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Machine learning (ML) techniques are increasingly prevalent in education, from their
use in predicting student dropout to assisting in university admissions and facilitating
the rise of massive open online courses (MOOCs). Given the rapid growth of these
novel uses, there is a pressing need to investigate how ML techniques support long-
standing education principles and goals. In this work, we shed light on this complex
landscape drawing on qualitative insights from interviews with education experts.
These interviews comprise in-depth evaluations of ML for education (ML4Ed) papers
published in preeminent applied ML conferences over the past decade. Our central
research goal is to critically examine how the stated or implied education and societal
objectives of these papers are aligned with the ML problems they tackle. That is, to what
extent does the technical problem formulation, objectives, approach, and interpretation
of results align with the education problem at hand? We find that a cross-disciplinary
gap exists and is particularly salient in two parts of the ML life cycle: the formulation of
an ML problem from education goals and the translation of predictions to interventions.
We use these insights to propose an extended ML life cycle, which may also apply to
the use of ML in other domains. Our work joins a growing number of meta-analytical
studies across education and ML research as well as critical analyses of the societal
impact of ML. Specifically, it fills a gap between the prevailing technical understanding
of machine learning and the perspective of education researchers working with students
and in policy.

machine learning for social good | problem formulation | education technologies |

education interventions | algorithmic fairness

The widespread use of machine learning (ML) across domains remains controversial, with
experts exposing concerns around data curation, relevance, and appropriate use of ML
techniques as well as the potential for algorithms to create and amplify inequalities. While
wide-spread public conversations around the use of ML are a more recent phenomenon,
the computer science community has employed ML approaches widely in tasks such as
recommendation systems (1) and speech and image recognition (2–4). More recently,
numerous other disciplines have turned toward ML to increase efficiency and improve
outcomes. For example, ML algorithms are seeing an increase in use across education.
They have been deployed in a variety of ways both at the secondary and postsecondary
levels, often with a stated goal of improving student performance. Some of the uses
include predicting student dropout at the secondary level (5, 6), evaluating applicants
in college and graduate school admissions, and predicting persistence in massive open
online courses (MOOCs) (7–9).

Extensive research currently explores the use of machine learning for social good
(10–13) or “ML4SG.” Despite a surge in interest in understanding the societal impact
of ML, this research faces two prevailing challenges. First, empirical evidence on the
long-term effectiveness of ML4SG remains sparse (13). Second, despite the application
of ML4SG in consequential applications—such as education, environmental protection,
and healthcare—inquiry into what “social good” entails in these contexts and the extent
to which ML4SG efforts contribute to the relevant social goals remains nascent (14).

Despite the proliferation of ML4SG research in education, a number of recent
algorithmic solutions in education (15–17) have led to negative and disparate outcomes,
with students from historically marginalized backgrounds bearing the brunt of the
burden. While these instances of harm highlight the importance of interdisciplinary
collaboration to evaluate the ethics, equity, and impact of ML techniques in the education
domain, for instance, via the scrutiny of data sources (18), surveillance practices (19), and
transparency of the ML models (5, 9), they also demonstrate that a gap persists between
the intent and impact in ML for education domain applications.
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Multidisciplinary research communities in education, includ-
ing educational data mining (EDM) (20, 21), learning analytics
(LA), computer-supported collaborative learning (CSCL) (22),
and AI for education (AIED) (23, 24), have been active,
with overlapping research interests and philosophical differences
described in ref. 25. Surveys of research trends and challenges in
these communities (23, 26, 27) have indicated rapid growth in the
use of technology in education and consequent research interest.
This growth necessitates a deep dive into the technological
priorities in applied ML research and development, which is
central to the current work. A shared interest in common
problem formulations and technologies notwithstanding, Calders
et al. (21) suggest that there are differences in background and
motivation between education research communities and general
ML and data science communities like KDD* (28).

Our work focuses on the cross-disciplinary gaps found within
mainstream ML communities and, in particular, the gaps be-
tween persons developing new ML methodologies for education
within a ML community and education experts who research and
evaluate the use of technologies in schools and classrooms. We
ask, “How does the technical setup of ML papers (objective,
evaluation metrics, modeling techniques) match educational
goals and principles?” Prior work conceptualizes “epistemic
trespassing” (29), where algorithmic contributions from technical
researchers overlook important applied context and critical per-
spective. We specifically study how such gaps surface, through the
expertise of education researchers and practitioners, as machine
learning researchers formulate prediction tasks in highly complex
education settings.

Many research landscape studies (23, 26) focus on overall
research trends in the aforementioned education publication
venues. Building on this research, we examine cross-disciplinary
research practices from the perspective of ML technology
development and focus on contributions to the education domain
from broad machine learning and AI conferences such as KDD,
AAAI†, and IJCAI‡, over the past decade. These have an audience
of computer and data scientists, whereas education technology
conferences tend “toward smaller, more focused conferences and
communities” with primarily education researchers (24). While
ML and AI conferences have published highly cited ML4SG
research relevant to education (such as 15, 30), these articles
are not typically included in survey studies (23) published in
multidisciplinary education technology venues.

We carry out in-depth semistructured interviews with 15
education researchers and practitioners to critically examine the
divide between intent and impact in the existing research liter-
ature of ML4SG applied to education (“ML4Ed”). Interviewees
have domain backgrounds in higher education policy and K-12
education policy. We include researchers across K-12 and higher
education because many of the challenges with ML technology
use occur in both settings. The interviews were centered around
a discussion of research papers on “AI for social good,” compiled
by Shi et al. (12), that are relevant to ML4Ed and represent
recent scholarship appearing in mainstream machine learning
and AI conferences. Specifically, we explore the formulation of
the machine learning task, the role and function of prediction,
and whether the intended and realized impacts on students are
well aligned.

*ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
†The AAAI Conference on Artificial Intelligence.
‡International Joint Conference on Artificial Intelligence.

Prior critical work explored cross-domain literature surveys,
such as surveys of AI4SG (12, 14) and of algorithmic harms and
bias (31, 32). We focus our investigation on a single application
domain—education—and draw on insights from interviews with
education experts to answer our research questions on the gap
between machine learning research practices and the use of
ML technologies in education. In contrast, prior fieldwork-
based studies explored the practice of machine learning in
industry settings (33, 34). By engaging education researchers
in discussions of current work in ML4Ed, we use a cross-
disciplinary lens to bring to light facets traditionally overlooked
in ML research. While study participants do not directly speak for
the lived experiences of stakeholders such as students, teachers,
parents, and institutions, we draw upon their nuanced and
broad understanding of various stakeholders’ perspectives and
interactions with these stakeholders.

While we focus on education as a specific and important
domain, many of our findings can extend to other domains and
highlight common areas for improvement in machine learning
practices. By studying ML communities’ forays into education
applications, we tease out both education-specific lessons and
general lessons that apply to applications of ML in other
domains.

We present two main findings inTranslating EducationGoals to
ML Problems and Translating Predictions to Interventions), which
correspond to the misalignment of machine learning experts and
education researchers with respect to the problem formulation
and the limits of prediction tasks. For the first finding, narrowing
multidimensional outcomes to a single quantifiable metric that
can be computed by an algorithm can lead to oversimplification
of complex educational problems and the neglect of education
equity and access goals. This theme was echoed by numerous
educational researchers and practitioners. Our second finding
highlights that prediction is useful when it provides action-
able information for interventions to improve outcomes but
can lead to negative outcomes if prediction is treated as the
primary goal. Given these findings, we discuss improvements
to machine learning systems and approaches used in education
to increase the likelihood of positive educational outcomes for
students.

Materials and Methods

This study is based on data generated from in-depth semistructured interviews
with 15 education researchers discussing selected research papers that apply
ML to education (“ML4Ed”).

ML4Ed Papers. The papers we discussed during the interviews were sampled
from a dataset of research papers on “AI for social good” compiled by Shi et al.
(12). The dataset contains 1176 papers published between 2008 and 2019, of
which 78 papers were labeled as “education”-related by Shi et al. via keyword
matching. We then selected papers from this set that were relevant to machine
learning based on their abstracts§, leading to a list of 20 papers (“ML4Ed list”)
(6–8, 15, 30, 35–49). We randomly examined unselected papers and confirmed
that there was no significant exclusion of papers pertinent to ML4Ed by our
sampling process. Major topics in education that are covered by the final set of
papers include higher education, student learning, MOOCs, and standardized

§We initially filtered the 78 education-related papers by the presence of keywords
(“predict” and “machine learning”) in their abstracts. We then finely selected the papers
by reading the abstracts of each paper to ensure that the selected paper involved
1) formulating and solving a machine learning problem and 2) an education-related
application. The last step was performed using the authors’ respective expertise in
machine learning (L.T.L., S.W., and R.A.) and in education (T.B.).
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assessment. Notable omissions include special education, early education, and
teaching.¶

Participants. Interview participants were recruited through purposive sam-
pling (50, 51) from the authors’ professional networks In order to be invited
for our study, participants needed expertise in education research and practice.
The current roles of the participants include Ph.D. candidates in education and
economics of education, postdoctoral researchers, university faculty members,
and research directors at public and private education agencies. In terms of
education level, we included a mix of participants with expertise in K-12
and higher education. We refer to them anonymously as P01–P15. SI Appendix,
Table S1 lists all participants’ self-reported occupations, research areas, genders,
and races/ethnicities. In addition to current occupations, Table 1 lists other
experiences in the education sector that participants have had. Further details
that participants provided on their backgrounds indicated common experiences
with teaching in public high schools, engagement in policy evaluation, and
nonprofit work focused on students from working class families.

Matching. Each interview focused on one paper from the aforementioned
ML4Ed list. We matched papers to participants by respecting the participant’s
preferences. Participants filled out a preinterview survey (Dataset S1), indicating
up to six papers that they are “willing to discuss” or that they “prefer to discuss”
during the interview. The authors selected one of the participant’s preferred
papers for discussion during the interview, prioritizing the coverage of education
topics (Dataset S2, SI Appendix, Tables S2 and S3 for the list of papers and topics)
whenever possible. Finally, nine unique papers were discussed during the
interviews.

Interviews. Our interview data were generated from December 2020 to
September 2021. Interviews lasted between 50 to 60 min and were conducted
through Zoom. Participants were sent the relevant ML4Ed paper beforehand for
voluntary perusal. We asked participants’ permission to record the interview via
a consent form as well as verbally confirmed their consent before beginning to
record the interview. Each interview comprised two parts: 1) introductions and
background questions and 2) a focused discussion on the research paper. Part 1
included questions on the participant’s current research interests in education
and on the impact of data science or machine learning in education contexts
that they are familiar with. After contextualizing the participant’s professional
experience, we began Part 2 by reading together selected sections of the ML4Ed
paper and followed the reading of each section with discussion prompts such
as “How would you describe their goals?” and “To what extent do you feel this
machine learning task captures the ... goal?”. All interviews were recorded and
transcribed.

Data Analysis. We analyzed the data inductively. In the initial stage, all four
authors conducted open coding on Atlas.TI and met biweekly to compare
generated codes and discuss emergent themes. From the codes generated by
individual authors, a preliminary list of codes were identified through consensus

Table 1. Education sector experiences that partici-
pants have had aside from their listed occupations in
SI Appendix, Table S1
Education sector experience # of participants

Taught at a university 10
Created or designed curriculum 9
Built tools used in the education sector 8
Taught at an elementary/middle/high school 7
Worked with policymakers 7
Worked with not-for-profit organization(s) or

NGO
6

Worked with for-profit organizations in
education

5

¶The education topics were identified by T.B., who works in education research, based on
paper titles and abstracts.

that included themes such as education goals of machine learning technologies,
from machine learning tasks to interventions, problem complexity, and human
stakeholder engagement. The authors returned to code selected interviews
with the preliminary list of codes, individually, and, in subsequent meetings,
discussed and reconciled differences and continued to refine the salient themes.
This process was iterated until the authors reached a consensus on the final list of
themes and how they were assigned to text. Finally, the first two authors labeled
each theme with a short name, wrote up informative definitions, and recoded
the dataset in its entirety.

Further details on our data and methods, including summaries of partic-
ipant information (Dataset S3), interview questions (Dataset S4), and codes
(Dataset S5), can be found in the supporting material.

IRB Approval. This study was approved by the Committee for Protection of
Human Subjects (CPHS), which serves as the institutional review board (IRB) for
the University of California, Berkeley.

An Extended ML Life Cycle

To frame our findings, we start by providing an overview of the
ML life cycle as it pertains to the education papers surveyed. We
illustrate this in the extended ML life cycle diagram (Fig. 1) and
refer to this as a conceptual tool to capture the key findings from
our interview study. We also define the terminology we use for
the different parts of the ML process.

Grounding this terminology in the education domain, we
consider a running example of predicting student dropout risk,
which was a common application among the papers from
Shi et al. (12)’s Survey on AI for Social Good (6, 7, 30, 42).
In a typical application of supervised machine learning, the
practitioner decides on a particular dataset to use for model
training and validation (e.g., historical student data over the
past several years). The dataset comprises input features, denoted
X (e.g., student grades, attendance, demographic information),
and a prediction target, denoted Y (e.g., whether or not a student
dropped out of a program). The goal of the practitioner is to find a
model function f , typically through mathematical optimization,
such that the output of f when applied to the input features,
f (X ), closely approximates Y , not only on the dataset but also
on new samples. This procedure is referred to as training. f (X )
is said to output predictions for Y . ML papers often focus on the
family of functions over which f is trained, such as regularized
linear models, neural networks, and decision trees.

The aforementioned elements make up the ML Problem box
pictured in Fig. 1. In the ML4Ed papers surveyed, these elements
are typically prominently featured and discussed. Indeed, these
elements can have significant ethical implications and impact
on outcomes. For instance, sampling and historical bias in the
input features and prediction target have been scrutinized in
the literature on fairness, accountability, transparency, and ethics
(FATE) (31, 52).

However, as much as scrutiny of the ML Problem is crucial, we
found that much of the critical discussion on ML4Ed research
from our interviews falls outside the traditional ML problem
box—in fact, all fifteen interview participants raised discussion
points outside of the traditional ML problem box in the
following ways. First, before the ML problem is even formulated,
practitioners and researchers must identify a set of education
goals to address (in the running dropout risk prediction example,
these goals may include increasing on-time graduation rates).
This influences the choice of input features, prediction target,
and success metrics used to evaluate the model function. Once
the model function is trained, the subsequent interventions that
apply the predictions produced by the trained model function
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Fig. 1. An extended ML life cycle diagram. The inner “ML Problem Box” represents the typical aspects of the ML problem detailed in the surveyed ML research
papers. Our interview findings reveal the need to consider an extended version of the ML life cycle in ML research, including the initial problem formulation
stage by practitioners and researchers and the translation from predictions to interventions that eventually impact stakeholders.

are frequently overlooked in the ML research papers surveyed (in
the risk prediction example, who are the dropout risk scores
shown to?). Thus, Fig. 1 extends the ML life cycle outside
of the ML problem box to include these consequential steps.
Mirroring these important aspects of the ML life cycle that may
be overlooked by ML4Ed research papers, our research findings
are organized around two translational challenges:

1. Translating education goals to ML problems. How education
goals are interpreted by computer science researchers and
translated into a machine learning problem;

2. Translating predictions to interventions. How the predictions
of ML models are “translated” into interventions and how to
evaluate and address their impact.

In the following sections, we elaborate on the above findings from
our interview study.

1. Translating Education Goals to ML Problems

We first discuss issues and recommendations that arise in the
process of translating education goals into the ML problems
detailed in the ML4Ed papers. Many impactful design decisions
arise just in this problem formulation stage, including in the
choices of success metrics, targets, and inputs.

A. Conflating Education Goals with Quantitative, Short-Term
Metrics. While ML4Ed research papers often sought to address
education goals, such as student learning and student success,
they tended to reflect a narrow understanding of these goals
by focusing exclusively on a single quantitative metric. Ten
(out of fifteen) interview participants identified limitations in
the single quantitative metric highlighted in ML4Ed papers
spanning multiple problem contexts, from secondary success and
essay scoring to college persistence and graduate admissions. For
example, an ML4Ed paper may choose to tackle a specific goal
related to a single metric such as “improving on-time graduation
rates.” Interviewees pointed out that though the chosen metric,
graduation rate, is relevant in the context of student success, there
are other metrics that also should be taken into account in order
to capture student success (five participants#).

P01 (Executive director and Professor): “We don’t limit
ourselves to graduation rates. We’re also looking at other
things such as retention rates and so forth.”

#P01, P02, P03, P08, and P09.

P02 (Director of research): “Graduating with satis-
faction or knowing exactly what they want to do
afterwards. That’s another thing that we could look
at.”

While both P01 and P02 agree that graduation rate is a useful
metric, they each mention other important metrics that are
possibly longer term or more difficult to quantify.
Lack of substantive justification. While the single metric might be
an important outcome, as in the case of college graduation rates,
substantive justification for why metrics matter often seems to be
missing, beyond correlation with longer-term student outcomes
or the existence of data for the metric. P03, a faculty member in
a school of education, observed that in ML4Ed research, “there is
often bias toward shorter term outcomes without drawing out the
logical map of why do we care” because “there is better data about
them [...] they’re more often in the same dataset.” Accounts of
why the chosen metric is important may be overly inflated and,
more importantly, inaccurate to educational realities.

The focus on one metric also leads to overemphasis on exam
scores as the learning metric. Commenting on some ML4Ed
research papers’ usage of exam scores as a target, P04 (Senior
lecturer) observes, “It just sounds like somebody who doesn’t
actually know schools. It sounds like somebody who just sort of
like has a theory in mind of how tests matter.” P04 discusses how
persons might focus on standardized exam scores without a deep
understanding of what they measure and how they are related to
student outcomes.

Another example of this focus on exam scores comes from
automated scoring of assessments. In the context of student
learning, the focus on automated scoring centers on the role
of performance on assessments, as opposed to other aspects of
learning, such as self-expression and creativity. For example,
P05, a PhD candidate in education, finds that an automated
essay scoring tool “assumes that there is a universal good way to
write.” While automated feedback may be useful to a student, to
“help point little things out,” any such tool necessarily encodes
“a lot of values [...] that [are] not being made transparent”
(P05, PhD candidate). Moreover, the possibility of automating
certain forms of assessment through technology warrants serious
reflection on the relevance of such assessments and whether they
are meaningful for students.

P05 (PhD candidate): “If the writing is so mechanical
that it’s very easy for a computer to grade it like a
human, then what are we even asking students to do in
the first place?”

The value of assessment as an education goal should not be taken
for granted, as P05 notes above.
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Competing goals and stakeholders. In the context of graduate
admissions, participants point out that education institutions can
have competing goals. However, ML4Ed research may address
one of them without acknowledging the tensions with the others.
Driven by “the current business model of higher education,”
universities in the United States tend to optimize for “efficiency,”
according to P06, a PhD candidate in education. P06 further
elaborates, “they want students who would have higher rates
of retention or graduation [...] otherwise, that’s a financial
loss to them.” However, many, especially public institutions,
also have a mandate to promote education equity and access.
Focusing almost entirely on making the admissions process “more
efficient,” the ML4Ed research paper proposed to use only past
admissions decisions to inform their applicant-rating algorithm
while neglecting to address the concerns with education equity
and access. In fact, if past application processes had led to lower
rates of admissions for candidates with diverse academic profiles,
an algorithm using this biased decision data likely led to similar
admission outcomes.

Other than the institution’s equity goal, the needs of key
stakeholders, such as students, are also systematically left out by
the selective attention that ML4Ed gives to particular education
goals, as quantified by a single or a limited number of metrics,
such as time savings. When asked whether a published admissions
algorithm would meet educational needs, P07 (Vice president)
responded,

P07 (Vice president): “Whose needs? The student’s
needs, probably not. If you ask a student, do you want
your application that you spend a lot of time on [...] to
just go through an algorithm? I think they would say
no. If you ask [...] your chief diversity officer, in their
opinion, does this work well? They probably want to
see, well, who’s being admitted and who’s being not
admitted [...] For the faculty, yeah, it’s working well
because what they want is to spend less time and get
high quality students admitted.”

In this example, the interests of faculty do not converge with
either the desire of students to have a holistic review of their
applications or the institutional interest in having a more diverse
set of strong candidates for admission.

Although a single quantitative metric can contain important
information, it rarely captures the rich tapestry of student expe-
rience or the varied institutional objectives. Instead, the choice
to focus on one or few metrics reflects ML4Ed’s unexamined
preferences for short-term and easily quantifiable education goals.
In the following section, we delve deeper into the assumptions
behind the choice of a single metric as the prediction target.

B. Consequential Choices in Problem Formulation: Target and
Input. In the formulation of a supervised machine learning
problem||, the choice of a prediction target and input features
is paramount. Yet the value-laden nature of these choices is rarely
examined in ML4Ed research. Discussions with study partici-
pants suggest that expedient choices in problem formulation can
have unintended implications for the research project and its
applications down the road.
Universalizing individual narratives with prediction target. In the
education context, any choice of prediction target will inevitably
lead to a loss of important information—the qualitative aspects
of individual experience and narratives. Data that cannot be

||Supervised learning was most common in the ML4Ed papers discussed.

quantified in the prediction target are effectively dropped by
a machine learning model. The irreducibility of qualitative
perspectives is particularly salient in the automated evaluation of
student writing. P05 (PhD candidate) worries about outweighing
these with a “zoomed out computational perspective.”

P05 (PhD candidate): “There’s a lot of sociolinguistic
variation in these essays. [...] You’re asking students to
write about themselves and [...] we have these unique,
interesting experiences. And of course, they’re going to
be reflected in the essays.”

Similarly, in the context of graduate admissions, P06 (PhD
candidate) stressed the importance of reconstructing individual
narratives, as opposed to relying on quantitative summaries.

P06 (PhD candidate): “I think holistic admission is not
like putting all these characteristics into a prediction
model and then see[ing] what’s the probability. [...]
You’re taking it into account these different pieces of
information [...] to restore the actual life experience
[...] difficulties they overcome throughout their life
experience to achieve, to arrive where they are.”

Both participants express reservations that “blunt force” (P05)
algorithmic solutions may not adequately summarize the vari-
ation and unique narratives that are central to the holistic
evaluation of student essays.

In these settings, participants noted that ML4Ed researchers
picked a single prediction target and evaluated individuals accord-
ingly, thus demonstrating a “universal[ist]” attitude. According
to P05 (PhD candidate), not only is ranking “the best essays” a
misdirected way to think about the students’ life stories, such an
approach also assumes that the same metric applies to everyone.

P05 (PhD candidate): “Clearly the ideas of what’s
good writing in English are not transportable [...] in
general, that’s not a universal thing and these kinds of
platforms, I think they’re kind of built and designed
with universality in mind, [that] any student can use
this.”

P05 noted that formulating a machine learning problem with
universality in mind runs the risk of discounting the rich and
nuanced experiences of low-income students and students of
color in particular, who may be underrepresented in the data.
Alternative problem formulations. Problem formulations that do
not rely on a single prediction target may be better aligned
with the needs of the stakeholders. In the setting of graduate
admissions, P06 (PhD candidate) questioned whether instead of
giving “an explicit ranking”—based on “whether a student, given
their characteristics, would [have been] admitted or not in the
past”—the algorithmic system could “give summary information
to the officers [...] to reduce the workload or [...] cognitive load,”
which is “even more aligned with people’s initial demand.” P06
suggests using ML technologies to provide multiple dimensions
of information on applicants. In this way, they avoid using biased
past application data while potentially providing information on
applicant strengths and areas of growth.
Alignment of prediction target with education goals. Even in cases
where a single prediction target is appropriate, researchers might
not end up selecting one that is well aligned with education
goals. When predicting test outcomes, for example, the choice
of test is important. One ML4Ed paper that sought to identify
secondary students “at risk” of “poor academic performance”
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based its prediction target on student performance in two exams:
a state test and a national standardized test.

P04: “[A general standardized test] more just measures
like the opportunities they’ve had in their life in general
as opposed to the curriculum they were supposedly
getting in school [...] you were saying like they had more
opportunity or more privilege in their background than
actually measuring if they studied the material or if they
learned.”

Here, P04 (Senior lecturer) questioned whether these tests
directly measured a student’s mastery of the specific content of
their secondary curriculum and, if not, whether what they were
measuring fit with the project’s education goals.

Another common practice in problem formulation is to
convert a measurement, such as a test score, to a binary prediction
target using an arbitrary threshold. In the context of identifying
students who are academically at risk, this conflates students
who are struggling academically with students who are just
below the cutoff. P08 (PhD candidate) stressed that “those are
different groups,” alluding to the “bubble kids phenomenon” in
educational testing (53). Other participants expressed concern
that this focuses attention unnecessarily on passing a particular
assessment, however arbitrarily this may be defined.

P04 (Senior lecturer): “Maybe the assessment is one
piece of evidence among many that you might use to
make that decision. But this person or the authors are
making it sound like if you don’t pass the test, you don’t
progress.”

Given the often arbitrary thresholds, basing decisions on how
students will progress or the interventions that they might receive
on prediction targets with arbitrary thresholds could lead to more
negative outcomes for students.
Expedient input features. Apart from the choice of a prediction
target, the choice of input data features is also significant. In
several ML4Ed projects, participants including P12 (Assistant
professor) found that this choice is dominated by convenience
and data availability considerations.

P12 (Assistant professor): “[The input features are] just
the stuff that we happen to be able to look at. It’s not
clear at all that this is what you would really want to
know about a human being to figure out whether or
not they were having a meaningful learning experience
in a course.”

Commenting on student data collected from MOOCs, P12
opined that “these systems are not designed from the beginning to
instrument things,” and the data features that are easily available
do not necessarily capture meaningful properties.

This inadvertently leads to a narrow and, sometimes, overly
individualistic view of student experience that downplays social
and structural issues. For example, when machine learning
systems are trained on academic and curricular data alone,
socioeconomic factors such as student finances and family are
left out of the bigger picture of student success. Commenting
on an ML4Ed paper on college student performance prediction,
P02 (Director of research) says she “feel[s] a little uncomfortable
thinking that graduation time and graduation grade is entirely
dependent on course work which is really not true for college.”
Instead, there are institutional decisions such as how much aid
students receive each semester and macroeconomic conditions

that could induce changes to familial financial circumstances.
The models do not account for factors that relate to institutional
choices that change over time and impact the likelihood of
student success; yet nonmalleable factors related to student race
are taken into account. In the following section, we examine the
use of demographic information as input features, within the
broader context of education equity.

C. Designing Inputs with Education Equity in Mind. Educational
access and equity are primary social goods. While several
participants emphasized the importance of acknowledging and
addressing structural inequality in education-related research, the
ML4Ed papers rarely explained how their research understands
existing education inequities. ML technologies that are agnostic
to structural inequality, such as the systematic disadvantages faced
by underresourced institutions, can actually widen gaps in access
to quality education (SI Appendix, section 1.B).
Unconsidereduse of race data for prediction. Structural inequality
manifests as disparities in educational opportunity and advantage
across demographic groups. When it comes to ML4Ed research,
however, the use of demographic information should be ap-
proached with care, according to several participants.

P04 (Senior lecturer): “[We] would be sending the
wrong message if we said, we were controlling for race
and ethnicity, because it might imply that we thought
that kids who were Black or Hispanic [...] were less
likely to succeed. ”

Commenting on a paper that included race as an input feature
for a machine learning model that predicts student academic
performance, P04 warns that this choice has unexamined
normative implications, such as sending the “wrong message
about how we assess risk.”

Even if the inclusion of attributes led to increased predictive
accuracy (when measured on a particular dataset), such nominal
improvements must be weighed against how the data are used
and interpreted, and the broader implications of the decision
to explicitly include, and therefore, reify, race as an input to
the predictor. Importantly, including race and ethnicity, without
accounting for the ways in which resources and opportunity are
allocated by race and ethnicity, can lead to erroneous conclusions
about the role of race and ethnicity in outcomes. This decision
sets a standard for how race is understood and instrumentalized
in that education context—which can be problematic. In the
following excerpt, P04 contrasts a state agency’s ultimate decision
to exclude race from their predictive model with the ML4Ed
paper’s approach.

P04 (Senior lecturer): “[Race] was a little too nuanced
and it wasn’t adding enough predictive validity to make
it worth the cost of the potential for people being up in
arms about the state’s way of doing these models. [...]
But a researcher would never think of it that way, right?
They [...] want to get the best prediction possible, and
you probably would add a little bit to your predictive
ability if you had that in there.”

If the researcher considers only the predictive power of the
race feature without thinking about the social implications of
including it, this may lead to negative consequences when the
model is used.

Even if race were included as an input to a model, it can
potentially have a large measurement error. To illustrate one of
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the many complications, P14 (Postdoctoral researcher) points out
that there can be “different race and ethnicity variables across the
different datasets;” not all demographic information that agencies
“collect” is self-reported. Self-reported racial and ethnic data
could significantly diverge from data collected by government
agencies.

We discuss the limitations of using demographic information
to audit a machine learning model for its impact on educational
access in SI Appendix, section 1E.

By giving consideration to education equity from the
beginning—when formulating education goals into ML
problems—researchers can work to address the real and pressing
problems of equity and access in education. In all, problem
formulation choices in ML4Ed are often underdetermined, yet
many have far-reaching consequences.

2. Translating Predictions to Interventions

We have shown how effective translation from education goals
to problem formulation choices can be challenging, especially
in settings with multiple stakeholders and long-term goals.
However, the ML life cycle does not end here—we next discuss
how thinking critically about interventions and impact can
further guide key design decisions and research directions.

A. The Gap between Predictions and Interventions. One of the
most common and consequential gaps that participants identified
in the ML4Ed papers is the gap between prediction tasks and
real-world interventions.
Predictive accuracy is no panacea. Instead of focusing on inter-
ventions, most machine learning papers tout improvements in
prediction accuracy—that is, how often the predictions turn
out to be “correct,” by some measure—whether it is predicting
student dropout risk, predicting test question difficulty, or
predicting likelihood of admission. However, improvements in
prediction accuracy do not automatically translate into improved
outcomes and, in fact, may not affect outcomes at all. This gap
surfaced in the majority of interviews (12 out of 15).

P12 (Assistant professor): “[Researchers] are trying to
make tiny, substantively completely irrelevant improve-
ments in the area under the curve of some prediction
algorithm, ‘can we predict 62% instead of 61%,’ but
nobody had anything to do that would actually help
these people.”

P13 (Full professor): “You don’t improve things by
predicting them better. There is a missing link there
obviously between how we act on predictions in social
spaces that are incredibly complicated to improve
outcomes.”

In the risk prediction setting, P09 (Assistant professor) and
P08 (PhD candidate) warn that even if a prediction of student
dropout risk is highly accurate, without adequate resources to
help those students, this information ultimately does not benefit
institutions.

P09 (Assistant professor): “Even if you tell [schools]
[...] that [a student has] a 97% chance of dropping out
based on our training data, that’s a difficult thing to
take in especially in the public schools [where it is] very
difficult to find good teachers for those students.”

P08 (PhD candidate): “A lot is put on schools, a lot is
put on teachers. [...] An unfunded mandate on teachers
and what they are expected to do in the classroom [with
a risk prediction tool] could be bad.”

Thus, the “accuracy” of risk prediction is not a driving force for
improving student outcomes, as it does not provide a means to
improve student outcomes.
Validation within an intervention pipeline. If predictions do not
directly translate into interventions, what is the value of im-
proving them? Supposing that there is eventually an intervention
in mind and that the prediction is a concrete component of
the intervention pipeline, then P13 (Full professor) comments
that improvements in prediction quality can lead to incremental
improvements in the efficacy of the known, larger intervention
pipeline. Mistakes to avoid, however, include “overselling”
the contributions of the ML component or forgetting that
additional data-driven methods will be required to validate the
full intervention pipeline.

Six participants highlight the importance of validation in the
translation from prediction to interventions. P13 (Full professor)
emphasizes that education practitioners will “ultimately still have
to test down the line” the impact of the intervention. Similarly,
P02 (Director of research) comments that “the next step after
prediction” is a causal inference problem testing the efficacy of
the downstream intervention. To even begin to measure the
effect size of an intervention, “you need to have an intervention
in mind” (P02, Director of research). While causal A/B testing is
common practice in industrial applications of ML, many ML4Ed
papers do not reference this need.
Forward-looking policy recommendations. As ML researchers ex-
plore new techniques, intervention pipelines that utilize these new
technologies may not yet be well established. If the intervention
pipeline is not established, can such research and development
of predictive models still add value? Perhaps this is possible,
especially if ML papers include downstream consideration of
interventions and policy recommendations, a practice that is
standard in, for example, quantitative subfields of economics.
After all, when ML papers already reference policy-driven
motivations such as improving student financial situations, it
would be remiss not to include a discussion of downstream
interventions stemming from this motivation, as P02 suggests
below.

P02 (Director of research): “It’s not about just pre-
dicting and identifying who is going to be at risk...we
should think about, ‘is the financial aid program that
we’re offering the right thing to do or do we need to
make changes there?”’

Devising new intervention pipelines and policy recommenda-
tions that effectively bridge the gap between prediction and inter-
vention is likely to require further interdisciplinary collaboration
between education practitioners and ML researchers.

B. Harms of Naive Translation from Prediction to Intervention.
When ML researchers do not engage with education experts
to thoroughly consider interventions, this can lead to naive
application of predictive models that cause unintentional harm.
In this section, we focus on the topic of risk prediction and
leave discussions related to automated grading and tutoring to
SI Appendix, section 1A.
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Potential harms of student risk scores. According to five par-
ticipants, the translation of predictions to interventions is a
particularly salient issue in early warning systems applications
for high schools, higher education, and MOOCs, where ML4Ed
papers proposed new models for predicting individual student
risk, for example, of dropping out of a course or not graduating
on time. A “failure” event easily translates into a concrete binary
outcome, making it a common prediction target for ML papers.

Unfortunately, the ease of quantifying the target does not
directly translate into effective interventions. P12 (Assistant
professor) points out that one naive assumption that ML papers
tend to make, either implicitly or explicitly, is that “showing
people more data is good.” Some ML papers claim that they
may “[present] at risk students with meaningful probabilities of
failure.” However, the efficacy of sharing risk probabilities with
individuals is not grounded in behavioral research.

P12 (Assistant professor): “The odds that [presenting at
risk students with probabilities of failure] is going to be
helpful for students just seem so phenomenally low to
me. Have the authors of this paper...seen any evidence
talking with students who are in a kind of marginal
state? [...] It doesn’t seem well connected to research
about what motivates people.”

In fact, directly showing risk scores to students, teachers,
or administrators can worsen student outcomes. If a system
categorizes students as “at risk,” then P01 (Executive director
and Professor) points out that “there is a tendency for a lot
of these systems to stigmatize students.” Such stigma from a
“deficit-minded” classification can demotivate students (P10,
Senior director).

Even if a system is only implicitly categorizing a student as
at risk, students are sensitive to differential treatment and cues
alluding to their abilities.

P06 (PhD candidate): “If a tutoring algorithm systemat-
ically underestimates female students’ mastery levels and
provides them with instructional sequences or feedback
messages for struggling students, some female students
might question their own abilities which could decrease
their motivation. Eventually this might lead to a self-
fulfilling prophecy.”

Institutional level harm. In addition to influencing students’
views of themselves, naive application of student risk scores
can also negatively influence the students’ support structures,
including teachers, parents, and institutions. If shown risk scores
directly without any additional guidance, a teacher “might
allocate more of their limited time to other students rather than
a student that the model seems to predict that they will not
graduate” (P09, Assistant professor). Similarly, “a parent might
stop investing in that child or spending as much time with them”
(P09). If risk scores are shown at the institutional level, this can
lead to allocation of resources that align more with institutional
incentives than student well-being.

P08 (PhD candidate): “If schools [focus] too much on
what [they] think students can achieve, [they] end up
putting in these artificial barriers and filtering [students]
in ways that [they] think are going to work for them or
more pessimistically work for the school.”

At the institutional level, P08 (PhD candidate) further points
out the potential for additional “surveillance of the students who

are at risk,” possibly without the student’s knowledge or consent.
Thus, students may not be comfortable with the knowledge that
their data are used for risk prediction. P01 (Executive director
and Professor) expresses similar reservations even if the risk scores
are withheld.

P01 (Executive director and Professor): “If we had an
ordinal ranking of students by risk and so forth, I would
not be comfortable with sharing that with students nor
would I be comfortable with saying, ‘we have it but
we’re not going to tell you.’”

The publication of ML models for risk prediction can endorse
naive interventions with risk scores if those same papers do
not discuss the downstream usage and potential harms. The
responsible and beneficent use of risk scores in the education
sphere is still an open problem for future ML4Ed research.

C. Toward More Intervention-Aware Predictions. We now out-
line ways that prediction tasks can be better formulated with
interventions in mind. This includes participants’ existing success
stories and suggestions for future work.
C.1.Need for actionability (vs. interpretability). To mitigate harms
from the naive announcement of predicted risk scores, partici-
pants repeatedly pointed to the value of building models that
provide actionable insights, where “actionable” generally refers
to the ability to take helpful actions. In the risk prediction
setting, P10 (Senior director) recommends stepping away from
the “deficit language” and “focusing on the ways in which
the student can move forward positively, and hopefully get to
graduation.”

P10 (Senior director): “We don’t have to say, ‘You’re
not going to succeed.’ We can say, ‘Let’s talk about
what are the decisions that you need to make, what is
the pathway forward that will allow you to succeed.’”

P03 (Associate professor) notes that the risk score is a blunt in-
strument that students cannot directly use to improve outcomes.

P03 (Associate professor): “‘You’re in the 10th percen-
tile for something’ sounds different than ‘we’re worried
because you’ve been absent a lot.’”

Actionable insights on the path toward success, such as telling a
student that the absences may hurt their class performance, can
lead to clearer interventions.

While many ML papers included analysis of feature im-
portance in their risk prediction models, this version of
interpretability—making a machine learning model more under-
standable to a human (54, 55)—fell short of addressing experts’
needs in providing actionability. P04 (Senior lecturer) notes
that feature importance analysis of nonmutable traits such as
demographics is not always useful for developing interventions
and may distract from the analysis of more actionable behavioral
factors.

P04 (Senior lecturer): “What is most interesting about
it to me is not, ‘I wonder if the demographic factors
matter more than the behavioral factors.’ To me it’s
more about, ‘what can we actually do to help kids get
off the trajectory they’re on if they’re not on a good
trajectory.’”

P04 further joins two other participants in pointing to causal
evidence as a useful tool for showing the value of behavior
changes. We discuss the connection to causal inference further
in Actionability and Causality.
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C.2. Design for empowered human operators. In tandem with
actionable insights, five participants highlighted the importance
of designing ML to empower human operators such as academic
advisors, teachers, administrators, and admissions officers. Going
beyond simple corrective actions, these operators may use ML
tools to amplify their ability to achieve broader education goals.

Centering the role of teachers. In a classroom setting where
the teacher is a central human operator, predictive models can
improve the teacher’s capacity to provide individual student
attention and reduce their workload. For instance, automated
tutoring tools can effectively reduce the burden on the teacher as
a distributing authority for information.

P11 (Associate professor): “First you look online or you
ask a friend; if that doesn’t help, then you ask another
friend; if that doesn’t help, then you go to the teacher
and so that way the teacher is sort of able to distribute
themselves a little more evenly.”

When the teachers have the power and resources to intervene, risk
prediction algorithms can also “help [teachers] catch some kids
that maybe had fallen below the radar before and giving them
another source of data on that” (P04, Senior lecturer). Key to this
statement is that the algorithm is just acting as “another source
of data” in tandem with the teacher. The goal of identifying
students that the teachers would otherwise have overlooked is
different from the standard goal of achieving high accuracy for
the whole population of students. This suggests that the value of
risk prediction systems would be improved if they were designed
with the teacher’s partnership in mind.

Centering the role of academic advisors. In addition to teachers,
participants highlighted academic advisors as key human opera-
tors that ML systems can aid. When it comes to student advising,
instead of thinking, “this technology will solve our problem,” P10
(Senior director) prefers the attitude, “this technology will be a
tool in our toolkit while we do our job that will [...] hopefully
have a positive impact on students.”

A key situation when an ML system falls short alone but
works well in partnership with a human advisor is when there
is ambiguity in the student’s needs and students “don’t know
what they don’t know.” Effective usage of automated chatbots
or search engines requires knowing what to query; however, P03
(Associate professor) states that “where students get held up is
not knowing the questions that they need to ask.”

P03 (Associate professor) “If I don’t know the specific
terminology that’s used at my school, or if I don’t know
how to think about like a certain question, or if I can
articulate my goal but I don’t have a knowledge of all
the different paths that could get me to that goal, I think
that’s where [...] technology driven advising solutions
can’t advise students as well.”

Instead, in between the specific questions that students can
ask chatbots or search engines, advisors are “able to fill in the
gaps for students” to help them “envision a pathway” from
a relatively vague conversation about their broader goals. P10
(Senior director) provides a specific example of an advisor guiding
a student to such a point when the student provides only vague
guidance on their goals:

P10 (Senior director): “Instead of saying, ‘You’re not
going to be a nurse, sorry, like, good luck,’ it’s more,
‘Well, [...] we have respiratory therapy, or we have
nutrition, or we have bioinformatics. We have all these

other healthcare disciplines that might allow you to help
people, to work in healthcare, and to get a job, which
[are] three boxes you said you wanted to check. And in
some cases, the students are like, ‘That sounds great. I
had no idea what an occupational therapist even was.’”

According to P07 (Vice president), one obstacle to realizing
these benefits of pairing technological tools with dedicated advi-
sors and teachers is that “often machine learning is really hidden
within an ed-tech tool.” This means that users and administrators
alike “don’t understand all the places where [ML] actually
is embedded now.” For example, in admissions, a predictive
model may be embedded so deeply in the decision pipeline that
admissions officers or the higher-level administrators are not fully
cognizant of its role. The lack of transparency coupled with
limited user technical knowledge makes it difficult for a human
operator to audit or modify the usage of ML within these systems,
including overriding incorrect predictions or providing feedback
to improve the ML models. This underscores the need for ML
systems and pipelines that are designed with the empowerment
of human operators in mind.

3. Discussion and Related Work

Machine learning promises automated procedures that recognize
meaningful patterns in education data and provide principled,
real-time decision support and interventions to improve educa-
tional outcomes (56, 57). However, before any of these promises
can be realized, practitioners and researchers must traverse the
entire machine learning life cycle (Fig. 1), from goal identification
and problem formulation to intervention and impact evaluation.
Through our qualitative work bringing the expertise of education
researchers to bear on the research practices of ML4Ed, we found
that varying levels of attention have been paid to different parts
of the life cycle.

In Translating Education Goals to ML Problems, we showed
that the consequential choices in the translation of education
goals to machine learning tasks are currently overlooked. We
found that multifaceted education goals are often reduced to a
single quantitative metric, while expedient choices in prediction
target and input lead to the omission of key education goals,
such as education access and equity, and stakeholder interests.
In Translating Predictions to Interventions, we outline gaps in the
translation from prediction tasks to interventions, including neg-
ative externalities of naive application of predictive models, and
a path forward from education researchers toward formulating
more intervention-aware prediction tasks. Taken together, this
work contributes insights to the ongoing conversation around
machine learning and its impact in education as well as broad,
cross-domain critical discussions at the intersection of algorithmic
fairness, accountability, transparency, and ethics (FATE) and AI
for Social Good (AI4SG). Situating our findings in FATE, and
related fields, we discuss both shared insights and tensions that
emerge from our work.

A. Related Work in Education Technology. The educational data
mining (EDM) (20, 21), learning analytics (LA), computer-
supported collaborative learning (CSCL) (22), and AI for
education (AIED) (23, 24) communities have been active for the
last one to three decades. Retrospective surveys of the research
trends and ongoing challenges of these fields have analyzed
common and growing ML paradigms being applied in education,
like neural networks for learning characteristic prediction and
teacher evaluation (23, 58), NLP for language education (59),
and AI-assisted personalization (23, 60, 61). Our contribution to
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this discourse is discussing the implications of and gaps in these
chosen ML paradigms, with a target audience of ML researchers
who are invested in developing improvements on top of these
paradigms or novel paradigms entirely.

Based on the findings of this study, we reaffirm and provide fur-
ther technical commentary on some of the challenges presented
by education technology research communities. For instance, the
AIED retrospective by Chen et al. (23) highlights the challenge
of adoption by human operators and propose “exploring how
human and automated instruction can most effectively be
combined to best support instruction” as a future research
direction. We show this to be a challenge with publications in
general ML conferences as well and further propose several ways
that the ML research community can approach this issue. In
particular, we suggest focusing on actionability and formulating
ML problems to empower human operators.

The distinction between prediction and intervention, as well
as the challenge of designing interventions with predictive
models, has been acknowledged in prior work in AIED and
LA, particularly in the context of dropout prediction (62–64)
and predictive learning analytics (65–68). Still, many works
from the EDM and AIED communities focus on predictive
performance (23, 67, 69–71), with less discussion of whether
or how the improvement in predictive accuracy translates to
better outcomes. A number of recent empirical studies (72, 73)
have found the effect sizes of targeted interventions based on
student risk predictions to be statistically insignificant. Our
work builds upon these observations to further problematize
the assumed relationship between “accurate” predictions and
beneficent interventions, which, as far as we know, also exists
in the education technology community (74).

Recent work in the intersection between education technology
and FATE has addressed the impacts of education technology on
equity and ethics (27, 75, 76). Madaio et al. (75) apply a critical
theory lens to evaluate the impacts of education technology and
algorithmic fairness notions on education equity. Holstein et al.
(76) analyze ways that “AIED systems” may alleviate or amplify
inequalities under current practical usages. Holmes et al. (27)
set a framework for the “Ethics of AIED” through a survey of
researchers that publish in the journal and conference of Artificial
Intelligence in Education. Our work adds to this discourse in
three ways. First, we focus more broadly on impact than on
ethics and equity per se. Second, instead of interdisciplinary
AIED communities, we target technical ML communities that
are potentially driven more by algorithmic novelty than societal
needs (see related, 77). Finally, our methodology of studying
the disciplinary boundary crossing of ML communities through
interviews with education experts provides an additional distinct
evidentiary lens.

Given our different audience and broader focus on impact,
our study consequently foregrounds a different set of questions
and recommendations than the ethical framework of Holmes
et al. (27). For example, Holmes et al. (27) discuss the “value of
transparency” as motivated by policy but does not mention ac-
tionability, which is a more impact-driven desideratum. Holmes
et al. (27) also extensively discuss issues of data governance,
such as privacy, anonymity, ownership, and control. These
critical ethical problems are much better addressed from their
interdisciplinary policy lens and transcend the technical ML
problem formulation choices that we discuss.

Despite these differences in focus, we also view equity as
integral to evaluating choices in problem formulation and
interventions, and many of the recommendations from these
works align with ours. Madaio et al. (75) note that education
AI technologies “are forged in historical relations of power”

and “may reproduce structural injustices—regardless of the
models’ accuracy or fairness.” Holstein and Doroudi (76) discuss
disparities in access and usage of education AI technologies. Both
of these effects can lead to the types of gaps between prediction
and intervention surfaced in our interviews in Translating
Predictions to Interventions. Our work further joins Madaio
et al. (75) in concluding that “quick technical solutions and
neat group-level evaluations of ‘AI fairness’” are not enough to
produce adequate solutions to complex issues of education equity.
The proposed extended ML life cycle (Fig. 1) constitutes our
approach for illustrating the limitations of focusing on “neat”
technical solutions to equity challenges. Finally, a common
recommendation shared by all of these works is the importance
of focusing on the human operator: Holstein and Doroudi
(76) highlight the importance of AIED systems’ ability to
communicate limitations and “hand off control to humans,” and
Holmes et al. (27) discuss ethical issues of human agency. Our
work adds to this discussion with an angle of providing specific
recommendations for how ML researchers can empower human
operators through problem formulation choices and development
of better-targeted methodologies.

Beyond these discussions of education equity and ethics, our
work also connects with other styles of argument in FATE more
broadly, which we discuss in the next section.

B. Related Work in FATE. Emergent critical scholarship in FATE
has pointed out the gap between the abstract goals of computa-
tional research and system design and their operationalization,
often in a sociotechnical system (32, 33, 78). Past studies have
diverse methodological approaches, scopes, and abstractions to
guide their critical inquiry (79). Measurement modeling from
quantitative social science suggests that many of the harms of
computational systems discussed in the FATE literature (80)
can be traced to mismatches between “unobservable theoretical
constructs” and how they are ultimately reified as measurements
(78). Our work finds there to be varying degrees of mismatch
between abstract education goals and their operationalization
in the extended machine learning life cycle, going beyond the
issue of measurement to, for example, question the theoretical
constructs themselves. By highlighting the selective interpretation
of education goals, our findings suggest that the choice to focus
on a single theoretical construct, particularly narrowly defined
constructs, such as “strength of candidate” in the context of
graduate admissions, already sidelines certain education goals,
often, educational access and equity.

Our work echoes a key insight of a recent ethnographic
study on the formulation of corporate data science problems
that “problem formulation is a negotiated translation” and has
normative implications (33). The results inTranslating Education
Goals to ML Problems highlight the normative implications of
problem formulation in the education context, where the goals of
employing data science and machine learning are arguably more
nuanced and multifaceted than in the corporate context and the
social stakes higher. By contributing a distinctly interdisciplinary
perspective grounded in expert knowledge of the education
domain, our work builds on both the critical scholarship and
the body of practical guidance for negotiating translational gaps
when machine learning is applied to consequential domains.

In terms of practical guidance, a pioneer study on racial bias
in health risk prediction surfaced the issue of label bias and advo-
cated for more careful choice of the prediction target as a way to
mitigate racial disparities in predictions (i.e., recommending ad-
ditional care for Black patients at a lower rate than for similarly ill
White patients) (52). In our study, participants also pointed to the
risk of choosing prediction targets that are actually proxies for im-
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mutable socioeconomic and demographic factors. Our findings
support paying greater attention to the choice of the prediction
target in ML4Ed problem formulation, but the reasons go beyond
the mitigation of prediction bias. By highlighting other compli-
cations such as the loss of nonquantitative information, the align-
ment with education goals and needs of stakeholders, and thresh-
old effects, our work provides a broader account of the important
factors that should go into the choice of a prediction target.

C. Connections with HCI. This broadening of scope and critical
reflection of the design process also has a long history in the
human–computer interaction (HCI) and science, technology,
and society (STS) literature, where concepts of reflective design
(81), participatory design (82), and value sensitive design (83, 84)
provide frameworks to bridge the gap between designers, users,
and their implicitly held values in the design process. Shared by
these design frameworks is the idea that a computational system
designer’s choices embed implicit assumptions and values, and in
order to best serve the user, the system designer must incorporate
the evaluation of these values into the development process. Our
work brings similar critical reflection to research papers applying
ML in education. Just as the system designer’s scope extends
beyond implementation to also incorporate the values and needs
of the user and societal context, we also find that ML researchers
could have a more positive impact in the education sphere if they
incorporate critical evaluation of values and interventions into
the choices made in problem formulation.

The HCI literature on human-centered algorithm design
(85, 86) relates closely to our discussion on the translation
from predictions to interventions through human operators and
includes case studies from outside of the education domain such
as the US criminal justice system (87) and the US child welfare
system (86). Human-centered algorithm design goes beyond
requiring human oversight of algorithms, which can be limited
or ineffective (88). Floridi et al. (14) posit the importance of
respecting user autonomy and “optionality” through “receiver-
contextualized intervention” in AI for social good projects. We
join these works by providing examples and insights grounded
in the education domain (e.g., the partnership with the teacher–
advisors) that speak to the value of empowering human operators
more systematically.

D. Actionability and Causality. Our findings around interven-
tions also contrast the clean division between causality and
prediction problems drawn by Kleinberg et al. (89). The
framework in ref. 89 does not explicitly recognize the translation
from prediction to intervention; however, our findings may be
used to extend the framework by Kleinberg et al. (89) to more
thoroughly evaluate the practical efficacy of prediction tasks
(we elaborate on this with an illustration in the SI Appendix,
section 1C).

Emerging work in causal inference suggests ways to develop
intervention models from data as opposed to prediction models
in various domains, e.g., refs. 90 and 91, but existing causal
inference approaches such as randomized controlled trials have
known challenges with external validity (92, 93); as such,
identifying actionable insights with causal methods remains an
ongoing project. Moreover, Kohler et al. (94) and Hu et al. (95)
have pointed out significant conceptual flaws with interpreting
social categories such as race and gender as causally manipulable
variables [such as in a causal diagram (96)], suggesting that the
validity of causal inference cannot be taken for granted where
demographic aspects of student data are concerned.

Data, Materials, and Software Availability. Full interview transcripts are
confidential per signed agreements with interview participants. All materials
used in the data gathering process are available in SI Appendix, including
interviewquestions,preinterviewsurveyquestions,andtitlesofpapersdiscussed
during interviews. All annotation codes used during data analysis are also
available in SI Appendix.
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