
−1

3

)
+ 18

(2
3

)
+ 40 = 1, we have(−1/3,2/3,40) is a feasible solution to

(6.5.1) for m = 32 andk = 10. Consequently,|∂ 2F | >
(m

2

)
, which contradicts our

initial assumption.

If k = 9, then (6.4.13) yieldsε ∈ {1,2,3} ands≤ 16. We consider the cases

ε = 1 andε ∈ {2,3} separately.

ε = 1: By (6.4.9), we haves≥ 14 andt,u≤ 6. Note that
(15

2

)
(−1

3)+15(2
3)+26= 1 so

(−1
3, 2

3,26) is a feasible solution to (6.5.1) form= 26,k = 9, ands≥ 15. If s= 14, then

t = u = 6 so deg(x1) = deg(x2) = 20. Observe that (6.4.9) and (6.4.10) imply

84= ∑
x∈F1

deg(x) = deg(x1)+ ∑
x1 6=x∈F1

deg(x)≤ 20+8(8) = 84;

hence, ifw is a light vertex in a set inF that doesn’t contain bothx1,x2, then deg(w) = 8.

Now suppose thatz is a light vertex that is only contained in sets that contain both

x1,x2; that is deg(z) = codeg(x1,x2,z). SinceF1 satisfies (6.4.12) forw = z, we see

deg(z) = codeg(x1,x2,z) ≤ 4. Now let F ′ ∈ F be a set that contains bothx1,x2 and
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observe that

84= ∑
x∈F ′

deg(x) = deg(x1)+deg(x2)+ ∑
z∈F ′\{x1,x2}

deg(z) = 20+20+ ∑
z∈F ′\{x1,x2}

deg(z).

Forz∈ F ′\{x1,x2}, we have deg(z)≤ 4 or deg(z) = 8 so eitherF ′ contains four vertices

of degree eight and three vertices of degree four or five vertices of degree eight and two

vertices whose degrees sum to four. Hence forx∈X, we have deg(x)∈ {1,2,3,4,8,20}.
Let ni denote the number of vertices of degreei. Also define

m1 := |{F ∈F : {x1,x2} ⊂F ,∃ w,z∈ F with deg(w) = 1,deg(z) = 3}|,

m2 := |{F ∈F : {x1,x2} ⊂F ,∃ w,z∈ F with deg(w) = deg(z) = 2}|,

m3 := |{F ∈F : {x1,x2} ⊂F ,∃ w∈ F with deg(w) = 4}|,

and observe thatm1 + m2 + m3 = s= 14. Note thatn20 = 2, 3n3 = n1 = m1, n2 = m2,

and 4n4 = 3m3. In particular,m3 is even son1+n2 = m1+m2 is also even. Observe that

234= 9·26= km= ∑
x∈X

deg(x) = 20n20+8n8 +4n4 +3n3 +2n2 +n1

= 20n20+8n8 +4n4 +n1 +2n2 +n1 = 20n20+8n8 +4n4 +2(n1 +n2). (6.5.2)

Sincen1 +n2 is even, (6.5.2) implies that 4|234, which is a contradiction.

ε ∈ {2,3}: Without loss of generality, we will assume deg(x1)≤ deg(x2) or equivalently

thatu≥ t. Observe that (6.4.9) and (6.4.10) imply

deg(x1) = ∑
x∈F1

deg(x)− ∑
z∈F1\{x1}

deg(z)≥ ∑
x∈F1

deg(x)− (k−1)2

= k2 +3ε− (k−1)2 = 2k−1+3ε. (6.5.3)

If ε ∈ {2,3}, thens≤ 16 impliesu = 6. Whenε = 2, we have deg(x1) = 21, which

contradicts (6.5.3). Whenε = 3, we have deg(x1) = 22, which again contradicts (6.5.3).

The casek∈ {6,7,8} can be eliminated with an argument similar to the one for

k = 9,ε ∈ {2,3}; we omit the details.

Case Analysis for Case 2:

If k = 9, then we arrive at a contradiction by using the third to last expression in

(6.4.16).
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If k = 8, thenm∈ {20,21,22,23,24} by (6.4.16). Form∈ {21,22,23,24,25},
any heavy vertexx satisfies deg(x) ≥ m− 5 by (6.4.3). Hence, the upper bound in

(6.4.15) is improved and implies that deg(x1) = s+ t + w+ x≤ 16. This gives a con-

tradiction for m ∈ {22,23,24}. For m = 21, we haves = 6, w = x = y = 5, and

t = u = v = z= 0. Hence codeg({xi ,x j}) = 11 for {i, j} ∈ {1,2,3}. Adding the con-

straintz11≥ 3 to (6.3.1) yields that|∂ 2F | ≥
(m

2

)
, which contradicts our initial assump-

tion; we omit the details since the computation is similar to that in (6.5.1).

If k = 7, thenm∈ {16,17,18,19,20} by (6.4.16) and (6.4.3) shows that any

heavy vertexx satisfies deg(x) ≥ m− 4. Hence, the upper bound in (6.4.15) is im-

proved and implies that deg(x1) = s+ t + w+ x≤ 13. This gives a contradiction for

m∈ {18,19,20}.
If k = 7 andm = 17, then we conclude thats = 5, w = x = y = 4, and that

t = u = v = z= 0. Note that ifx∈ X is heavy then deg(x) ≥ 13 by (6.4.9). If there is

a fourth heavy vertexx4, it can be in at most one of the five sets onx1,x2,x3; moreover

since heavy vertices have degree at least thirteen,x4 is in each of the four sets on{x1,x2},
{x1,x3}, and{x2,x3}. As λ = 3, this argument shows that there are at most four heavy

vertices. If there are exactly four heavy verticesx1,x2,x3,x4, then codeg({xi ,x j}) = 9

for {i, j} ⊂ {1,2,3,4}. Adding the constraintz9 ≥ 6 to (6.3.1) yields that|∂ 2F | ≥
(m

2

)
,

which contradicts our initial assumption; we omit the details since the computation is

similar to the one in (6.5.1). Consequently, there are exactly three heavy vertices and

deg(x1) = deg(x2) = deg(x3) = 13. Moreover, any set inF contains either exactly two

or exactly three heavy vertices. LetF ′ be a set that contains exactly two heavy vertices.

Equations (6.4.9) and (6.4.10) yield thatF ′ contains four vertices of degree six and one

of degree five. Hence, ifw is a light vertex andw is contained in a set ofF with two

heavy vertices, then deg(w)∈ {5,6}; otherwise deg(w) = codeg(x1,x2,x3,w) = 1. Now

let F̂ be a set inF that contains exactly three heavy vertices. Since deg(w) ∈ {1,5,6}
for w∈ X \{x1,x2,x3}, (6.4.10) yields that̂F contains three vertices of degree five and

one vertex of degree one. Ass= 5, there are fifteen vertices of degree five and five of

degree one. Letni denote the number of vertices of degreei. We have

119= km= ∑
x∈X

deg(x) = 13n13+6n6 +5n5 +n1 = 39+6n6 +75+5,

which implies thatn6 = 0, a contradiction.
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If k = 7 andm= 16 then (6.4.16) implies thats∈ {4,5} andt +u+v+2z≤ 1.

We conclude thatz = 0 and at most one oft,u,v equals one. We first show that the

situation where exactly one oft,u,v is one is impossible. Without loss of generality,

assume for a contradiction thatt = 1 andu = v = 0. If s= 4, then (6.4.15) implies that

16= m= s+ t +u+v+w+x+y+z≤ 4+1+0+0+0+3+3+4 = 15,

which is a contradiction. Ifs = 5, then we can conclude via a similar argument that

w= x= 3 andy= 4. Consider the uniquêF ∈F with x1∈ F andx2,x3 /∈ F . Since light

vertices have degree at most six,F̂ must contain another heavy vertexx4 by (6.4.10).

Now deg(x4)≥ 12 and sincex4 can only be in one of the five sets onx1,x2,x3, we have

that x4 is in each of the remaining 11 sets. As a result, fori, j ∈ {1,2,3,4}, we have

codeg({xi ,x j}) = 8 if {i, j} 6= {1,3} and we have codeg({x1,x3}) = 9. Adding the

constraintsz9 ≥ 1 andz8 ≥ 5 to (6.3.1) yields that|∂ 2F | ≥
(m

2

)
, which contradicts our

initial assumption; we omit the details since the computation is similar to the one in

(6.5.1). Hence, we can assumet = u = v = 0. If s= 5, then two ofw,x,y equal four and

the other equals three. Hence, two of the pairs{x1,x2},{x1,x3}.{x2,x3} have codegree

nine and one has codegree eight. Adding the constraintsz9 ≥ 2 andz8 ≥ 1 to (6.3.1)

yields that|∂ 2F | ≥
(m

2

)
, which contradicts our initial assumption; we omit the details

since the computation is similar to the one in (6.5.1). Ifs= 4, thenw = x = y = 4 so

deg(x1) = deg(x2) = deg(x3) = 12 and codeg({xi ,x j}) = 8 for {i, j} ⊂ {1,2,3}. If we

add the constraintz8 ≥ 3 to (6.3.1), then the corresponding dual linear program is

Maximize 360w+336x+y (6.5.4)

subject to:

(
i
2

)
w+ ix≤ 1, i ∈ [16]\{8}(

8
2

)
w+8x+y≤ 1.

y≥ 0.

It follows that (−1/3,2/3,5) is a feasible solution to (6.5.4) so|∂ 2F | ≥ 119. Since(16
2

)
= 120, we obtain a contradiction unless(−1/3,2/3,5) is an optimal solution to

(6.5.4). If (−1/3,2/3,5) is an optimal solution to (6.5.4), then by complementary

slackness, codeg({x,y}) ∈ {0,2,3,8} for {x,y} ∈
(X

2

)
; moreoverz8 = 3. Observe that
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t = u = v = z= 0 implies that ifw∈ X \{x1,x2,x3}, then

deg(w) = ∑
{i, j}⊂{1,2,3}

codeg({xi ,x j ,w})−2codeg({x1,x2,x3,w})≤ 9,

so (6.4.9) shows thatx1,x2,x3 are the only heavy vertices. Moreover, everyF ∈ F

contains either exactly two or exactly three heavy vertices ast = u = v = z = 0. If

F ′ ∈F is a set with exactly two heavy vertices, then (6.4.9) and (6.4.10) yield that either

F ′ contains three vertices of degree six and two vertices of degree five or four vertices

of degree six and one of degree four. Now, every light vertexw must be contained

in a set with exactly two heavy vertices; otherwise deg(w) = codeg(x1,x2,x3,w) = 1,

which contradicts the fact that codeg({x,y}) ∈ {0,2,3,8}. Hence, deg(w) ∈ {4,5,6}
for w∈ X \{x1,x2,x3}. As a result, ifF̂ is a set with three heavy vertices, then (6.4.10)

yields thatF̂ contains four vertices of degree four. We conclude that deg(w)∈ {4,6} for

w∈ X \{x1,x2,x3}. Sinces= 4, there are sixteen vertices of degree four. Letni denote

the number of vertices of degreei; we have

112= km= ∑
x∈X

deg(x) = 12n12+6n6 +4n4 = 36+6n6 +64

son6 = 2, which is impossible.

If k = 6, thenε ∈ {1,2} by Theorem 6.4.1. Letni denote the number of vertices

of degreei. If ε = 2, thenn1 = 2, n4 = 9, andn10 = 4 by a result of Vanstone [111].

Using (6.4.10), we see thatF is uniquely determined and must be the family

{{1,2,3,5,6,7},{1,2,3,8,9,10},{1,2,3,11,12,13},{1,2,4,5,8,11},

{1,2,4,6,9,12},{1,2,4,7,10,13},{1,3,4,5,10,12},{1,3,4,6,8,13},

{1,3,4,7,9,11},{2,3,4,5,9,13},{2,3,4,6,10,11},{2,3,4,7,8,12},

{1,2,3,4,14,15}}. (6.5.5)

Hence,|∂ 2F |= 87>
(13

2

)
. If k= 6 andε = 1, then eithern1 = 2,n3 = 3,n4 = 6,n9 = 3,

andn10 = 1 or n4 = 9 andn9 = 4 by a result of Vanstone [111]. Again using (6.4.10),

we can conclude thatF is uniquely determined in both cases. In the first case,F must
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be

{{1,2,4,5,6,11},{1,2,4,7,8,12},{1,2,4,9,10,13},{1,3,4,7,9,11},

{1,3,4,5,10,12},{1,3,4,6,8,13},{2,3,4,8,10,11},{2,3,4,6,9,12},

{2,3,4,5,7,13},{1,2,3,5,8,9},{1,2,3,6,7,10},{1,2,3,4,14,15}}; (6.5.6)

hence,|∂ 2F |= 84>
(12

2

)
. In the latter case,F is the complement of a projective plane

of order 3 with respect to a line; hence|∂ 2F |= 78>
(12

2

)
.

Chapter 6, in part, is a reprint of the material as it appears in “On a conjecture of

Frankl and Füredi," 2011. Chowdhury, Ameera.Electron. J. Combin., 18(1):Paper 56,

16, 2011. The dissertation author was the primary investigator and author of this paper.



Chapter 7

On the Manickam-Miklós-Singhi

Conjecture

Fork∈ Z+, let f (k) be the minimum integerN such that for alln≥N, every set

of n real numbers with nonnegative sum has at least
(n−1

k−1

)
k-element subsets whose sum

is also nonnegative. In 1988, Manickam, Miklós, and Singhi proved thatf (k) exists and

conjectured thatf (k) ≤ 4k. In this chapter, we provef (3) = 11 and f (4) ≤ 24, which

improves previous upper bounds in these cases. With more patience, our arguments

could yield improved upper bounds onf (k) for largerk. Moreover, we show how our

method could potentially yield a quadratic upper bound onf (k). We end this chapter by

discussing a vector space analog of the Manickam-Miklós-Singhi conjecture.

7.1 Nonnegative Sums

Manickam, Miklós, and Singhi conjectured in [88] and [89] that

Conjecture 7.1.1. For any integers n,k with n≥ 4k, every set of n real numbers with

nonnegative sum has at least
(n−1

k−1

)
k-element subsets whose sum is also nonnegative.

This conjecture is similar to the Erdős-Ko-Rado theorem, Theorem 2.2.2, not

only in the appearance of the binomial coefficient
(n−1

k−1

)
, but also because of the fol-

lowing tight example:x1 = n− 1,x2 = · · · = xn = −1. In this example, ak-subset of

116
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x1, . . . ,xn has nonnegative sum exactly when it containsx1, and hence there are exactly(n−1
k−1

)
k-element subsets with nonnegative sum.

As in the Erd̋os-Ko-Rado theorem,n must be large enough with respect tok,

otherwise there existn real numbersx1, . . . ,xn ∈ R with nonnegative sum and fewer

than
(n−1

k−1

)
k-element subsets with nonnegative sum. Here are two counterexamples

when n < 4k. For n = 2k+ r, where 1≤ r ≤ 3k/5, let x1 = · · · = x2k+r−2 = 2 and

x2k+r−1 = x2k+r = −(2k+ r −2). Note that ak-subset is nonnegative exactly when it

does not containx2k+r−1 or x2k+r and that
(2k+r−2

k

)
<
(2k+r−1

k−1

)
when 1≤ r ≤ 3k/5. For

n = 3k+ r, where 1≤ r ≤ k/7, a similar counterexample setsx1 = · · · = x3k+r−3 = 3

andx3k+r−2 = · · · = x3k+r = −(3k+ r −3). Again, note that ak-subset is nonnegative

exactly when it does not containx3k−1, x3k, or x3k+1 and that
(3k+r−3

k

)
<
(3k+r−1

k−1

)
when

1≤ r ≤ k/7. These counterexamples do not generalize to largern becausett−1 6≤ (t−1)t

for t ≥ 3.

Although then≥ 4k requirement is probably not sharp, one reason the conjec-

ture is written with this bound is because Baranyai’s theorem, Theorem 3.4.33, or the

Greene-Kleitman type argument in Section 4.6.2 verifies Conjecture 7.1.1 whenk|n; see

Lemma 7.4.1.

Very recently, Alon, Huang, and Sudakov [1] verified Conjecture 7.1.1 when

n≥min{33k2,2k3}, which substantially improves previous results. They also obtained

a Hilton-Milner analog. See their paper for references and historical remarks.

7.2 Notation

We begin with some definitions and notation that are special to this chapter.

Definition 7.2.1. Given x1 ≥ ·· · ≥ xn ∈ R, a subset S⊂ {x1, . . . ,xn} is nonnegativeif

∑x∈Sx≥ 0 and is negativeotherwise.

Definition 7.2.2. Given x1 ≥ ·· · ≥ xn ∈ R, we define

Fk := {S⊂ {x1, . . . ,xn} : |S|= k,S is nonnegative}

to be the set of nonnegative k-subsets of x1, . . . ,xn.
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Definition 7.2.3. We say a pair(n,k) ∈ Z+ ×Z+ is goodif whenever we are given

x1 ≥ ·· · ≥ xn ∈ R with nonnegative sum, we have|Fk| ≥
(n−1

k−1

)
.

Definition 7.2.4. Let f(k) be the minimum integer N such that for all n≥ N, the pair

(n,k) is good.

Definition 7.2.5. A familyF ⊂
(X

k

)
is a starif there exists x∈ X such that

F =
{

F ∈
(

X
k

)
: x∈ F

}
.

Definition 7.2.6. We say a pair(n,k) ∈ Z+ ×Z+ is strongly goodif it is good and

|Fk|=
(n−1

k−1

)
if and only ifFk is thestar on x1.

7.3 Results

Alon, Huang, and Sudakov [1] proved thatf (k) ≤ min{33k2,2k3} and Man-

ickam, Miklós, and Singhi conjectured thatf (k) ≤ 4k. Our main result shows that the

veracity of Conjecture 7.1.1 boils down to proving its veracity ink−1 base cases.

Theorem 7.3.1(Chowdhury). If (n,k) is a good pair, then(n+ k,k) is a good pair.

Moreover, if(n,k) is strongly good and n≥ 2k−1, then(n+k,k) is strongly good.

Hence, we can verify Conjecture 7.1.1 for smallk.

Theorem 7.3.2(Chowdhury). We have f(3) = 11 and, more precisely, that the pair

(n,3) is strongly good when n≥ 11. We have f(4) ≤ 24 and, more precisely, that the

pair (n,4) is strongly good if n= 22or n≥ 24.

The previous best upper bounds forf (3) and f (4) were f (3) ≤ 12 from [87,

91] and f (4) ≤ 128 from [1]. Although Conjecture 7.1.1 fork = 3 was previously

tackled, our result is stronger because we determinef (3) exactly and we characterize

the case of equality; moreover our proof is simpler and provides a nice application of

the Kruskal-Katona theorem. With more patience, our arguments could yield improved

upper bounds onf (k) for largerk. In Section 7.4, we also show how our method might

yield a quadratic upper bound onf (k) that improves on the current best upper bound [1]

of f (k)≤min{33k2,2k3}.
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7.4 Reductions to Base Cases

This section contains a proof of Theorem 7.3.1. We first show that Baranyai’s

theorem, Theorem 3.4.33, or the Greene-Kleitman type argument in Section 4.6.2 yields

a lemma due to Bier and Manickam [13] that proves Conjecture 7.1.1 in the case that

k|n.

Lemma 7.4.1(Bier-Manickam). For k∈Z+, the pair(ck,k) is good for any c∈Z+ and

is strongly good if c6= 2.

Proof. We first show that Baranyai’s theorem implies that the pair(ck,k) is good for

anyc∈ Z+. Let n = ck and suppose thatx1 ≥ ·· · ≥ xck ∈ R has nonnegative sum. We

will prove that ifG ⊂
(X

k

)
is a perfect matching, then there is a nonnegativek-setG∈ G .

Since the total sum ofx1, . . . ,xck is nonnegative and thek-subsets inG are disjoint,

0≤
ck

∑
i=1

xi = ∑
G∈G

(
∑
i∈G

xi

)
.

Hence, at least onek-subsetG∈ G must have nonnegative sum. Asn = ck, Baranyai’s

theorem asserts that the complete hypergraph onck vertices
(X

k

)
has a partitionP into(ck−1

k−1

)
perfect matchings. Each perfect matching inP contains a nonnegativek-subset,

and asP is a partition, the correspondingk-subsets are distinct. Hence, there are at

least
(ck−1

k−1

)
k-element subsets with nonnegative sum.

We do not need the full power of Baranyai’s theorem to prove the statement,

however. The Greene-Kleitman type argument in Section 4.6.2 not only yields the same

conclusion, but also allows us to prove that(ck,k) is strongly good whenc 6= 2. Let

G ⊂
(X

k

)
be a perfect matching and letπ ∈ Sck be a permutation. As in Lemma 4.5.7,

the family π(G ) := {π(G) : G∈ G } is also a perfect matching. Recall thatFk ⊂
(X

k

)
from Definition 7.2.2 is the family of nonnegativek-subsets inx1, . . . ,xck. We showed

in the preceding paragraph that any perfect matching contains a nonnegativek-subset so

|Fk∩π(G )| ≥ 1 for anyπ ∈ Sck. On the other hand, givenG∈ G andF ∈Fk, there are

k!(ck−k)! permutationsπ ∈ Sck such thatπ(G) = F . Consequently,(
ck
k

)
|Fk|k!(ck−k)! = |G ||Fk|{π ∈ Sck : π(G) = F}= ∑

π∈Sck

|Fk∩π(G )| ≥ (ck)!

(7.4.1)
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Rearranging (7.4.1) yields that|Fk| ≥
(ck−1

k−1

)
, as desired.

If there are exactly
(ck−1

k−1

)
nonnegativek-subsets, then equality holds everywhere

in (7.4.1). Hence, for eachπ ∈ Sck, we have|Fk∩π(G )| = 1. This proves that every

perfect matching contains exactly one nonnegativek-subset inFk, which implies that

Fk ⊂
(X

k

)
is intersecting. By the Erd̋os-Ko-Rado theorem, Theorem 2.2.2, ifc 6= 2, then

Fk must be the star onx1. Hence,(ck,k) is strongly good ifc 6= 2.

Our next lemma shows that if a set ofn′ real numbers has at least
(n′−1

d−1

)
nonneg-

atived-subsets and(d,k) is a good pair, then it has at least
(n′−1

k−1

)
nonnegativek-subsets.

Lemma 7.4.2.Suppose x1 ≥ ·· · ≥ xn′ ∈ R has|Fd| ≥
(n′−1

d−1

)
. If (d,k) is a good pair,

then|Fk| ≥
(n′−1

k−1

)
. Moreover, if|Fk|=

(n′−1
k−1

)
, d≥ 2k−1, and the pair(d,k) is strongly

good, thenFk is the star on x1.

Proof. Count pairs(A,B) whereA ∈ Fd, B ∈ Fk, andB⊂ A. Since(d,k) is a good

pair, eachA∈Fd contains at least
(d−1

k−1

)
setsB∈Fk. On the other hand, eachB∈Fk

is contained in at most
(n′−k

d−k

)
setsA∈Fd. Putting all this together, we have(

n′−1
d−1

)(
d−1
k−1

)
≤ |{(A,B) : A∈Fd,B∈Fk,B⊂ A}| ≤ |Fk|

(
n′−k
d−k

)
. (7.4.2)

Hence,|Fk| ≥
(n′−1

k−1

)
.

If |Fk|=
(n′−1

k−1

)
, then (7.4.2) implies that|Fd|=

(n′−1
d−1

)
, that eachA∈Fd con-

tains exactly
(d−1

k−1

)
setsB∈Fk, and that ifB∈Fk, then everyd-set that containsB lies

in Fd. Clearly,{x1, . . . ,xk}∈Fk as it is thek-set with largest sum. LetB′⊂{x1, . . . ,xn′}
be anyk-subset containingx1. We will show thatB′ ∈Fk. Sinced≥ 2k−1, there exists

a d-subsetA′ that containsB′∪{x1, . . . ,xk}. Observe thatA′ ∈ Fd because it contains

{x1, . . . ,xk}∈Fk. NowA′ contains exactly
(d−1

k−1

)
setsB∈Fk and since(d,k) is strongly

good, these sets form the star onx1. Hence,B′ ∈Fk as it containsx1 and lies inA′ so

Fk is the star onx1.

Lemma 7.4.2 has two corollaries; the first is Theorem 7.3.1.

Proof of Theorem 7.3.1. Suppose, for a contradiction, that(n,k) is a good pair, but

that (n+ k,k) is not a good pair. Consequently, there existx1 ≥ ·· · ≥ xn+k ∈ R with

nonnegative sum and|Fk|<
(n+k−1

k−1

)
. By the Pascal rule, there are greater than

(n+k−1
k

)
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negativek-subsets. As∑n+k
i=1 xi ≥ 0, the complement of a negativek-subset must be a

positiven-subset. Hence,|Fn|>
(n+k−1

k

)
=
(n+k−1

n−1

)
. We may now apply Lemma 7.4.2

with n′ = n+k andd = n to conclude that|Fk| ≥
(n+k−1

k−1

)
, which contradicts our initial

assumption. Hence, if(n,k) is good, then(n+ k,k) is also good. If(n,k) is strongly

good andn≥ 2k−1, then a similar argument yields thatFk is the star onx1.

The second corollary of Lemma 7.4.2 is a result of Manickam and Singhi that

shows that if(n,k) is a good pair, then(cn,k) is a good pair for anyc∈ Z+.

Corollary 7.4.3 (Manickam-Singhi, [89]). If (n,k) is a good pair, then(cn,k) is a good

pair for any c∈ Z+. If (n,k) is a strongly good pair and n≥ 2k− 1, then(cn,k) is

strongly good for any c∈ Z+.

Proof. Let x1 ≥ ·· · ≥ xcn∈ R have nonnegative sum. By Lemma 7.4.1, the pair(cn,n)

is good so|Fn| ≥
(cn−1

n−1

)
. If the pair (n,k) is good, then we may apply Lemma 7.4.2

with n′ = cn andd = n to conclude that|Fk| ≥
(cn−1

k−1

)
. If |Fk|=

(cn−1
k−1

)
, the pair(n,k)

is strongly good, andn≥ 2k−1, then we may apply Lemma 7.4.2 again to conclude

thatFk is the star onx1.

We now show that if gcd(r,k) = 1 and(αk+ r,k) is a (strongly) good pair, then

(n,k) is a (strongly) good pair for anyn≥ (αk+ r)(k−1) and sof (k)≤ (αk+ r)(k−1).

Hence, if gcd(r,k) = 1 and we could show(αk+ r,k) is a good pair for someα < 33,

then we could improve the current best upper boundf (k)≤min{33k2,2k3} in [1]. Two

natural candidates for this approach would be the pairs(4k−1,k) and(4k+ 1,k), but

we were not able to show that these were good pairs in general.

Corollary 7.4.4. If gcd(r,k) = 1 and(αk+ r,k) is a (strongly) good pair, then(n,k) is

a (strongly) good pair for any n≥ (αk+ r)(k−1), and hence f(k)≤ (αk+ r)(k−1).

Proof If (αk+ r,k) is a (strongly) good pair, then((αk+ r)i,k) is a (strongly) good

pair, wherei ∈ [k−1], by Corollary 7.4.3. We have(αk+ r)i ≡ ri (modk) and since

gcd(r,k) = 1, we have hit all nonzero congruence classes modulok. Hence,(n,k) is a

(strongly) good pair for anyn≥ (αk+ r)(k−1) by Theorem 7.3.1 and Lemma 7.4.1.

As a result,f (k)≤ (αk+ r)(k−1).
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7.5 The MMS Conjecture whenk is Three

It is not difficult to see thatf (2) = 6 and that(n,2) is a strongly good pair if

and only if n = 6 or n≥ 8. In this section, we prove Theorem 7.3.2 in the case that

k = 3. That is, we showf (3) = 11 and that(n,3) is a strongly good pair ifn≥ 11. By

Theorem 7.3.1, it suffices to show that the pairs(11,3) and(13,3) are strongly good.

This is best possible since whenn ∈ {4,5,7,8,10}, the pair(n,3) is not good. In our

proof, we will use the full version of the Kruskal-Katona theorem, Theorem 2.1.4. We

first observe that we can get a lower bound on|Fk| given that it contains a certain sum.

Lemma 7.5.1.Define F1(i1) = i1 and Fk(i1, . . . , ik) recursively by

Fk(i1, . . . , ik) =
(

ik
k

)
−
(

ik− i1
k

)
−

k−2

∑
j=1

Fj(i1, . . . , i j)
(

ik− i j+1

k− j

)
.

If ∑k
l=1xi l ∈Fk, where i1 < · · ·< ik, then|Fk| ≥ Fk(i1, . . . , ik).

Proof. We assumex1 ≥ ·· · ≥ xn. Hence, if∑k
l=1xi l ∈ Fk thenFk contains∑k

l=1x j l ,

where j l ≤ i l for l ∈ [k] and j1 < · · ·< jk. By induction,Fk(i1, . . . , ik) counts the number

of k-tuples( j1, . . . , jk) satisfying j l ≤ i l for l ∈ [k] and j1 < · · · < jk. Hence, if∑k
l=1xi l

lies inFk, wherei1 < · · ·< ik, then|Fk| ≥ Fk(i1, . . . , ik).

Lemma 7.5.2.The pair(11,3) is strongly good.

Proof. We havex1 ≥ ·· · ≥ x11 satisfying∑11
i=1xi ≥ 0. We first show that|F3|>

(10
2

)
if

x1+x11≤ 0. Since∑11
i=1xi ≥ 0, we have∑10

i=2xi ≥ 0. LetS be the family of nonnegative

3-subsets amongx2, . . . ,x10. By Lemma 7.4.1,|S | ≥
(8

2

)
= 28 and Theorem 2.1.4 yields

that |∂S | ≥ 20. As we can addx1 to any 2-subset in∂S to form a nonnegative 3-set,

we have|F3| ≥ 28+20>
(10

2

)
. Hence, we may assume thatx1 +x11 > 0.

We may assumex1 + x10 + x11 < 0 as otherwiseF3 contains the star onx1.

Since∑11
i=1xi = 0, we must have∑7

i=2xi ≥ (6/8)∑9
i=2xi > 0. Let W be the family of

nonnegative 3-subsets amongx2, . . . ,x7. Lemma 7.4.1 yields that|W | ≥ 10. Note that

x1 + x2 + x11 ∈ F3 sincex2 andx1 + x11 are nonnegative. Ifx1 + x8 + x10 ≥ 0, then

Lemma 7.5.1 implies that|F3| ≥ 35+10+1 >
(10

2

)
by taking into account the sets in

W andx1 +x2 +x11. Hence, by Lemma 7.5.1, we may assume that

x1 +x8 +x10 < 0, x2 +x7 +x9 < 0, x3 +x4 +x11 < 0. (7.5.1)
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Equation (7.5.1) and∑11
i=1xi ≥ 0 yield thatx5 +x6 > 0 sox5 > 0.

By (7.5.1), we havex1 +x9 +x10≤ x1 +x8 +x10 < 0. Since∑11
i=1xi ≥ 0, either

x2+x11 > 0 or∑8
i=3xi > 0. In the first case,x2+x5+x11 > 0 sincex5 > 0, so|F3|>

(10
2

)
by Lemma 7.5.1. We now show that if∑8

i=3xi ≥ 0, then|F3| >
(10

2

)
. Let T be the

family of nonnegative 3-subsets amongx3, . . . ,x8. By Lemma 7.4.1,|T | ≥
(5

2

)
= 10

and Theorem 2.1.4 yields that|∂T | ≥ 10. We can add eitherx1 or x2 to any 2-subset in

∂T to form a nonnegative 3-subset. The familyF3 also contains

x1 +x2 +xi , i ∈ {3, . . . ,11}; x1 +xb +xc, 3≤ b≤ 5, c∈ {9,10,11}, (7.5.2)

sincex1 + x11 > 0 andx5 > 0. Taking into account the sets inT , the sets formed by

addingx1 or x2 to a set in∂T , and the sets in (7.5.2),|F3| ≥ 10+10+10+18>
(10

2

)
.

The preceding arguments show that ifx1 + x10 + x11 < 0, then |F3| >
(10

2

)
.

Hence,|F3| ≥
(10

2

)
and|F3| =

(10
2

)
if and only if F3 is the star onx1. Consequently,

(11,3) is a strongly good pair.

Lemma 7.5.3.The pair(13,3) is strongly good.

Proof. We havex1 ≥ ·· · ≥ x13 satisfying∑13
i=1xi ≥ 0. As in the proof of Lemma 7.5.2,

if x1 + x13 ≤ 0, then Theorem 2.1.4 implies|F3| >
(12

2

)
. Hence, we may assume that

x1 +x13 > 0.

We may assumex1 + x12 + x13 < 0 as otherwiseF3 contains the star onx1.

Let T be the family of nonnegative 3-subsets amongx2, . . . ,x10. As in the proof of

Lemma 7.5.2, we may conclude that|T | ≥
(8

2

)
= 28. Note thatx1 + x2 + xi ∈ F3

for i ∈ {11,12,13} sincex2 andx1 + x13 are nonnegative. Ifx1 + x9 + x10 ≥ 0, then

Lemma 7.5.1 implies that|F3| ≥ 36+28+3 >
(12

2

)
by taking into account the sets in

T and the setsx1 +x2 +xi for i ∈ {11,12,13}. Lemma 7.5.1 thus implies

x1 +x9 +x10 < 0, x3 +x8 +x12≤ x2 +x7 +x11 < 0, x4 +x5 +x13 < 0. (7.5.3)

Equation (7.5.3) and∑13
i=1xi ≥ 0 yield thatx6 > 0 sox1 + x6 + x13 > 0. Consequently

Lemma 7.5.1 implies that|F3| ≥ 45+28>
(12

2

)
by taking into account the sets inT .

We conclude that(13,3) is a strongly good pair.
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7.6 The MMS Conjecture whenk is Four

The preceding arguments yield improved upper bounds onf (k) for k > 3. For

example, in this section, we prove Theorem 7.3.2 in the case thatk= 4. That is, we show

f (4)≤ 24 and that(n,4) is a strongly good pair ifn= 22 orn≥ 24. Taking into account

the counterexamples in Section 7.1, this shows 14≤ f (4) ≤ 24. By Lemma 7.4.1 and

Theorem 7.3.1, it suffices to prove that(22,4), (25,4), and(27,4) are strongly good

pairs.

Lemma 7.6.1.The pair(22,4) is strongly good.

Proof. We havex1 ≥ ·· · ≥ x22 satisfying∑22
i=1xi ≥ 0. As in the proof of Lemma 7.5.2,

if x1 + x22 ≤ 0, then Theorem 2.1.4 implies|F4| >
(21

3

)
. Hence, we may assume that

x1 +x22 > 0.

We may assumex1 + x20+ x21+ x22 < 0 as otherwiseF4 contains the star on

x1. Let S be the family of nonnegative 4-subsets amongx2, . . . ,x17. As in the proof of

Lemma 7.5.2, we may conclude that|S | ≥
(15

3

)
. Consequently, if there are greater than(21

3

)
−
(15

3

)
= 875 nonnegative 4-sets onx1, then|F4|>

(21
3

)
. Hence, by Lemma 7.5.1,

we may assume that

x1 +x11+x14+x22 < 0, x2 +x9 +x15+x21 < 0, x3 +x7 +x16+x19 < 0, (7.6.1)

x4 +x10+x12+x18 < 0, x5 +x6 +x13+x20 < 0.

Since∑22
i=1xi ≥ 0, equation (7.6.1) implies thatx8 + x17 > 0. We consequently have

that x1 + x8 + x17 + x22 > 0 sincex1 + x22 > 0, which implies that|F4| >
(21

3

)
by

Lemma 7.5.1. We conclude that(22,4) is a strongly good pair.

Lemma 7.6.2.The pair(25,4) is strongly good.

Proof. We havex1≥ ·· · ≥ x25 with ∑25
i=1xi ≥ 0. We may assumex1+x23+x24+x25 < 0,

as otherwiseF4 contains the star onx1. Let S be the family of all nonnegative 4-sets

in x2, . . . ,x21. As in the proof of Lemma 7.5.2, we may conclude that|S | ≥
(19

3

)
.

Consequently, if there are greater than
(24

3

)
−
(19

3

)
= 1055 nonnegative 4-sets onx1 then
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|F4|>
(24

3

)
. Hence, by Lemma 7.5.1, we may assume that

x1 +x7 +x18+x25 < 0, x2 +x8 +x19+x24 < 0, x3 +x9 +x16+x23 < 0, (7.6.2)

x4 +x10+x15+x22 < 0, x5 +x11+x14+x21 < 0, x6 +x12+x13+x20 < 0.

Since∑25
i=1xi ≥ 0, equation (7.6.2) implies thatx17 > 0. Hence,|F4| ≥

(17
4

)
>
(24

3

)
. We

conclude that(25,4) is a strongly good pair.

Lemma 7.6.3.The pair(27,4) is strongly good.

Proof. We havex1≥ ·· · ≥ x27 with ∑27
i=1xi ≥ 0. We may assumex1+x25+x26+x27 < 0,

as otherwiseF4 contains the star onx1. Let S be the family of all nonnegative 4-sets

in x2, . . . ,x21. As in the proof of Lemma 7.5.2, we may conclude that|S | ≥
(19

3

)
.

Consequently, if there are greater than
(26

3

)
−
(19

3

)
= 1631 nonnegative 4-sets onx1 then

|F4|>
(26

3

)
. Hence by Lemma 7.5.1, we may assume that

x1 +x12+x17+x27 < 0, x2 +x8 +x22+x26 < 0, x3 +x11+x16+x23 < 0, (7.6.3)

x4 +x10+x13+x25 < 0, x5 +x7 +x15+x24 < 0, x6 +x9 +x14+x21 < 0.

Since∑27
i=1xi ≥ 0, equation (7.6.3) implies thatx18+ x19+ x20 > 0. We consequently

have|F4| ≥
(18

4

)
>
(26

3

)
. We conclude that(27,4) is a strongly good pair.

7.7 Open Problems

Like the preceding combinatorial questions in this thesis, the Manickam-Miklós-

Singhi conjecture, Conjecture 7.1.1, has a vector space analog about which we know

distressingly little. In this section, we show that the methods discussed in Section 7.4

may also be useful for attacking the vector space analog of Conjecture 7.1.1.

Recall thatV is ann-dimensional vector space over a finite fieldFq. Suppose

for each one-dimensional subspacev ∈
[V

1

]
, we assign a weightf (v) ∈ R such that

∑v∈[V1]
f (v) = 0. Define the weight of a subspaceS⊂V to be the sum of the weights of

all its one-dimensional subspaces,

f (S) := ∑
v∈[V1], v⊂S

f (v). (7.7.1)
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The family ofk-dimensional subspaces with nonnegative weight will be denoted by

FV, f ,k :=
{

S∈
[
V
k

]
: f (S)≥ 0

}
.

The vector space analog of Conjecture 7.1.1 states

Conjecture 7.7.1(Manickam-Singhi, [89]). Let V be an n-dimensional vector space

over a finite fieldFq and let f :
[V

1

]
→R be a weighting of the one-dimensional subspaces

of V such that∑v∈[V1]
f (v) = 0. If n≥ 4k, then|FV, f ,k| ≥

[n−1
k−1

]
.

Unlike Conjecture 7.1.1, we do not have a good reason for then≥ 4k stipulation.

The counterexamples in Section 7.1 do not generalize to the vector space case. In fact,

there are no known counterexamples to Conjecture 7.7.1 forn > 2k, and it is easy to

construct counterexamples to Conjecture 7.7.1 whenk < n < 2k. Hence, it is possible

that Conjecture 7.7.1 is true forn≥ 2k.

In this section, we show that the veracity of Conjecture 7.7.1 fork = 2 also

boils down to proving its veracity in a few base cases. As in Section 7.4, given integers

n,k∈Z+ we say the pair[n,k] is good if whenever we are given ann-dimensional vector

spaceV overFq and a weightingf :
[V

1

]
→ R with ∑v∈[V1]

f (v) = 0, we have

|FV, f ,k| ≥
[
n−1
k−1

]
. (7.7.2)

Similarly, the pair[n,k] is strongly good if it is good and (7.7.2) holds with equality

if and only if FV, f ,k is the star on the one-dimensional subspace ˆv ∈
[V

1

]
with largest

weight,

FV, f ,k :=
{

S∈
[
V
k

]
: v̂⊂ S

}
, f (v̂)≥ f (v) ∀ v∈

[
V
1

]
.

The results and proofs of Lemma 7.4.2, Lemma 7.4.1, and Corollary 7.4.3 gener-

alize straightforwardly to the vector space setting. The proof of Theorem 7.3.1, however,

does not readily generalize because of the issues discussed in Section 4.6.1.2. We have

not yet been able to surmount these difficulties to prove a vector space analog of Theo-

rem 7.3.1. Nevertheless, we can still show that fork= 2, the veracity of Conjecture 7.7.1

boils down to proving its veracity in a few base cases.

Lemma 7.7.2.If m∈ Z+ is odd and[m,2] is a (strongly) good pair, then[cm−1,2] and

[cm+1,2] are (strongly) good pairs for any c∈ Z+.
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Proof. Sincem is odd, we may assume thatc≥ 2. LetV be a(cm−1)-dimensional

vector space overFq and let f :
[V

1

]
→ R be a weighting of the one-dimensional spaces

such that∑v∈[V1]
f (v) = 0. If |FV, f ,m| ≥

[cm−2
m−1

]
, then by the vector space analog of

Lemma 7.4.2 withn= cm−1, d = m, andk = 2, we have|FV, f ,2| ≥
[cm−2

1

]
. Hence, we

may assume that|FV, f ,m|<
[cm−2

m−1

]
.

EmbedV in W, acm-dimensional vector space overFq and extendf to a weight-

ing f̂ :
[W

1

]
→R by giving every one-dimensionalw∈

[W
1

]
\
[V

1

]
a weight f̂ (w) = 0. Since

∑w∈[W1 ]
f̂ (w) = 0, the vector space analog of Lemma 7.4.1 yields that|FW, f̂ ,m| ≥

[cm−1
m−1

]
.

If U ∈ FW, f̂ .m thenU ∈ FV, f ,m or U ∩V ∈ FV, f ,m−1. Also note that eachS in

FV, f ,m−1 lies inq(c−1)m spacesU ∈FW, f̂ ,m. By theq-Pascal identity,[
cm−2
m−1

]
+q(c−1)m

[
cm−2
m−2

]
=
[
cm−1
m−1

]
≤ |FW, f̂ ,m|= |FV, f ,m|+q(c−1)m|FV, f ,m−1|.

(7.7.3)

By assumption,|FV, f ,m| <
[cm−2

m−1

]
so (7.7.3) implies that|FV, f ,m−1| >

[cm−2
m−2

]
.

Sincem is odd, we have thatm− 1 is even, and hence[m− 1,2] is a good pair by

Lemma 7.4.1. The vector space analog of Lemma 7.4.2 withn= cm−1, d = m−1, and

k = 2 thus yields that|FV, f ,2|>
[cm−1

1

]
.

If |FV, f ,2| =
[cm−1

1

]
, then (7.7.3) and the vector space analog of Lemma 7.4.2

imply that |FV, f ,m| =
[cm−1

m−1

]
. Hence, if[m,2] is strongly good, then the vector space

analog of Lemma 7.4.2 implies thatFV, f ,2 is the star on the one-dimensional subspace

v̂∈
[V

1

]
with largest weight. This shows that ifm is odd and the pair[m,2] is (strongly)

good, then the pair[cm−1,2] is also (strongly) good for anyc∈Z+; a similar argument

shows that the pair[cm+1,2] is also (strongly) good.

A corollary of the vector space analog of Lemma 7.4.1 and Lemma 7.7.2 is that

if the pairs[5,2] and[7,2] are good, then the pair[n,2] is good for anyn≥ 4. If the pair

[5,2] is not good, but the pairs[7,2], [9,2] and [11,2] are good, then the vector space

analog of Lemma 7.4.1 and Lemma 7.7.2 yield that the pair[n,2] is good for anyn≥ 6.

Chapter 7, in part, is currently being prepared for submission for publication of

the material. Chowdhury, Ameera. The dissertation author was the primary investigator

and author of this material.
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Combin. Theory Ser. A, 43(2):228–236, 1986.

[61] D. Gale, H. W. Kuhn, and A. W. Tucker. Linear programming and the theory of
games. InActivity Analysis of Production and Allocation, Cowles Commission
Monograph No. 13, pages 317–329. John Wiley & Sons Inc., New York, N. Y.,
1951.

[62] B. Gardner.On coverings and(r,λ )-systems. PhD thesis, University of Waterloo,
1972.

[63] B. Gardner and S. A. Vanstone. Some results on irreducible(r, λ )-designs.Util-
itas Math., 18:291–300, 1980.

[64] C. Godsil and K. Meagher. A new proof of the Erdős-Ko-Rado theorem for in-
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