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ABSTRACT OF THE DISSERTATION

Shadows and Intersections

by

Ameerah Naz Chowdhury

Doctor of Philosophy in Mathematics

University of California, San Diego, 2012

Professor Jacques Verstraéte, Chair

This thesis makes contributions to extremal combinatorics, specifically extremal
set theory questions and their analogs in other structures. Extremal set theory studies
how large or small a family of subsets of a finite Xetan be under various constraints.

By replacing the seX with another finite object, one can pose similar questions about
families of other structures. Remarkably, a question and its analogs essentially have the
same answer, regardless of the object. Despite these similarities, not much is known
about analogs because standard techniques do not always apply. Our main results es-
tablish analogs of extremal set theory results for structures such as vector spaces and
subsums of a finite sum. We also study intersecting families and shadows in their clas-
sical context of sets by researching a conjecture of Frankl and Furedi.
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Chapter 1
Introduction

This thesis makes contributions to the field of extremal combinatorics, specifi-
cally extremal set theory questions and their analogs for other discrete structures. Given
a finite sefX, the general problem in extremal set theory asks how large or small a family
of subsets oK can be if it satisfies certain restrictions. Naturally, this type of question
appears throughout mathematics, and so extremal set theory can be applied in areas
ranging from topology [74] to theoretical computer science [40]. On the other hand,
extremal set theory borrows tools from algebra and probability, and its connections to
other branches of mathematics is one of its most beautiful features.

Two core concepts in extremal set theory are intersecting families and shadows.
The main results for intersecting families are theds:¢ko-Rado and Hilton-Milner the-
orems, and the principal result for shadows is the Kruskal-Katona theorem. By defining
suitable notions of “intersecting" and “shadow,” one can find remarkable analogs of
these theorems for other structures such as vector spaces and permutations. Tantaliz-
ingly, while many results about sets should generalize to different settings, not much is
known about analogs because standard techniques do not always apply.

This thesis aims to further understanding of shadows and intersecting families in
sets and other structures. In the latter case, the goals are to identify objects with analogs
of the Erdbs-Ko-Rado, Hilton-Milner, and Kruskal-Katona theorems and to find inte-
grated approaches to their proofs. The ultimate objective is to have a unified theory that
characterizes the structures for which analogs exist and that proves results simultane-
ously for broad classes of objects.



Since this research applies to a variety of structures, it injects new questions,
applications, and techniques into many areas. Vector space analogs, for example, influ-
ence the fields of finite geometry, algebraic combinatorics, and coding theory; analogs
for permutations affect the theory of group representations. Each new object with an
analog touches further areas.

1.1 Outline of Thesis

We now outline the chapters of this thesis. We first present our main results in
Section 1.2 and compile a list of frequently used notation in Section 1.3. In Chapter 2,
we discuss combinatorial methods in extremal set theory, paying particular attention to
the shifting technique. We then examine the use of algebraic methods in extremal set
theory in Chapter 3. Next, we give background on vector spaces over finite fields in
Chapter 4; we also highlight the difficulties in generalizing purely combinatorial tech-
niques in extremal set theory to vector spaces, and discuss algebraic methods that have
been successfully used to prove theorems about both sets and vector spaces. In Chap-
ter 5, we demonstrate new combinatorial techniques for vector spaces by proving vector
space analogs of both Lovasz's version of the Kruskal-Katona theorem and Frankl’'s
r-wise intersection theorem; our proof of the latter also yields a new proof of thsErd
Ko-Rado theorem for vector spaces. We end Chapter 5 with remarks on three of our
favorite open problems in this area. In Chapter 6, we discuss our results on a conjecture
of Frankl and Furedi. Finally, in Chapter 7, we end by presenting some new results on
the Manickam-Miklos-Singhi conjecture and discussing some related open problems.

1.2 Main Results and Significance

A classical question in extremal set theory is to bound the size of a family of
subsets oK whose members have sikend pairwise intersect; such a family is called
intersecting. Erdds, Ko, and Rado [47] showed thatfis large enough, then the unique
intersecting family of maximum size consists of thelement subsets containing a fixed
point. If no point ofX may lie in all sets, then the Hilton-Milner theorem [70] determines



the largest intersecting family in this case.

Another important property of a family” of k-element subsets of is its
shadow, which consists of allk — 1)-element subsets of contained in at least one
member of.#. Kruskal and Katona [75, 80] determined the minimum size of the
shadow, and their result implies many others, such as thésBfd-Rado theorem. In
practice, however, their theorem is not used in its full generality and a weaker but more
convenient version due to Lovasz [84, Ex 13.31(b)] is applied.

1.2.1 Shadows and Intersections in Vector Spaces

In Chapter 5, our main results show that striking analogs of extremal set theory
results exist for vector spaces. Our proofs are not straightforward generalizations of
the corresponding ones for sets because standard techniques do not often apply; one
example is that the complement of a subseX & another subset while the complement
of a subspace df is not another subspace. Consequently, we develop new methods.

1.2.1.1 Results

Patkds and | [27] discovered a unified proof of Lovasz’s version of the Kruskal-
Katona theorem that works for sets and vector spaces [77]. Our result, Theorem 5.0.12,
is one of the first about shadows in vector spaces although the problem is over thirty
years old [67]. Since Lovasz’'s theorem has many corollaries, its analog provides a way
to extend them to vector spaces. Applications are not straightforward, however, because
combinatorial techniques do not often apply. Our Theorem 5.0.14 yields unified proofs
of the Erdds-Ko-Rado and Frankl's-wise intersecting theorems for sets and vector
spaces as corollaries. Three nice features of our proofs are that they are inductive, don't
involve tedious computations, and characterize the case of equality.

We also state, but do not prove our other results in this area, namely obtaining
a vector space analog of the Hilton-Milner theorem, Theorem 5.4.1, and determining
the chromatic number of thgeKneser graph, Theorem 5.4.5 and Theorem 5.4.6. The
latter results were motivated by the longstanding problem of coloring the Kneser graph,
whose solution involved a novel use of algebraic topology [9, 83].



1.2.1.2 Significance

Vector space analogs bring new questions and techniques to finite geometry since
many of its problems can be reformulated in these terms. They also provide applications
for the g-analog identities studied by algebraic combinatorialists. Recently, coding the-
orists such as Vardy are studying vector space analogs because they imply results about
projective codes [18, 49, 50]. Since codes are used in communication systems, research
in this area may yield practical applications.

1.2.1.3 Future Work

Our Lovasz analog, Theorem 5.0.12, establishes shadows as a viable method
for proving vector space analogs such as Theorem 5.0.14, and more applications are
expected. Recently, Wang [113] used Theorem 5.0.12 to prove a conjecturedsf Erd
Faigle, and Kern [48]. The method of proof in our Frankl analog, Theorem 5.0.14, has
also been used to prove resultsrecross intersecting families of sets [58]; Patkés and |
are currently working with Frankl and Tokushige to extend these results to vector spaces.

1.2.2 On a Conjecture of Frankl and Furedi

Fisher’s Inequality bounds the sizedfintersecting families, which are families
of subsets oK whose members pairwise intersect in exadtlyoints. Fisher’s Inequal-
ity proves that it# is A-intersecting, then the number of pointsXrthat are covered by
asetinZ is atleast.7|. Inspired by Fisher’s Inequality, Frankl and Firedi conjectured
that if & is aA-intersecting family, for which no point iX lies in all the sets iz, then
the number of pairs of points X that are covered by some seténis at Ieast('f‘).

1.2.2.1 Results

We reformulated the Frankl-Firedi conjecture in terms of shadows, and proved
it in some special cases using linear programming [25]. We first show in Theorem 6.1.1
that Frankl and Furedi’s conjecture holds for nontriiaintersecting families that sat-
isfy a reasonable extra condition and characterize the extremal families. If a conjecture



of Hall [68] is true, Theorem 6.1.1 would verify the Frankl-Firedi conjectureAfor
intersecting families whose members have fixed kjaghenk is large with respect to

A. While Hall’'s conjecture remains open, we applied Theorem 6.1.1 in Theorem 6.1.2
to prove the Frankl-Furedi conjecture, whénis additionally required to be uniform
andA is small.

1.2.2.2 Significance

The A-intersecting family in the Frankl-FUredi conjecture is a central concept in
coding theory so any new results about it may have applications in communication sys-
tems. A proof of the Frankl-Furedi conjecture would be interesting from a mathematical
standpoint because it would yield a new proof of Fisher’s Inequality. As we have seen,
it also relates to many other conjectures in design theory such as Hall’s.

1.2.2.3 Future Work

Not much is known about the Frankl-Furedi conjecture, although it is twenty
years old, and my paper is the first to consider it since it was published. | pose a con-
jecture about 2-intersecting families in my paper, and if this conjecture is true, it would
imply the Frankl-Flredi conjecture whén= 2. | intend to continue working on both
of these conjectures.

1.2.3 On the Manickam-Miklés-Singhi Conjecture

We used combinatorial and algebraic methods for the previous two questions.
The probabilistic method, however, also plays a role in extremal set theory problems and
their analogs. Alon, Huang, and Sudakov’s recent work [1] on the Manickam-Miklés-
Singhi conjecture [88, 89] uses probabilistic arguments to prove partial analogs of the
Erdés-Ko-Rado and Hilton-Milner theorems for subsums of a finite sum. More pre-
cisely, they showed that if > 33k?, then every set afi real numbers with nonnegative
sum has at Ieaiﬂj) k-element subsets whose sum is also nonnegative. The conjecture
is thought to hold when > 4k, and Chapter 7 presents ideas for verifying it wias
small and for improving Alon, Huang, and Sudakov’s result.



1.2.3.1 Results

Fork € Z*, let f(k) be the minimum integeN € Z* such that for alih > N,
every set o real numbers with nonnegative sum has at I¢gst) k-element subsets
whose sum is also nonnegative. Manickam, Miklos, and Singhi [88, 89] provei(that
exists and conjectured thatk) < 4k. Alon, Huang, and Sudakov [1] recently showed
that f (k) < min{33k?, 2k3}, which substantially improves previous bounds. We prove
f(3) =11 andf (4) < 24, which improves the previous upper bound$ (&) < 12 from
[87, 91] andf (4) < 128 from [1]. Although Conjecture 7.1.1 fér= 3 was previously
tackled, our result is stronger because we deternfiif® exactly and we character-
ize the case of equality; moreover our proof is simpler and gives a nice application of
the Kruskal-Katona theorem. We also show how our method could potentially yield
a quadratic upper bound di{k) that improves on that of Alon, Huang, and Sudakov.
We end Chapter 7 by discussing a related open problem, the vector space analog of the
Manickam-Mikl6s-Singhi conjecture.

1.3 Notation and Terminology
Here, we collect a list of frequently used notation and terminology.

e Number Systems

1. Z denotes the integer&"™ denotes the positive integers.
If a,b € Z, thena|b if there existsx € Z such thatx= b.
. N={0,1,...} denotes the natural numbers.

. Q denotes the rationals.

2.
3
4
5. R denotes the real numbei®: denotes the positive real numbers.
6. R>p:={xeR:x>0}

7. Ifa,be Randa< b, then[a,b] ;== {xe R:a<x<b}.

8. [Fq denotes the finite field of ordex

9

. If Ais a set, thed = Ax --- x Adenotes thd-fold product of Awith itself.



e Sets.

1. X:=[n={1,2,...,n}.

2. 0 denotes thempty set.

3. S denotes the family of all permutations of the Xet
|X| denotes theardinality of X.

x € X denotes arlement of X.

XUY denotes themnion of X andY.

X NY denotes théntersection of X andY.

© N o o &

X\ 'Y denotes theet complement of Y with respect toX.
e Families of Sets

1. 2Xis the family of all subsets oX.

2. . c 2X denotes a family of sets. When using the notat®e= {Fy,...,Fn},
the setd5 are assumed to be distinct, unless otherwise stated.

3. (%) denotes the family of ak-element subsets of. We also call(}) the
completek-uniform hypergraph on vertices.

4. (1) = ML=kt s the binomial coefficient. NotgX)| = |(%)].

5. %" denotes the firgn sets of(}) in the colex order.
e Properties of Families of Sets

1. Afamily # c 2Xis k-uniform if Z C (%).
2. For.Z c 2X andx € X, thedegree of xis dedx) := |{F €. :x € F}|, the

number of elements i that containx.

3. For.Z c 2X andSc X, theco-degree of Sis codedS) := |[{F € # : SCF}|,
the number of sets i¥ that contairs

4. Afamily .# c 2Xisr-regular if deg(x) =r for all x € X.

5. A family .# c 2X is trivial if there existsx € X with degx) = |.#|, and is
nontrivial otherwise.



¢ Intersection Properties of Families of Sets

. Afamily .# c 2% is intersecting if F NF’ # 0 for anyF,F’' € .Z.

. A family .# c 2X is r-wise intersecting if, for all Fy,...,F € .%, we have
Niz1Fi # 0.

. Fort € Z*, afamily.# c 2X ist-intersecting if |F NF’| >t whenF,F’ € .Z.

ForA € N, a family .# c 2% is A-intersecting if |FiNF| = A for any

{FL R} € (7).

For a finite set. C N, a family.# c 2X is L-intersecting if |F{NF,| € L for

any{F1,R} € (3).

e Operators on Families of Sets

1 If # c 2X thend 7 = {E € (¥) :E C F € 7 | is thei-shadow of 7.

2. If # c 2X and{i,j} € (3), then§;(F) is theshift operator that replaces
the elemenj by the element whenever possible.

3. Afamily.Z c 2X has an associated?| x |X| incidence matrixv.

e Graphs

1. G= (V,E) denotes an undirectegaph.

2. V(G) =V denotes the set ofrtices in the context of a graph.

3. EC (\é) denotes the family ofdges of a graph.

4. v ~ w denotes vertexdjacency.

5. A graphG = (V,E) has an associatéd | x |V | adjacency matriA.

6. x(G) denotes the chromatic number of a graph.

7. If G=(V,E) is a graph, then thdegree of a vertexv € G, denoted de(y),
is the number of vertices adjacenttahat is, degv) := [{w: v~ w}|.

8. A graphG = (V,E) is k-regular if all verticesv € V have degree dég) = k.

9. K.k denotes the Kneser graph.

10. gKnk denotes thg-Kneser graph.



e Digraphs

1. D= (V,A) denotes aligraph
2. ACV xV is afamily of ordered pairs of vertices calletts.

3. Ifa=(v,w) is an arc in the digrapb = (V,A), thena s said to be directed
from vtow. We callv the tail of a andw the head.

4. AdigraphD = (V,A) has an associated | x |A| incidence matrix\.
e \ector Spaces
1. V denotes am-dimensional vector space over the finite figlglin the con-
text of vector spaces.
{0} denotes theero subspace.
dimV denotes the dimension of the vector sp¥aaver its underlying field.

m denotes the family of ak-dimensional subspaces\éf

a M w0 DN

Forac R, g€ R", andk € Z™, the symbol[‘[ﬂq = |_|O§i<k%ak;;:_i- denotes
the g-binomial coefficient. Whenk = 1, we write[a]q := [‘;’j "

6. If ACV is a subspace of, let A denote therthogonal complement of A,

7. If A/B CV are subspaces ®f, thenAV B denotes théinear span of A and
B. Thatis,AV B is the smallest subspace that contains Fo&mdB.

8. GL(V) denotes the family of all nonsingular linear transformationg of
e Intersection Properties of Families of Subspaces

1. Afamily # c [}] is intersecting if dim(F NF’) # 0 for anyF,F’ € .

2. Afamily .7 C Dﬁ] is calledr-wise intersecting if dim ("{_; F) # 0 whenever
F]_,...,Fr Gﬂ

3. Fort € Z*, a family # C [\ﬂ is t-intersecting if dim(F NF’) >t when

F.F eZ.



Chapter 2
Combinatorial Technigues

Let X denote the sgh] := {1,...,n}, which we take as our underlying set, and
let 2X denote the family of all subsets ¥t The general problem in extremal set theory
asks for the maximum or minimum size of a famify C 2% of subsets oK that satisfies
certain restrictions. It is common, for example, to restrict the family t&-baiform;
that is, all sets in the family have sikeWe use the symbc(ﬁ:) to denote the family of
all k-subsets oK.

The sections of this chapter fall into three major themes. The first topic is shad-
ows, and we shall discuss the Kruskal-Katona theorem [75, 80]. We next discuss inter-
section theorems such as the &eKo-Rado theorem [47] and its generalizations. Both
of these topics allow us to demonstrate the power of the shifting technique. In this chap-
ter, we stress the importance and usefulness of the shifting technique in extremal theory
because we will see in Chapter 4 that no analog of it for vector spaces exists yet despite
several attempts.

The last theme of this chapter is Fisher’s inequality [17, 51, 73, 85]. We give
de Bruijn and Erds’ proof [34] of the nonuniform Fisher inequality in the case- 1.

Finally, we end the chapter with a proof of a special case of a conjecture of Frankl and
Furedi [55], which generalizes de Bruijn and Bsdresult and proof, and makes use of
convexity arguments. Our aim in this chapter is to give an overview of some combina-
torial techniques that are frequently used in extremal set theory and in this thesis.

10
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2.1 Shadows

Shadows are a fundamental concept in extremal set theory and appear through-
out this thesis. For example, we will use shadows in the proofs of thésBfd-Rado
theorem and Frankl’s r-wise intersection theorem [52] in Section 2.2.4 and Section 2.2.6
respectively. We will generalize shadows to vector spaces in Chapter 5, study a conjec-
ture of Frankl and Firedi on shadows in Chapter 6, and finally use them to prove special
cases of the Manickam-Mikl6s-Singhi conjecture [88, 89] in Chapter 7.

In Section 2.1.1, we formally define shadows and state the main result on them,
the Kruskal-Katona theorem, in its full generality. While we will need the complete
Kruskal-Katona theorem in Chapter 7, in practice, it suffices to use a weaker but more
convenient version of the theorem due to Lovasz [84, Ex 13.31(b)]. In Section 2.1.2,
we explain the statement of Lovasz’s version of the Kruskal-Katona theorem. We will
give two proofs of Lovasz’s version of the Kruskal-Katona theorem in Section 2.1.5 and
Section 2.1.6 respectively. The first proof is due to Frankl [53] and will make use of the
shifting technique. The second is a recent and elegant proof due to Keevash [77], which
we will generalize to vector spaces in Chapter 5.

2.1.1 The Kruskal-Katona Theorem

The Kruskal-Katona theorem [75, 80] gives a tight lower bound on the size of
the shadow of a family? c (}).

Definition 2.1.1. For a family.# c 2%, we define the i-shadowf .%, denoted®'.Z, to
consist of those i-subsets of X contained in at least one memér of

8iﬁ’::{Ee(>i():EcFeﬁ’}.

WhenZ c (), we define the shadoef .7, denoted.7, to bed # = 9< 1.7,

The Kruskal-Katona theorem also describes the structure of set-systems with
minimum shadow over all set-systems with the same cardinality. To characterize these
families, we need to define the colex order@j).
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Definition 2.1.2. Given A= {ay,...,a} and B= {by,...,b} in () where a < a1
and b < b1 for all i € [k— 1], we say that A< B in the colex ordeif A # B, and
for s=max{t : & # b}, we have a< bs. For 1 <m< (}), let €X denote the first m

elements of the colex order cé?é)

Note that the colex order is a total order @jj so the definition ofsX makes sense.

We now prove a lemma that demonstrates that every positive integét™ has
a k-binomial representation, and this lemma will allow us to compute the size of the
shadow of the firsin sets in the colex order o(rﬁ)

Lemma 2.1.3. Given positive integers jk € Z™, there exists a unique representation

= (%) (3 1) ¢+ (%)

where @ > ax_1 > --- > a >t > 1. (This representation of m is called the k-binomial

of min the form

representation of m.)

Proof. We show by induction ok that such a representation exists and is unique. If

k = 1, then the theorem is trivially true. Now assume that there exists a unique such
representation for anyp € Z* andk = | — 1. To show that a unique such representation
exists foome Z* andk =1, first note that = kanda; = k is a unique such representation

for m= 1. Suppose then that > 2. Since for > k, we have

3757002 (5,

we must havey = max{r : () <m}. If m= (%) then set = k. If m> (%), then by
the induction hypothesis, we have unique positive integergs > --- > a >t > 1 such

that
a\ [ 23
m= ()= ()= ()
Hencem= (%) + (%) +---+ (%) is a unique such representation. O

We are now ready to state the Kruskal-Katona theorem.
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Theorem 2.1.4(Kruskal-Katona) Let.# c () be a family of size m and suppose that
m=y*, (7) is the k-binomial representation of m. Then

a k K aj \.
a7z =y ()

=

in other words, the size of the shadow#fis at least the size of the shadow of the first m
sets in the colex order off) . Moreover, letting riv= 3%, (%), we have) 6 = € ;
that is, the shadow of the first m sets in the colex orde(r@rconsists of the first hsets

in the colex order or{, ).

2.1.2 Lovasz’s Version of the Kruskal-Katona Theorem

While we will need the Kruskal-Katona theorem in its full generality in Chap-
ter 7, Lovasz’s weaker but more convenient version [84, Ex 13.31(b)] suffices for many
applications. For example, we will use Lovasz’s version in the proofs of thés=rd
Ko-Rado theorem and Frankliswise intersection theorem in Section 2.2.4 and Sec-
tion 2.2.6 respectively. We also generalize Lovasz’s theorem to vector spaces in Chap-
ter 5. In this section, we explain the statement of Lovasz’s result.

Recall that the binomial coefficient

(E) . n(n—1)- -L-(!(n— k+1)

can be defined for alt € R andk € Z™. If we fix k, then(}) is a continuous function of
n that is positive and increasing; hence, by the intermediate value theonemn lifis a
real number, then there exists a unique real numperk such thar = ().

Theorem 2.1.5(Lovasz) Let.# C (ﬁ) and let y> k be the real number defined by

7| = (). Then|d.Z| > (,Y,). If equality holds, then ¥ Z* and .Z = (), where Y
is ay-subset of X.

2.1.3 Shifting

Ouir first proof of Lovasz’s version of the Kruskal-Katona theorem will make use
of the shifting technique. Also known as compression, the method was introduced by
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Erdds, Ko, and Rado [47] and is one of the most important tools in extremal set theory.
We will use the shifting technique again in our proof of the &do-Rado theorem in
Section 2.2.3.

Definition 2.1.6. For F C X and distinctjj € X define

Sj<F)::{ (F\{ihufi} ifi¢F, jeF

F otherwise.

We see tha§j replaces the elementby the element whenever possible. Note
thatS; is not a one-to-one map since fiérc X\ {i, j} one has

Sj(EU{i}) =Sj(EU{j}) =EU{i}.

We would like to associate withj a mapé j» Which sends a set system to another set
system of the same size. This motivates the following definition.

Definition 2.1.7. For a family.# ¢ 2X and distinct i j € X define the shift operator

~

Sj(#) =1{Sj(F):Fe F}U{F :F, §j(F) € #}.
We note two immediate properties 8f and its associated shift opera@r.
Proposition 2.1.8.We haveF| = |S;(F)| and |7 | = |§;(Z)|.

We will see in Section 2.1.1 and Section 2.2.1 that the shift opeSjtalows
us to transform our original set system into a more structured one while still preserving
important properties of the original.

2.1.4 Properties of the Shift Operator

Towards a proof of Lovasz’s version of the Kruskal-Katona theorem via shifting,
we first observe that the shifting operafqrdoes not increase the size of the shadow.

Lemma 2.1.9.For % C (ﬁ) and distinctj j € X, we havgd.Z| > |9S5; ()|

Proof. We show thaS;i : 95 (.%)\ 0.7 — 9.7 \ a5 (.7) is an injective map. Observe
thatifE € 95 (.F)\ d.% thenE C Sj(F) for someF ¢ .7 for whichS; (F) # F. Hence
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j¢E. Ifi¢ E, thenE=S§;(F)\{i} =F\{j} soE € d.#, which is impossible by our
assumption; hendec E. We have shown that eveB € 9S;(.%) \ d.% hasi € E and
i ¢E.

We claim thatS;i (E) € 0.7 \ dS;(:#). Clearly,S;i(E) € d.#. Suppose, for a
contradiction, thatE\ {i}) U{j} =S;ji(E) € 88 (:#). Hence, for somg € X that is not
in (E\{iH)U{j}, we have(E\ {i})U{j,x} € §;(F). If x=i, thenEU{j} € §j(F)
and Definition 2.1.7 implies th& U { |} € .# soE € d.%, which is a contradiction. If
x#i, thensince ¢ (E\ {i})U{j,x} andj € (E\{i}) U{j,x} € §j(F), we must have

EU{X}=S(E\{iDU{j.x}) e 7

sOE € 9.#, which is a contradiction. This proves trg{(E) € 9.7 \ 95;(.%).
We showed in the first paragraph that everyg aé- (#)\ dZ hasi € E and
j ¢ E. Hence, the mafji : 0S5;(.%) \.Z — 9.7 \ 95 (F) is injective. Consequently,

07| = (F)|+19.7\ 9§ ()|

|7 NS
>10§(F)NF| +|95)(F)\ F| = 9§ (F)],

as desired. |

Since shifting does not increase the size of a family’s shadow, the next two lem-
mas show how we can shift our original family to one that is more structured.

Lemma 2.1.10.Let.Z C (}). Defines#d = F and 74 = Sy (A1) fori € X\ {1}. We
then haveS; (%) = #; for alli € X\ {1}.

Proof. Suppose, for a contradiction, that there exigt& \ {1} such thaS;; (/4) # #.
Hence, there existid € 7, such that € H, 1¢ H, andS;(H) ¢ 4. As 1¢ H, we
haveH € J%_1NJ#. This impliesS;i(H) € % and hences;(H) € 4, which is a
contradiction. Consequenti$; (%) = 4 for alli € X\ {1}. i

If # C ( ) then we can partitio” into two subfamilies according to whether
1leF €.%. We show that this partition has a special property, wierc ( ) is a
family that satisfies the conclusion of Lemma 2.1.10, namely3ha# ) = .% for each
i € X\ {1}. We will exploit this property when we inductively prove Lovasz'’s version
of the Kruskal-Katona theorem.
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Lemma 2.1.11.SupposeZ C () andS;(F) = .Z for each ic X\ {1}. Let
Fo={Fe F:1¢F}, 1. ={F\{1l}:1€F e #}.
We then haveZ1| > |0.%|.

Proof. If E € d.ZgthenEU{i} € .Z for somei € X\ {1}. SinceS;(.%) = .#, we must
haveS; (EU{i}) =EU{1} € .. Consequentlyi € .#;. This proves.#;| > [d.%y|. O

2.1.5 Lovasz’s Result via Shifting

We now present Frankl’s shifting proof of Lovasz’s version of the Kruskal-

Katona theorem [53].

Proof of Theorem 2.1.5. Let # C (%) and lety > k be the real number that is de-
fined by|.Z| = ()). DefinesA4 = .F ands# = S (1) fori € X\ {1}; for notational
convenience, let?”* := . We have | = |.Z| = (}) and|d.#| > |d.#*| by Propo-
sition 2.1.8 and Lemma 2.1.9. Hence, the theorem will be provedfdrwe can prove
it for J7*.

We use double induction dnandm= |.%#| = |.7¢*|. Define

Hy ={Hex":1¢H}, 54 ={H\{1}:1eHe "}

Suppose, for a contradiction, that;*| < ({_1). We then have

*| *| * y . y_l o y_l

Hence, by the induction hypothesjg (‘| > ({j) Lemma 2.1.10 and Lemma 2.1.11
then imply that|.Z*| > |25 > (Kj) which contradicts our original assumption.
Therefore, we must havie;"| > (Y1), and s0d.#"| > ({_3) by the induction hy-
pothesis. A®).77y" C " by Lemma 2.1.11, we obtain the desired conclusion that

K| __ * * y_l y_l _ y
o712 0 = vo = (L) + (15) = () @1

We now characterize the case of equality in (2.1.1).|df7| = (,7,), then
equality holds everywhere in (2.1.1). We then have tRa¥;"| = (}_1), and hence
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15| = (Y,.'). The induction hypothesis and Lemma 2.1.11 imply tAatg| = ({_7)
ando. s = ;. Since|. 5| = (Y,1) and|9.#| = ({_1), the induction hypothesis
implies that7; = () where|Z| = y— 1. Hencesz* = (%), whereY' = ZU {1}, as
=y U{HU{1} 1 H € "} andd sty = 767"
If .# = *, then settingf =Y’, we are done sinc| = |[Y'| =y. If F #£ 7,

leti =min{j : 77 = s*}. Of course > 2, sincesq =.% and we have assumed that

F + #*. When we apply the shift operat&; to .74 _, only the element can be
deleted; we consequently ha?é&s% 1 c ZU{i} because’ = #* = (Zuél}). Hence,
1014 _1| < |ZU{i}| =Y. We have thald 7| = (,*,) = |05 *|, so Lemma 2.1. 9imp|ies
that|d.74 1| = (”,). By (2.1.1), we havéd & _1| >y, so|drs4_1| = |ZU{i}| =
and 9174 1 = ZU{i}. Consequently,#_1 = (“1). Since 1¢ Zu {i}, Def|n|-
tion 2.1.7 implies that# = (ZUk{i}) so settingr = ZU {i} finishes the proof. O

2.1.6 Keevash’'s Proof of Lovasz’s Result

As we mentioned previously, no analog of the shifting technique for vector
spaces exists yet. Consequently, it is not clear whether Frankl’s proof in Section 2.1.5
can be generalized to vector spaces. We will give more examples of problems that arise
when trying to generalize purely combinatorial proofs about sets to vector spaces in
Chapter 4. Since the techniques that tend to work for both sets and vector spaces are
typically algebraic in nature, we were pleasantly surprised to find that Keevash’s purely
combinatorial proof of Lovasz’s result [77] generalizes to vector spaces. We present
Keevash'’s proof now, and discuss its generalization in Chapter 5.

We first collect definitions that will be used in Keevash'’s proof of Theorem 2.1.5.

Definition 2.1.12. For .Z C (ﬁ) and xe X, define

KK ((F) = {T € (kil) ; G) C f}

to be the family ofk+ 1)-subsets of X all of whose k-subsets liegZirand

KII<(+1( x):={T ¢ Kk+1( 7) xeT}

to be the family ofk+ 1)-subsets in K ;(.#) that contain x.
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Definition 2.1.13. For .# ¢ 2X and xe X, define the degreef x, which is denoted by
degx), to be the number of elements.®fthat contain X,

degx) :=|{F € Z# :xe F}|.

Definition 2.1.14. For # C (}) and x€ X, define the linkof x to be the family of
(k—1)-subsets in X {x} whose union with x is an element.&f,

L(x):={ACX\{x}:|Al=k—1, Au{x} € #F} C {kfl}'

In Theorem 2.1.15, we establish an upper bounmﬁgl(ﬁﬂ in terms of|.Z |
we will see that Theorem 2.1.5 follows as a simple corollary.

Theorem 2.1.15(Keevash) Let.# C (}) and let y> k be the real number defined by
.Z| = ({)). Then

y
Kea)I< ()

Equality holds if and only if ¥ Z* and.# = () for some y-subset ¥ X.

Proof. We argue by induction ok The base cade= 1 is easy, so assume the statement
is true fork — 1. We first show that ik € X, then\KI'(‘+1(x)| < ((y—Kk)/k)degx); we
will then sum this inequality over al € X and double count to obtain the desired upper
bound onK¥, ;(#)|. If deg(x) = 0, then clearlyK¥, ; (x)| < ((y—k)/k) degx), so we
will assume that dgg) # 0. We will need to consider the cases where(degs large
and where dex) is small separately.

First, let's consider the case when ¢eg> (1 °3). If FU{x} € KK ;(x), then

F € . does not contaix; consequently,

_ u((y— 1) < y_kdeg(x). (2.1.2)

We have equality in (2.1.2) if and only if deg = (Y1) since de¢x) # 0.
Now we’ll consider the case where degy< (}7). If FU{v} € KK, ;(x), then
F € K& (L(x) and so|K¥, ()| < [KK ;(L(x))|. We define the real numbeg > k
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by degx) = (%}). SinceL(x) C [*,] and|L(x)| = degx) = (*"7), the induction
hypothesis yields that

ka0l < oo < () =2 (00 < X Kaegn, @219

where the last inequality follows becauge< 'y, by our assumption on dég. We have
equality in (2.1.3) if and only if dex) = (}_7) by our assumption that dég # 0.

To finish the proof, we sum the inequali|ﬂﬂ|'(‘+1( X)| < ((y—k)/k)degx) over
all x € X and double-count to obtain the desired mequalltwqﬁ1 )|. We have

(K DIKEL(P)] = 5 K29 < ;deQ(x YES F @1

Fe7s

:y;kk(lqﬁp:(y k) ( ) (k+1) (k+1)

We now characterize the case of equality in (2.1.4). We see that equality holds in (2.1.4)
if and only if ’K|k(+1(x)\ = y;kk degx) for all x € X. We saw previously that if d¢g) # 0,
then equality holds in (2.1.2) and (2.1.3) if and only if ¢eg= (}_7). Consequently,

7713 1) = g e = 3 FI=K(y)

so|dLF|=y. As (}) = |J]<(‘81¢|) (), we haveZ = (), whereY =d*Z. o

We now show that Theorem 2.1.5 follows as a corollary of Theorem 2.1.15.

Keevash’s Proof of Theorem 2.1.%.et.%# be as in Theorem 2.1.5, and fet> k— 1 be
the real number defined By.#| = (,.*;). By Theorem 2.1.15,

(i) = | 7| < [KEH0.7)| < ()Iz)

becauseZ C KK1(9.7). Hencex >y, s0[0.7| = (X)) > (Y,). If [0.7| = (. Y,) then
x =Y. Hence|KS1(0.%)| = () and# =KS1(9.7). By Theorem 2.1.15, this implies
yeZ* andd.Z = (,',) for somey-subset’ C X. Clearly, (}) =K 2(9.27) = Z. ©
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2.2 Intersection Theorems

We introduce the Eris-Ko-Rado theorem in Section 2.2.1 and its extension to
t-intersecting families [116] in Section 2.2.8. We will give three proofs of thed&+rd
Ko-Rado theorem in Section 2.2.3, Section 2.2.4, and Section 2.2.5. We also discuss
generalizations of the Eés-Ko-Rado theorem such as FrankFaiise intersection the-
orem [52] in Section 2.2.6 and the Hilton-Milner theorem [70] in Section 2.2.9. In
Chapter 4 and Chapter 5, we will see vector space analogs of all these theorems.

2.2.1 The Erdds-Ko-Rado Theorem

We present three proofs of the Bis#Ko-Rado theorem. The first is the original
proof by Erdbs, Ko, and Rado [47], which introduced the shifting technique. The second
is Daykin’s elegant proof [33], which shows that the &eKo-Rado theorem is a sim-
ple corollary of Lovasz’s version of the Kruskal-Katona theorem. The last is a proof by
Katona [76], which uses the cyclic permutation method. In Chapter 4 and Chapter 7, we
will use arguments similar to Katona’s cyclic permutation method to prove special cases
of the Erdds-Ko-Rado theorem for vector spaces and the Manickam-Mikl6s-Singhi con-

jecture respectively.

Definition 2.2.1. We say a familyZ c 2% is intersecting, if any two sets i have
nonempty intersection; that is, for all F’ € .#% we have FMF’ # 0.

The Erdds-Ko-Rado problem asks for the maximum size of an intersecting fam-
ily # C (ﬁ) of k-subsets oK. Of course, the problem is interesting only wher 2k,
as otherwise any two sets @f) intersect.

Theorem 2.2.2(Erdds-Ko-Rado) Suppose# C (ﬁ) is intersecting and > 2k. Then
17| < (1-7)- Equality holds if and only if# = {F e (¥):xe F} for some xe X,
excepting the case= 2k.

2.2.2 More Properties of the Shift Operator

Towards a proof of the Efis-Ko-Rado theorem using shifting, we first observe
that the shifting operatd j preserves the intersecting property of set systems.
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Proposition 2.2.3.1f # < 2X is intersecting, then so is its shi (7).

Proof. Suppose, for a contradiction, that c 2X is intersecting but its shifﬁ- (F)
is not. LetF,F € S (%) be disjoint sets. We cannot have bdthF € .# since
Z is intersecting and this would contradict our assumption faandF, are disjoint.
Observe that Definition 2.1.7 implies thatkf € S (#) andF ¢ % theni € F and
there existE € .7 such thatj € E, i ¢ E, andF = §;(E). Hence, we cannot have both
Fi,F ¢ # as then € Fy N F,. Without loss of generality, assurke ¢ .# andF, € .

Let E; € .# such thatj € Eg, i ¢ E1, andF, = §j(E1). We haveE; NF, # 0 as.%
is intersecting andt;,F, € #. SinceF, = Sj(E1) = (E1\ {j})U{i} andFiNF, =0,
we must havee; N = {j}. Now Fy ¢ .% implies thati € F; consequently ¢ F, as
F1NF, = 0. We have shown that¢ F, and j € > so §j(F) # F,. Definition 2.1.7
implies thatS; (R) € .Z asF, € §;(#)N.Z. Sincei ¢ E; andE;NF, = {j}, we have

E1NSj(F) = BEan((R\{iHu{i}) = (BanFR)\{]} =0,

which contradicts tha# is intersecting. Hence, i is intersecting then so éj (). o

We now prove a lemma that will enable us to inductively prove theb&igo-
Rado theorem via shifting.

Lemma 2.2.4.Suppose” C (ﬁ) is an intersecting family and r 2k. Definesp = .7
and.4 = §n(#4_1) for 1 <i<n—1. Forall H,H’ € 5% _1, we must have

HNH'N[n—1] #0.
Proof. Suppose, for a contradiction, that there eklsH’ € 7%4,_; such that
HNH'N[n—1]=0.

We have.7,_1 is intersecting by Proposition 2.2.3 and donH’ = {n}. Asn > 2k
and|H UH’| = 2k — 1, there exist$ € [n— 1] such that ¢ HUH’. Sincen e H, we
haveH € .7, and sinceH € J#,_1, we haveH € J4_1NJ%. Sincei ¢ H, n€ H, and
H € 74 = §,(£_1), Definition 2.1.7 implies thaH := (H\ {n}) U{i} € 2£_; and
henceH € /%4 1. AsHNH’ = {n} andi ¢ H’, we haveH NH’ = 0 which contradicts
J#y-1 being intersecting. This proves tHatnH' N[n—1] A0 forallH,H’ in J4_1. O
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2.2.3 Erdds-Ko-Rado via Shifting

We now prove the Er@s-Ko-Rado theorem via the shifting technique [47]. We
will see that Proposition 2.2.3 and Lemma 2.2.4 allow us to transform our original in-

tersecting family into a more structured intersecting family of the same size.

Proof of Theorem 2.2.2.Let . C (ﬁ) be an intersecting family. We will apply induc-
tion onn and prove the theorem simultaneously forkaf n/2. Whenn = 2k, each
k-set can be paired up with its complement, which is alkesat. Since any intersecting
family # < (¥) can contain at most orieset from each pair, we have

L[\ (k-1
12 3(2)= (2D 223

This argument also shows that there are exponentially many ways for equality to hold
in (2.2.1) as any¥ C (ﬁ) that chooses exactly orkeset from each pair is an extremal
intersecting family.

Forn > 2k, define % = .% and.J74 = én(%"f_l) for 1 <i<n-—1. By Propo-
sition 2.1.8 and Proposition 2.2.3, we hav#,_1| = |.#| and J#4,_1 is intersecting.

Define families%._, C ([E:f) and% C ([”;1}) as follows:

G 1={HNN—1:He A 1, JHN[n—1]| =k—1},
% ={HN[n-1:He s 1,|HN[n-1]| =k}.

Lemma 2.2.4 implies that both,_; and% are intersecting families. By the inductive

n—2 n—2
< < .
|Ge-1| < (k—2>’ % < (k—l)

Observe that for fixe® € Gx_; U G, there is exactly on&-setH € 77, 1 such that

hypothesis,

H N [n— 1] = G so by Pascal’s identity

n—2 n—2 n—-1
| 7| = [l = |G| + % < (k_2> + (k_ 1) (k_ 1) (2.2.2)

We have proved that i C (}) is intersecting and > 2k, then|.Z| < (7_7).
We now show that if equality holds amd> 2k, then.7 = {F e (%) :xe F}
for somex € X. We apply induction ork and prove the theorem simultaneously for
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all n> 2k. Clearly, the statement is true far= 2 andn > 4 since, in this case, any
intersecting family is contained i¥#; = ([g]) or Fy = {F c(3):ye F} for some
y€e X. If | Z| = (1) then (2.2.2) implies that_1| = (§ 3) and|%] = (} 7). Since
%1 C ([Ej]) is intersecting anah — 1 > 2(k — 1), the induction hypothesis implies
that%_1 = {G c ([Ej}) ye G} for somey € [n—1]. Lemma 2.2.4 implies that if
G € %_1 andG € % thenGNG # 0 so we conclude th&#, = {G € ([”;1}) y€e G}
and.#%, 1 = {F c(}):ye F}. As aresult,Z = {F e (%) :xe F} for somexe X. o

2.2.4 Erdds-Ko-Rado via Shadows

We present Daykin’s elegant proof [33] of the BsdKo-Rado theorem, which
shows that it is a simple corollary of Lovasz’s version of the Kruskal-Katona theorem.
We will return to this proof in Chapter 4, as it provides a simple example of a purely
combinatorial proof that does not readily generalize to vector spaces.

Proof of Theorem 2.2.2.Let.% C (ﬁ) be an intersecting family. Define

¢ ={X\F:FeZ}C (n>—<k)

to be the family of(n — k)-sets that are the complements of the sets#in Note that
n—k > kunder our assumption that> 2k. Since.# is intersecting, there does not exist
F € .7 such thaf C G for someG € ¢. Hence 0¥ and.# are disjoint subfamilies of

(k) so
0| + | 7| < (E) (2.2.3)

Suppose, for a contradiction, thg#| > (§_7). Hence,|¥| = |Z| > (1-1) = (0~
Applying Theorem 2.1.5 repeatedly, we find

0" K1y > (n:f 1),...,|akgy > (“; 1). (2.2.4)

We arrive at a contradiction by (2.2.3) since

() masis (2)+ ()0
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and so we must have” | < (Ej) We now characterize the case of equality. Suppose
that|.Z| = (}_1), then|¢| = (7-1) = (°—;). We havga¥| > (" *,) by Theorem 2.1.5.
On the other hand, (2.2.3) and (2.2.4) imply thé#| < (}_7). We consequently have

g c (1), 191 = ("), and|99| = (,".},). Theorem 2.1.5 therefore implies that
4 = (,7,) for someY € (,X,). Letx € X be the unique element X\ Y; we then have

F ={F € (}) :xe F} as desired. O

2.2.5 Erdbs-Ko-Rado via Cyclic Permutations

Our final proof of the Erds-Ko-Rado theorem in this chapter is via Katona’s
cyclic permutation method [76]. We will use similar arguments in Chapter 4 and Chap-
ter 7 to prove special cases of the &seKo-Rado theorem for vector spaces and the
Manickam-Miklos-Singhi conjectures respectively. ISetdenote the symmetric group
onX. We saya € S is acyclic permutation of X if o has exactly one cycle when writ-
ten in cycle notation. Clearly, there are— 1)! cyclic permutations oK. If F € (), we
say thato contains F if the elements oF are consecutive inx. We first prove a lemma
that shows that a cyclic permutation can contain at rradements of an intersecting
family .7 c (%).

Lemma 2.2.5.1f o € S is a cyclic permutation and” C ()é) is an intersecting family,
thena contains at most k elements.&f.

Proof. Suppose thdt € .# appears as consecutive elemedts. ., x of a. Since.% is
intersecting, the only sets &ftonsecutive elements afwhich can be sets i¥ are the

k— 1 sets beginning with the elememis. .., X1 respectively and thk— 1 sets ending
with the elementsy, ..., x_1 respectively. Without loss of generality, we can assume
that one of thek — 1 sets beginning withx,, ..., X, lies in .#; choose the last suck),
where 2< j <k, for which this is true. Since# is intersecting, none of the sets lof
consecutive elements ending with,...,x;_1 can lie in.#. Hence, there are at most
j+ (k—j) =kelements of# contained inx. O

Proof of Theorem 2.2.2.Let.# C (’é) be an intersecting family. Let

S:={(a,F): a € S is a cyclic permutatiork € .%, anda containsF }.
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We will double-count the cardinality & On one hand, eadh € .# is contained in
kI(n—Kk)! cyclic permutationsx because there akéways to arrange the elementsfof
consecutively andn — k)! ways to arrange the elementsXf\ F. On the other hand,
Lemma 2.2.5 implies that each of tfre— 1)! cyclic permutationsx can contain at most
k elements of#. Putting these observations together yields

(ZIK (n—k)! =S < (n— Dk,

and so|.Z| < (Ej) For a characterization of equality using the method of cyclic per-
mutations see [65, Theorem 7.8.1]. O

2.2.6 Frankl's r-wise Intersection Theorem

The Erdds-Ko-Rado theorem asserts thatdif C ()é) is an intersecting family
andn > 2k, then|.Z| < (Ej) Frankl [52] showed in his-wise intersection theorem
that we can get the same bound|on| for smaller values of if the pairwise intersecting
condition is strengthened. We will prove a generalization of Frankl's result for vector
spaces in Chapter 5.

Definition 2.2.6. A family.# ¢ 2X is called r-wise intersecting any r sets in# have

nonempty intersection; that is, for alkF.., R € . we have\_; F # 0.

Whenr = 2, thenr-wise will be omitted since, in this case, eswise intersecting
family is simply intersecting. We saw that the BedKo-Rado problem was only inter-
esting in the case that> 2k, otherwise any two elements @f) intersect. Similarly, the
guestion of determining the largastvise intersecting family is only interesting when
n> (r/r — 1)k, otherwise any elements oi(ﬁ) intersect. On the other hand, since an
r-wise intersecting family» C (ﬁ) is intersecting, the Efs-Ko-Rado theorem shows
that|.#| < (i_7) whenn > 2k. Frankl proved that this same bound of| holds in the
range(r/r — 1k <n< 2k

Theorem 2.2.7(Frankl). Suppose tha# C (ﬁ) is r-wise intersecting an¢t — 1)n > rk.
Then|.Z| < (i_7). Equality holds if and only if? = {F e (%) 1 xe F} for some x X,
excepting the case= 2 and n= 2k.
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Note that whem = 2, Frankl'sr-wise intersection theorem reduces to thedsrd
Ko-Rado theorem. We will prove Frankl’s result using Lovasz’s version of the Kruskal-
Katona theorem, Theorem 2.1.5. First, we need a lemma due to Kleitman.

Lemma 2.2.8(Kleitman). Let ki, ...,k € Z* such that k+---+ k- = n and suppose
Fi C (E) is a family of k-subsets of X foré& [r]. If there do not existiFe .%; withi € [r]

and RU---UFR = X, then
| Zil

—<r—1
20
Moreover, equality holds if and only if for every ordered partitiopG - - UG, = X with
|Gi| = ki, there is exactly oned [r] for which G ¢ .%.

Proof. Consider all ordered partitiorG; U - -- UG, = X with |Gj| = ki. Say there ar&
of them. Define th@ x r matrix A by

1 if G e %

AGLU-UG Fi) =
(Gr LG ) {O otherwise.

For a fixedF € (fé) one had € G; for a fraction J/(E) of all these partitions. Hence,

Gi € . holds for a fractior].Z; |/(|2-) of these partitions. The number of nonzero entries

in the matrixA is thus

ielr] (k.)
By assumption, however, there are at ntostl nonzero entries in each rowAf Hence,
Fi Fi
TS n" <=7 =% | n'| <r-1,
ielr] (k,) ielr] (k.)
and the characterization of equality is clear. O

Now we give Frankl’'s proof of his-wise intersection theorem [115].

Proof of Theorem 2.2.7Define #¢:= {X\F :F € Z#} C (ni(k) to be the family of
complements of sets i# with respect toX. Choosek;,...,k € [n—K| such that
Yie ki =n. Fori € [r], define.7; = IN.7C. As.F C (ﬁ) IS r-wise intersecting, this
implies that.Z¢ c <n>—(k> does not contaim sets whose union iX. Thus.%y,...,.%
satisfy the assumptions of Lemma 2.2.8.
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We have assumed that— 1)n > rk so first suppose thadt — 1)n =rk. In this
case,(n—kr=nsoky=---=k =n—-kand .1 =--- = % = .%° Hence, by

1 G r-1 n _n/ny _ n—-1
[ F1 =7 < — (n—k)_k<k)_<k—1>’ (2.2.5)

which proves the bound in this case.

Lemma 2.2.8,

Now, we characterize the case of equality in (2.2.5). By Lemma 2.2.8, if equality
holds, then for every ordered partiti@® U - -- UG, = X, there is exactly onec [r] for
which G; ¢ .#€. As a result, if equality holds in (2.2.5), then there cannot exist two
disjoint sets in(n>_<k) \.Z¢, as then we could form an ordered partitionXofwvith two
sets missing from#©. Hence(ni(k) \ -Z#Cis an intersecting family of size

(20 7= a2 7= (2 - () = ()

Sincen=r(n—k) and (%) \.Z° c (X)), we see that for > 3, the uniqueness of the

extremal families in the Efib-Ko-Rado theorem implies that there exists X such
that (%) \ Z¢ = {G e () : xe G}. Consequently, there existsc"X such that
F ={F e (}):ReF}.

Now assume thdtr — 1)n > rk so that(n—k)r > nand somé; < n—k. Suppose
that|.Z| > (7_7) so that|.#¢| > (°~,). Applying Theorem 2.1.5 repeatedly yields that
.7 | > (”gl). Sincey i, ki = n, we thus have

|7l

20

Lemma 2.2.8 and (2.2.6) imply tha#i| = (", *) and sq.7°| = (1) and|.#| = ({_3).
Moreover, by Theorem 2.1.5, we must ha#¢ = (Xn\_{’li}) for somex € X since there

ki
> S 1-—=r—1 (2.2.6)
ie%] "

existsi € [r] such thak; < n—k. ConsequentlyZ = {F ¢ (ﬁ) :x € F}. We have shown
thatif|.#| > (F-1), thenZ = {F € (%) : x€ F}. Hence, we always haveZ| < (i_7),
and if equality holds ther# = {F € (}) :x € F}. O

2.2.7 Forbidding Triangles

In the Erdbs-Ko-Rado theorem, Theorem 2.2.2, and Frankiigse intersection
theorem, Theorem 2.2.7, the extremal family has the foFe (ﬁ) :x € F} for some
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x € X. Such a family is called star. What other conditions on a uniform famil§f c (})
imply that the extremal family is a star? One particularly nice example, Theorem 2.2.10,
was posed by Efb and proved by Mubayi and Verstraéte [93].

Definition 2.2.9. A triangle 7 = {A,B,C} C (}) is a family consisting of three sets
A, B,C such that &AB,ANC,BNC are each nonempty butABNC = 0.

We may ask for the size of the largest family C (ﬁ) not containing a triangle.
We see that the question is uninteresting unfess3k/2, otherwise(} ) is the extremal
example. Itk = 2, then Mantel's theorem [90] asserts th&k| < |n?/4| and that the
extremal family is a complete bipartite graph. The answer is quite different whes

Theorem 2.2.10(Mubayi-Verstraéte) Suppose that C (ﬁ) contains no triangle and
that k> 3 and n> 3k/2. Equality holds if and only if7 = {F € (%) 1xe F} for some
xe X.

Note that if X/2 < n < 2k and.# contains no triangle, theg is 3-wise inter-
secting. As a result, Frankltswise intersection theorem establishes Theorem 2.2.10 in
this range. We will return to Theorem 2.2.10 in Section 5.5.

2.2.8 Ont-intersecting Families

The Erdss-Ko-Rado theorem gives an upper bound on families- (%) for
which any two sets in# have nonempty intersection. If the intersection condition is
strengthened to any two sets.id have intersection of size at leastwheret € Z™,
then Erds, Ko, and Rado [47] showed that a stronger upper boundrholds for
sufficiently largen. We will see in Chapter 4 that an analog of this result holds for
vector spaces.

Definition 2.2.11. For a positive integer £ Z*, a family.# c 2X is t-intersectingf any
two sets in# have intersection of size at least t; that|i§,NF’| >t for all F,F’ € .7.

Using algebraic methods similar to those in Section 3.3.2, Wilson [116] proved
the following generalization of the Edd-Ko-Rado theorem. Note that wher= 1,
Wilson’s result reduces to the Eys-Ko-Rado theorem.
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Theorem 2.2.12Wilson). SupposeZ C (y) is t-intersecting and & (t+1)(k—t+1).
Then|.Z| < (1-1). Equality holds if and only i = {F € (%) : SC T} for some t-subset
Se (¥), excepting the case= (t+1)(k—t+1).

2.2.9 The Hilton-Milner Theorem

Finally, we state the Hilton-Milner theorem [70], which is the last generalization
of the Erdbs-Ko-Rado theorem we will discuss. Like the other results, we will see in
Chapter 5 that Hilton and Milner’s theorem can also be generalized to vector spaces.
Frankl and Firedi [54] gave an elegant proof of the Hilton-Milner theorem using the
shifting technique.

Theorem 2.2.13(Hilton-Milner). Let.# C (ﬁ) be an intersecting family with k 2,
n> 2k+ 1, and such that there does not exist X such thatZ c {F € (%) : x€ F}.

We then have
n—1 n—k—1
o < .
|¢|_(k_1) ( < )H.

Equality holds if and only if
() 7 ={F}u{Ge (}):xe G, FNG # 0} for some k-subset F andeX \ F.

(i) Z ={F € (3):|FNS > 2} for some 3-subset S ifk 3.

2.3 Fisher’s Inequality

In Section 2.2.1, we were concerned with an upper bound for intersecting fami-
lies, that is those families c (ﬁ) for which |FLNF,| > 1 for everyFy,F, € #. Inthis
section, we will drop the uniformity condition, but insist that distinct elem&it$,
of our family .# c 2X satisfy|FiNF,| = A, whereA € N. Such families are called
A-intersecting.

In Section 2.3.1, we present the de Bruijn-&sdheorem [34], which bounds
the size of maximum 1-intersecting families and characterizes the extremal examples.
We then generalize the de-Bruijn Bsltheorem in Section 2.3.3 by stating Fisher’s
Inequality [17, 51, 73, 85], which handles the same question for geaeral/e will
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also state a conjecture of Frankl and Furedi [55] that generalizes Fisher’s Inequality,
and then present a proof of their conjecture in the special casé that. Frankl and
Flredi's proof is similar to that of de Bruijn and Ersland will make use of convexity,

an important tool in extremal combinatorics.

2.3.1 The de Bruijn-Erdés Theorem

We will state the de Bruijn-Eris theorem [34], which bounds the size of maxi-
mum 1-intersecting families and characterizes the extremal examples.

Definition 2.3.1. GivenA € N, a family.# c 2X is A-intersectingif, for any distinct
Fi,F € .7, we haveFiNk| = 1.

Definition 2.3.2. A family.# c 2% is k-uniformif .Z c (ﬁ)
Definition 2.3.3. A family.# c 2X is r-regularif degx) =r for all x € X.
We now give some examples of 1-intersecting families.

Definition 2.3.4. We say.# is trivial if there exists x X with degx) = |.%|, and is
nontrivial otherwise.

Definition 2.3.5. A family.# c 2X is called a near-pencif

Z ={{1,2},{1,3},...,{1,n},{2,3,...,n}}.

Definition 2.3.6. A family.# C (}) is called a projective plané .% is 1-intersecting,

uniform, and|.Z| = n.

Figure 2.1 The Fano plane is an example of a projective plane.
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Theorem 2.3.7(de Bruijn-Erdds). SupposeZ C 2X is a 1-intersecting family of size m.
We have nx n. Moreover, if equality holds, then exactly one of the following is true:
(i) thereis Fe .# such thatF| =1,
(i) .7 is a near-pencil,

(i) .Z is a projective plane.

2.3.2 Proof of the de Bruijn-Erdés Theorem

In this section, we will prove the de Bruijn-Ebd theorem, Theorem 2.3.7. First,
we state and prove a lemma to which the theorem reduces.

Lemma 2.3.8.Let.# C 2X be a family of size m. Suppodegx) < m and|F| < n for
every xc X and Fe .#. Assume further that if ¢ F, thendegx) < |F|. We then have

m<n.

Proof. Suppose, for a contradiction, that> n. Given any paitx, F) for whichx ¢ F,

we then have
degx) F|

m— degx) “ho IF|
Summing this inequality over all paifg, F ) for which x ¢ F yields a contradiction,

degx) degx)
Fl=§ degx) = § (m—degx))—— —~— < s S
Fg@ X; X€Z< m—dedx) , hxgr M—dedx)
F| F|
< — ¥ (n—|F)) — Y FL 2.3.1)
(x,F%xgéF n—Fl (& n—|[F| Fezgz

Hence,m < n. Also observe that ifn = n, then (2.3.1) yields that dég) = |F| if
X¢F. O

Now we prove the de Bruijn-Efis theorem [34].

Proof of Theorem 2.3.7.If there existd € .# such thaiF| = 1, then all the other sets
containF and are disjoint otherwise. It follows that< (n—1)+1=n.

Hence, for eacl € X, we can assume dég < m; otherwise we can adfk} to
Z ifitis not there already, and sin¢éx}| = 1, we are done by the previous paragraph.
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We can also assume for edele .7 that|F| < n, otherwisem= n= 1. We claim that if
x ¢ F, then de@x) < |F|. This is because evefyc .7 (x) .= {E € .7 : xc€ E} intersects
F in precisely one element and no two distiot .7 (X) intersecF in the same element
as.7 is 1-intersecting. Hence, we are in the situation of Lemma 2.3.8y so.

We now characterize the nontrivial extremal families. We first prove that every
pair of points is contained in sonfe€ .#. Suppose, for a contradiction, that there exist
distinctx,y € X such that there is nb € .# for whichx,y € F. Sincem= n, we must
have degdy) +# 0, so choos&’ € . such thaty € F'. We havex ¢ F’' by assumption,
so Lemma 2.3.8 implies that deg = |[F’|. As.Z is 1-intersecting, everf € .% (X)
intersectd’ in precisely one element and no two distikce .7 (x) intersect~’ in the
same element. Consequently, ¢ég= |F’| implies that somé& € .% (x) must contain
y, which contradicts our initial assumption abouandy. This proves that if# is a
nontrivial 1-intersecting family withm = n, then every pair of points is contained in
someF € .Z.

We distinguish two cases according to whether there exist didtiné € .#
such thaiX = F{ UF,. First, assume there exist distitgt - € . such thalk = FLUF.
Suppose, for a contradiction, th& |, |F2| > 3. Letx=F, NF; and lety,y> andz, 2
be two other points of; andF, respectively. By the result of the previous paragraph,
there exists, F4 € % such thaty;,z; € F3 andy», 2 € F4. Since.7 is l-intersecting
andX = FLUFR,, we seeRs = {y1,z1} andFs = {y2,22}. We obtain a contradiction
sinceFsNF4 = 0. Hence, we cannot have bdfh |, |F,| > 3. Without loss of generality,
assumeF;| < 3; we must haveF;| = 2 and|F,| = n— 1 since.# is nontrivial and
X =FUF,. As every pair of points belongs to sorRec .%, we see that# must be a
near-pencil.

Now suppose there does not existF € . such thatX = F; UF,. Fix some
F € .# and supposéF| = k. For any othelF’ € .#, we can choos& € X such that
x¢ FUF'. By Lemma 2.3.8, we haviF’| = degx) = |F| = k s0.% is k-uniform.
Hence.% is a projective plane. O
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2.3.3 The Frankl-Firedi Conjecture

The de Bruijn-Erds theorem proved that.i# c 2% is a 1-intersecting family of
sizem, thenm < n. The well-known Fisher’s Inequality establishes the same conclusion
more generally fol-intersecting families.

Theorem 2.3.9(Fisher’s Inequality) If € Z* and.# C 2% is a A-intersecting family
of size m, then € n.

Fisher [51] proved Theorem 2.3.9 under the additional constraintZhistreg-
ular (and hence uniform). Bose [17] proved Theorem 2.3.9 w#eis required to be
uniform. Majindar [85] first proved Theorem 2.3.9 as stated, and his proof was later
rediscovered by Isbell [73]. We will defer a proof of Theorem 2.3.9 until Chapter 3, as
its proof was one of the first to demonstrate the power of linear algebra.

Another way to restate Fisher’s Inequality is thatif c 2X is a A-intersecting
family of sizemthen|d1.Z| > m. Inspired by Fisher’s Inequality, Frankl and Firedi
[55] conjectured a similar inequality fo82.% | and verified it wherf = 1.

Conjecture 2.3.10(Frankl-Furedi) If A € Z* and.# c 2X is a nontrivial A-intersecting

2 o m
|M\z(2).

Theorem 2.3.11(Frankl-Furedi) If % c 2% is a nontrivial 1-intersecting family of size
m then|d2.7| > (7).

family of size m, then

2.3.4 Convexity

We will give more background on Conjecture 2.3.10 in Chapter 6. In this sec-
tion, we will concern ourselves with Frankl and Furedi’s proof of Theorem 2.3.11; their
argument is similar to de Bruijn and E¥s's proof of Theorem 2.3.7 and uses convexity.
We now define the concepts of convexity and Schur convexity and state a theorem that
will be used in the proof of Frankl and Furedi's Conjecture 2.3.10fer 1.

Definition 2.3.12. We say a function fR — R is convexf for all x1,xo € R and any
t € [0,1] we have
ftxa+ (1—t)x2) <tf(xq)+(1—-t)f(x2).
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Definition 2.3.13. For « := (oq...,0q) € RY, we leta* := (af,..., o) denote the
vector with the same componentsaabut sorted in decreasing order. Given 8 € RY,
we sayo majorizesp and we writeo - f if for all k € [d], we have

K k d d
; o > _;Bi*> ; o = _;ﬁi*-

Definition 2.3.14.We say F. RY — R is Schur conveit F («) > F () for all «, 8 € RY
for whicho = B.

Theorem 2.3.15.Suppose fR — R is a convex function. We then have that the function
F : RY — R defined by the sum

Fia,.x) = 5 f(x)
is Schur convex.

For a proof of Theorem 2.3.15 see [105, Chapter 13]. We now present Frankl
and Furedi’s proof [55] of Conjecture 2.3.10 wher= 1.

Proof of Theorem 2.3.11Let .# C 2X be a nontrivial 1-intersecting family of size
m. Forx € X andFj € .#, letd; := degx) ande; := |Fj|. OrderFy,...,Fy so that
€ > ... > ey Similarly orderxy,...,x, so thatd; > ... > dy. We will show that

& > d;. (2.3.2)

Since.# is 1-intersecting, we have thatifZ F, then degx) < |F
E € .7 (x) :={E € .7 : xe E} intersect$ in precisely one element and no two distinct

; this is because every

E € .Z(x) intersect- in the same element. L& < .# be any set that does not contain
{x1,...,%}. Hence, for somé& € [i] we havex, ¢ F soe; > dx > di. Consequently,
(2.3.2) holds if we havé setsF € .# that do not contaif{xy,...,X}. Fori=1, we
certainly have one sét € .# that does not contaix; since.# is nontrivial. Fori > 1,
suppose there are only at mast 1 setsF € .# that do not contairfx,...,X}. Since

i > 2 and.% is 1-intersecting, there can be at most one sefithat containgxy, ..., %}
som<i. As there ara sets andl; > ... > d;, we haved, < 1 sog >2>1>d. We
see that in all cases (2.3.2) holds.
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Letd :=(dy,...,dn), e:=(€1,...,6m,0,...,0) € R". We havee - § sinceg > d
andy™,e =y ,di. The functionf(x) = (}) is convex so by Theorem 2.3.15, the
functionF : R" — R defined by

F(X1,...,%) ::ii (2>

is Schur convex. Sinc& is 1-intersecting, we have

F(8)=F(dy,...,dn) :ii (2) =|{(x,F,F):F,F e Z,FNF ={x}}| = (Z]),

m

F(e)=F(ey,...,em.0,...,0) = ; @) —{({xy},F):F € Z,xyeF}| = |027]|.

We showect > & and so

02| = F(e) > F(8) = (r;)

as desired. O



Chapter 3
Algebraic Techniques

In this chapter, we describe algebraic methods that are frequently used in ex-
tremal set theory and in this thesis. First, we make good on our promise in Chapter 2
and prove Fisher’s Inequality, Theorem 2.3.9. We also discuss the major open problem
of characterizing the extremal families in Fisher’s Inequality, which is known as the
A-design conjecture [99, 117]. Next, we discuss a generalization of Fisher’s Inequal-
ity to L-intersecting families [59], whose proof illustrates the polynomial method. This
result and its variants have powerful combinatorial and geometric consequences; they
have been used, for example, to disprove Borsuk’s conjecture in topology [74]. We then
prove the Erds-Ko-Rado theorem via the eigenvalue method [66, 116]; variants of this
method have yielded Eéd-Ko-Rado analogs in many different structures. Finally, we
discuss linear programming and use this technique to prove Baranyai's theorem [10]
on decompositions of the complete hypergraph into perfect matchings. We will use
Baranyai’s theorem in Chapter 5 and Chapter 7.

3.1 Fisher’s Inequality via Linear Algebra

We prove Fisher’s Inequality, Theorem 2.3.9, via linear algebra. Given a family
of sets.Z c 2%, a natural way to represent it is via its incidence matrix. Majindar’s
[85] and Isbell's [73] ingenious proof of Fisher’s Inequality analyzes the rank of the
incidence matrix.

36
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Definition 3.1.1. If .# c 2X is a family of sets with sizg#| = m, then its associated
incidence matrixM is defined to be the mn matrix with

1if jek
Mij 1= .
0 if j¢HR.

Proof of Theorem 2.3.9.Let.# c 2X be aL-intersecting family. First, we consider the
case where sonfe € .%# has exactlyl elements. Since” is A-intersecting, all the other
sets inZ containF and are disjoint otherwise. Henoe< n+1—-1 <nasA € Z".

We may thus assume that the numbgrs- |F| — A are all positive for &K i <m.
Let M be the incidence matrix of?, and define the matriA := MMT. Observe that
Ajj = |RNF;
ones matrix an€ is the diagonal matrix with entri€g; := %. Note thatlJ is a positive

; since.Z is A-intersecting, we havaA = AJ+C, wherelJ is them x mall

semidefinite matrix and th& is a positive definite matrix sincg > 0. Consequently,
A'is a positive definite matrix sm = rankA < rankM < n. O

3.1.1 The Extremal Families in Fisher’s Inequality

Characterizing the extremal familie8 c 2X in Fisher’s Inequality is a major
open problem and is known as thedesign conjecture. In the de Bruijn-Erés theorem,
Theorem 2.3.7, the crucial step in characterizing the extremal families is proving that
every pair of points in a nontrivial extremal famibf is contained in somE € .7 this
is the content of Frankl and Firedi’s generalization, Theorem 2.3.11. While Babai [3]
has shown that Frankl and Firedi’s Conjecture 2.3.10 is true for alll in the case
thatm = n, this does not lead to a characterization of the extremal families in Fisher’s
Inequality unfortunately. We will partition the extremal families in Fisher’s Inequality
according to whether they are uniform.

Definition 3.1.2. For A € Z*, a A-intersecting familyZ c (%) is a symmetric design

if it is uniform and has cardinality.#| = n.

Definition 3.1.3. For A € Z*, a A-intersecting family# c 2X is a A-designif .% is not
uniform and|.%| = n.
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3.1.2 Symmetric Designs

We now give Ryser’s [98] elegant algebraic proof which shows that a symmetric
design.# C (iﬁ) is k-regular and that any pair of poinfx,y} € (>2() is contained in
exactlyA sets inZ. Ryser’s proof provides another application of incidence matrices.

Theorem 3.1.4Ryser) If # C () is a symmetric design, thef is k-regular and any
pair of points{x,y} € (>2<) is contained in exactly sets in%.

Proof. Let M be then x n incidence matrix of# and observe that

MTM;j = { degx) if _i - J (3.1.1)
codegx;,xj) if i#]j,

where codegx;,Xj) := [{F € .# : {X,X;} € F}| denotes the number of sets.if that
contain{x;, X; }. We will show thatM™™ = 2J+ (k— A)I; hence (3.1.1) implies tha¥

is k-regular and that any pair of poin{g,y} (>2<) is contained in exactly sets in.7.

Note thatMMT = |F NFj| soMMT = A3+ (k— A)I since.Z C (§) is A-intersecting.
As in the proof of Theorem 2.3.9, we conclude thMit1T is positive definite s 1

exists. We thus have that

MT =M Y AJ+(k=2A)) = MTM=AM"LIM+ (k—2)I. (3.1.2)
Since.Z is k-uniform, we haveMJ = kJ, which implies thaM—1J = k=1J. Also note

thatJM;; = degxj). Hence, by (3.1.2), we have

MM, ::{ Ak~ tdegx)+ (k—2A) if i=] (3.13)

Ak-ldegx)) it Q.

SinceMTM is symmetric, (3.1.3) implies that deg) = degx;) forall2 < j <n. We
also havenk = ¥ ,.x degx) = ndegx1) since the sum of the rows & equals the sum
of the columns oM; hence% is k-regular. By (3.1.1), we see

codegx;,xj) = MTM;j = Ak tdegxj) = 1.

Hence, any pair of point§x,y} € (%) is contained in exactlgt sets in7. O
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Recall that projective planes are symmetric designé ferl. By Theorem 3.1.4,
every pair of points in a projective plag is contained in exactly one set so

@Z”@ = n=(k-12+(k-1)+1.

This observation motivates the definition of the order of a projective plane.
Definition 3.1.5. If # C (}) is a projective plane, then its ordés k— 1.

The projective plane of order 1 is the trianQI@) and the projective plane of
order 2 is the Fano plane, Figure 2.1. We now show thgtdfZ™ is a prime power,
then a projective plane of ordgrexists.

Lemma 3.1.6.1f g € Z™ is a prime power, then a projective plane of order q exists.

Proof. Sinceq is a prime power, there exists a finite fiéig of orderq. LetV = Fg be a
three-dimensional vector space oW Let [V] := {Sc V : dim(S) = i} be the family
of i-dimensional subspacesffor i € [3]. LetX = [}] and letZ := [4]. We have

(@®°-1)(q°~q)
(0% —1)(o? —q)
If F € .# then|F| = (¢°—1)/(qg—1) = g+ 1. We have diniF; NF,) = 1 for distinct
Fi,F € .Z since dinV = 3 and dinfF; = dimF, = 2. Consequently# c (qﬁl) is a
1-intersecting family with.# | = | X|, so.# is a projective plane of ordey. O

3
g°—1
X|

= g1 - rarls

= 7).

By Lemma 3.1.6, there is a projective plane of ordef {2,3,4,5,7,8,9}. Is
there a projective plane of order 6 or of order 10? The celebrated Bruck-Ryser-Chowla
theorem [23, 28] answers the first question in the negative, and is the definitive tool in
proving the nonexistence of symmetric designs. Note that the existence of a projective
plane of order 10 is not ruled out by the Bruck-Ryser-Chowla theorem, but has been
ruled out by a massive computer search [81].

Theorem 3.1.7(Bruck-Ryser-Chowla)Let.Z c (%) be a symmetric design.
(i) If |.#|is even, then k A is a square.

(i) If |.Z|is odd, then the equatiorf z (k— A)x? + (—1)(#1=1/2)y2 has a solution
in integers xy, z, not all zero.
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Lemma 3.1.6 proves there are infinitely many symmetric designé ferl. We
do not know if the same is true for > 1, and a folklore conjecture asserts that the
answer is no.

Conjecture 3.1.8(Folklore). There are finitely many symmetric designs for fixed 1.

3.1.3 TheA-design Conjecture

Ryser [99] and Woodall [117] have shown that the points ih-design have
only two degrees, say andro.

Theorem 3.1.9(Ryser-Woodall) If .7 c 2X is a A-design, therdegx) € {r1,r>} and
ri+ro=n+1

Woodall [117] has shown that for eaéh> 1, there are only finitely many
designs, which is interesting because the corresponding problem for symmetric designs,
Conjecture 3.1.8, is not yet solved.

Theorem 3.1.10(Woodall). If A > 1, there are finitely many-designs.

The only class of nontrivial -designs known are the point-complemented block
designs.

Definition 3.1.11. Let.¥ C (’é) be a symmetric design. Aintersecting familys c 2%
is a point-complemented block desifithere exists Fe .# such that

G = [F'YU{FAF :F' £F € F}.

In the de Bruijn-Erés theorem, Theorem 2.3.7, the 1-designs of type (ii) are point
complements of the symmetric desig@él). Ryser [99] has shown that the unique
2-design¢ is the point complement of the Fano plane,

F = {{1,2,4},{1,4,6,7},{1,2,5,7},{1,2,3,6},{1,3,4,5},{2,3,4,7},{2,4,5,6} }.
The A-design conjecture [99, 117] asserts that all nontridiaesigns are of this type.

Conjecture 3.1.12(Ryser-Woodall) All nontrivial A-designs are point-complemented
block designs.
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The de Bruijn-Erds theorem, Theorem 2.3.7, proves Conjecture 3.1.12 in the
cased = 1. Conjecture 3.1.12 has been verified foriak 34 [19, 20, 21, 79, 99, 101,
108, 114], and is also true for a few infinite familiesf102, 103].

3.2 L-intersecting Families

We now discuss a generalization of Fisher’s Inequality-totersecting families,
whose proof illustrates the polynomial method. This result and its many variants have
powerful combinatorial and geometric consequences; they have been used, for example,
in the counterexample to Borsuk’s conjecture from topology [74].

Definition 3.2.1. Given a finite set LC N of nonnegative integers, we say a family
Z c 2X is L-intersecting if for all distinct | F> € .%, we havgFi N | € L.

A celebrated theorem of Frankl and Wilson [59] bounds the siteintersecting
families as a function ofiL|.

Theorem 3.2.2(Frankl-Wilson) Suppose LC N has sizelL| =s. If.Z c 2% is an

7| < i <'I‘) (3.2.1)

This result is best possible in terms of the paramateasds, as demonstrated

L-intersecting family, then

by takingL = {0,...,s— 1} and.Z to be the family of all subsets & of size at moss.
However, it is possible to get sharper bounds by specifiirfgor example, if# c 2X is
A-intersecting, wherd € Z", then Fisher’s Inequality yields tha#| < n, whereas the
statement of Theorem 3.2.2 gives the weaker boy#d| < n+ 1 sincelL| = |{A}] = 1.

We shall see, however, that tpeoof of Theorem 3.2.2 can be modified in this case to
yield that|.#| < n. In general, though, it is an open problem to even determine the order
of magnitude of the largestintersecting family for a specific skt

3.2.1 Polynomial Spaces

Given a fieldF, thepolynomial ring F[Xy, ..., Xy] in the indeterminates, ..., X,

is the set of all finite sums ofionomial terms, which are elements of the form

.. x (3.2.2)
G
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wherea € F, andd; € N. A monomial is callednonic if a= 1. In (3.2.2), the exponent
d; is called thedegree in X; of the term and the such=d; + - - - + dy is called thedegree
of the term. Apolynomial is a finite sum of nonzero monomial terms, and its degree
is the largest degree of any of its monomial terms. A polynomi&bigogeneous of
degree K if each of its monomial terms has degree The monomial (3.2.2) is called
multilinear if eachd; € {0,1}, and amultilinear polynomial is a finite sum of nonzero
multilinear monomials. Basic properties of the polynomial ritjg, . . ., X,| are covered
in standard abstract algebra texts such as [41] and will be assumed.

We will now show that certain subsets Bfx, ...,X,] form finite-dimensional
vector spaces ovét and compute their dimension.

Lemma 3.2.3.The set T of multilinear homogeneous polynomials of degree k with co-
efficients inF forms a vector space ov@rwith dimensiordimT = (}).

Proof. We can more concretely wrife as
T ={f € F[xq,...,X) : f is multilinear and homogeneous of degkgeJ {0}.

Clearly, T forms a vector space ov&rand has basi$x;, ...x, i1 < --- <ix}. Hence,
dimT = (1). 0
A similar argument yields that the spageof multilinear polynomials of degree

at mosts and with coefficients iff has dimension diw = 37 (7).

Lemma 3.2.4. The set W.= {f € F[xy,...,Xa] : f is multilinear of degree at mos}s
forms a vector space ové@&rwith dimension

dimw = ii (T)

Given afinite se, it is easy to see that the $&% := { f : Q — [} forms a vector
space overF called thefunction space. The Triangular Criterion, Lemma 3.2.5, gives a
sufficient condition for showing that a set of functiondi is linearly independent.

Lemma 3.2.5.Fori € [m], let fi : Q — F be functions andja Q be elements such that

#0 if i=]
fi(a 2.
(aj){ 0 if j<i. (3.2.3)

Then {,..., fm are linearly independent members of the function sfite
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Proof. Suppose, for a contradiction, that there exist constgresF not all zero such
thatz{ilci fi = 0. Leti’ be the smallestsuch that; # 0. By (3.2.3),

m
0= o fi(ay) = fi(ay),
i; (M
which implies thatc; = 0, a contradiction. Hencdy, ..., fy, are linearly independent
members off . O

The last lemma we need before commencing with the proof of Theorem 3.2.2
shows that for any polynomidl € F[xs, ..., X,] of degree at mos there exists a unique
multilinear polynomialf € F[xq,..., %], which has the same values &n the set
{0,1}".

Lemma 3.2.6. For any polynomial fe F[xs,...,X,] of degree at most s, there exists a
unique multilinear polynomiaf € F[xy, ..., x,] of degree at most s such thaixj = f(x)
for all x € {0,1}".

Proof. Expandf and use the identity? = x;, which is valid over{0, 1}". O

3.2.2 Proof of the Frankl-Wilson Theorem

We present Babai’s [4] elegant proof of Theorem 3.2.2. We first define the notion
of the characteristic vector of a set.

Definition 3.2.7. The characteristic vectoof a set FC X, denoted ¥ € {0,1}", is

defined by
1if ieF
(V)i = {

0 if i¢F
Proof of Theorem 3.2.2Let # = {Fy,...,Fn}, where|F| < --- < |FRy|, and suppose

L={l4,...,ls}. With each seF € .#, associate its characteristic vectpe R". Note
thatv; - vj = |F N Fj|. Fori € [m], define the polynomiafi € R[xy,...,%n| by

fi(x) ;== X — ). 3.24
(%) k:|k|JF.|<V X—lk) (3.2.4)
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Each polynomialfi has degree at mosbecausel | = s. Since.7 is L-intersecting and
|F1] <--- < |Fm|, we have

fi(vj) = k:II!JF,|(Vi Vi =) = k:h!]ﬁ(lﬁ NFjl—lk)

{ 70 =] (3.2.5)
=0 if j<i.

We now use Lemma 3.2.6 to replace edchy the unique multilinear polyno-
mial f; of degree at mostsuch thatf;(x) = fi(x) for all x € {0,1}". Sincev; € {0,1}",
the polynomialsfy, ..., fy and the elements;, ..., vy € {0,11" satisfy (3.2.5); that is
they satisfy the Triangular Criterion, Lemma 3.2.5. Herfge,. ., fm, are linearly inde-
pendent members 0, the space of multilinear polynomials of degree at nsahd
with coefficients inR. By Lemma 3.2.4, we conclude that

y%:mgii(?). n

If A € Z* and.Z c 2X is A-intersecting, then Theorem 3.2.2 gives< n+ 1, which

is weaker than Fisher’s Inequality. However, the proof can easily be modified to give
the correct bound. I € Z*, then 0¢ .#. Hence, in (3.2.4)fi(x) =vi-x— A is a
multilinear polynomial of degree 1. By Lemma 3.2.3, we concludert&tn.

3.3 Eigenvalues

We give Godsil’'s and Newman'’s [66] proof of the BtKo-Rado theorem via
eigenvalues of the Kneser graph, which is closely related to that of Wilson [116]. Vari-
ants of this method have yielded BsiKo-Rado analogs for vector spaces [60] and
recently, in combination with Fourier analysis, for permutations [46, 64] and graphs
[45].

3.3.1 Independent Sets

We begin with basic graph theory terminology, and then prove the ratio bound
on independent sets [35].
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Definition 3.3.1. A graphis an ordered pair G= (V,E) comprising a setV of vertices
together with a set E- (\é) of edges.

Definition 3.3.2. Let G= (V, E) be a graph. Two verticesw € V are adjacentdenoted

v~w,if {vw} € E.

Definition 3.3.3. Let G= (V,E) be a graph. A subset SV (G) is independenif no
two vertices in S are adjacent.

Definition 3.3.4. If G = (V,E) is a graph, then its associated adjacency matixs
defined to be th&/| x |V | matrix with

1 if v~w
AV,W:: i
0 if vtw

Definition 3.3.5. If G = (V,E) is a graph, then the degresf a vertex e G, denoted
degVv), is the number of vertices adjacent to v; thatdeg(v) := [{w: v~ w}|.

Definition 3.3.6. A graph G= (V,E) is k-regularif all vertices ve V have degree
deqv) = k.

The ratio bound relates the size of the largest independent set in a regular graph
to the least eigenvalue of its adjacency matrix. The original proof by Delsarte uses linear
programming techniques, but we will follow Godsil’s approach [65, Lemma 9.6.2].

Theorem 3.3.7(Delsarte) Let G= (V,E) be a k-regular graph with v vertices and
suppose the adjacency matrix A of G has least eigenvaluet SC V be an independent
set in G with characteristic vector z. Then

\Y

S < ;

kl
1+ X

(A—1l) (z— @1) =0.

Proof. Let M be the matrix given by

if equality holds then

Mi—A_1l - =73
V
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We claim the matriXM is positive semidefinite. It suffices to show that the eigenvalues
of M are nonnegative. First observe that, sies k-regular, the all ones vectdt, is
an eigenvector oM corresponding to the zero eigenvalue. keg 0 be an eigenvalue
of M distinct from zero. Sinc# is symmetric, any eigenvectdy, € RY corresponding
to A must be orthogonal t. Hence Jf, = 0 sof; is an eigenvector oA—7l. As T is
the least eigenvalue &f we see tha®— 7l has nonnegative eigenvaluestse 0. This
proves thaiM is positive semidefinite.

Let SC V be an independent set {® with characteristic vectoz. As M is
positive semidefinite, we see

k— K—
0<ZMz=7"Az— 17" 2“7 372= Az 75 - =552
v v

SinceSis independent, we hawAz= 0, and hence
Y
1+

-7

0< a8~ < T|s? = |5 < (3.3.1)

This yields the bound of the theorem.
If equality holds in (3.3.1), ther" Mz= 0. SinceM is positive semidefinite, this
impliesMz = 0, and accordingly
k—1 k—1

(A—rl)z= v Jz= v |S|1.

We also havéA— 71)1 = (k— 7)1, which yields the second claim. o

3.3.2 Erdbds-Ko-Rado via Eigenvalues

Godsil’'s and Newman’s proof [66] of the Erd-Ko-Rado theorem applies the
ratio bound, Theorem 3.3.7, to the Kneser graph.

Definition 3.3.8. The Kneser graphdenoted K, has vertex set \= (ﬁ) and edge set
E={{AB}:ABc (¥), AnB=0}.

Observe that independent sets in the Kneser gkgphare in bijective corre-
spondence with intersecting familie8 C (ﬁ) Consequently, we can apply the ratio
bound, Theorem 3.3.7, to the Kneser graph to prove thé€=kib-Rado theorem. For-
tunately, the eigenvalues and their corresponding multiplicities have been computed for
the Kneser graph; a derivation can be found in [65, Section 9.4].
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Theorem 3.3.9.Let n> 2k and let A denote the adjacency matrix of the Kneser graph
Knk- The eigenvalues; of A and their corresponding multiplicities;rare

=0 (M) m=(0) - (1) 10k

We now give Godsil’s and Newman'’s proof [66] of the BsdKo-Rado theorem;
we will prove only the bound though it is possible to use these methods to characterize
the case of equality.

Proof of Theorem 2.2.2. Supposen > 2k. Let.Z ¢ (}) be a maximum intersecting
family, and letSC V be the independent set in the Kneser gr&gh corresponding to
. By Theorem 3.3.9, the least eigenvalue of the Kneser glaphs

n—k-—1
ne (M),

Observe that the Kneser graldhy is (”;k)-regular since given arksset, there aré“;")
k-sets disjoint from it. Hence, the ratio bound, Theorem 3.3.7, yields
n
n—-1
#l=lss W= (177),
14 ( ‘ )1 k—1
(1)
which establishes the bound in Theorem 2.2.2. Using the second claim of Theorem 3.3.7
and the multiplicitymy = n— 1 of the least eigenvalug, it is possible to characterize

the case of equality wham> 2k; see [94, Section 5.4] for details. O

3.4 Linear Programming

We now discuss linear programming and some of its applications to extremal
set theory. In Section 3.4.1, we state and prove the weak versions of the Duality and
Complementary Slackness theorems; these results are used in Chapter 6 and provide
motivation for the strong versions of these theorems [61, 112], which we will state
but not prove. In Section 3.4.3, we state the Hoffman-Kruskal theorem [71] on totally
unimodular matrices, and use it to prove the integrality theorem on flows [32] in Sec-
tion 3.4.4. Finally, we use the flow result in Section 3.4.5 to prove Baranyai’'s theorem
[10] on decompositions of the complete hypergraph into perfect matchings. We will
need Baranyai's theorem in Chapter 5 and Chapter 7.
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3.4.1 Duality

We will prove the weak versions of the Duality and Complementary Slackness
theorems for the equality form, which we will use in Chapter 6. The strong versions of
these theorems are much more difficult to prove, so we will only state them as they will
not be needed for any of the author’s results in this thesis.

Consider the problem

n
Minimize > CiXj (3.4.1)
=1
n
subject to: > aijxj=bi iem
=1
Xj>0 je|n],

where all coefficients and variables take real values. Let us fix some terminology.

Definition 3.4.1. In (3.4.1) the function to be optimized is called the objective function

Definition 3.4.2. In (3.4.1) the inequalities and equations to be satisfied are called the
constraints

Definition 3.4.3. A feasible solutiox € R" is a point that satisfies all the constraints.

Definition 3.4.4. The feasible regiors the set of all feasible solutions.

Definition 3.4.5. An optimal solutionof the minimization probleni3.4.1)is a feasi-

ble solution(%y, ..., %) € R" such thaty|_, ¢j%j < y_, ¢jx; for any feasible solution
(X1,...,%) € R".

We seek a simple way to determine whether a feasible ggint..,x,) € R"
of the minimization problem (3.4.1) is optimal. This suggests the idea of finding lower
bounds for the minimum. Observe that if we take a real multyplef each equality
ajjXj = bj in (3.4.1) and add these equalities so that the resulting eqq@tydjxj =do
satisfied; < cj, thendp is a lower bound fof |_; ¢;x;. The best lower bound obtainable
in this way is given by

m
Maximize Zlbiyi (3.4.2)
i=

m
subject to: Zlaijyi <cj jeln.
=
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We call (3.4.2), thedual of (3.4.1) and refer to (3.4.1) as tlpeimal problem. It is a
consequence of the way we constructed the dual that every feasible sgiatiBf' of

the dual (3.4.2) gives a lower bound for the objective value of (3.4.1). This is the content
of the weak duality theorem, which we now formally state and prove.

Theorem 3.4.6(Weak Duality) If x € R" is a feasible solution of the primal problem
(3.4.1)and ye R™Mis a feasible solution of the dual problgi®.4.2) then

n m
ciXj > ) byi.
2,007 2,0

Proof. The constraints in (3.4.1) and (3.4.2) yield that

n n m m n m

CiXj > aiVi | Xi= ) Vi aiXj | =S by, (3.4.3)
2 j;(i; ) ’ i;'@l J ) 2"
which proves the theorem. O

The weak duality theorem has several useful consequences.

Corollary 3.4.7. If X € R" is a feasible solution of the primal proble(d.4.1) y € R™
is a feasible solution of the dual proble@.4.2) andy'_; ¢jX; = ¥ biyi, thenx and
y are optimal solutions of the primal and dual problems respectively.

Proof. Sincey'_;cjx; cannot be smaller thapi, biyi for any feasiblex € R", and
sincex’achieves this bouna,i§ optimal. The same argument can be used/for = o

By rewriting (3.4.3), we obtain the weak complementary slackness theorem.

Theorem 3.4.8(Weak Complementary SlacknesH)X € R" is a feasible solution of the
primal problem(3.4.1) y € R™ is a feasible solution of the dual problefd.4.2) and
>_1Cj%j = Y"1 biyi, then for each f [n],

m
ajjyi =c¢j or X; =0. (3.4.4)
o

Proof. If 37_; ¢j&j = 3 biyi, then equality holds everywhere in (3.4.3). In particular,
the first equality is equivalent to

> (Zicj _aij)7i> % =0. (3.4.5)
j=1 \i=

Since all terms in this sum are nonnegative, we must have (3.4.4) holds. O
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The weak duality theorem, Theorem 3.4.6, gives a sufficient condition for a fea-
sible pointX'e R" of (3.4.1) to be optimal, namely the existenceyaf R™ satisfying
(3.4.3) with equality. It is much less obvious that this condition is also necessary, which
is the content of the strong duality theorem.

Theorem 3.4.9(Strong Duality) If the primal problem(3.4.1)has an optimal solution
X € R", then the dual probler(8.4.2)has an optimal solutiofi € R™ andX, y satisfy the
relation y7_; ¢j%j = 3, bifi.

The strong duality theorem implies the strong complementary slackness theorem.

Theorem 3.4.10(Strong Complementary Slacknes§gasible solutionX € R" and
y € R™M of the primal and dual problems respectively are optimal if and ony # O or

Sty a;¥i = c;j for j € [n].

All results in this section are due to von Neumann [112] and Gale, Kuhn, and
Tucker [61]. The proofs of Theorem 3.4.9 and Theorem 3.4.10 can be found in any good
linear programming textbook such as [30, Section 2.5].

3.4.2 The Fundamental Theorem of Linear Programming

We stated the duality and complementary slackness theorems in the equality
form because these are the results we need in Chapter 6. More generally, a linear pro-
gram has the form

Maximize c'x (3.4.6)

subject to: Ax <D,

wherec,x € R", Ais ann x m matrix with real entries, and € R™. Note that (3.4.1)
can be put into the form in (3.4.6) in the following way,

Maximize —C'X

subject to: —A[ X< | =b],
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wherec,x € R", Ais ann x m matrix with real entrieg\j = &j, | is them x midentity
matrix, andb € R™.

The Fundamental Theorem of Linear Programming asserts that any linear pro-
gram is exactly one of three types, and is proved in [30, Theorem 2.12]. We again fix
some terminology.

Definition 3.4.11. The linear progran(3.4.6)is infeasiblef there does not exist& R"
such that Ax< b.

Definition 3.4.12. The linear program(3.4.6) is unboundedf for each re R, there
exists feasible x R" such that ¢x >r.

Theorem 3.4.13(Fundamental Theorem of Linear Programminghe linear program
(3.4.6)is infeasible, unbounded, or has an optimal solution.

3.4.3 Integer Programming

In practical applications, we would often like to know if a linear program has an
optimal solutionxe Z" all of whose coordinates are integers. We describe a method to
find such an optimal solution. We begin with some terminology.

Definition 3.4.14. A polyhedroris the feasible region of the linear progra(3.4.6)

Definition 3.4.15. A region CC R" is convexf whenever xyy € C and1 € [0,1], we
also havelx+ (1—A)y € C. In other words, C is convex if for any two pointyx C,
the line segment joining x and y is also contained in C.

Definition 3.4.16. An extreme poindf a convex set € R" is a point pe C such that
there do not exist distinct pointsmge C andA € (0,1) such that p=A1q+ (1—A)r. In
other words, an extreme point of C is a point of C that is not in the interior of any line
segment contained in C.

Definition 3.4.17. A set LC R" is a line if there exist distinct ¥ X, € R" such that
L={Ax1+(1—-2A)x2: A € R}.

Polyhedrons are convex, and the following result illustrates why their extreme
points are important in linear programming; a proof is in [30, Theorem 2.27].
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Theorem 3.4.18.If a linear program(3.4.6) has an optimal solution and its feasible
region contains no line, then it has an optimal solution that is an extreme point of its
feasible region.

Combined with Theorem 3.4.18, the Hoffman-Kruskal theorem [71] yields a
way of finding an integral optimal solution.

Definition 3.4.19. A matrix M with real entries M is totally unimodulaif every square

submatrix N of M has determina@t1, or —1.

Theorem 3.4.20(Hoffman-Kruskal) If A is a totally unimodular nx m matrix and
b € Z™, then every extreme point of the polyhedroa-RPx € R" : Ax< b} determined
by (3.4.6)has integral coordinates.

Suppose we know that thex mmatrix A is totally unimodularp € Z™, and that
the polyhedroP = {x € R": Ax< b} determined by (3.4.6) has an optimal solution and
does not contain a line. The Hoffman-Kruskal theorem asserts that all extreme points
of the polyhedrorP have integral coordinates, and Theorem 3.4.18 proves that one of
those integral extreme points must be an optimal solution to the linear program (3.4.6).

3.4.4 Flows

We define the notion of a transportation network, and prove the integrality theo-
rem on flows [32] using Hoffman’s and Kruskal’'s Theorem 3.4.20.

Definition 3.4.21. A digraphis an ordered pair D= (V,A) comprising a setV of vertices
together with a set A=V x V of ordered pairs of vertices called arcs.

Definition 3.4.22. If a = (v,w) is an arc in the digraph D= (V,A), then a is said to be
directed from v to w. We call v the taof a and w the head

Definition 3.4.23. A transportation networlks a finite digraph D= (V, A) together with

two distinguished vertices called the source s and the sink t, and a capacity function
k: A — R>p which associates a nonnegative real numbig) ko each arc ac A. The
source s must be the tail of all arcs which contain it and the sink t must be the head of
all arcs which contain it. We further assume that A does not contain any arcs of the form
a= (v,v) for a vertex ve V.
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Definition 3.4.24. Given a transportation network B (V,A), a flowin D is a function
f : A— R>o which assigns to each arcaA a nonnegative real numberd) such that

(i) 0< f(a) <k(a) for all arcs ac Aand

(i) for each vertex eV \ {s,t} we have

% f(a) = f(a).
acAV is head of a acAV is tail of a

Definition 3.4.25.1f D = (V,A) is a transportation network and :fA — Rxq is a flow
on D then the strengtbf the flow, denoteff|, is defined to be the sum of the values of

= aegseaf(a)'

We will be interested in determining the maximum strength of a flow on a trans-

f on the arcs leaving s,

portation network, and we will show how to formulate this problem as a linear program.
In the following diagram, we illustrate an example of a transportation network with a
maximum flowf of strength|f| = 5.

Figure 3.1 A transportation network with flow and capacity denofed.

To formulate the maximum flow problem as a linear program, we need to define
the concept of an incidence matrix of a digraph.

Definition 3.4.26.1f D = (V,A) is a digraph, then its incidence matrM is defined to
be the|V| x |A] matrix with

-1 if vistailofa
Mya = 1 if visheadofa
0 if véa
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We show that the incidence matrix of a digraph is totally unimodular.
Lemma 3.4.27.The incidence matrix M of a digraph D is totally unimodular.

Proof. We must show that every square submaliiaf M satisfies déiN) € {—1,0,1}.

We prove this by induction on the orderof N. Certainly, the statement is true for

| =1 as the entries df! lie in {—1,0,1}. Suppose > 2 and all square submatrices of
order less thahhave determinant O at1. Observe that every column bf has exactly
one+1 entry and one-1 entry. Now, ifN has a zero column, then dis) = 0. If N

has a column with exactly on¢1 entry, then we can expand its determinant on that
column, so délN) = +-det(N’), whereN’ has ordet — 1. By the induction hypothesis,
we consequently have dét) = +detN’) € {—1,0,1}. Finally, if every column ofN

has exactly one-1 entry and one-1 entry, then its rows sum to zero, so (d¢t = 0.
This proves thaM is totally unimodular. |

Finally, we formulate the maximum flow problem as a linear program.

Lemma 3.4.28(Maximum Flow Problem)Let D= (V, A) be a transportation network.

Let M denote the incidence matrix of D and 1&t€ RA denote the row in M corre-
sponding to s. Deleting the rows in M corresponding to the source s and the sinkt yields
a (V| —2) x |A| matrix, which we denot®l. Let ke RIA denote the capacity vector
with entries k = k(a). Finally, let Iy denote the w w identity matrix and lef,, € RW
denote the all zero vector. The maximum strength of a flow on D is the optimal value of

the following linear program,

Maximize —c'x (3.4.7)
M Ov|—2
—M Oy
subject to: X< Vi-2
Ll [ Oar

We now state and prove the integrality theorem on flows [32].

Theorem 3.4.29(Dantzig) If D = (V,A) is a transportation network with an integral
capacity vector ke Z/A!, then there is a maximum strength flow f on D such that for

each ac A, the value fa) € Z is integral.
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Proof. By Lemma 3.4.27, the incidence mattik of D is totally unimodular. Hence,

M, the matrix formed by removing the rows corresponding to the saiaoe the sink

t, is totally unimodular. A similar argument to the one in Lemma 3.4.27 proves that if a
matrix L is totally unimodular, then so are the matri¢€s [L| — L], [L|l], and[L| —1].
Hence, the matrix on the left hand side of (3.4.7) is totally unimodulark AZ/A! is
integral, the vector on the right hand side of (3.4.7) is integral. The Hoffman-Kruskal
theorem, Theorem 3.4.20, yields that the extreme points of the polyhedron defined by
(3.4.7) all have integral coordinates.

Observe that the linear program in (3.4.7) is not infeasible or unbounded be-
cause6|A| is a feasible solution and the value of the objective function is bounded by
—c"k. Hence, (3.4.7) has an optimal solution by the Fundamental Theorem of Linear
Programming, Theorem 3.4.13. Moreover, observe that the polyhedron determined by
(3.4.7) does not contain a line since for each A, we have 0< x; < k(a). Hence,
by Theorem 3.4.18, one of the integral extreme points must be an optimal solution of
the linear program (3.4.7). Consequently, there exists a maximum strength oW
such that for each € A, the valuef (a) € Z is integral by Lemma 3.4.28. i

For more information on flows, see [110, Chapter 7]. We will use the integrality
theorem on flows, Theorem 3.4.29, to prove Baranyai’s theorem.

3.4.5 Baranyai’'s Theorem

We prove Baranyai’s theorem [10] on decompositions of the complete hyper-
graph into perfect matchings. This result will be needed in Chapter 5 and Chapter 7.

Definition 3.4.30. A partition (respectively m-partitionof a set X is a family (respec-
tively multiset)?? of subsets of X that satisfies properties (i)-(iii) (respectively (ii)-(iv)):

(i) 0¢ 2,
(i) PNP' = 0for all distinct BP’ € 22,
(i) UpesrP=X,

(iv) | 2| =m.



56

Definition 3.4.31. The complete k-uniform hypergraph on n verticethe family(ﬁ).

Definition 3.4.32. If k|n, then a perfect matchingf the complete hypergrapﬁi) isa

family &2 C (ﬁ) that is an(n/k)-partition of X.

Baranyai's theorem asserts thakjih, then the complete hypergra;()ﬁ) can be
partitioned into perfect matchings. Itis straightforward to verify that Baranyai's theorem
is true fork = 2, but the cas& = 3 is much more difficult [95]. We now formally state
Baranyai’s theorem and give a proof due to A.E. Brouwer and A. Schrijver [22]. All
known proofs of Baranyai's theorem use some form or consequence of Theorem 3.4.29.

Theorem 3.4.33Baranyai) If k|n, then the complete hypergra()b) can be partitioned
into (_1) perfect matchings.

Proof. We prove a seemingly stronger statement. roet= n/k and letM := (}_1). We
assert that for any nonnegative integy@vith | < n, there exists a family#, ..., of
m-partitions of|l] such that each subs8t [I] appears exactl{(k”_]'g) times among the
m partitions.<%. Observe that the case- n proves the theorem as then

n—1y\ 0 ] 1 ifk=|
(k— |5|> B <k— |S() - { 0 otherwise.

We proceed by induction onh The base caske= 0 is trivially true since each
</ consists ofm copies of the empty set. Assume that, for sdmen, a family of
m-partitions <7, ..., o4y with the desired properties exist. We form a transportation
network with sources, sinkt, vertices labeleds for i € [M], and vertices labele8 for
each subse® C [I]. There is an arc with capacity 1 from the sousce each vertex
labeleds. If Se o, then there is an arc with capacity 1 from the vertex labeletb
the vertex labele®; if S= 0 we putj arcs with capacity 1 from the vertex labeleglto
the vertex labeled 0 if the empty set occymmes in.«. Finally, there is an arc from
each vertex labele8to the sinkt with capacity(k”_*‘g_ll).

We exhibit a flow in this network. Assign a flow value of 1 to the arcs leaving
the sources. For an arc from a vertex labele# to a vertex labele®, assign the flow

value(k—|9])/(n—1). For an arc from a vertex label&to the sinkt, assign the flow
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value <kn—_||3_—11)' Clearly property (i) of a flow is satisfied so we verify property (ii). The
sum of the flow values on arcs leaving a vertex label¢ s

3 et (me 2

S
S S

1
) :m(mk—l) =1.

The sum of the flow values on the arcs entering a vertex laliied

I arlEe) (st

For each ara leaving the sinls, the flow value equals the capacitya) = k(a), so this

is a maximum flow with strengtM. The same property holds for arcs entering into the
sinkt. Hence, for any maximum flow on this network, the flow value equals the capacity
on any arc leaving the sours@r entering the sink.

Since all arcs have integral capacities, Theorem 3.4.29 yields@mal-valued
maximum flowf. As f is maximum, for any ara from s to a vertex labeleds, we
havef(a) = k(a) = 1. As f is integral and all arcs leaving the vertex labelgidhave
capacity 1, we see thdtsends one unit of flow from the vertex labeleg to exactly
one vertex labele&, where§ € o4. All other arcs leaving the vertex labeled will
have zero flow. AS is maximum, for any ara leaving a vertex labele8to the sinkt,
we havef(a) = k(a) = (k':g__ll). Consequently, we see that for eachSehe number
of i such tha§ = Sis (k”_*|'§_11).

We obtain a family ofn-partitions.« ..., .« of the sef]l + 1] by letting <%’ be
obtained frome# by replacing the distinguished sgtby S U {I 4+ 1} for i € [M]. We
claim thatT C [ + 1] appears exactl{(“;f'#‘l)) times among/, ..., <4;. This is clear
if T=Su{l+1} as the number of timeSis chosen to b& is (krf"ﬂjll) = (”;ﬁ'ﬁ‘l)).
Otherwise,T C [I]. SinceT appears({l‘ﬁ) times amonge, . ..., <4y and the number
of timesl + 1 is added tdl is (krl_‘hill) we see thal appears

(kn—_rh) B (kn—_&\_—ll) - (nig ; rl)>

times among, ..., <,. This completes the induction step. O



Chapter 4
Projective Prerequisites

We saw in Chapter 2 and Chapter 3 that intersecting families and shadows are
two core concepts in extremal set theory. We also proved and discussed fundamental
results about these concepts, such as thé&kb-Rado and Kruskal-Katona theorems.

By defining suitable notions of “intersecting” and “shadow,” one can find remarkable
analogs of these theorems for other structures such as vector spaces. A tantalizing fea-
ture is that, although results from extremal set theory are often expected to be true for
vector spaces, not much is known about analogs because standard techniques do not
always apply.

We describe what vector space analogs are in Section 4.1.1 and why this area of
research is significant. To explain the analogies between sets and vector spaces, we then
introduce a generalization of the binomial coefficients calledjtbenomial coefficients
in Section 4.2. Thej-binomial coefficients satisfy identities which generalize familiar
ones such as Pascal’s rule; we explore these in Section 4.3 because we will need them
for the analog of Lovasz’s result, Theorem 2.1.5, in Chapter 5. We prove tlés-Kia
Rado theorem for vector spaces and introduce the closely-rejgiaekser graphs in
Section 4.4. In Chapter 5, we will extend the &seKo-Rado theorem for vector spaces
by proving an analog of Frankliswise intersection theorem, Theorem 2.2.7. To do this,
we will need the concept of spreads, which are an analog of perfect matchings, so we
discuss these in Section 4.5. Finally we end in Section 4.6 by highlighting the difficul-
ties of adapting purely combinatorial techniques to vector spaces and dicuss algebraic
methods that have worked in both the set and vector space settings.
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4.1 \ector Space Analogs

In this section, we describe what vector spaces are and illustrate questions in
this area by using the analog of the BsdKo-Rado theorem as an example. We also
discuss the significance of this area of study, and give an overview of which methods
from Chapter 2 and Chapter 3 carry over to the vector space setting.

4.1.1 What are Vector Space Analogs?

In extremal set theory, our underlying set is thelement seX. In vector space
analogs, the seX is replaced by an-dimensional vector spaséover a finite fieldFy.

The general question in extremal set theory concerns the maximum or minimum size
of a family of subsets oK, which is usuallyk-uniform. In vector space analogs, the
guestions will usually concern families kfdimensional subspaceséf

To visualize the situation, consider the Fano plane in Figure 2.1. Yésea
three-dimensional vector space over the finite fi€ldThere are seven one-dimensional
subspaces represented by points and seven two-dimensional subspaces represented by
lines. In the picture, a point lies on a line if the one-dimensional subspace corresponding
to the point lies in the two-dimensional subspace corresponding to the line.

We saw in Chapter 2 that the ErstKo-Rado theorem asserts thakKifis large
enough, then the unique intersecting famify C (ﬁ) of maximum size consists of the
k-element subsets containing a fixed point. Let us try to formulate a vector space analog
of the Erdbs-Ko-Rado theorem. On a first try, we might ask what is the maximum size
of a family .# of k-dimensional subspaces¥fsuch that any two members &f have
nonempty intersection. However, this doesn’t quite make sense since the zero subspace
is always contained in the intersection of any two subspaces. We instead stipulate that
the dimension of the intersection of any two members &f is nonzero. Now, the
vector space analog of Eid-Ko-Rado asks for the maximum size of a famify of
k-dimensional subspacesdfsuch that the intersection of any two members/has
nonzero dimension. The answer is strikingly similar to the original: if the dimension
of V is large enough, then the unique intersecting fan#yc [\ﬂ of maximum size
consists of alk-dimensional subspaces containing a fixed one-dimensional subspace.
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4.1.2 Significance

Remarkably, questions and results about intersecting families and shadows are
valid not only for sets but for a wide range of mathematical objects such as vector
spaces, permutations, and graphs. The ultimate objective of this research is to have a
unified theory that characterizes the structures for which analogs exist and that proves
results simultaneously for broad classes of objects. As we will see in the sections that
follow, vector space analogs force us to analyze which methods from Chapter 2 and
Chapter 3 work in a more general setting.

Vector space analogs bring new questions and techniques to finite geometry since
many of its problems can be reformulated in these terms. They also provide applications
for the g-analog identities studied by algebraic combinatorialists. Recently, coding the-
orists such as Vardy are studying vector space analogs because they imply results about
projective codes [18, 49, 50]. Since codes are used in communication systems, research
in this area may yield practical applications.

4.1.3 Methods

In Chapter 2 and Chapter 3, we gave four proofs of theb&#ido-Rado theo-
rem. Which of these approaches carries over to the vector space setting? In Section 4.6,
we will discuss the difficulties that arise when we try to mimic the shifting proof or
Daykin’s proof from Section 2.2.3 and Section 2.2.4 respectively. We will see that we
can mimic Katona’'s proof from Section 2.2.5 to yield the &3&Ko-Rado theorem for
vector spaces in the special case tkjat this argument will also be important for the
analog of Frankl'sr-wise intersection theorem in Chapter 5 and for the Manickam-
Miklos-Singhi conjecture in Chapter 7. Finally, we will see in Section 4.4 that the
eigenvalue proof from Section 3.3.2 fully carries over to the vector space setting. In
general, algebraic techniques have been more successful than purely combinatorial ones
for vector space analogs. We will discuss some other algebraic successes in Section 4.6.
We remark that, in Chapter 5, we will give another proof of thedsro-Rado theo-
rem for vector spaces that is surprising because it is purely combinatorial, but does not
require any tedious computations.
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4.2 Theg-binomial coefficients

Usually, g will denote the order of a finite field, but in this section, we will
allow g to be a positive real. We define tlggbinomial coefficient, a generalization
of the binomial coefficient. Wheq is the order of the finite fieldfy, the g-binomial
coefficients play the same role in the enumeration of subspadéghat the binomial
coefficients play in the enumeration of subsetXof

Definition 4.2.1.Ifa€ R, qe R, and ke Z*, define the Gaussian binomial coefficient

by _
al g '-1
{k} q . 0Q<k qk_l -1

When k= 1, we write[a]q := ["ﬂq.

Definition 4.2.2. For a€ N and ge R™, define the g-torial functioby [0]' = 1 and

[alg! := JIjl[j]q foracZ".

Observe thaff) = limg_1 [{] q and that, whegj= 1 anda <€ Z*, we havga); =
aand[a);! =al. Whenae Z™, the Gaussian binomial coefficient takes the familiar

form

al _ [alq!
M q [Ko'la—Kg!
In this chapterV always denotes an-dimensional vector space over the finite
field Fq. We now introduce the notatiif ] ., which is analogous t¢y).

Definition 4.2.3. If q € Z™ is the order of the finite fielfflq and ke Z™ is a positive in-
teger, Ietmq = {ScV :dim(S) =k} denote the family of all k-dimensional subspaces
of V.

We know that the size of}) equals the binomial coefficier(t); a simple counting
argument shows that we similarly have that the siz{akvﬂ)g is [¢] g

Lemma 4.2.4.We hav% [\m - [E]q.
g
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Proof. There are(q@"—1)(q"—q)--- (9" — d“1) ways to choosé-tuple independent
vectors fromV. Since a givetk-space haggf—1)(q“—q) - -- (g —g<~ 1) distinct ordered
bases, the number &dimensional subspaces\éfis

(@"-1@ -9 (@ -g" (@ -1@ -1 (@ -1 _ H e
q

F—1)(k—a)--(F—dT) (-1 T-1)--(q-1) [k

4.3 Thegqg-Pascal Rule

Theg-binomial coefficients satisfy identities which generalize familiar ones such
as Pascal’s rule. We discuss tipascal rule, which we will need for our proof of the
analog of Lovasz’s result, Theorem 2.1.5, in Chapter 5. The familiar Pascal’s identity

(E) - (E:D + (n;l) forke [n—1]. (4.3.1)

Often, naively changing binomial coefficients in an identitygtbinomial coefficients

asserts that

yields ag-identity: for example ifa € Z™, then

(i) N <aik)’ mq B L:kL fork e [al. (4.3.2)

In the case of Pascal’s identity, however, changing binomial coefficiergstoomial
coefficients does not give@Pascal identity. Wheg # 1, we have

i~ rrer2=fol [,

Interestingly, there aravo g-Pascal identities as we will show in Lemma 4.3.1.
We will first give an arithmetic proof that holds where R, g € R*, andk € Z*. Our
second proof is more conceptual, but only holds whenZ™ andq is the order of a
finite field.

Lemma 4.3.1(Theg-Pascal Identities)if a € R, g R™, and ke Z™, then

R R e e
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Proof. We have

.

qa_ 1 (qafl _ 1) L (qakarl _ 1)
<q—1>< (0 —1)---(d—1) )

qk -1 ‘ qafk -1 (qafl . 1) . (qakarl . 1)
(q—l+q q-1 )( (®—1)-(g¢—1) )
(@ *t-1)--- (-1 (-1 (-1

T @@y T @)

B {a—l} +qk{a—1}
k_lq k q

The second equality is proved in a similar manner. O

From now ong will be restricted to be the order of the finite fiélg, and we will
drop the subscripg. Now we give a second proof of Lemma 4.3.1 using Lemma 4.2.4,
but note that € Z* must be a positive integer.

Proof. Sinceac Z™, letn =aand letH be an(a— 1)-dimensional subspace 9t For
the second identity, we partition tlkedimensional subspaces dfinto k-dimensional
subspaces that are containedHrandk-dimensional subspaces that are not contained
in H. By Lemma 4.2.4, there arg, '] k-dimensional spaces that are containedin
Note that if ak-dimensional subspace ¥f does not lie inH, then it must intersedt
in a (k—1)-dimensional space. By Lemma 4.2.4, there Eﬁrﬁ] (k— 1)-dimensional
subspaces iRl, each of which is contained in

qa_qkfl qafl_qkfl a—k+1 a—k ak

N [ 1 } - [ 1 } -

k-dimensional subspaces\éfthat are not contained id. Hence,

=[] 1 [ el foe o=y
S PR |

which is the second identity. Sin@ec Z*, we can use the symmetry property of the

binomial coefficients (4.3.2) to yield the first identity. |
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4.4 Thegq-Kneser graphs

We formally state and prove the KistKo-Rado theorem for vector spaces, and
introduce the closely-relategiKneser graphs.

Definition 4.4.1. A family.% C [\ﬁ Is intersectingf the intersection of any two members
of .# has nonzero dimension; that is, for alliF € .# we havedim(F NF’) # 0.

We discussed the analog of the BseKo-Rado question in Section 4.1.1 and
formally state it now. Hsieh [72] first proved the bound and characterized equality when
n > 2k. His proof does not work for all relevant valuesroaindqg, and involves many
computations. Later, Frankl and Wilson [60] proved the bound and characterized equal-
ity for n > 2k, essentially by computing the eigenvalues of a generatizedeser graph.

More recently, Godsil and Newman [66, 94] used Frankl and Wilson’s methods to char-
acterize equality in the case= 2k.

Theorem 4.4.2(Hsieh, Frankl-Wilson, Godsil-NewmanBupposeZ c [{] is inter-
secting and r> 2k. Then|.Z| < [_1]. Equality holds if and only if

() = {F e[V]:vc F} for some one-dimensional subspace V or
(i) n =2k and.Z = [!!] where H is a(2k — 1)-dimensional subspace of V.

Recall that in the case of sets, there were exponentially many ways to obtain an
extremal family in the case = 2k. Since vector spaces have additional structure, the
characterization of equality is stronger and there are only two extremal families when
n = 2k. We will see further examples of results which are stronger for vector spaces
than for sets in Section 4.6.3.

As in the Erds-Ko-Rado proof from Section 3.3.2, our proof of Theorem 4.4.2
hinges on computing the eigenvalues of thkneser graph, which we define now.

Definition 4.4.3. The g-Kneser graphdenoted gk, has vertex sef| and edge set
E={{AB}:ABc[/], AnB={0}}.

Many parameters of thg-Kneser graphs are given by expressions that involve
g-binomial coefficients and which reduce to those of the Kneser graph when we set
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g= 1. The next two lemmas give examples of such parameters. Recall that, as part of
the proof from Section 3.3.2, we showed that the Kneser gkapthas(};) vertices and

is (”;")-regular. We now prove that thgKneser graphgK has|[}] vertices and is

qk2 [”;k}-regular. Observe that, when= 1, the expressions for the number of vertices
and the degree of thepKneser graph reduce to that of the Kneser graph.

Lemma 4.4.4. The g-Kneser graph gl has [] vertices and is regular with degree
[
Proof. Lemma 4.2.4 proves that theKneser graphgK,x has [E} vertices. Now we
show that they-Kneser graph is regular and we determine its degreecll®s a vertex
of gKy; it is a k-dimensional subspace and contagffselements oﬂFg. There are
(@"—df) (" — gftL) - (g" — g~ 1) ways to choosé-tuple independent vectors )
that are not ina.. Since a giverk-space hagg‘—1)(q—q)--- (g€ — g 1) distinct
ordered bases, there are

(@ —a9)@" —d“h- (@ - e [n - k}

(A —1)(g*—a)- (g — 1) k

k-spaces iriFg whose intersection witl is the zero subspace. Hence, tip&neser

graphqK is regular with degreg*’ [, ). O

Recall that in Theorem 3.3.9, we computed the eigenvalues of the Kneser graph’s
adjacency matrix and their multiplicities. Delsarte computed the corresponding quanti-
ties for theg-Kneser graph [36]. Again, whap= 1, the expressions for the eigenvalues
and multiplicities reduce to that of the Kneser graph. Here, we inteffifet 1 and

("] =o.

Theorem 4.4.5(Delsarte) Let n> 2k and let A be the adjacency matrix of the g-Kneser
graph gK,«. The eigenvalues; of A and their corresponding multiplicities; rare

2 = (—1)igkk) {”;ET'} m = m _ Li‘l}, i—0.. .k g

Now we prove Theorem 4.4.2 using the eigenvalue method of Section 3.3.2. As
in the set case, the independent sets ingHikneser graph are in bijective correspon-
dence with intersecting familieg C [\lﬂ
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Proof of Theorem 4.4.2.Suppose > 2k. Let.# C [}/| be a maximum intersecting fam-
ily. We know.% is an independent set in tlgekKneser graplgK,x. By Theorem 4.4.5,
the least eigenvalue of the Kneser gragb. is
_ _ k(k—l) n—k—l

T=M~0 q { k1 |
In Lemma 4.4.4, we showed that theKneser graprgKn is o< [”;"] -regular so the
ratio bound, Theorem 3.3.7, yields

n
-1
%1 [ {k—l ’

HrEns

which establishes the bound in Theorem 4.4.2. Using the second claim of Theorem 3.3.7
and the multiplicitymy = [n] — 1 of the least eigenvalud, it is possible to characterize
the case of equality whem> 2k; see [94, Section 5.5] for details. O

4.5 Spreads

Spreads are the vector space analogs of perfect matchings. We will need them
in Section 4.6, where we give a proof of the BsdKo-Rado theorem for vector spaces,
Theorem 4.4.2, in the case thah. We also use spreads in Chapter 5 to prove an analog
of Frankl'sr-wise intersection theorem, Theorem 2.2.7.

Definition 4.5.1. A family. C [\t/] of t-dimensional subspaces of V is called a t-spread
if every one-dimensional subspace of V is contained in exactly one t-dimensional sub-
space in?.

Definition 4.5.2. If ¥ C [\t’] is a spread and the elements.if that lie in a subspace
U form a t-spread of U, then we say that inducesa t-spread on U.

Definition 4.5.3. A t-spread.¥ C [\t/] is called geometridf . induces a t-spread on
each2t-dimensional subspace generated by a pair of elemenfs.in

Baer and Segre [6, 100] proved necessary and sufficient conditions for the exis-
tence of geometrit-spreads.
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Lemma 4.5.4(Baer, Segre)A geometric t-spread” C [} exists if and only iffn.

Proof. If . c [Y] is a spread, then the size 6f is

n n
1= =31
1
Sinceq, |.”| € Z* are positive integers, we must haye.

Now suppose that = tl wherel € Z*. We have thaV¥ is ann-dimensional
vector space over the fielfl;, but we can also view as anl-dimensional space over
the fieldFy. Let. C [\ﬂqt be the family of 1-dimensional subspaced/oés a vector
space oveF . We have that

Y w0 | w0-2) ¢, dl-1 g'-1
Lt—q R R e e A St

71= 1,

If we think of V as ann-dimensional vector space oviEg again, then the members of
< are nowmt-dimensional spaces ovEy and form a geometritspread oWV . |

We now prove two properties of geometric spreads that we will need for our work
in Section 4.6 and Chapter 5. The first proves that a geontespcead” C [\t’] does
not just inducd-spreads on thetalimensional spaces generated by a pair of elements
in ., but also on any subspace generated by element#s. of

Lemma 4.5.5.1f . is a geometric t-spread of V, therf induces a geometric t-spread
on any subspace of V that is generated by elemenfs.of

Proof. Let {Xi,...,Xn} C ., wherem < n/t, and suppose difiX; V --- V X)) = mt.
We will show that¥ induces &-spread oKy V -- -V Xm. We proceed by induction on
m. If me {1,2}, the statement is true by definition of geometric. Suppose the statement
is true form—1 and let# be the spread tha?’ induces orXy V- - -V Xm_1.

Define¥ := {XmVA:Ac %} C [3]. We claim that every one-dimensional
subspace 0Ky V-V Xy, lies in someG € 4. Observe that distingg;, G, € ¢ satisfy
G1 N G2 = Xy and that for anyG € ¢, the number of one-dimensional subspaces in
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G\ Xmis [th] — [tﬂ Hence, the number of one-dimensional subspaces in S0 is

e 1] rweecofl-mi([3]-[]) ¢ {we [ wenf
=" ) () B) = [
fwe Y] w e vx)

which proves that every one-dimensional subspacg of- - - V X, lies in someG € ¢.
Consequently, iX € .7 andX N (Xy V-V Xm) # {0}, thenX NG # {0} for
someG € ¢4. Since.¥ is geometric, this implieX ¢ G C X1V ---V Xy Hence,.”

)

induces a-spread orXy V- -+ V Xn. O

The second lemma proves that an invertible linear transformatidhrofps a
geometrid-spread to another geomettispread.

Definition 4.5.6. The set of all invertible linear transformations of V is denoted
GL(V):={m:V —V : mis an invertible linear transformation

Lemma 4.5.7.1f .# is a geometric t-spread of VV, then for any invertible linear trans-
formationz € GL(V), the familyz(.¥) := {n(S) : S€ .#’} is also a geometric t-spread
of V.

Proof. Firstwe check that(.7) is aspread. FdBc ., we haver(S) is at-dimensional
subspace becauseis an isomorphism o¥/. If v [Y], thenz=(v) € S for some
Sc .7 as.” is a spread. Hence,= n(xr1(v)) € n(S). Also, we cannot have in
n(S)Nx(T) for distinct S, T € .7 as otherwiser—1(v) € SNT, which contradicts?
being a spread. We have shown that every one-dimensional subspatiesin exactly
onet-dimensional subspace of.#) and sor(.) is at-spread. Givel®, T € .7, if .
is the spread tha?” induces orSV T, then it is easy to check that.”) is the spread
thatz(S) induces om(S) vV z(T). m

4.6 Which Tools Work?

On a first glance, it might seem as if theorems in extremal set theory should
easily extend to the vector space setting by changing identities involving binomial coef-
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ficients to their correspondingtanalogs. On closer inspection, however, we will see in
Section 4.6.1 and Section 4.6.2 that adapting combinatorial techniques to vector spaces
is often not straightforward. Generally, algebraic methods have been more successful
than combinatorial ones for vector space analogs, as we saw in Section 4.4. We will dis-
cuss further results that have been proved using algebraic techniques in Section 4.6.3.

4.6.1 Shifting and Shadows

Adapting combinatorial techniques to vector spaces is often tricky. We cite two
flawed attempts to extend the shifting technique to vector spaces. We discuss the diffi-
culties that surface when trying to adapt Daykin’s proof in Section 2.2.4 to vector spaces.
We also show that no analog of the colex order exists for shadows in vector spaces.

4.6.1.1 Shifting

There have been two published attempts [31, 39] to extend the shifting proof
from Section 2.2.3 to vector spaces, and both of these attempts are acknowledged to be
flawed by their respective authors.

4.6.1.2 Daykin’s Proof

For a simple example of the kinds of issues that occur when attempting to extend
combinatorial proofs to vector spaces, consider Daykin’s proof of thé<€=kb-Rado
theorem in Section 2.2.4. The definition of a family’s shadow extends naturally to vector
spaces: if# C [\,ﬂ is a family ofk-dimensional subspacesVf then its shadow consists
of the (k— 1)-dimensional subspaces dfcontained in at least one member.sf. In
Chapter 5, we will prove an analog of Lovasz'’s result, Theorem 2.1.5, for vector spaces.
We cannot, however, mimic its application in Daykin’s proof.

Let # C [\ﬂ be intersecting, and suppose we try to mimic Daykin’s proof to
show that.Z| < [}_1]. Itis not clear what the analog &f should be as the set comple-
mentV \ F of the subspacE € .7 with respect td/ is not itself a subspace. If we try to
define? = {F-:F € #} c [Y,] to be the family of orthogonal complements.&f,
then it is possible tha C G for someG € 4. More importantly, the use of the Pascal
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identity in Daykin’s proof does not work with thegPascal identity.

4.6.1.3 No Analog of the Colex Order

A crucial difference between sets and vector spaces is that no analog of the
colex order exists for shadows in vector spaces. Recall that we defined the colex order
in Definition 2.1.2. We say that a set syste##i C (ﬁ) is a solution to the shadow
minimization problem with parameteksind|.7#’| if the shadow of7# is minimum over
all set-systems” C (ﬁ) with the same cardinality,

|0 = min
| Z|=|#]

dF|.

We are especially interested in the case where there are nested sdju#fahsi.e., such
that |7, = m, 2, is a solution to the shadow minimization problem with parameters
kandm, and. -1 C s for L<m< (}).

The Kruskal Katona theorem, Theorem 2.1.4, shows that the colex or({ét) on
satisfies the following properties:

1. For 1< m< (y), we have{%X} is a family of nested solutions to the shadow
minimization problem with parameteksandm.

2. The shadow o&X is an initial segment of the colex order ()lgfl)

No analog of the colex order exists for vector spaces. For example, Bezrukov
and Blokhuis [12] showed that there is no total order of the subspad&ssatisfying
properties (i) and (ii) whem > 4. Even more remarkably, Harper [69] and Ure [109]
showed that nested solutions to the shadow minimization problem for vector spaces do
not always exist.

Theorem 4.6.1(Harper, Ure) LetV =F3. If % c [4] has sizd.Z| = 24and minimum
shadow over all families with the same cardinality, then there does not.&Xist .#
such thatl.#'| = 22 and.Z#’ has minimum shadow over all families with the same car-
dinality.
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4.6.2 Katona’'s Cyclic Permutation Method

Like the combinatorial methods discussed previously, Katona’s cyclic permuta-
tion technique in Section 2.2.5 does not readily adapt to give a full proof of thiesErd
Ko-Rado theorem for vector spaces, Theorem 4.4.2. A similar argument, however, does
yield the theorem in the special case that. The proof uses spreads and is due to
Greene and Kleitman [67]. This argument will be important for the analog of Frankl’'s
r-wise intersection theorem in Chapter 5 and for the Manickam-Mikl6s-Singhi conjec-
ture in Chapter 7. We first prove two lemmas; the first computes the siGd @f).

Note that, wherg = 1, the expression for the size GiL(V) reduces to that of the size
of S, the group of permutations ot

Lemma 4.6.2.We havgGL(V)| = g""Y/2(q—1)"[n]!

Proof. SinceV is ann-dimensional vector space oVEg, there are

@ -1)@ )@ ) (" — g 1) = """ D/2(q—1)"[n]!

ways to choose a basis\éf The number of invertible linear transformations/oéquals
the number of distinct bases \éfso |GL(V)| = g"("Y/2(q— 1)"[n]!. O

The second lemma shows thatAfB < [\Iﬂ arek-dimensional subspaces 6f
then there ar@""1/2(q— 1)"[k]![n— k]! invertible linear transformations € GL(V)
such thatt(A) = B. Observe that, wheg= 1, this expression reduces to the number of
permutations oK that send a givek-subset to another.

Lemma 4.6.3.1f AB¢e [\Q are k-dimensional subspaces of V, then the number of in-
vertible linear transformations such tha(A) = B is ""1/2(q— 1)"[k]! [n — k]!

Proof. Letvs,...,v be a basis oA. Extend this basis to a basis, ..., Vk,Vki1,---,Vn
of V. Sincern(A) = B, there arg — 1 choices forr(vy1). Fori € [k]\ {1}, we must pick
m(vi) such thatr(v;) € B but is not a linear combination af(vy),...,7(vi—1). Hence,
there areg“ — g~ choices forr(vi) wheni € [k]. We must pickr (v, 1) €V \ Bso there
areq" — g choices forr(vi, 1). For eachj € [n]\ [k+ 1], we must choose(v;) inV \ B
so thatr(vj) is not a linear combination of(viy1),...,m(vj—1). Consequently, there
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areq” — g/~ choices forz(vj) whenj € [n]\ [K]. We see that the number of invertible
linear transformations such thatA) = B is

(A—1)- (g H@"—d)--(@"-g" ) =" V/2(q-1)"[K![n-K! o

Now, we give Greene and Kleitman’s simple proof [67] of the &&dKo-Rado
theorem for vector spaces, Theorem 4.4.2, in the casd(that

Proof. Let.# cC [}] be an intersecting family and assume thigt Let.” C []] be

a spread oV and letr € GL(V) be an invertible linear transformation. The proof of
Lemma 4.5.7 shows that(.#) is also a spread. Sincg c [}] is intersecting, for any
m € GL(V), we have.#Z Nnr()| < 1. Consequently, by Lemma 4.6.2, we have

|7 Na()] < " D2(g—1)"n]!
reGL(V)

Now givenSe . andF € .%, there argg™™Y/2(q— 1)"[K]![n— k]! invertible
linear transformations € GL(V) such thatt(S) = F by Lemma 4.6.3. Hence,

(%=1) 171 V2= 27— K = |77 {7 € LK) s 7(S) = F)

= 3 170
reGL(V)

<g""Y/2(q-1)"[n]!

We consequently have that

7| < (qk—1> K {n—l} .

¢—1) K n—K' [nKn_K' |k-1

4.6.3 Algebraic Successes

In this section, we mention some other important intersection theorems for vec-
tor spaces. Common to all these results is that their proofs use algebraic techniques.

First, we discuss Frankl and Graham’'s analog of the modular Frankl-Wilson
theorem from Section 3.2. As in the BistKo-Rado theorem for vector spaces, this
result provides another example of a theorem that is stronger for vector spaces than for
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sets. Frankl and Graham’s proof makes use of the algebraic machinery of higher inci-
dence matrices, and many variants of Fisher’s Inequality, Theorem 2.3.9, were originally
proved in this way as well.

Vector space analogs do not only provide applications of algebraic methods, but
also inspire new ones. Lovasz, for example, introduced his wedge product technique
specifically to prove the vector space analog of Bollobas’s Two Families Theorem. We
discuss this result in Section 4.6.3.2.

Finally, in Section 4.6.3.3, we state some old and new results concerning the
analog of the-intersection theorem in Section 2.2.8 to vector spaces.

4.6.3.1 Modular Frankl-Wilson Theorem

Recall that the Frankl-Wilson theorem, Theorem 3.2.2, asserts thatif2X is
anL-intersecting family, wheré | = s, then|.Z| < 33 4 (7). If # C (ﬁ) is auniform
L-intersecting family, then Ray-Chaudhuri and Wilson [97] proved that the upper bound
on |.#| can be strengthened.

Theorem 4.6.4(Ray-Chaudhuri — Wilson)Suppose I N has sizdlL| =s. If 7  (})
is a uniform L-intersecting family, thg#| < (7).

Frankl and Wilson [59] showed that the conclusion of Theorem 4.6.4 holds under
the considerably weaker condition that the intersection sizéshalong to at moss
residue classes modulo a primpe

Theorem 4.6.5Frankl-Wilson) Suppose g Z™ is a prime number and that& N has
size|L| = s< p— 1. Also suppose that& Z* satisfies k L (mod p. If # C (}) isa
uniform family such thafF NF’| € L (mod p for all distinct F,F’ € .7, then|.# | < (3).

The restriction thap be prime in Theorem 4.6.5 is crucial. If the prime numieas
replaced byp = 6, for example, or eveq = p?, wherep > 7, then Theorem 4.6.5 will
be false [5, Section 5.9]!

Remarkably, Frankl and Graham [56] showed that an analog of Theorem 4.6.5
holds for vector spaces butithout the restriction thap be prime. As in the Eridlk-Ko-
Rado theorem for vector spaces, Theorem 4.4.2, we obtain a stronger analog for vector
spaces because of the additional structure they have.
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Theorem 4.6.6(Frankl-Graham) Suppose l& Z" is a positive integer and that £ N
has sizgL| = s< b— 1. Also suppose that& Z" satisfies kZ L (mod B. If #  [/]
is a uniform family such thatim(F NF’) € L (mod b for all distinct F,F’ € %, then

7] < [”]
S

except possibly for g 2, b= 6, s {3,4}.

4.6.3.2 Bollobas’s Two Families Theorem

Bollobas’s Two Families Theorem [16] is an important combinatorial result with
many consequences [2, 44, 96]. An elegant proof of the theorem using the polynomial
method is given in [5, Section 5.1].

Theorem 4.6.7(Bollobas) Suppose thatA...,An € (f) are r-element sets and that
Bi,...,Bm € (%) are s-element sets such that

(i) Aj and B are disjoint for i€ [m|,
(i) Aj and B have nonempty intersection whenever j.
Thenm< ("79).

We have seen in Section 4.6.1 that adapting combinatorial techniques to vector
spaces can be challenging. In Section 4.4 and Section 4.6.3.1, we also saw examples
of algebraic proofs of extremal set theory results that generalize nicely to their vector
space analogs. In the case of Bollobas's Two Families Theorem, neither the known
combinatorial or algebraic proofs seemed to adapt to the case of vector spaces. As a
result, Lovasz [82] introduced the method of wedge products specifically to tackle the
analog of Theorem 4.6.7.

Theorem 4.6.8(Lovasz) LetU,,...,.Uyn € m be r-dimensional subspaces of V and let
Wi,...,Wmn € [¥] be s-dimensional subspaces of V such that

(i) UinW = {0} fori € [m],
(i) UinW, # {0} whenever i |.

Then m< ("79).
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4.6.3.3 Ont-intersecting Families

In this section, we state some old and new results-ioersecting families of
vector spaces.

Definition 4.6.9. For a positive integer &£ Z*, a family .# C [\,ﬂ of k-dimensional
spaces is called t-intersectinfyany two elements it¥ have intersection of dimension
at least t; that is, for all FF’ € . we havedim(F NF') >

Wilson’s proof [116] of the-intersection theorem, Theorem 2.2.12, generalizes
nicely to vector spaces [60].

Theorem 4.6.10(Frankl-Wilson) If # c [{] is t-intersecting and > 2k—t, then

R (51|

(i) if n > 2k, then equality holds if4.6.1)if and only if 7 = {F eV]:sc F} for
some t-dimensional subspace $! |;

We also have that

(i) if 2k—t < n< 2k, then equality holds if4.6.1)if and only if 7 = []] for some
(2k—t)-dimensional subspaced [, ].

Note that whem = 2k, we have[[_{] = [*']. Hence, the two non-isomorphic
families in Theorem 4.6.10 have the same cardinality and they are conjectured to be the
only extremal families when = 2k. This has only been proved, however, fet 1 by
Godsil and Newman [66, 94].

Very recently, Tokushige [106] used Wilson’s methods along with new results
by Ellis, Friedgut, and Pilpel [46] to generalize Theorem 4.6.10 to cross-intersecting
families. Another recent result is Frankl and Tokushige’s proof [57] of an analog of
Katona'st-intersection theorem using the method of higher incidence matrices discussed
in Section 4.6.3.1.



Chapter 5

Shadows and Intersections in Vector
Spaces

We [27] prove a vector space analog of Lovasz’s version of the Kruskal-Katona
theorem, Theorem 2.1.5. We apply this result to extend Frankl’s theorarwise in-
tersecting families, Theorem 2.2.7, to vector spaces. In particular, we obtain a short new
proof of the Erds-Ko-Rado theorem for vector spaces, Theorem 4.4.2. In Section 5.4,
we cite our other results in this area, namely obtaining a vector space analog of the
Hilton-Milner theorem [14, 24] and determining the chromatic number ofjtK@eser
graph [14, 26]. Finally, we end the chapter in Section 5.5 with some open problems.

Before we can give precise statements of our results, we first formally define
the concepts of shadow andvise intersection for vector spaces. We see that they are
natural analogs of their set counterparts.

Definition 5.0.11. For a family.# c [{], we define the shadow of, denoted.Z, to
consist of thos¢k — 1)-dimensional subspaces of V contained in at least one member
of 7,
\Y
.7 =< E "ECFeZ ;.
sofeelV | iecres)

As in Section 4.6.1.3, we can ask for familie€ c m whose shadow is mini-

mum over all families# C [\lﬂ with the same cardinality,

04|= min |9.7].
| |=|]

76
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In general, this is a difficult question because of the reasons discussed in Section 4.6.1.3.
Surprisingly, we can still prove an analog of Lovasz’s version of the Kruskal-Katona
theorem. Recall that, in Lovéasz's result, given a fansfiyc (%), we could find a real
numbery > k such that.#| = (}). The same is true fog-binomial coefficients. If

k andq are fixed, then?] is a continuous function ad which is positive and strictly
increasing whera > k; hence, by the intermediate value theoremr, ¥ 1 is a real
number, then there exists a unique real nunaper k such that = []. Consequently,

we can formulate an analog of Lovasz’s version of the Kruskal-Katona theorem, and
this is our first result.

Theorem 5.0.12(Chowdhury-Patkés)Let # C [}] and let y> k be the real number
defined by.#| = [{]. Then

P y
|0.7| > lk—l}

If equality holds, then ¥ Z* and # = [[], where Y is a y-dimensional subspace of V.

As in Section 2.2.6, we can apply our Lovasz analog, Theorem 5.0.12, to yield
an analog of Frankl's-wise intersection theorem, Theorem 2.2.7. Frankl’s proof from
Section 2.2.6, however, does not generalize to vector spaces for the reasons discussed in
Section 4.6.1. Hence, we will need new proof techniques.

Definition 5.0.13. A family .% C m r-wise intersecting if the intersection of any r
members of# has nonzero dimension; that gim(N_,F) # Oforall Fy,..., R € Z.

Theorem 5.0.14(Chowdhury-Patkés)Suppose tha# C [\ﬂ is r-wise intersecting and
that (r —1)n > rk. Then

Equality holds if and only if# = {F eV]:vc F} for some one-dimensional sub-
space W V, unless = 2 and n= 2k.

Theorem 5.0.12 establish shadows as a viable method for proving vector space
analogs such as Theorem 5.0.14, and more applications are expected. Recently, Wang
[113] used Theorem 5.0.12 to prove a conjecture obEydraigle, and Kern [48]. The
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method of proof in Theorem 5.0.14 has also been used to prove resulteross in-
tersecting families of sets [58]; Patkds and | are currently working with Frankl and
Tokushige to extend these results to vector spaces.

5.1 Shadows and an Analog of Lovasz’s Theorem

Recall that, in Section 2.1.6, we gave Keevash's [77] recent and elegant proof of
Lovasz’s version of the Kruskal-Katona theorem. In this section, we adapt his argument
to prove Theorem 5.0.12. We first generalize all the definitions in Section 2.1.6 to their

vector space analogs.

Definition 5.1.1. For # ¢ [}] and ve [Y], define

Vv T
k ar\ . . o
K 1(F) = {T € [k+1] ; [k] C J}
to be the family ofk+ 1)-dimensional spaces of V all of whose k-dimensional subspaces
liein .# and
Kli<<+1(V) ={Te€ Klk(+1(<gz) IVC T}

to be the family ofk 4 1)-dimensional spaces infjgl(ﬁ) that contain v.

Definition 5.1.2. For v € [}], define the degreef v, which is denoted byegv), to be
the number of elements & that contain v,

degv) :=|{F € Z :vCF}|.

Definition 5.1.3. 1f v € [\ﬂ andU CV is an(n—1)-dimensional subspace that does not
contain v, then define the link of v intd be the family ofk — 1)-dimensional spaces in
U whose linear span with v is an element%f

Lu(v) = {Ae [klil] :A\/vegf} C [k\—/l]'

As in Section 2.1.6, we first establish an upper bound«é‘gl(%)\ in terms of
|-#|; we will see that Theorem 5.0.12 follows as a simple corollary.
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Theorem 5.1.4(Chowdhury-Patkés)Let .# C [] and let y> k be the real number
defined by.%| = [/]. Then

Keal< | Ly

Equality holds if and only if y¢ Z* and.# = [{] for some y-dimensional subspace
Y CV.

Proof. We argue by induction ok. The base cade= 1 is easy: Suppos# ¢ [4] and
|.#| = ly]. Since there arg+ 1 one-dimensional spaces in a two-dimensional space,
IKI(v)| < (1/9)(]y] - 1) if ve .F and|K3(v)| = 0 otherwise. Observe that
(q+ D) KA(Z Z KL (v ; 2 (5.1.1)
vely]

which implies thatK3(.#)| < [3].

Now assume the statement is true for 1. We first show that iV € [\ﬂ , then
KE, 1(W)| < (ly—K]/[K]) degv); we will then sum this inequality over a € [}] and
double count to obtain the desired upper bound|lqﬁl(ﬁ)]. If deg(v) = 0O, then
clearly \KKH( )| < ([y—K]/[K])dedVv), so we will assume that dég # 0. We will
need to consider the cases where(@ggs large and where dég) is small separately.

First, let's consider the case when ¢eg> [{:ﬂ If T e K|'§+1(v), then observe
that theg¥ k-dimensional subspaces Ththat do not contaiv are elements of? that
do not contairv. By counting pairgS T) wherev ¢ S [\Iﬂ andSC T e K|L‘+1(v), the
previous observation yields

\%
QKK L (V)| = {SE M V¢ ScTe ngﬂ(v)}‘ <|.Z|—d(v). (5.1.2)
By rearranging (5.1.2) and applying tgePascal identity, Lemma 4.3.1, we obtain

7| — _y-1 kry—1
KK (%)) < e qSeQX) < [ qik_ﬂ _q [qkk ]

_y=K[y=1] _y=K
BCH [k 1} K deqv). (5.1.3)

We have equality in (5.1.3) if and only if dég = [Y_]] since degv) # 0.
Now suppose deg) < [{_7]. LetU C V be an(n— 1)-dimensional subspace

that does not contaim, and observe thdty (v)| = degv). Moreover, ifTy, T, are dis-
tinct elements oK'k‘H(v) thenTyNU and T, NU are distinctk-dimensional spaces in
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KE(Ly (v)). ConsequentlyKE, ; (v)| < [KEY(Ly(v))|. Define the real numbeg, > k
by deqv) = [}1]. AsLu(v) C [Y,] and|Ly(v)| = degv) = [}1], the induction
hypothesis yields that

K1 (W] < KK (LX) < [yv; 1} = [yV“:] d [ykv 1} [y[k]k] deqv), (5.1.4)

where the last inequality follows becauge< y, by our assumption on dég. We have
equality in (5.1.4) if and only if defy) = [}_1] by our assumption that dég) # O.

To finish the proof, we sum the inequalirtlﬁl'(<+1( V)| < (ly—Kk]/[k]) deqv) over
all v e [Y] and double-count to obtain the desired inequalityk , (.7)|. We have

ly—K =K.
W ng]d(v)_ . K|.Z|  (5.1.5)

w2

Therefore | Kl‘jﬂ( F)| < [k+1] and equality holds only when all one-dimensional sub-

K+ 1)|Ky2(F)] = %] K2 (V)] <

spaces with nonzero degree satiséj(v) = [/"3].

We now characterize the case of equality. Again the proof proceeds by induction
onk. The base cade= 1 is easy: Suppos@ C [4], |Z| = [y], and|K3(#)| = [3].
Then (5.1.1) implies thatk2(v)| = (1/q)([y] — 1) for all v € .#. Hence, ifv,w are
distinct elements af#, then every one-dimensional space in the two-dimensional space
spanned by andw lies in.#. It is easy to see by induction thatAfis a subspace of
dimension 1< d < [y] such thaf}] € .#, then there exists a subspagef dimension
d + 1 that containg\ and for WhiCh[Iﬂ C .Z. In particular, this proves thgte Z* and
F = m for somey-dimensional subspadé

Now supposeZ C [}], !?| =[], and|KE ()] = [,4]. Choosev € [}] for
whichd(v) # 0. SincelK¥, (F)| = [, 1} we haved(v) [V-1] and|KE, ()] = [V, 1.
IfU e [n 1| does not contaiw, then|LU = [ } Hence,

{y; 1} = KE (V)| < [KEHLu ()] < {y; 1}’

which implies thatKK(Ly (v))| = [*,]. SinceLy(v) c [.¥,], by the induction hy-
pothesisLy (v) = [kvl’]j for some(y — 1)-dimensional spac#/, which impliesy € Z™.
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Moreover, for everk-dimensional subspadein K~ (Ly (v)) = [], we have thadv v
is an element oKy, ;(v). Hence allk-dimensional subspaces Y:=W Vv lie in .Z.
Since|.Z| = [] and dim(Y) =y, we must haveZ = [{]. 0

5.2 Analog of Frankl's r-wise Intersection Theorem

In this section, we prove the bound in Theorem 5.0.14 and characterize equality
when(r —1)n > rk. The proof proceeds by induction on— 1)n—rk € N. For the base
case(r —1)n—rk = 0, we generalize Greene and Kleitman'’s argument in Section 4.6.2.

Definition 5.2.1. A family.# C [\ﬁ is r-wise co-intersecting any r elements of# are

contained in a commofn — 1)-dimensional space.

Supposer,nk € Z* satisfy (r —1)n—rk = 0 and letZ c [}] be anr-wise
intersecting family. Endow with the usual inner product, and consider the family

\%
agl . 1.
F—={F .Feﬁ}cln_kl.

Let # be a geometri¢n — k)-spread olV. We want to determine the maximum num-
ber of elements of# that lie in.Z+. Since.Z is r-wise intersecting, we have that
Z* is r-wise co-intersecting. If =2 andn = 2k, the family.# " is both intersect-
ing and co-intersecting; hence only one element of the sprgadn lie in.Z* in this
case. Lemma 5.2.2 determines the maximum number of elemegstiodt lie in.% -
whenever,n,k € Z* satisfy(r —1)n—rk = 0.

Lemma5.2.2.Letr,n k € Z* satisfy(r — 1)n—rk = 0. Suppose tha® is a geometric
(n—Kk)-spread of V. I8’ C % is a r-wise co-intersecting subfamily, then

q(r—l)(n—k) -1

’gg"gw.

If equality holds,%#’ is a (n—k)-spread of ar — 1)(n— k)-dimensional space.

Proof. LetBy,...,Bm be a maximum subfamily o8’ with dim(\/"; Bj) = m(n— k).
Hence, ifB € %’ thenBN /[, B; # {0}. SinceZ is geometric,Z induces a spread on
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Vil,Bi by Lemma 4.5.5. ABN\/[", B # {0} for everyBin &, all elements in#’ lie
in \/i"”:1 Bi. SinceZ’ is r-wise co-intersecting, we must hawe< r — 1. Therefore,
q(r—l)(n—k) -1
qn—k_ 1
which is the number of elements in(a— k)-spread of ar — 1)(n — k)-dimensional

|| <

Y

space. Also, if equality holdsz’ is a (n—k)-spread of &r — 1)(n— k)-dimensional
space. m

Now we prove the base case of Theorem 5.0.14; thercas2 of Lemma 5.2.3
is the result of Greene and Kleitman that was presented in Section 4.6.2.

Lemma 5.2.3. Suppose,n,k € Z* satisfy (r —1)n—rk = 0. If & c [/] is r-wise

intersecting, thenZ| < [ 1].

Proof. Let % be a geometri¢n—k)-spread oV and letr € GL(V) be an isomorphism.
By Lemma 4.5.7, the sprear| %) is also geometric. Consider the fami+ [n\fk]
Since.Z is r-wise intersectingZ - is r-wise co-intersecting. By Lemma 5.2.2,

q(r,]_)(n,k) -1 qk -1
\.FLnNn(B)| < G o1 (5.2.1)

because” - Nx (%) is ar-wise co-intersecting subfamily af( %) and because we have
k= (r —1)(n—k) whenr,n,k satisfy(r — ) —rk=0.
By Lemma 4.6.2, we haviSL(V)| = q"("Y/2(q— 1)"[n]!, s

k

g -1 _

’yiﬂﬂ'(%” < m . qn(n 1)/2(q_ 1)n[n]|
reGL(V)

Now, givenF+ ¢ .Z+ andB € % there areg""/2(q— 1)"[n— k]! [K]! isomorphisms

m € GL(V) such thatt(B) = F+ by Lemma 4.6.3. Consequently,

(q‘,?; )@Hq - D/2(q— 1) KK

= |%||7|[{m e GL(V): n(B)=F"}|
- Y |#tna@)
neGL(V)
g<-1
qn—k_
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Since|.Z| = ||, we have
7)< [ Va1 g"k-1\ (-1 [n-1
=\ g-02gq- KK ) -1 J\g*x—1) " |k-1] "
Now we prove the bound in Theorem 5.0.14 and characterize equality when
(r—1)n>rk.

Proof of Theorem 5.0.14.The proof proceeds by induction gn— 1)n—rk € N. The
base casé —1)n—rk = 0 was proved in Lemma 5.2.3. Suppose Theorem 5.0.14 holds
whenr,n k satisfy (r — 1)n—rk = p for p > 0. We will prove Theorem 5.0.14 holds
whenr,n k satisfy (r —1)n—rk = p+1. Let.Z C [}] be a maximum size-wise
intersecting family. Now the family? := {P ¢ [\ﬂ :v C P}, wherev C V is some
one-dimensional subspace risvise intersecting so%| > | 2| = [1_1]. LetW be an

(n+ 1)-dimensional space ovél, that containd/. Define the family

@%::{AE{W } :HFeﬁ’withFCA}
k41

to be the family of all(k+ 1)-dimensional spaces in W that contain sofhe .%. We
will partition <7 into the following subfamilies:

A ={Acd AZV}, b=\ .

First let us compute the size of;. Observe that iA € [k\ivl] andA does not lie
inV, thenA intersectd/ in exactly ak-dimensional space. Therefo#ecannot contain
two distinctk-dimensional spaces i#. Note that anyF € .%# can be extended to a
(k+1)-dimensional space i in g ways. Thereforel,os| = q"*|.Z| > q"*[1_1].

Now we will compute the size of%. By duality, we havd- C A € 7 for some
FeZifandonlyifF- > AL e [V .]. Therefore|as| = |d.7|. Since

e -

k—1| ~ [n—k/|’ (5-22)

Theorem 5.0.12 yields

| ot| = )ayl‘ > [n:f 1} - {nil]. (5.2.3)
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As o7 = /1 Ugts, we have by Lemma 4.3.1 that

|| = |on| + || > q”"[E:ﬂ -+ {n;ﬂ = m (5.2.4)

Since.Z isr-wise intersectingg is anr-wise intersecting family ofk+ 1)-dimensional
spaces iW. Observe that,n+ 1,k+ 1 satisfy

r—=1)(n+21)—r(k+1)=(r—1)n—rk—1=(p+1)—1=p.

By the induction hypothesik#| < [;|, which implies equality everywhere in (5.2.2),
(5.2.3), and (5.2.4). Hence! .7 | = || = " [}_1] and|.Z| = [_3]. Moreover,
|7 =[] and |07t | = || = [ " }y]. ThereforeZ* satisfies equality in The-
orem 5.0.12, which implies tha# - = [ *,] for some(n — 1)-dimensional subspace
Y C V. By duality,# = {F € [|] : vC F} for some one-dimensional subspaceV. o

5.3 Characterizing Equality in the Base Case

We characterize equality in Theorem 5.0.14 wihenr- 1)n—rk = 0. Recall
from Section 4.4 that Godsil and Newman characterized equality in thesE¢d-Rado
theorem for vector spaces using the methods of [60]. In particular, they showed

Theorem 5.3.1(Godsil and Newman)lf n = 2k and.Z ¢ [}] is an intersecting family
of maximum size, the# = {F € [\lﬂ :vC F} for some one-dimensional subspace V
or # = [\/] for some(2k — 1)-dimensional subspace U V.

We use their result to characterize equality in Theorem 5.0.14 whe and
(r—1)n—rk = 0. The proof proceeds by induction orthe base case= 2 andn = 2k
is Theorem 5.3.1. Le¥# C [\lﬂ be a maximum size-wise intersecting family. In this
section, it will be more natural to state results in terms#of C [n\fk} so we make the
following simple observation.

Lemma 5.3.2.We have% C [\ﬁ IS @ maximum size r-wise intersecting family if and

only if #+ ¢ [Y,] is @ maximum size r-wise co-intersecting family. O
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Lemma 5.3.5 allows us to use induction. We first state two simple corollaries
of Lemma 5.2.3 that will be used in the proof of Lemma 5.3.5. Sinoek satisfy
(r—1)n—rk =0, note tha¥ is r(n—k)-dimensional .

Corollary 5.3.3. Suppose,n,k satisfy(r —1)n—rk = 0 and thatZ ¢ [}] is an r-wise
intersecting family. If there is a geometria — k)-spread.%Z of V such that equality
holds in(5.2.1)for all = € GL(V), then.# has maximum size. O

Corollary 5.3.4. Suppose,n, k satisfy(r —1)n—rk = 0. If # ¢ [}/] is a maximum size
r-wise intersecting family, then equality holds(k12.1)for everyzr € GL(V) and every
geometric(n — k)-spread% of V. O

Lemma 5.3.5.Let.¥ C [\ﬂ be a maximum size r-wise intersecting family. Fix f
Z+ andletUcCV be an(r — 1)(n— k)-dimensional space that intersects rivially;
that is F-NU = {0}. Then

Ftu:={Ec F+ . EcCU}
is @ maximum sizé& — 1)-wise co-intersecting family nhﬂk}

Proof. Let . be a geometri¢n — k)-spread ofV. ChooseS,...,S in . such that
Vi_1S =V. SinceF+NU = {0}, there exists an isomorphisme GL(V) such that
p(S) =F+ andp(Vi_,S) =U. The (n—Kk)-spread? := p(.¥) is geometric by
Lemma 4.5.7, an&+ € %. MoreoverU = \/{_,p(S) so, by Lemma 4.5.5, we have
that % induces a geometrig — k)-spread%’ onU.

Observe thatZ |y is (r — 1)-wise co-intersecting sindé- NU = {0}. To prove
thatZ 4|y C [2,] is a maximum sizér — 1)-wise co-intersecting family, we will apply
Lemma 5.3.2 and Corollary 5.3.3. That is, we will show that € GL(U) then equality

holds in (5.2.1):
q(r—2)(n—k) -1

qn—k -1
Let 7 € GL(V) be an invertible linear transformation such thgE*) = F*,

)ﬁﬂu na(#)| =

n(U) =U, andz|y = a. Since.#= is a maximum siz&-wise co-intersecting fam-
ily, Z+nn(%) is an(n—k)-spread of anr — 1)(n — k)-dimensional spac®, by
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Lemma 5.2.2 and Corollary 5.3.4. We have tRatis contained in\,; and intersects)
trivially so dim(W; NU) = (r —2)(n—Kk).

The spreadr(%) induces the spread - N (%) onW;, and induces the spread
a(#') onU. Consider the elements of(#') that intersect; NU nontrivially; as
these elements are (%) and intersec¥V,, they must lie ilW; and hence iW; NU.
Hence, the elements of(#’) that intersec?V; NU nontrivially form a spread oi; NU.
Moreover, these elements lie i+ N (%) so

Fruna(B)=(Frnr(B)Na(A)

is the spreadr(#) induces oW, NU. SinceW; NU is (r — 2)(n—k)-dimensional,
| Z+uNa(#')| satisfies (5.2.1) with equality. By Lemma 5.3.2 and Corollary 5.3.3,
Z |y is a maximum sizér — 1)-wise co-intersecting family i} ” . O

Characterizing Equality in Theorem 5.0.14 when- 1)n—rk = 0 andr > 3: We now

characterize equality in Theorem 5.0.14 when- 1)n—rk = 0 andr > 3. The proof
proceeds by induction aon the base case= 2 andn = 2k is Theorem 5.3.1.

Letr > 3 and suppose the statement is proved for agy2<r. Let.Z c [/] be
a maximum size-wise intersecting family and observe that- [n\fk} IS a maximum
sizer-wise co-intersecting family. Our objective is to show ti#at = [n'jk] , WhereH
is a(n—1)-dimensional space &f. By duality, this implies that7 = {F ¢ [\ﬂ VCF}
for some one-dimensional subspace V, which is the desired conclusion.

Fix someF+ € .#+. By Lemma 5.3.5, ifU is a (r — 1)(n — k)-dimensional
subspace that intersedts- trivially, then .|y is a maximum sizdr — 1)-wise co-
intersecting family in[,°,]. Whenr = 3, then dinU = 2(n—k) and.# |y is a maxi-
mum size intersecting and co-intersecting famil){rﬁjk}; hence by Theorem 5.3.1

1. 4y ={E € [,”,] : uc E} for some one-dimensional subspaoe U or
2. Fhy = [n{/k} for some(2(n— k) — 1)-dimensional subspad#’ C U.

If r > 3 then, by the induction hypothesis and dualif;- |y = [nu_/k} , whereU’ c U is
some((r —1)(n— k) — 1)-dimensional subspace.

Our first task is to eliminate the possibility tha |y = {E € [“,] : ucC E}
for some one-dimensional subspace U in the case = 3. We now show that if
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Fty ={E€ [ ] :ucE} for some one-dimensional subspace U, then every
element ofZ - must intersecE - \/ u nontrivially.

Claim 5.3.6.1f # 4|y = {E € [,2,] : uC E} for some one-dimensional subspace U,
then for all Ge .#+ we have G (F* Vv u) # {0}.

Proof. Suppose, for a contradiction, that there exiSts .# such thatG intersects
F-L Vv utrivially. We have dinj(F+ Vv G)NU) = n—k becausé - intersects botle and
U trivially. Sinceu does not lie irF-vGand# |y = {E € [ 7] :uc E}, we can find
E' € 1|y that intersect&+ v G trivially. HenceF+ v GV E’ =V, which contradicts
the fact that# - is 3-wise co-intersecting. O

We now show that if# |y = {E € [°,] : uC E} for some one-dimensional
subspaca C U, then any(n— k)-dimensional space that meéts trivially but meets

F- Vv u nontrivially must lie in. .

Claim 5.3.7. SupposeZ |y = {E € [ .7 ,] : uc E} for some one-dimensional subspace
ucuU.IfGe[Y,], GNF* = {0}, and GO (F vu) # {0}, then Ge Z*.

Proof. There exists a geometri — k)-spread% of V that contains botl@ and F+
becaus&NF+ = {0}. AsZis a spread, all subspacegif - N %)\ {F'} meetF+vu
in a one-dimensional subspace that does not lig-inby Claim 5.3.6. Lemma 5.2.2
and Corollary 5.3.4 imply that#+ N % is a spread of a (@ — k)-dimensional space
so|(F-nB)\ {F+}| =gk There areg” ¥ one-dimensional subspacesFrt V u
that do not lie inF-. Hence, each one-dimensional subspacgFin\/ u) \ F- meets
a unique subspace ¥+ N %)\ {F+}. SinceG meetsF+ v uin a one-dimensional
subspace that does not liefit andG € %, we must havé&s € - N%# c F+. O

We now eliminate the possibility tha& |y = {E € [°,] : uC E} for some one-
dimensional subspaaeC U. We will construct thregn — k)-dimensional subspaces
that together spax, and intersecE+ v u in a one-dimensional subspace not lying in
F-. By Claim 5.3.7, these three spaces lieZit, which contradictsZ - being 3-wise
co-intersecting. To build these three subspaces, we first choose three one-dimensional
subspacesy, V3, v3 in (FLvu)\ Ft such thatvj ¢ vi vVv3. These one-dimensional
subspaces exist because @fim Vv u) = (n—k) +1 > 3 so, after pickingi andv, any
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one-dimensional subspaceft \u notin F+ U (vi v v}) will do. Since the number of
one-dimensional subspaceg " vu)\ (F+ U (viVvvi))isq"*—q> 0, we can indeed
chooser}.

We construct a family of one-dimensional subspaces

(M:ie{1,23},je{l,....n—k}}

such that, for eache {1,2,3}, the subspac¥ = v?;'{vij intersects+ \/ u in the one-
dimensional subspao:é ¢ Ft and\/i?’zl\/i =V. The subspaceés,V,, V3 are the desired
three(n— k)-dimensional subspaces. We pick the one-dimensional subspaces one after
the other; we have to show that at each step there is a possible one-dimensional subspace
to pick. When picking the last one-dimensional subsp@éé we must choose a one-

dimensional subspace frovhthat is not inVy vV Vs Vv v?;‘{‘lv% norinF+v \/’j‘;'l“lvé.

By inclusion-exclusion, there agg("K—1 _ g2("-K-2 > 0 one-dimensional subspaces
in V that do not lie invy V'V, Vv \/E‘;'{‘lv% norin FLv \/’j‘;‘flvé; thus it is indeed pos-
sible to construct the desired thrge— k)-dimensional subspaces. Therefore, we have
eliminated the possibility tha#*|y = {E € [2,] : u C E} for some one-dimensional
subspace C U in the case = 3.

We may now assume that- 3 and that iU is a(r — 1)(n—Kk)-dimensional space
that intersect& * trivially then. 7|, = [nU_/k] for some((r —1)(n—k) — 1)-dimensional

€L li
"ok ]

first show that ifU;,U, are two(r — 1)(n— k)-dimensional subspaces that intergect
trivially, thenF+ vU; = F+ v UJ.

subspacé)’ c U. Our ultimate goal is to prove tha# - = [ . Naturally, we

Claim 5.3.8. Let U;, U, be two(r — 1) (n—k)-dimensional subspaces of V that intersect
F+ trivially. Let U;,U} be the((r — 1)(n—k) — 1)-dimensional subspaces of dnd U

such that# *|y, = [nU_ik] and 7|y, = [nU_ék]_ Then F-vU; =F+ VU,

Proof. Suppose, for a contradiction, that- v U; # FL v U). We choose subspaces
Wi, ..., W_2in [nliik} such that din{\/{Z#W) = (r — 2)(n— k) andW is not contained
in F+vUJ.

The subspacE* Vv \//Z2W is (r — 1)(n—k)-dimensional becausg, intersects
F+ trivially. The subspac#J; is ((r — 1)(n—k) — 1)-dimensional and interseci&"
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trivially so

(r—2)(n—k)—1<dim (Uéﬂ (FLvr\/Zvv.>> < (r—2)(n—kK).
i=1

Suppose that dirfU; N (FX v \/Z#W)) = (r — 2)(n—Kk) for a contradiction. By def-
inition of Wy, we can choose a one-dimensional subspaceW,; that does not lie in
F-VvUj. The subspacE" v wis (n—k+ 1)-dimensional. The subspage v \/'_2W
is (r — 1)(n—k)-dimensional and contairs v w. Note thatF+ v w must intersect
U} nontrivially if dim (Uyn (F-VVIZ2W)) = (r —2)(n—k). This is a contradic-
tion becausav does not lie inF+\/ U} by construction. We therefore conclude that
dim (Usn (F+ v VIZAW)) = (r — 2)(n—k) — 1.

SinceUj is ((r — 1)(n—k) — 1)-dimensional, this implies that there exists a sub-
spaceZ in [nU_ék] that intersect& - v \/'_2W trivially. Now FX Wi, ..., W _5,Z lie in
F+sinceF Ly, = [nU_ik] and.7 |y, = [nU_ék] By constructionF -V \//Z2WVvZ =V,
which contradictsZ - beingr-wise co-intersecting. This provés-vU; =F+vU). o

Now we show that anyn — k)-dimensional subspace F* v U’ that intersects
F trivially must lie in . *.

Claim 5.3.9.1f G e [7, W' and GNF+ = {0}, then Ge .7 .

Proof. SinceGNF+ = {0}, there exists & — 1)(n—k)-dimensional subspati(G) that
containgG and intersectB * trivially. Let U (G)’ be the((r —1)(n—k) — 1)-dimensional
subspace dfl (G) such thatZ* |, = [ (fk)'}. By Claim 5.3.8,

Gc (FfvU)NU(G) = (FvU(G))NU(G) =U(G)".

HenceG e [U(®)] c 7L, O

Now we are ready to prover - = [F:_V}(J/]. Suppose, for a contradiction, that

Fwu’

there exists a subspaékc .#* that is not in[ Nk

]. We will constructr — 1 sub-
spaces in", "Y'] that each intersedt trivially and that together withi spanV. By
Claim 5.3.9, these — 1 subspaces lie i#7 - which contradicts# - beingr-wise co-

intersecting.
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To build theser — 1 subspaces, we construct a family of one-dimensional sub-
spaces
{v{' ie{l,...r—1},je{1,...n—k}}

such that for eache {1,...,r — 1}, the subspacg; = ” ka liesinF+VvU’, intersects
F+ trivially, and \/{;11 GivH =V. The subspace@l,...,Gr_l are the desired — 1
subspaces. We pick the one-dimensional subspaces one after the other; we have to show
that at each step there is a possible one-dimensional subspace to pick. When picking
the last one-dimensional subspa@é’f we must pick a one-dimensional subspace from
FL VU’ thatis notinH v V/Z2G v VI=5~2]_ norinF4 v \/I=kv) | SinceH is
not contained irF - vU’, we have

r—2 n—k-1

dim ((FM/U’) N (H vV/Gv v§1>> =r(n—k)—2.
i=1 j=1

Hence, there are at least
qr(nfk)fz _ (q2(nfk)72 + q2(n7k)73 +.-41)>0

one-dimensional subspacesfof VU’ that do not lie inH v \/[— G. Y \/n k= lv’_1 nor
inFLv \/n k= 1le; thus it is indeed possible to construct the desiredlL subspaces.
This proves thaZ+ C [F."V'], and sincd.#+| = [I-}] we haveZ+ = [Frf_vt’/}. The
subspacé&* U’ is (n— 1)-dimensional; by duality = {F € [\lﬂ :vC F} for some
one-dimensional subspage V, which is the desired conclusion. O

5.4 Other Results of the Author

In this section, we discuss the author’s other results in this area, namely obtaining
an analog of the Hilton-Milner theorem and determining the chromatic number of the
g-Kneser graphs. The results will be stated but not proved.

5.4.1 Analog of the Hilton-Milner Theorem

Recall that Hilton’s and Milner's Theorem 2.2.13 is an extension of thé$rd
Ko-Rado theorem, Theorem 2.2.2, that gives the size of the largest nontrivial intersecting
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family . C ()é) The Hilton-Milner theorem was first proved by Hilton and Milner [70]
using lengthy combinatorial arguments; later Frankl and Furedi produced an elegant
proof using the shifting technique. Due to the issues discussed in Section 4.6.1, none of
the known proofs of the Hilton-Milner theorem readily generalize to vector spaces.

We will see that the similarity between the Hilton-Milner theorem and its vector
space analog, Theorem 5.4.1, is remarkable. We stress, however, that the naive analog
of the extremal family (i) in Theorem 2.2.13 it maximally intersecting: IE € [}]
is a one-dimensional subspace ahd m is ak-dimensional subspace that does not
containg, then the family

{U}U{We m 'ECW, dimWnuU) > 1} (5.4.1)

is not maximally intersecting, as we can add all subspac@iiﬁ] thatare notin (5.4.1).
We will say that¥ is anHM-type family if

oo e amr i [

for someE € [¥] andU € [}] with E ¢ U.

Theorem 5.4.1(Blokhuis-Brouwer-Chowdhury-Frankl-Mussche-Patk6$184). For
k>3, suppose @ 3, n>2k+1orq=2 n>2k+2 If #c [{]isan intersect-
ing family and there does not existv[y] such that# c {F € [}] : vC F}, then

n—1 p[n—k-1
171 ecq| T ST e

Equality holds if and only if
(i) .7 is an HM-type family,
(i) Z ={F € [}] :dim(SNF) > 2} for some S [}] ifk = 3.

Variants of Theorem 5.4.1 are used to establish our next result on coloriggdheser
graphs.
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5.4.2 Coloring theg-Kneser Graph

We discuss the question of coloring th&kneser graphs. First, we define what
is meant by a graph coloring.

Definition 5.4.2. Given a graph G= (V, E) a proper coloringof G with | colors is a map

fromV to a set of colors with cardinality | such that no two adjacent vertices receive the
same color.

If V is finite, then clearlyG can be properly colored wit}V | colors. We will be
interested in the least number of colors required to properly &lor

Definition 5.4.3. Given a graph G= (V, E), the_chromatic numbesf G, denoted; (G),
is the least integer € Z* such that G has a proper coloring with | colors.

Observe that a set of vertices that receives the same color in a proper coloring
must be an independent set. Hence, the chromatic number of a graph is the minimum
number of independent sets needed to partition its vertex.set

Determining the chromatic number of a graph can be very difficult. In 1955,
Kneser [78] conjectured that, whern> 2k, the chromatic number of the Kneser graph
Knk IS x(gKnk) = n—2k+ 2. The problem remained open for twenty three years until
Lovasz [83] and Béarany [9] found proofs that surprisingly use algebraic topology.

Theorem 5.4.4(Barany, Lovasz)If n > 2k, the chromatic number of the Kneser graph

We can easily see that— 2k + 2 colors suffice to properly color the Kneser
graphKn.k. If o is ak-subset oK., and its largest element is greater thaq @efine
this element to be the color @f. Thus, thek-subsets not contained {d,...,2k} can
be colored witm — 2k colors. Thek-subsets not already colored induce a copiff,
which is bipartite, so the remainingsubsets can be colored with two colors. This
proves thay (Knk) < n—2k+2.

Kneser’s conjecture motivates the question of coloringiti@eser graphs. Not
surprisingly, the known proofs of Theorem 5.4.4 do not generalize to the vector space
setting. We have seen in Section 4.4 that many parameters gfi¢heser graph reduce
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to the corresponding parameters of the Kneser graph by setting. Interestingly, we
will see that the chromatic numberist one of these parameters. The author, Godsil,
and Royle [26] determined the chromatic number of gF¢éneser graphsgKy2 when

n > 4, and characterized the minimum colorings.

Theorem 5.4.5(Chowdhury-Godsil-Royle) The chromatic number of the g-Kneser
graph gKi:2 is ¥ (qKs:2) = g2 + . If n > 4, then the chromatic number of the g-Kneser
graph gkq:2 is x (qKn2) = [n—1].

We see that thg-Kneser graplygKs., has chromatic numbey(qKs.2) = [4] by
Theorem 5.4.5. The Kneser grapla;», also known as the Petersen graph, has chromatic
numbery (Ks.2) = 3, however. The relationship between the chromatic numbers of the
Kneser graph and thepKneser graph is thus more complex than setting 1.

Using variants of Theorem 5.4.1, we can determine the chromatic number of the
g-Kneser graphgKk for k > 3, and characterize their minimum colorings.

Theorem 5.4.6(Blokhuis-Brouwer-Chowdhury-Frankl-Mussche-Patk6$184). Sup-
pose that k> 3, and that either > 3and n> 2k+ 1, or q= 2 and n> 2k+ 2. Then the
chromatic number of the g-Kneser graphghs x (qKn.x) = [n—k+1].

Some of the remaining cases have been settled; see [15].

5.5 Open Problems

As extremal set theory questions usually have natural vector space analogs, many
open problems in this area remain. We discuss three of our favorites here: the analog
of Mubayi’s and Verstraéte's Theorem 2.2.10, the analog of Baranyai’s Theorem 3.4.33,
and the question of determining the largest clique ingHneser graph. The theorems
in Chapter 4 and Chapter 5 seem to suggest that the obvious analogs of extremal set
theory results should be true in vector spaces, even if their proofs don’t readily general-
ize. The last question we discuss, that of determining the largest clique ¢gptheser
graph, shows that this is not always true!
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5.5.1 Forbidding Triangles

Recall that Theorem 2.2.10 asserted tha¥ifc (ﬁ) contains no triangles and
n> 3k/2, then|.Z| < (i_7) with equality if and only if there exists anc X for which
Z ={F € # :x€ F}. We saw that if 8/2 < n < 2k, then a family.Z (%) without
triangles is necessarily 3-wise intersecting, and so the problem is solved by Frankl’s
r-wise intersection theorem, Theorem 2.2.7, in this case.

We can naturally ask for the largest famify C [\lﬂ of k-dimensional subspaces
of V that does not contain a triangle.

Definition 5.5.1. A triangle 7 = {A,B,C} c [\] is a family consisting of three sets
A,B,C such that A1B,ANC,BNC # {0} but ANBNC = {0}.

Question 5.5.2.What is the maximum size of a fami#y C m that does not contain a
triangle? What are the extremal families?

As in Section 2.2.7, this question is uninteresting uniess 3k/2. Also, if
3k/2 < n < 2k, then a family.7 C [\ﬂ that contains no triangle must be 3-wise inter-
secting. Hence, the author’'s and Patkos’s analog of Frankl's theorem, Theorem 5.0.14,
proves that, in this caspZ | < [[_7] with equality if and only it# = {F € [}] :vC F}
for somev € [\ﬂ The proof of Theorem 2.2.10 does not generalize to vector spaces
because of the issues discussed in Section 4.6.1.2.

5.5.2 Baranyai’'s Theorem

Recall that Baranyai’'s Theorem 3.4.33, proved thétrif then the complete hy-
pergraph(}) can be partitioned int@_1) perfect matchings. Is the same true for vector
spaces? We saw that the vector space analogs of perfect matchings are spreads. As the
number ofk-dimensional spaces ﬁ] and in a spread arg| and[n]/[k] respectively,

the number of spreads needed to partitiphis [[_7].

Question 5.5.3.1f k|n, can|}] be partitioned into[} 1] spreads?

This question is surprisingly difficult, even in the cdse 2. We remark that a
partition of [\lﬂ into k-dimensional subspaces is callegaaallelism by finite geometers.
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Beutelspacher [11] has constructed parallelisms wher2 andn = 2' is a power of
two. Baker [7, 8] answered Question 5.5.3 affirmatively wken 2 andV is a vector
space oveF,. No constructions of parallelisms fkr> 2 were known until very recently
[107].

5.5.3 Cligues in theq-Kneser Graph

We saw in Section 3.3.1 that an independent set in a graph is a set of v&tices
such that no two vertices i are adjacent. In this section, we will be concerned with
cliques, which are the exact opposites of independent sets.

Definition 5.5.4. Given a graph G= (V,E), a cliqueis a set of vertices C such that any

two distinct vertices in C are adjacent.

In Section 3.3.2 and Section 4.4, we were interested in determining the largest
independent sets of the Kneser @apneser graphs respectively. A clique in the Kneser
graphK,x corresponds to a family df-subsets oK that are pairwise disjoint. Hence,
the largest clique in the Kneser gralihk has sizeln/k|. The corresponding quantity
for theg-Kneser graph is not as easily determined.

Question 5.5.5.What is the size and structure of the largest clique in the g-Kneser
graph qkq?

A clique in theg-Kneser graplgK, is a family of k-dimensional spaces &
that pairwise intersect in the zero subspace. Clearly, videra spread is the largest
clique in theg-Kneser graplgK.x and has sizén]/[k]. Hence, fok = 2, all that remains
to solve Question 5.5.5 is the case of add

Theorem 5.5.6(Beutelspacher)If n is odd, the largest clique in the g-Kneser graph
gKn:2 has size
79 (-1
-1 '

Eisfeld and Storme [42] conjectured thanif= ck+r, where 1< r < k-1, then
the largest clique in thg-Kneser graplgK,.x has size

n_ Ao
C(qu—ql —(qf —1). (5.5.1)
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Note that Eisfeld and Storme’s conjecture (5.5.1) reduces to Theorem 5.5.6 in the case
k= 2. Very recently, El-Zanati et al. [43] disproved Eisfeld’s and Storme’s conjecture.
They showed that whemp= 2, n = 3c+ 2, andn > 8, the largest clique in thg-Kneser
graphgKn:3 has size o N

which is larger than the conjectured maximum in (5.5.1).

Chapter 5, in part, is a reprint of the material as it appears in “Shadows and
intersections in vector spaces," 2010. Chowdhury, Ameera; Patkos, Bdl&Zem-
bin. Theory Ser. A, 117(8):1095-1106, 2010. The dissertation author was the primary
investigator and author of this paper.



Chapter 6
On a Conjecture of Frankl and Furedi

Recall that Fisher’s Inequality, Theorem 2.3.9, states tiairdersecting family
F c 2% of sizemhas a 1-shadow of size at leastFrankl and Firedi [55] conjectured
a similar inequality, Conjecture 2.3.10, for the 2-shadows of nontriiaitersecting
families. Their conjecture asserts that# c 2% is a nontrivial A-intersecting family
of sizem, then the number of pairx,y} € (é) that are contained in sonfec .# is at
least("}). Conjecture 2.3.10 generalizes Fisher’s Inequality and easily implies it since
('alf’?‘) > [02.7| > (7) proves|d1.Z| > m.

One important difference between Fisher’s Inequality and the Frankl-Furedi con-
jecture is that the latter has a nontriviality restriction. Unfortunately, this condition is
necessary, and sunflowers are an example of a trivial family for which the Frankl-Flredi
conjecture is not valid.

Definition 6.0.7. A family.# C 2X is a sunfloweif degx) € {1,].Z|} for all x € X.

If 7 c (%) is aA-intersecting sunflower of size, then|92.7| < m(X) < (7) when

m> k(k— 1)+ 1. We note that Conjecture 2.3.10 is equivalent to the seemingly stronger
statement that if7 C 2X is aA-intersecting family of sizenthat is not a sunflower, then
102.7| > (g‘) Fisher’s inequality and its variants are usually proved by the linear inde-
pendence arguments discussed in Chapter 3. One difficulty in proving Conjecture 2.3.10
in this way is understanding how to interpret the nontriviality restriction in a linear al-
gebra setting.

97
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6.1 Results

Frankl and Furedi [55] verified Conjecture 2.3.10 wher= 1. The author’s
work [25] appears to be the first to consider Conjecture 2.3.10 since [55] was published
over twenty years ago. Several special cases of Conjecture 2.3.10 had already been
proved, however, before [55] was published. For example, Ryser [99], Woodall [117],
and Babai [3] showed Conjecture 2.3.10 is true whes n. Majindar [86] proved
Conjecture 2.3.10 for reguldr-intersecting families.

The author’s main results verify the Frankl-Furedi conjecture in some special
cases. We first show that their conjecture holds for nontriviahtersecting families
that satisfy a reasonable extra condition and characterize the extremal families. We then
apply this result to verify the Frankl-Flredi conjecture wh#rns additionally required
to be uniform andl is small. More precisely, we prove the following theorems.

Theorem 6.1.1(Chowdhury) Let.# c 2% be al-intersecting family of size m. ¥

3 (5)=5.(797) (%) 611

then|92.7| > (7). Moreover, ifA > 2 and.Z C (}) is also k-uniform, then we have

satisfies

102.7| = () if and only if.7 is a symmetric design.

Note that if.# c () is aA-intersecting family of sizen, then (6.1.1) is equivalent to

k(k—1)

< . A
m< =41 (6.1.2)

Theorem 6.1.2(Chowdhury) Let.# C (ﬁ) be a nontrivialA-intersecting family of size

m.

(i) If 2 =2, then|d?.#| > (7) and equality holds if and only i is a symmetric
design.

(i) If 2 =3andk¢ {8,11}, then|d2Z| > () and equality holds if and only if is
a symmetric design.
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6.2 Old and New Conjectures

In light of (6.1.2), it is interesting to note that Stanton and Mullin [104] once
conjectured that it C (ﬁ) is a nontrivialA-intersecting family of sizen, then (6.1.2)
holds. Had this conjecture been true, Theorem 6.1.1 would have implied that Conjec-
ture 2.3.10 is true for uniform families as well as characterized the case of equality.
Unfortunately, Hall [68] proved that Stanton and Mullin’s conjecture is true only for
A € {1,2} and produced counterexamples for evéry 3.

Since (6.1.1) and (6.1.2) are equivalent for uniform families, Hall's proof of
Stanton and Mullin’s conjecture fot = 2 shows that (6.1.1) is true for uniform, non-
trivial, 2-intersecting families. Combined with Theorem 6.1.1, Hall's result proves The-
orem 6.1.2 (i). If (6.1.1) were true for every nontrivial 2-intersecting family, then Theo-
rem 6.1.1 would imply that Conjecture 2.3.10 is trueZoe 2. We exhibit one nontrivial
2-intersecting family that does not satisfy (6.1.1), but feel that this may be the only coun-
terexample. Recall the unique 2-desj§nfrom Section 3.1.3, which was discovered by
Ryser [99]. It is easily seen that-_ » ('Z‘) = 39 while () = 42. We conjecture that

F
Z is the only nontrivial 2-intersecting family for which (6.1.1) does not hold.

Conjecture 6.2.1.1f .# c 2% is a nontrivial 2-intersecting family of size m that is not
the unique 2-design, th€6.1.1)holds.

Frankl and Furedi [55] showed (6.1.1) holds for all nontrivial 1-intersecting fam-
ilies, and we gave their argument in Section 2.3.4.

Theorem 6.1.1 implies that a uniform counterexample to Conjecture 2.3.10 is
also a counterexample to Stanton and Mullin’s conjecture. It is not difficult to see that
Hall's counterexamples to Stanton and Mullin’s conjecture do not give counterexamples
to Conjecture 2.3.10; for definitions see [68]. Hence, we can view Conjecture 2.3.10 as
a weakening of Stanton and Mullin’s conjecture.

A further weakening of Stanton and Mullin’s conjecture is Conjecture 6.2.2,
which is due to Hall [68]. Together with Theorem 6.1.1, we see that Conjecture 6.2.2
would imply that Conjecture 2.3.10 is true# is additionally required to bk-uniform
andk is sufficiently large. Deza [38] showed that= 2; Hall [68] showed thak, = 3;
our proof of Theorem 6.1.2 shows that< 12.
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Conjecture 6.2.2(Hall, 1977) For eachA € Z™, there exists a ke Z" such that if
k>k, and.# C (ﬁ) is a nontrivial A-intersecting family of size m, th€6.1.2)holds.

It is natural to wonder if the obvious analog of Conjecture 2.3.10 for higher
shadows holds. By consideririgblowups of projective planes of ordgrwhenq is
large enough, we have infinitely many nontriviglintersecting families# satisfying
10'.7| < (T) for eachi > 3 and eacik € Z*.

6.3 Proof of Theorem 6.1.1

We use the linear programming techniques discussed in Section 3.4 to prove
Theorem 6.1.1. We will use Theorem 6.1.1 to prove Theorem 6.1.2 in Section 6.4.
Though we used codegrees in the proof of Theorem 3.1.4, we formally define them

now.

Definition 6.3.1. For a subset $ X and a family.# c 2%, we define the co-degred
S, denotedoded S), to be the number of sets i# that contain S,

codeqS) ;= |{F € # :SCF}|.

Proof of Theorem 6.1.1 WhenA = 1, the proof of Theorem 6.1.1 is trivial because
|0%.7| equals the left hand side of (6.1.1). We therefore assumé.tha2. Let.Z c 2%

be aA-intersecting family of sizen. Letg; denote the number of pai{s,y} € (é) with
codeq {x,y}) =i, and observe that the following identities hold

ge=2(2) g)a=()(2)

The first counts pairg{x,y},F) where{x,y} € (3), F € #, and{x,y} C F. The second

counts pair{{x,y},{F1,}) where{x,y} € (3), {Fi,F} C Z, and{x,y} C FiNF>.
Consequently(ay,...,an) is a feasible solution to the following linear program with
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objective valugd?.Z|:

Minimize zZ (6.3.1)

. : | )
subject to: iz = (
i; | Fezy 2

The dual of this linear program is:

Maximize (g) (r2n>x+ (Fezy (“;)) y (6.3.2)

subject to: (|2>x+iy§1, ie{l,...,m}.

The feasible region of the dual linear program (6.3.2) has extreme points given by

1 2

- — ], je{1,...,m—1}. (6.3.3)
( ('3 i+ 1)

If . satisfies (6.1.1), then settijg= A — 1 in (6.3.3) and applying weak duality, The-

orem 3.4.6, yields

(D3 () e

as desired. Finally, note that equality in (6.1.1) follows from counting gaird, F})
such thaf{F, R} C % andxe FiN k.

We now assume that > 2 and that% C (ﬁ) Is alsok-uniform. We prove that
102.7| = (%) if and only if # is a symmetric design. Ryser [99], Woodall [117], and
Babai [3] showed that if#7 c 2X is a A-intersecting family of sizen= |91.%| = n,
then|02.7| = (). Conversely, suppogé2.7| = () and leta; denote the number of
pairs {x,y} € (>2<) with codeg {x,y}) =i. We will show that% is k-regular, which
immediately implies that” is a symmetric design. By (6.3.4), we see that equality
holds in (6.1.2)(ay, ...,an) is an optimal solution to the primal linear program (6.3.1),
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and (6.3.3) withj = A — 1 is an optimal solution to the dual linear program (6.3.2). By
weak complementary slackness, Theorem 3.4.8, this implies

=0 () ()

Hencea; =0 fori ¢ {A —1,A} fori € {1,...m}. The constraints in the primal linear
program (6.3.1) impla; 3 +a; = (3) and(*; a1+ (g)al = (4)(3),s0a;_1=0
anda; = (7).
Letx € X and count pairgy, F) such that{x,y} C F. Sincea; = (), we have
A0 (x)| = (k—1)degx) so |91L(x)| = k%ldeg(x). (6.3.5)
We will give a lower bound ord*L(x)| in terms of degx) that will allow us to prove
that.7 is k-regular. Forx € X, let bx;j denote the number of verticgss X such that

codeq {x,y}) =i and observe that the following identities hold

i;ibe — (k— 1)degx), i; <'2) b = (A1) (degx)) |

The first follows from counting pair§/, F) where{x,y} € (3), F € .#, and{x,y} C F.
The second follows from counting paifg {F1,F2}) where{x,y} € (3), {F1,F2} C Z,
and{x,y} C F1NF. Consequentlyby 1, ...,bxm) is a feasible solution to the following
linear program with objective valu@*L(x)|:

Minimize Wi

subject to: Ziwi = (k—1)degXx)

The dual of this linear program is:

Maximize (A—-1) (degx))w (k—1)degx)z

subject to: (|2>y+iz <1 iedl,...,m}.
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Since (6.3.3) withj = A — 1 is a feasible solution, using (6.3.5) yields

k—1 1 2(k—1) degx)—1/4\ *
- = = > = Y _(A-1—==L = .
1 degx) = |dL(x)| > dedX) ( 1 (A-1) > 5
Hence, de(x) > k for eachx € X. On the other hand, &t € .# and count pairgx, F’)
such thaF # F' € .% andx € FNF’'. Since equality holds in (6.1.2), we have

k2 < Z:deQX) —A(Mm—1)+k=k>
Xe

so de@x) =k for all x € X. Hence% is k-regular and is thus a symmetric design. o

6.4 Proof of Theorem 6.1.2

In light of (6.1.1) and (6.1.2), we are interested in upper bounds on the sizes
of nontrivial A-intersecting families# that depend only on the sizes of the sets/in
One of the first results of this kind is Deza’s theorem [38], which bounds the size of
A-intersecting families that are not sunflowers. In the case when () is k-uniform,
the upper bound om in (6.4.1) is bigger than the upper bound @nn (6.1.2) by a
factor of roughlyA.

Theorem 6.4.1(Deza, 1974) Let.# C 2X be aA-intersecting family of size m that is
not a sunflower. Define K= max:< # |F|. Then

m<max{A(A+1)+1,(K-2A)(K—21)+1)+1}. (6.4.1)

Since nontriviality is a stronger restriction oA than not being a sunflower, it
is plausible that (6.4.1) could be improved for nontrivial. Frankl and Firedi [55]
did exactly this when they showed that (6.1.1) holds for all nontrivial 1-intersecting
families. We mentioned in the introduction that Stanton and Mullin [104] conjectured
that (6.4.1) could be improved to (6.1.2)4 is nontrivial andk-uniform; Theorem 6.4.1
verifies Stanton and Mullin’s conjecture far= 1 and Hall proved Stanton and Mullin’s
conjecture wheid = 2.
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Theorem 6.4.2(Hall, 1977) If # C (ﬁ) is a nontrivial 2-intersecting family of size m,

k
< )
m< <2)+1

We adapt Hall's proof of Theorem 6.4.2 to prove Theorem 6.1.2. (For the

then

reader’s convenience, we first reproduce Hall's proof of Theorem 6.4.2.) In our proof,
we will use the fact that if# C (ﬁ) is aA-intersecting family, then dé¢g) does not lie

in a certain interval. Deza [37] showed thathf C (ﬁ) is aA-intersecting family of size
mthen, for allx € X,

degx)(m+1—degx)) < max{A,k—A}(m+1). (6.4.2)

McCarthy and Vanstone [92] adapted an argument of Connor [29], and improved this
bound; they gave the following restriction on drg

Theorem 6.4.3(McCarthy-Vanstone, 1979} et.Z C () be al-intersecting family of

size m.

() If x € X then,

degx)((k— 1)+ A(m—degx))) < (k—A)((k— 1) +Am). (6.4.3)

(ii) Let {x,y} C (3) and define
@ as1=(k—2A)((k—A)+Am) —degx)((k— 1) +A(m—degXx))),
(b) a2 =ap1 = Adegx)deqy)— ((k—A)+ Am)codedg {x,y}),
(€) a2=(k—=A)((k=24)+Am) —dedy)((k—A)+A(m—dedy))).

The following determinant is non-negative:

a a
det< t 12)20. (6.4.4)

dp1 a2

We now reproduce Hall's proof of Theorem 6.4.2. Note that Hall had originally
used (6.4.2) in his proof, but we will use (6.4.3) instead since it makes the argument
cleaner.
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Hall's Proof of Theorem 6.4.2Suppose, for a contradiction, that there exists a nontriv-
ial 2-intersectingZ C () of sizem > (£) + 1. Write

m= (;) +1+4¢, ecZt. (6.4.5)

Note that the left hand side of (6.4.3) is quadratic in(c¢gvith roots deg@x) = 0
and degx) = m—1+k/2. If there exists am € X with k < degx) < (m—1+k/2) —k,
then (6.4.3) is true for dég) = k; together with (6.4.5), this implies that< 0, which
is impossible. Hence, for all € X, either

degx) <k—1 or dedx) > m-— Fg‘ . (6.4.6)

We say a vertex € X with degx) < k—1 is light and isheavy if deg(x) > m— [k/2].
By (6.4.5), for anyF € .7, we have

Z:deg(x) —=2(m—1)+ k=K +2¢. (6.4.7)

Since the average degree of a vertek ia .# is greater thak, every sefF € .# contains
a heavy vertex. As7 is nontrivial, there are at least two heavy vertiggsc. Define

s:=|{F € 7 : {x1,%} C F}, t={FeZ:xqeFx¢F},
u={FeZ :x1¢FxeF}, vi={F € 7 :x1,% ¢ F}|.

We haves < k— 1 becausel = 2 and.# is nontrivial. Sinceu+ v andt + v count
the number of setB € .% not onxy, X, respectively, (6.4.6) yields+ v,u+v < [k/2].
Consequently (6.4.5) implies,

(;) +1l+e=m=s+t+u+v<s+(t+Vv)+(u+v)< (k—1)+2rﬂ < 2k

Ase € Z", we have a contradiction fé&e> 5. Fork =4, Theorem 6.4.1 yield® < 7, so
we have a contradiction in this case too. We have shown tlzatdf (ﬁ) is a nontrivial
2-intersecting family of sizenthenm < (;) +1. O

For largerA, if we knew that a nontrivialk-intersecting.# C (ﬁ) that does
not satisfy (6.1.2) has at leasdt heavy vertices, then Hall's argument would yield a
proof of Conjecture 6.2.2. Unfortunately, Hall's averaging argument only shows that
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any nontriviald-intersectingZ c (}) that does not satisfy (6.1.2) has at least two heavy
vertices. In the proof of Theorem 6.1.2, we expend a lot of effort to eliminate the
possibility that there are exactly two heavy vertices whegs 3; the key difficulty is
getting a good bound on the number of dets .# that contain both the heavy vertices.

Proof of Theorem 6.1.2 We observe that Theorem 6.4.2 together with Theorem 6.1.1
yields Theorem 6.1.2 (i).
For the rest of the proof, we assume that 3. We will show that if# c (%) is
a nontrivial 3-intersecting family, whete¢ {8,11}, then (6.1.2) holds. Theorem 6.1.1
then implies thatd?.#| > (7) and that equality holds if and only i is a symmetric
design. First suppode< 6. It is not difficult to see that i is a nontrivialk-uniform
3-intersecting family of sizen, wherek € {4,5}, thenm < 5; for proofs of these results
in a more general setting see [62], [63], and [111]. Hence, (6.1.2) holds kveh
Suppose, for a contradiction, that> 12 and that# c (}) is a nontrivial 3-
intersecting family of sizenfor which (6.1.2) does not hold. Write

k(k—1)
3

+1+e, e>0. (6.4.8)

Note that the left hand side of (6.4.3) is quadratic in(c¢gvith roots degx) =0
and de@x) = m— 1+k/3. If there exists am € X with k < degx) < (m—1+Kk/3) — Kk,
then (6.4.3) is true for dég) = k; together with (6.4.8), this implies that< 0, which
is impossible. Hence, for al € X, either

degx) <k—1 or dedx) > m-— [%{‘ >m-— %Jrz (6.4.9)
Following Hall [68], we say a vertex € X is light if deg(x) < k— 1 and isheavy if
degx) > m—[2k/3].

By (6.4.8), for anyF € .#, we have
Z:deQ(x) —3(m—1)+ k=K +3e. (6.4.10)
Xe

Since the average degree of a vertek ia .# is greater thak, every sefF € .# contains
a heavy vertex. As” is nontrivial, there are at least two heavy vertices. We consider
two cases, according to whether there are exactly two or greater than two heavy vertices.
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Case 1: There are exactly two heavy vertices. Let X1, Xo be the heavy vertices. Sincé
is nontrivial, there exists a s€&f € .# which contains; but notxy, and there exists a
setF, € .# which contains; but notx;. LetFy NF := {y1,¥2,y3}. Define

s:={F € Z : {x1,%} C F}|, t={FeZ:xqeFx¢F},
u=NHFeZ :x1¢FxecF},

and observe thah = s+t 4 u since everyF € .# contains a heavy vertex. By (6.4.9),
we havet,u < [2k/3] < (2k+2)/3.

We now show how to obtain an upper boundsin terms ofk. Observe that any
F € .7 that containgxy, 2} intersectd \ {x1} in a subset of size two. Consequently,

2s= z IFNF\{xa} = Z codeq X1, X2, W). (6.4.11)

{x¢,x2}CF weF\{x¢}

We claim that ifw € X\ {xq,%2} and there exists af € .# such that
{Xi, %} ZF, we¢F, (6.4.12)

then codeg{x1,x2,w}) < (k—1)/2. Supposé&’,F ¢ .7 are distinct sets ir# that both
contain{x;,xz,w}. SincelA = 3, the intersections df’ andF with F \ {x1,x2} must
be disjoint subsets of size two. Hence, coffeg, xo,w}) < (k—1)/2. Observe that if
we F1\ {X1,Y1,¥2,Y3}, thenF, is a set in# that satisfies (6.4.12). We will consider two
subcases according to whether for egch F1 N F,, there exists af € .# that satisfies
(6.4.12) forw =Y.

Subcase 1: For eaghe F1 N, there exists ai € .7 that satisfies (6.4.12) fav =y;.

Applying (6.4.9) and (6.4.11) yields

k(k—1
( )+1+s:m:s+t+u§

6.4.13
3 4 ( )

(k—1)2+2 2 <3k2+10k+19
3|~ 12 '

This implies thatk? — 14k — 7+ 12¢ < 0, which is a contradiction fok > 15 since
€ > 1/3. For the remaining values &f we refer the reader to the appendix.

Subcase 2: There existyiae Fy N for which noF € .7 satisfies (6.4.12) fow = ;.
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Note that ify; is in everyF € . that does not contaifix;,xo} then, by (6.4.9),
codeq {xg,%2,Yi}) <k—1—(t4u). Suppose that evefy € .%, not containing{xy, Xz},
containsj of the elementgy,y>,y3} wherej € {1,2,3}. Applying (6.4.11) yields

k(k—1)

3 +14+e=m=s+t+u (6.4.14)

1
< = ( codeg(xl,xz,w)> +t+4u

2 \werTix)

1/. k—1—j)(k—1
Sé(j(k—l—(t—l—u))—}—( 21)( ))+t+u
gy ke1oDk-D) oty

j (k—1—j)(k—1) 2k+2
< 2(k— S S
< Sk—1)+ e+ (2- )5
- l_<+z .+(k—1—j)(k—1)+4k+4
-~ \67s6)! 4 3

2
<3k +5k+8
- 12 ’

since the penultimate expression in (6.4.14) is maximized whed. This implies that
(k—1)(k—8)+12(e —1/3) < 0, which is a contradiction fdt > 9.

If k=8 thene =1/3. Observe that codé€s;,xo,w) < 3 if w is not one of
the j special vertices i{yi,Y2,Yys}; in the bound forsin (6.4.14), we use the weaker
bound codeg@x;, xo,w) < 7/2 for verticesw that are not one of th¢ special vertices in
{y1,¥2,y3}. If we replace the weaker bound on codegx,,w) by the tighter bound,
then we get a contradiction fér= 8 as well. Finally, itk € {6,7}, thene € Z* so we

also get a contradiction in this case.

Case 2: There are greater than two heavy vertices. Let X1, X2, X3 be three heavy vertices.

Define
s:=|{F €.7 : {x1,%2,X3} C F}|, t:=|{F € Z :x1 € F,x2,x3¢ F}|,
u:={F € .# :x € Fx1;,X3¢F}|, vi={F € Z :x3€F,x1,% ¢ F}|,
w:=|{F €.Z :x;,xo € F,x3¢ F}|, X:=|{F €.Z :x,x3cF,x2 ¢ F}|,

y:={F €% :x,x3€Fx1¢F}, z:=|{F € F :x1,X2,X3 ¢ F }|.
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By counting the number of sets not containigx,, or x3 respectively we have

2k

2k+-2
UFVHY+Z tHVEXFZ tHU+WH2Zs | o | <

3 Y

(6.4.15)

by (6.4.9). AsA = 3 and.# is nontrivial, we haves < k— 2. Therefore (6.4.15) implies,

k(k—1)
3

+1+e=m=s+t+U+V+W+X+Yy+2Z
<S+H(UHVHY+2) + (t+VHEX+2) + (t+Hu+wH2)

< (k—z)+3%ﬂ < (K—2) + (2k+2) = 3k. (6.4.16)

This impliesk? — 10k + 3+ 3¢ < 0, so we have a contradiction fke> 10 sincee > 1/3.
For the remaining values &f we refer the reader to the appendix.

We have shown that ifF C (ﬁ) is a nontrivial 3-intersecting family of sizaand
k ¢ {8,11}, then.Z satisfies (6.1.2). By Theorem 6.1.1, this implies tha¥ifsatisfies
the hypotheses of Theorem 6.1.2 (i), tHéR.Z| > (3) and equality holds if and only
if 7 is a symmetric design. O

6.5 Appendix

Here, we collect some computations that are needed to verify Theorem 6.1.2 for
small values ok. We regret that we could not prove Theorem 6.1.2 for all valuds of
The missing cases ake= 11, m= 40 in Case 1, Subcase 1 ae 8 m= 20 in Case 2.

Case Analysis for Case 1, Subcase 1:

If k=14, then codefxi, X, W) < 6 forw e F;\ {x1} so (6.4.11) yields < 39.
Using this value fosin (6.4.13) yieldss < 0, which contradicts (6.4.8).

If k=13, then the penultimate inequality in (6.4.13) yields that 54,s= 36,
andt = u=9. Using these values in (6.4.4) yields a contradiction.

If k=12, then codefxi,x,w) <5 forwe Fi\ {x1} so (6.4.11) yields < 27.
Using this value fosin (6.4.13) yieldss < 0, which contradicts (6.4.8).
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If k=11, then (6.4.13) yieldsn € {38 39,40,41}. If we add the constraint
Zs= 110 (6.3.1), then the dual linear program becomes

Maximize 3(2)W+ (I2<) mx+y (6.5.1)

subject to: (IZ)W-i—ixgl, ie{1,...,m\{s}
S
<2)w+sx+y§ 1.

and any feasible solution to (6.5.1) is a lower boundaZ|. If m= 38, then (6.4.13)
implies s > 22 because,u < 8. Observe thaf?) (—3) + p(3) < () (-3) +a(3) if
p>q>2. We have(3) (—31) +22(2%) +63% = 1, so the previous inequality implies
that (—1/3,2/3, 63%) is always a feasible solution to (6.5.1) for= 38 andk = 11.
Hence,|92.Z7| > (73), which contradicts our initial assumption. A similar argument
eliminates the case = 39. If m= 41, thens= 25 andt = u = 8 so degx;) = 33; this
contradicts Theorem 6.4.3.

If k=10, then the penultimate inequality in (6.4.13) yields- 32 ands = 18.
Since (3) (1) +18(2) +40= 1, we have(—1/3,2/3,40) is a feasible solution to
(6.5.1) form= 32 andk = 10. Consequently,d0®.#| > (3), which contradicts our
initial assumption.

If k=09, then (6.4.13) yields € {1,2,3} ands < 16. We consider the cases
€ =1 ande € {2,3} separately.

By (6.4.9), we have > 14 andt,u < 6. Note that(}) (—1) +15(2) +26=1s0
( % % 26) is a feasible solution to (6.5.1) fon= 26,k =9, ands > 15. If s= 14, then
t =u=06sode@x;) = degx) = 20. Observe that (6.4.9) and (6.4.10) imply

84 = Z degx) = degx1) + degx) < 20+ 8(8) = 84;
XEF
hence, ifwis a light vertex in a set it# that doesn’t contain botk , X, then degw) =
Now suppose that is a light vertex that is only contained in sets that contain both
X1,Xo; that is dedz) = codedx1,%2,2). SinceF; satisfies (6.4.12) fow = z, we see
degz) = codegx1,%2,z) < 4. Now letF’ € .# be a set that contains boxa, x, and
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observe that

84= % degx)=dedx1)+degxz)+ 5  degz)=20+20+ 3  ded2).

xeF’ zeF\{x1,%2} zeF/\{x1,%2}
Forze F'\ {x1,x2}, we have de(g) < 4 or dedz) = 8 so eithelF’ contains four vertices
of degree eight and three vertices of degree four or five vertices of degree eight and two
vertices whose degrees sum to four. HencextoiX, we have detx) € {1,2, 3,4,8, 20}.
Let n; denote the number of vertices of degre@lso define

my = |{F € Z : {x1,%} C .Z,3w,ze F with degw) = 1,degz) = 3},
mp = |{F € .7 : {x1,%} C .Z,3w,z€ F with degw) = degz) = 2},
mg:=|{F € Z : {x,%} C F,3we F with degw) = 4},

and observe thaty +nmp +mg = s= 14. Note thathyg =2, 33 =n1 = my, Nx = M,
and 44 = 3mg. In particular,mg is even sa; + n; = My + My is also even. Observe that

234=9-26=km= Z(ngX) = 20ny0+ 8ng + 4n4 + 3n3 + 2N + Ng.
Xe

= 20n20+8ng +4n4 + Nq + 2N + Ng = 20Nog+ 8ng + 4ns + 2(n1 + nz). (6.5.2)
Sincen; + ny is even, (6.5.2) implies thai234, which is a contradiction.

€ € {2,3}: Without loss of generality, we will assume d&g) < degx2) or equivalently
thatu > t. Observe that (6.4.9) and (6.4.10) imply

degx;) = Z degx) — % }deg(z) > Z degx) — (k—1)?
xXeky zeF \{x1 Xeky

=k 43— (k—1)>=2k—1+3e. (6.5.3)

If € € {2,3}, thens < 16 impliesu = 6. Whene = 2, we have de(x;) = 21, which
contradicts (6.5.3). When= 3, we have defx;) = 22, which again contradicts (6.5.3).

The case&k € {6,7,8} can be eliminated with an argument similar to the one for
k=09, ¢ € {2 3}; we omit the details.

Case Analysis for Case 2:

If k=9, then we arrive at a contradiction by using the third to last expression in
(6.4.16).
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If k=8, thenm e {20,21,22 23,24} by (6.4.16). Fom € {21,22, 23,24, 25},
any heavy vertex satisfies de@x) > m—5 by (6.4.3). Hence, the upper bound in
(6.4.15) is improved and implies that deg) = s+t +w-+x < 16. This gives a con-
tradiction form e {22,2324}. For m= 21, we haves=6, w=x=y =5, and
t =u=v=2z=0. Hence code({x;,X;j}) = 11 for {i, j} € {1,2,3}. Adding the con-
straintz;; > 3 to (6.3.1) yields thaip>.7 | > (r;) which contradicts our initial assump-
tion; we omit the details since the computation is similar to that in (6.5.1).

If k=7, thenm e {16,17,18,19,20} by (6.4.16) and (6.4.3) shows that any
heavy vertexx satisfies dex) > m— 4. Hence, the upper bound in (6.4.15) is im-
proved and implies that dég) = s+t +w+x < 13. This gives a contradiction for
me {1819,20}.

If k=7 andm = 17, then we conclude that=5, w=x =y = 4, and that
t =u=v=2z=0. Note that ifx € X is heavy then dgg) > 13 by (6.4.9). If there is
a fourth heavy vertexg, it can be in at most one of the five setsxanx,, X3; moreover
since heavy vertices have degree at least thirtega in each of the four sets dixg, 2},
{x1,x3}, and{x2,x3}. As A = 3, this argument shows that there are at most four heavy
vertices. If there are exactly four heavy vertiogsxy, x3, X4, then codeg{x;,x;}) =9
for {i,j} € {1,2,3,4}. Adding the constrairgy > 6 to (6.3.1) yields thap>.#| > (7),
which contradicts our initial assumption; we omit the details since the computation is
similar to the one in (6.5.1). Consequently, there are exactly three heavy vertices and
deg’x;) = degx2) = deg’x3) = 13. Moreover, any set it¥ contains either exactly two
or exactly three heavy vertices. LIét be a set that contains exactly two heavy vertices.
Equations (6.4.9) and (6.4.10) yield th&tcontains four vertices of degree six and one
of degree five. Hence, il is a light vertex andv is contained in a set of with two
heavy vertices, then dég) € {5,6}; otherwise defw) = codedx1, X2, X3, w) = 1. Now
let F be a set in% that contains exactly three heavy vertices. Since\deg {1,5,6}
for w e X\ {x1,%2, %3}, (6.4.10) yields thaF contains three vertices of degree five and
one vertex of degree one. As= 5, there are fifteen vertices of degree five and five of
degree one. Lat; denote the number of vertices of degre@/e have

119=km= Z(deg(x) = 13n13+ 6ng + 5n5 + Ny = 39+ 6ng + 75+ 5,
Xe

which implies thanhg = 0, a contradiction.
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If k=7 andm= 16 then (6.4.16) implies thatc {4,5} andt +u+v+2z< 1.
We conclude thaz = 0 and at most one df u,v equals one. We first show that the
situation where exactly one ofu,Vv is one is impossible. Without loss of generality,
assume for a contradiction thiat 1 andu=v = 0. If s= 4, then (6.4.15) implies that

16=m=s+t+U+V+W+X+y+2<4+1+0+0+0+3+3+4=15

which is a contradiction. I16= 5, then we can conclude via a similar argument that
w=x=3 andy = 4. Consider the uniqué € .Z with x; € F andx,x3 ¢ F. Since light
vertices have degree at most sixmust contain another heavy vertexby (6.4.10).
Now dedxs4) > 12 and sincey can only be in one of the five sets &nxp, x3, we have
thatx, is in each of the remaining 11 sets. As a result,ifgre {1,2,3,4}, we have
coded {xi,xj}) =8 if {i,j} # {1,3} and we have codédgxi,x3}) = 9. Adding the
constraintss > 1 andzg > 5 to (6.3.1) yields tha2.#| > (7), which contradicts our
initial assumption; we omit the details since the computation is similar to the one in
(6.5.1). Hence, we can assuine u=v = 0. If s= 5, then two ofw, x,y equal four and
the other equals three. Hence, two of the p&isx2}, {x1,x3}.{X2,X3} have codegree
nine and one has codegree eight. Adding the constrajnts2 andzg > 1 to (6.3.1)
yields that|0%.%| > (), which contradicts our initial assumption; we omit the details
since the computation is similar to the one in (6.5.1)s# 4, thenw=x=y =4 so
degx1) = degxp) = degx3) = 12 and codegx;,x;}) =8 for {i, j} € {1,2,3}. If we

add the constrairgg > 3 to (6.3.1), then the corresponding dual linear program is

Maximize 36Qv+ 336X +Yy (6.5.4)

subject to: (i2>W+ix <1, ie[l6\{8}

(2)"""’ 8x+y<1

y>0.

It follows that (—1/3,2/3,5) is a feasible solution to (6.5.4) $82.%| > 119. Since
(126) = 120, we obtain a contradiction unleés1/3,2/3,5) is an optimal solution to
(6.5.4). If(—1/3,2/3,5) is an optimal solution to (6.5.4), then by complementary

slackness, coddgx,y}) € {0,2,3,8} for {x,y} € (); moreoverzg = 3. Observe that
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t =u=v=z=0implies that ifw € X\ {x1,X2,x3}, then
degw) = ; codeg({x.Xj,w}) — 2codeg {x;, 2. X3, W}) < 9.
{i,j}c{1,2,3}

so (6.4.9) shows thaty,Xo, X3 are the only heavy vertices. Moreover, evérye 7
contains either exactly two or exactly three heavy vertices-asi=v=z=0. If

F’ € .7 is a set with exactly two heavy vertices, then (6.4.9) and (6.4.10) yield that either
F’ contains three vertices of degree six and two vertices of degree five or four vertices
of degree six and one of degree four. Now, every light vertemust be contained

in a set with exactly two heavy vertices; otherwise @eg= codedqx1,X2,X3, W) = 1,
which contradicts the fact that codgg,y}) € {0,2,3,8}. Hence, defw) € {4,5,6}

forw e X\ {x1,x2,x3}. As a result, ifF is a set with three heavy vertices, then (6.4.10)
yields thatF contains four vertices of degree four. We conclude thafwieg {4,6} for

w e X\ {x1,X2,X3}. Sinces= 4, there are sixteen vertices of degree four. ,&tenote

the number of vertices of degreenve have

112=km= Z(dégX) = 12n15+ 6ng + 4n4 = 36+ 6ng + 64
Xe

song = 2, which is impossible.

If k=6, thene € {1,2} by Theorem 6.4.1. Lat; denote the number of vertices
of degred. If € =2, thenn; = 2, ng = 9, andn;g = 4 by a result of Vanstone [111].
Using (6.4.10), we see that is uniquely determined and must be the family

{{1,2,3,5,6,7},{1,2,3,8,9,10},{1,2,3,11,12,13},{1,2,4,5,8,11},
{1,2,4,6,9,12},{1,2,4,7,10,13},{1,3,4,5,10,12}, {1,3,4,6,8,13},
{1,3,4,7,9,11},{2,3,4,5,9,13},{2,3,4,6,10,11}, {2,3,4,7,8,12},
{1,2,3,4,14,15}}. (6.5.5)

Hence|d?.#| =87> (%). If k=6 ande = 1, then eithen; = 2,n3 = 3,ns = 6,ng = 3,
andnip =1 orng = 9 andng = 4 by a result of Vanstone [111]. Again using (6.4.10),
we can conclude tha¥ is uniquely determined in both cases. In the first caemnust
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be

{{1,2,4,5,6,11},{1,2,4,7,8,12},{1,2,4,9,10,13},{1,3,4,7,9,11},
{1,3,4,5,10,12},{1,3,4,6,8,13},{2,3,4,8,10,11},{2,3,4,6,9,12},
{2,3,4,5,7,13},{1,2,3,5,8,9},{1,2,3,6,7,10},{1.2,3,4,1415}};  (6.5.6)

hence)d’.7| =84 > (122) In the latter caseZ is the complement of a projective plane
of order 3 with respect to a line; heng#.#| = 78 > (122)

Chapter 6, in part, is a reprint of the material as it appears in “On a conjecture of
Frankl and Furedi,” 2011. Chowdhury, AmeeHectron. J. Combin., 18(1):Paper 56,
16, 2011. The dissertation author was the primary investigator and author of this paper.



Chapter 7

On the Manickam-Miklos-Singhi
Conjecture

Fork € Z*, let f (k) be the minimum integeX such that for alh > N, every set
of nreal numbers with nonnegative sum has at Ié%:s}) k-element subsets whose sum
is also nonnegative. In 1988, Manickam, Miklos, and Singhi provedfttigtexists and
conjectured thaf (k) < 4k. In this chapter, we prové(3) = 11 andf(4) < 24, which
improves previous upper bounds in these cases. With more patience, our arguments
could yield improved upper bounds diik) for largerk. Moreover, we show how our
method could potentially yield a quadratic upper bound @q). We end this chapter by
discussing a vector space analog of the Manickam-Miklés-Singhi conjecture.

7.1 Nonnegative Sums

Manickam, Miklos, and Singhi conjectured in [88] and [89] that

Conjecture 7.1.1. For any integers rk with n> 4k, every set of n real numbers with
nonnegative sum has at Iea(%[i) k-element subsets whose sum is also nonnegative.

This conjecture is similar to the Ebd-Ko-Rado theorem, Theorem 2.2.2, not
only in the appearance of the binomial coefficigfit}), but also because of the fol-
lowing tight example:x; = n—1,x = --- = X, = —1. In this example, &-subset of
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X1,--.,Xy has nonnegative sum exactly when it containsand hence there are exactly
(1) k-element subsets with nonnegative sum.

As in the Erds-Ko-Rado theorenm must be large enough with respectko
otherwise there exigh real numbers«,...,x, € R with nonnegative sum and fewer
than (Ej) k-element subsets with nonnegative sum. Here are two counterexamples
whenn < 4k. Forn=2k+r, where 1<r < 3k/5, letx; = --- = Xpkir_2 = 2 and
Xokir—1 = Xokir = —(2k+r —2). Note that &k-subset is nonnegative exactly when it
does not contaiRyy., ;1 OF Xpi4r and that(2k+kr_2) < (2'(,21_1) when 1< r < 3k/5. For
n=3k+r, where 1<r < k/7, a similar counterexample sets=--- = Xgxyr-3 =3
andXgyir_2 = -+ = Xaker = —(3k+r —3). Again, note that &-subset is nonnegative
exactly when it does not contaigy_1, Xk, or Xa1 and that(**/ %) < (¥ 1) when
1 <r <k/7. These counterexamples do not generalize to largecausé' 1 £ (t —1)!
fort > 3.

Although then > 4k requirement is probably not sharp, one reason the conjec-
ture is written with this bound is because Baranyai's theorem, Theorem 3.4.33, or the
Greene-Kleitman type argument in Section 4.6.2 verifies Conjecture 7.1. lkivhesee
Lemma 7.4.1.

Very recently, Alon, Huang, and Sudakov [1] verified Conjecture 7.1.1 when
n > min{33k?, 2k3}, which substantially improves previous results. They also obtained
a Hilton-Milner analog. See their paper for references and historical remarks.

7.2 Notation

We begin with some definitions and notation that are special to this chapter.

Definition 7.2.1. Given % > --- > X, € R, a subset & {x1,...,Xn} iS nonnegativef
Y xesX > 0 and is negativetherwise.

Definition 7.2.2. Given ¥ > --- > X, € R, we define
Fr:={SC{X,...,%n} : | =Kk, S is nonnegativie

to be the set of nonnegative k-subsets;0f.x, x.
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Definition 7.2.3. We say a pair(n,k) € Z* x Z" is goodif whenever we are given
X1 > -+ > X € R with nonnegative sum, we haji@y| > (7).

Definition 7.2.4. Let f(k) be the minimum integer N such that for albnN, the pair

(n,K) is good.

Definition 7.2.5. A family.% C (ﬁ) is a starif there exists »x X such that

efre(f)ner)

Definition 7.2.6. We say a pair(n,k) € Z* x Z* is strongly goodif it is good and
|| = (1-1) if and only if % is thestar on x.

7.3 Results

Alon, Huang, and Sudakov [1] proved thatk) < min{33k?,2k®} and Man-
ickam, Miklos, and Singhi conjectured thitk) < 4k. Our main result shows that the
veracity of Conjecture 7.1.1 boils down to proving its veracitk in 1 base cases.

Theorem 7.3.1(Chowdhury) If (n,k) is a good pair, thenn+k,k) is a good pair.
Moreover, if(n, k) is strongly good and & 2k — 1, then(n+ k, k) is strongly good.

Hence, we can verify Conjecture 7.1.1 for sniall

Theorem 7.3.2(Chowdhury) We have {3) = 11 and, more precisely, that the pair
(n,3) is strongly good when & 11. We have (4) < 24 and, more precisely, that the
pair (n,4) is strongly good if n=220r n > 24.

The previous best upper bounds fif3) and f(4) were f(3) < 12 from [87,
91] and f(4) < 128 from [1]. Although Conjecture 7.1.1 fdr= 3 was previously
tackled, our result is stronger because we deterni{i@ exactly and we characterize
the case of equality; moreover our proof is simpler and provides a nice application of
the Kruskal-Katona theorem. With more patience, our arguments could yield improved
upper bounds orii(k) for largerk. In Section 7.4, we also show how our method might
yield a quadratic upper bound drik) that improves on the current best upper bound [1]
of f(k) < min{33k?,2k3}.
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7.4 Reductions to Base Cases

This section contains a proof of Theorem 7.3.1. We first show that Baranyai’'s
theorem, Theorem 3.4.33, or the Greene-Kleitman type argument in Section 4.6.2 yields
a lemma due to Bier and Manickam [13] that proves Conjecture 7.1.1 in the case that
K|n.

Lemma 7.4.1(Bier-Manickam) For k € Z™, the pair(ck k) is good for any & Z* and
is strongly good if G~ 2.

Proof. We first show that Baranyai’'s theorem implies that the peltk) is good for
anyce Z". Letn = ckand suppose thag > --- > x € R has nonnegative sum. We
will prove that if¥4 C ()li) is a perfect matching, then there is a nonnegdtisetG € ¢.
Since the total sum ofy, . .., X IS honnegative and tHesubsets ir¢ are disjoint,

Hence, at least onesubselG € ¢4 must have nonnegative sum. As- ck, Baranyai's
theorem asserts that the complete hypergraptkomrtices(ﬁ) has a partitionZ into
(Ck"jll) perfect matchings. Each perfect matching#hcontains a nonnegativesubset,
and asZ is a partition, the correspondirigsubsets are distinct. Hence, there are at
Ieast(ck‘fll) k-element subsets with nonnegative sum.

We do not need the full power of Baranyai's theorem to prove the statement,
however. The Greene-Kleitman type argument in Section 4.6.2 not only yields the same
conclusion, but also allows us to prove tlfek k) is strongly good wher # 2. Let
g C (ﬁ) be a perfect matching and lete S be a permutation. As in Lemma 4.5.7,
the family 7(¢) := {n(G) : G € ¢} is also a perfect matching. Recall th& C (})
from Definition 7.2.2 is the family of nonnegatiwesubsets irxy, ..., Xk We showed
in the preceding paragraph that any perfect matching contains a nonnégsiiveet so
| ZxN7(94)| > 1 for anyrm € Sk. On the other hand, gived € ¢4 andF € .%,, there are

k! (ck—Kk)! permutationst € S such thatt(G) = F. Consequently,

(C—kk) | Flki (ck—K)! = |Z|| Fl{m € Sx: m(G) =F} = Yy [FNn(¥)|> (cK)!

(7.4.1)
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Rearranging (7.4.1) yields tha#| > (%), as desired.

If there are exactl Ck‘fll) nonnegativék-subsets, then equality holds everywhere
in (7.4.1). Hence, for each € Sy, we have|.Zy N w(¥)| = 1. This proves that every
perfect matching contains exactly one nonnegatigeibset in%y, which implies that
Fx C (¥) is intersecting. By the Efis-Ko-Rado theorem, Theorem 2.2.%; i 2, then

Zx must be the star oxy. Hence,(ck; k) is strongly good ifc # 2. O

Our next lemma shows that if a setrdfreal numbers has at Iea(%f:ll) nonneg-
atived-subsets an(l, k) is a good pair, then it has at Iee@tjll) nonnegativé-subsets.

Lemma 7.4.2. Suppose x> --- > Xy € R has|.Z4| > (g/jll) If (d,k) is a good pair,
then|.Zi| > (71). Moreover, ifh % = (11, d > 2k— 1, and the pair(d, k) is strongly

good, then% is the star on x.

Proof. Count pairs(A,B) whereA € %4, B € %, andB C A. Since(d,k) is a good
pair, eachA € .74 contains at Ieas(tﬂj) setsB € .%. On the other hand, eaghe .7
is contained in at mos(fc‘;:l'(‘) setsA € .Z4. Putting all this together, we have

/

n—1\/d-1 n —k
< : 7 7 < |# . 4.
(0-1) (k1) shiapiac supemse =iz ") 42

/—1
Hence,| % > (% ;)

If |7 = (%_1), then (7.4.2) implies thatZy| = (7, _1), that eachA € Z4 con-
tains exactl ﬂj) setsB € .%, and that ifB € .7, then everyd-set that containB lies
in %y. Clearly,{x1, ..., %} € % asitis thek-set with largest sum. L&' C {x1,...,%y}
be anyk-subset containing;. We will show thaB’ € .%. Sinced > 2k — 1, there exists
ad-subsetA’ that contain®’ U {xs,...,x}. Observe thal' € %4 because it contains
{X1,..., %} € . NowA' contains exactl ﬁj) setsB € .7 and sinced, k) is strongly
good, these sets form the starxn HenceB' € .7 as it contains; and lies inA’ so

Z 1s the star orx;. O
Lemma 7.4.2 has two corollaries; the first is Theorem 7.3.1.

Proof of Theorem 7.3.1. Suppose, for a contradiction, that k) is a good pair, but

that (n+ k,k) is not a good pair. Consequently, there exist> --- > X,k € R with

nonnegative sum ar|d7y| < ("%7%). By the Pascal rule, there are greater tfiaf )
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negativek-subsets. Aii”jl"xi > 0, the complement of a negatikesubset must be a

positiven-subset. Hence,Zy| > ("£1) = (" 1). We may now apply Lemma 7.4.2
with i’ = n+k andd = nto conclude thatZy| > (" *;%), which contradicts our initial
assumption. Hence, (in,k) is good, thenn+ k, k) is also good. If(n,k) is strongly

good anch > 2k — 1, then a similar argument yields th&, is the star orx;. |

The second corollary of Lemma 7.4.2 is a result of Manickam and Singhi that
shows that if(n, k) is a good pair, theiicn k) is a good pair for ang € Z™.

Corollary 7.4.3 (Manickam-Singhi, [89]) If (n,k) is a good pair, therfcn, k) is a good
pair for any ce Z*. If (n,k) is a strongly good pair and & 2k — 1, then(cn k) is
strongly good forany € Z™.

Proof. Letx; > --- > Xcn € R have nonnegative sum. By Lemma 7.4.1, the pain)

is good s0|.Zn| > (5. If the pair (n,k) is good, then we may apply Lemma 7.4.2
with n’ = cnandd = n to conclude thatZi| > (§1). If | Fl = (§1), the pair(n,k)

is strongly good, and > 2k — 1, then we may apply Lemma 7.4.2 again to conclude

that.% is the star orx;. O

We now show that if gc@, k) = 1 and(ak+r,k) is a (strongly) good pair, then
(n,k) is a (strongly) good pair for any> (ak+r)(k—1) and sof (k) < (ak+r)(k—1).
Hence, if gcdr,k) = 1 and we could showak +r,k) is a good pair for somer < 33,
then we could improve the current best upper bofifig < min{33k?, 2k3} in [1]. Two
natural candidates for this approach would be the gdiks- 1,k) and (4k+ 1,k), but
we were not able to show that these were good pairs in general.

Corollary 7.4.4. If gcd(r,k) = 1 and (ak+r,k) is a (strongly) good pair, thefn, k) is
a (strongly) good pair for any & (ak+r)(k— 1), and hence (k) < (ak+r)(k—1).

Proof If (ak+r,k) is a (strongly) good pair, the@(ak+r)i, k) is a (strongly) good
pair, wherei € [k— 1], by Corollary 7.4.3. We havéxk+r)i = ri (modk) and since
gcd(r,k) = 1, we have hit all nonzero congruence classes mokluldence,(n,k) is a
(strongly) good pair for any > (ak+r)(k— 1) by Theorem 7.3.1 and Lemma 7.4.1.
As aresult,f(k) < (ak+r)(k—1). O
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7.5 The MMS Conjecture whenk is Three

It is not difficult to see thaff (2) = 6 and that(n,2) is a strongly good pair if
and only ifn=6 orn > 8. In this section, we prove Theorem 7.3.2 in the case that
k= 3. That is, we show (3) = 11 and thatn,3) is a strongly good pair ih > 11. By
Theorem 7.3.1, it suffices to show that the pait4,3) and (13 3) are strongly good.
This is best possible since where {4,5,7,8,10}, the pair(n,3) is not good. In our
proof, we will use the full version of the Kruskal-Katona theorem, Theorem 2.1.4. We
first observe that we can get a lower bound.&f| given that it contains a certain sum.

Lemma 7.5.1.Define k(i1) =iy and K(iy,... ik) recursively by

s ()~ () S (5 )

If TK %, € Pk, where i < --- < i, then|.Z| > F(iy, ..., ik).

Proof. We assumeqy > --- > x,. Hence, ifSK ;x, € F then.% containsyK_, x;,,
wherej; <i, forl € [k andj; < --- < jk. By induction,R(i1, .. .,ix) counts the number
of k-tuples(js, ..., jk) satisfyingj; <ij for | € [k andj; < --- < jk. Hence, ifz}‘zlxiI
lies in.Z, whereiy < --- <y, then|Z| > K(i1,...,ik). O

Lemma 7.5.2. The pair(11,3) is strongly good.

Proof. We havex; > --- > xq1 satlsfylngzI 1% > 0. We first show that%3| > 120) if
x1+x11 < 0. Sincey 1, x > 0, we haves 1% x > 0. Let.~ be the family of nonnegative
3-subsets among, ..., x10. By Lemma7.4.1,.| > (2) =28 and Theorem 2.1.4 yields
that|d.~”| > 20. As we can add; to any 2-subset id. to form a nonnegative 3-set,
we have|.%3| > 28+ 20> (120) Hence, we may assume that+ x;1 > 0.

We may assume; + X10+ X311 < 0 as otherwise#3 contains the star or;.
Sincey i x =0, we must havg!_,% > (6/8) 32 ,x > 0. Let# be the family of
nonnegative 3-subsets amoxyg...,x7. Lemma 7.4.1 yields tha#| > 10. Note that
X1+ X2 + X171 € F3 sincexp and Xy + X171 are nonnegative. Iky + Xg + X10 > 0, then
Lemma 7.5.1 implies that#3| > 35+ 10+ 1 > (12% by taking into account the sets in
W andxi+ X2 +X11. Hence, by Lemma 7.5.1, we may assume that

X1 +Xg+X10< 0, Xo+X7+Xg <0, X3+ Xg4+ X171 <O0. (7.5.1)
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Equation (7.5.1) ang 1%, x; > 0 yield thatxs + X > 0 soxs > 0.

By (7.5.1), we have; + Xg + X10 < X1 +Xg + X10 < 0. Sincey it x > 0, either
Xo-+X11>00ry8 4% > 0. In the first casexp +xs+x11 > 0 sincexs > 0, 0| F3| > ()
by Lemma 7.5.1. We now show thatjf‘?:3xi > 0, then|.Z3| > (120) Let .7 be the
family of nonnegative 3-subsets amorg...,xs. By Lemma 7.4.1|.7| > (5) = 10
and Theorem 2.1.4 yields thgt.7| > 10. We can add eitheq or x; to any 2-subset in
d.7 to form a nonnegative 3-subset. The fami#g also contains

X1+Xo+X, 1€4{3,...,11}; X1+Xp+X, 3<b<5 ce{910,11}, (7.5.2)

sincex; + X311 > 0 andxs > 0. Taking into account the sets i1, the sets formed by
addingx; or x; to a setind.7, and the sets in (7.5.2)#3| > 10+ 10+ 10+ 18 > (120).
The preceding arguments show thatxjf+ x10 + X11 < 0, then|Z3| > (120).
Hence,| 73| > () and|Z3| = (%) if and only if 7 is the star ork;. Consequently,
(11,3) is a strongly good pair. O

Lemma 7.5.3. The pair(13,3) is strongly good.

Proof. We havex; > --- > X13 satisfyingzilj’lxi > 0. As in the proof of Lemma 7.5.2,
if X1 +X13 <0, then Theorem 2.1.4 impligsrs| > (122) Hence, we may assume that
X1+ X13 > 0.

We may assume; + X12 + X33 < 0 as otherwise#3 contains the star oR;.
Let .7 be the family of nonnegative 3-subsets amogag .., x10. As in the proof of
Lemma 7.5.2, we may conclude thg¥| > (g) = 28. Note thatx; + X2 + X € F3
for i € {11,12 13} sincexy andx; + X33 are nonnegative. Ik; + X9 + X10 > 0, then
Lemma 7.5.1 implies that#3| > 36+ 28+ 3 > (123 by taking into account the sets in
Z and the setg; + X2+ X fori € {11,12 13}. Lemma 7.5.1 thus implies

X1 +X9+X10< 0, X3+Xg+X12 <X +X7+X11 <0, X4+X5+%3<0.  (7.5.3)

Equation (7.5.3) an(ziljlxi > 0 yield thatxg > 0 sox; + xg + X13 > 0. Consequently
Lemma 7.5.1 implies thdtZs| > 45+ 28 > () by taking into account the sets iff.
We conclude that13, 3) is a strongly good pair. O
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7.6 The MMS Conjecture whenk is Four

The preceding arguments yield improved upper bound$ (& for k > 3. For
example, in this section, we prove Theorem 7.3.2 in the cas& thdt That is, we show
f(4) <24 and thatn,4) is a strongly good pair ifi = 22 orn > 24. Taking into account
the counterexamples in Section 7.1, this shows<1#44) < 24. By Lemma 7.4.1 and
Theorem 7.3.1, it suffices to prove th@&2 4), (25,4), and(27,4) are strongly good
pairs.

Lemma 7.6.1. The pair(22,4) is strongly good.

Proof. We havex; > --- > Xo» satisfyingzizjlxi > 0. As in the proof of Lemma 7.5.2,
if X1+ X2 < 0, then Theorem 2.1.4 implidsZy| > (%). Hence, we may assume that
X1+ X22 > 0.

We may assume; + Xoo+ X21 + X22 < 0 as otherwiseZ, contains the star on
X1. Let.# be the family of nonnegative 4-subsets amagg. ., X17. As in the proof of
Lemma 7.5.2, we may conclude that'| > (135) Consequently, if there are greater than
(3) — (%) = 875 nonnegative 4-sets o, then|.Z4| > (3). Hence, by Lemma 7.5.1,
we may assume that

X1+ X11+X14+ %22 <0, Xo+Xg+X15+X21 <0, Xz+X7+X16+X19<0, (7.6.1)

X4 +X10+X12+X18 < 0, X5+ Xe+ X13+ %20 < 0.

Since y22, x; > 0, equation (7.6.1) implies thag +x;7 > 0. We consequently have
that x3 + Xg + X17 + %22 > 0 sincex; + X2 > 0, which implies that|.%4| > (231) by
Lemma 7.5.1. We conclude th@2 4) is a strongly good pair. i

Lemma 7.6.2. The pair(25,4) is strongly good.

Proof. We havex; > - - > Xp5 with $2° % > 0. We may assume + Xp3+ Xp4-+X25 < 0,
as otherwise#, contains the star ox;. Let.” be the family of all nonnegative 4-sets
in X2,...,%X21. As in the proof of Lemma 7.5.2, we may conclude that| > (139)
Consequently, if there are greater t&f) — (%) = 1055 nonnegative 4-sets anthen
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|74 > (%). Hence, by Lemma 7.5.1, we may assume that

X1 +X7+X18+ X5 <0, Xo+Xg+X19+X4 <0, Xz+Xo+Xie+%3<0, (7.6.2)

Xa+X10+X15+ X2 < 0, X5+ X11+X14+X%21 <0, Xe+X12+X13+ X0 < 0.

Sincey 25, % > 0, equation (7.6.2) implies thai7 > 0. Hence|Z4| > (/) > (%). We
conclude that25,4) is a strongly good pair. O

Lemma 7.6.3. The pair(27,4) is strongly good.

Proof. We havex; > --- > o7 with 327, x > 0. We may assume -+ Xos5 +Xpe+ %27 < 0,
as otherwise#, contains the star ox;. Let. be the family of all nonnegative 4-sets
in Xo,...,X1. As in the proof of Lemma 7.5.2, we may conclude that| > (139)
Consequently, if there are greater th@f) — (%) = 1631 nonnegative 4-sets anthen
|74 > (%). Hence by Lemma 7.5.1, we may assume that

X1+ X2+ X7+ %7 <0, Xo+Xg+Xoo+ %26 <0, Xz+X11+X16+%3<0, (7.6.3)

X4+ X10+X13+X25 <0, Xs+X7+X15+X24 <0, Xg+Xo+ X14+ X1 <O.

Sincezizllxi > 0, equation (7.6.3) implies thaig+ X194+ X20 > 0. We consequently
have| 74| > (P) > (3). We conclude tha27,4) is a strongly good pair. 0

7.7 Open Problems

Like the preceding combinatorial questions in this thesis, the Manickam-Miklos-
Singhi conjecture, Conjecture 7.1.1, has a vector space analog about which we know
distressingly little. In this section, we show that the methods discussed in Section 7.4
may also be useful for attacking the vector space analog of Conjecture 7.1.1.

Recall thatV is ann-dimensional vector space over a finite fiélgd Suppose
for each one-dimensional subspace [\ﬂ we assign a weight(v) € R such that
> e ] f(v) = 0. Define the weight of a subspaBe V to be the sum of the weights of

all its one-dimensional subspaces,

f(S = vz f(v). (7.7.1)
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The family ofk-dimensional subspaces with nonnegative weight will be denoted by

Surnie fse Y] 150).

The vector space analog of Conjecture 7.1.1 states

Conjecture 7.7.1(Manickam-Singhi, [89]) Let V be an n-dimensional vector space
over a finite fieldfg and let f: [\ﬂ — R be aweighting of the one-dimensional subspaces
of V such thaly vy f(v) = 0. If n > 4k, then| A 1] > ("]

Unlike Conjecture 7.1.1, we do not have a good reason fan thdk stipulation.
The counterexamples in Section 7.1 do not generalize to the vector space case. In fact,
there are no known counterexamples to Conjecture 7.7.h foi2k, and it is easy to
construct counterexamples to Conjecture 7.7.1 whem < 2k. Hence, it is possible
that Conjecture 7.7.1 is true far> 2k.

In this section, we show that the veracity of Conjecture 7.7.1kfer 2 also
boils down to proving its veracity in a few base cases. As in Section 7.4, given integers
n,k € Z* we say the paifn, K| is good if whenever we are given ardimensional vector
spaceV overFq and a weighting : [y] — Rwith 3, _ v f(v) =0, we have

n—1
2 > . .
Bl = |0y (172

Similarly, the pair[n,K] is strongly good if it is good and (7.7.2) holds with equality
if and only if A, ¢ i is the star on the one-dimensional subspaee[ﬁ] with largest
weight,
P K= {Se Pﬂ vV C S}, f(V) > f(v)Vve [\ﬂ

The results and proofs of Lemma 7.4.2, Lemma 7.4.1, and Corollary 7.4.3 gener-
alize straightforwardly to the vector space setting. The proof of Theorem 7.3.1, however,
does not readily generalize because of the issues discussed in Section 4.6.1.2. We have
not yet been able to surmount these difficulties to prove a vector space analog of Theo-
rem 7.3.1. Nevertheless, we can still show thakfer2, the veracity of Conjecture 7.7.1
boils down to proving its veracity in a few base cases.

Lemma 7.7.2.1f me Z* is odd andm, 2] is a (strongly) good pair, thefem— 1, 2] and
[cm+ 1,2] are (strongly) good pairs for any€ Z™.
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Proof. Sincemis odd, we may assume that> 2. LetV be a(cm— 1)-dimensional
vector space ovefg and letf : [\ﬂ — R be a weighting of the one-dimensional spaces
such thatzvem f(v) =0. If | A tml > [Cnr{flz] then by the vector space analog of

Lemma 7.4.2 witm = cm—1,d = m, andk = 2, we have.%y ¢ 2| > [C”fz} . Hence, we

cm—Z} _

may assume thatAy ¢ m| < [S 5

EmbeaVv in W, acm-dimensional vector space oJgg and extend to a weight-

ing f: ['{] — R by giving every one-dimensionelc ['}]\ [Y] a weightf (w) = 0. Since

il

> e ] f(w) = 0, the vector space analog of Lemma 7.4.1 yields|thaf ¢ | > [
l
If U c Ay ¢,thenU € A s morUNV € %yt m-1. Also note that eackin
Py tm-1liesing® M spaced) € .7, ¢ . By theg-Pascal identity,

cm—2 cm—2 cm—1
|: :| +q(c_1)m|: :| N [ :| S |ﬁW7fA,m| = |g\/,f7m +q(c_1)m|yvvf7mfl|'

m—1 m-—2 m—-1
(7.7.3)
By assumption| . ¢ m| < [™ 7] so (7.7.3) implies that# ¢ m-1| > [ST7].

Sincem is odd, we have thatn— 1 is even, and hencgn—1,2] is a good pair by
Lemma 7.4.1. The vector space analog of Lemma 7.4.2m4tltm—1,d =m—1, and
k = 2 thus yields that %y 1 o| > [*} 1.

If | A s2 = [* Y, then (7.7.3) and the vector space analog of Lemma 7.4.2
imply that |7 t m| = [Crgfll}. Hence, if[m,2] is strongly good, then the vector space
analog of Lemma 7.4.2 implies th&y ¢ » is the star on the one-dimensional subspace
Ve [\ﬂ with largest weight. This shows thatrifis odd and the paiim, 2] is (strongly)
good, then the pajcm— 1,2] is also (strongly) good for anye Z*; a similar argument

shows that the pajcm+ 1, 2] is also (strongly) good. O

A corollary of the vector space analog of Lemma 7.4.1 and Lemma 7.7.2 is that
if the pairs[5, 2] and[7, 2] are good, then the pdin, 2] is good for anyn > 4. If the pair
[5,2] is not good, but the pairg, 2], [9,2] and[11,2] are good, then the vector space
analog of Lemma 7.4.1 and Lemma 7.7.2 yield that the [paf is good for anyn > 6.

Chapter 7, in part, is currently being prepared for submission for publication of
the material. Chowdhury, Ameera. The dissertation author was the primary investigator
and author of this material.
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