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ARTICLE OPEN

Periodicity staircase in a centrosymmetric Fe/Gd magnetic thin
film system
Arnab Singh1,8, Junli Li2,8, Sergio A. Montoya3, Sophie Morley 1, Peter Fischer4,5, Steve D. Kevan1, Eric E. Fullerton3, Dao-Xin Yao 2✉,
Trinanjan Datta 6,7✉ and Sujoy Roy 1✉

The presence of multiple competing periodicities may result in a system to go through states with modulated periodicities, an
example of which is the self-similar staircase-like structure called the Devil’s Staircase. Herein we report on a novel staircase
structure of domain periodicity in an amorphous and centrosymmetric Fe/Gd magnetic thin film system wherein the reciprocal
space wavevector Q due to the ordered stripe domains does not evolve continuously, rather exhibits a staircase structure. Resonant
X-ray scattering experiments show jumps in the periodicity of the stripe domains as a function of an external magnetic field. When
resolved in components, the length-scale step change along Qx was found to be an integral multiple of a minimum step height of 7
nm, which resembles closely to the exchange length of the system. Modeling the magnetic texture in the Fe/Gd system as an
achiral spin arrangement, we have been able to reproduce the steps in the magnetization using a Landau-Lifshitz spin dynamics
calculation. Our results indicate that anisotropy and not the dipolar interaction is the dominant cause for the staircase pattern,
thereby revealing the effect of achiral magnetism.

npj Quantum Materials             (2024) 9:2 ; https://doi.org/10.1038/s41535-023-00613-3

INTRODUCTION
The appearance of staircase-like structure is a fascinating
phenomenon that is observed in a variety of condensed matter
systems. In 2D electron gas, quantized conductance is manifested
as a step feature in the Hall effect measurements1. In quantum
materials, interplay of competing interactions with multiple
periodicities in a system can give rise to a ground state whose
length scales are defined by the modulation of the original
periodicities. Example of such modulated periodicities includes
commensurate and incommensurate phases, such as density
waves in solids2, stripes and charge density waves in cuprate
superconductors3–5, charge-ordered state in manganites6, and
helical spin structure in magnetic systems7. A well-known staircase
structure is the Devil’s staircase which appears when a system
goes through numerous phase-locked modulated periodici-
ties8–10. Devil’s staircase has been observed in magnetic
systems8,11–14, liquid crystals15 and in ferroelectrics16. Apart from
fundamental science, the staircase structures have potential
technological applications such as in metrology, sensing devices
etc17.
Interesting staircase structures in domain size and in magne-

toresistance have been observed in Dzyaloshinskii-Moriya inter-
action (DMI) based solitonic system18,19 Competition between
symmetric Heisenberg exchange interaction and the antisym-
metric Dzyaloshinskii-Moriya interaction (DMI) can give rise to
interesting magnetic textures such as a helix and skyrmion lattice
phases11,20–22. DMI-based chiral magnetic order in a helimagnet is
called Dzyaloshinskii type helimagnet structure, while a helical
magnetic order due to competition between ferromagnetic and
antiferromagnetic exchange interaction is known as Yoshimori-
type helimagnetic structure23. The chiral magnetic structures in a

helimagnet exhibits solitons that can be manipulated by an
external magnetic field24. More specifically, the soliton periodicity
changes in a stepwise manner which is attributed to the discrete
changes in the soliton number because of confinement at the
grain boundaries22,24. Field evolution of confined helicoids has
also been shown to occur via discrete steps in helical magnet
MnSi25. The thin film structure of MnSi accommodates a finite
number of turns and the jumps are explained by the annihilation
of individual turns of the helicoid.
In this article we report the observation of a staircase-like

structure in the field-evolution of the scattering wave vector Q
which emerges from the stripe phase of an amorphous and
centrosymmetric Fe/Gd system. In contrast to bulk DMI magnets,
previously described, the Fe/Gd system is a perpendicular
magnetic anisotropy (PMA) system that exhibits dominant dipolar
interactions and negligible DMI26,27. Given the centrosymmetric
nature of the Fe/Gd system, magnetic phases will exhibit an equal
distribution of opposite helicity magnetic spin textures that on
average make the dipolar magnet globally achiral. We performed
resonant coherent soft X-ray scattering to study the evolution of
the stripe periodicity as a function of applied perpendicular
magnetic fields at various temperatures. Under applied perpendi-
cular fields and temperature conditions it is possible to obtain a
hexagonal skyrmion lattice phase that consists of an equal
population of left- and right- chirality27. We observed that the
scattering wave vector Q changes in step-like fashion with no
well-defined step height and width. However, when Q is resolved
into components Qx and Qy, the step heights along Lx= 2pi/Qx,
were found to be in integer multiple of 7 nm, which is close to the
exchange length of the system. At higher temperatures, the steps
were smeared due to thermal fluctuations.
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Our X-ray scattering studies have been complemented by spin
dynamics calculations that take into account the net achiral nature
of the material. We have simulated an experimentally observed
(non-equilibrium) process where a global versus local phenomena
delicately balances each other. On one hand, the total periodicity
of the stripes increase with increasing magnetic field due to an
enhancement in the majority stripe width (spins aligned along the
field direction). On the other hand, this is being counter balanced
by the local minority stripe width which cannot fall below a certain
size governed by the exchange length of the system. Thus, instead
of a bulk macroscopic motion of domain walls over the entire
sample, these competing tendencies cause the local forces and
energetics experienced by the minority domains to locally
annihilate some of these half-periods. This in turn leads to (as
observed experimentally and verified theoretically) a local
readjustment of the domain sizes. By defining a magnetic domain
length scale ratio, T, we have performed a Landau-Lifshitz (LL)
simulation to generate steps as a function of the applied magnetic
field and show the important role that anisotropy plays in
generating the steps in these systems. We have developed a
theoretical model for the appearance of steps using exchange
interaction, dipole-dipole interaction, anisotropy, and external
magnetic field. Our calculations indicate that the origin of the
steps lie in the anisotropy term. Even if exchange and dipole
interactions are present, the absence of anisotropy does not
produce steps. Although the appearance of steps do look similar
in single crystal DMI material and the amorphous Fe/Gd system
under investigation, the physical origin of the steps in the two
systems is different.

RESULTS
Resonant scattering due to stripes
The scattering geometry for the experimental set-up is shown in
Fig. 1(a). X-ray beam whose energy is tuned to the Fe L3 edge (707
eV) is incident normally on the sample. A pinhole was placed on
the beam path upstream 5 mm from the sample to establish
transverse coherence of the beam. In this geometry the X-ray
photons are sensitive to the magnetization (mz) along the beam
direction. The scattering pattern was collected on a charge
coupled device camera (CCD) placed about 0.5 m away down-
stream. Resonant X-ray scattering measurements are sensitive to
static magnetic structure (S(q)) and spatial correlation length (ξs).
From the position and intensity of the Bragg peaks it is possible to
extract information about the periodicity and strength of the
magnetic order. Fig. 1(b) shows the full field X-ray microscope
images (top panel) and X-ray resonant scattering pattern (bottom
panel) of the sample. We observed the presence of three distinct
magnetic phases, namely, disordered stripe, ordered stripe and
skyrmions, obtained by either varying the temperature or applied
perpendicular magnetic field. The X-ray microscopy images were
obtained by varying the applied magnetic field at 300 K, while the
resonant X-ray scattering data was measured from LN2 tempera-
tures to room temperature as a function of the applied magnetic
field. In the ordered stripe phase (T = 239K) the domain
periodicity (2π/Q) at remanence is (119 ± 5) nm. The stripe pattern
persists as the field is increased from zero to around 170 mT, when
new peaks in the form of a distorted hexagonal pattern start to
appear indicating a transition to the skyrmion phase. These
observations are consistent with previous findings26–28.
Figure 1 (c) shows the field evolution of the integrated intensity

of 1st and 2nd order diffraction peak from the ordered stripe
domains. Starting from the zero magnetic field condition the 1st

order peak is a maximum and the 2nd order peak is a minimum
(~zero). At remanence, the average value of the out-of-plane
component of the magnetization is zero. Therefore the widths of
the up and down domains are equal. This results in odd-order

diffraction spots. Increasing the applied perpendicular field breaks
the symmetry between the diffraction peaks, from the stripe
phase, causing the even order diffraction peaks to appear29.
Around 170 mT, the intensity of both the 1st and the 2nd order
peaks start to diminish and eventually, new peaks in the form of a
hexagonal ordering pattern appear (see Fig. 1(b), bottom right
panel). It is interesting to note that in the hexagonal phase, we
observe two relatively strong intensity spots along the same
direction where the stripe peaks are present which would indicate
that somehow the original direction of the stripes is retained even
in the hexagonal phase.

Staircase structure of Q-vector
The evolution of the stripe-diffraction peak in Q-space is shown in
Fig. 2(a) as a function of the applied perpendicular field at T = 230
K. At the start of the field cycle, the momentum transfer vector, Q1

is (= 0.052 nm−1) of the magnetic Bragg peak. As the field

Fig. 1 Experimental set-up and magnetic phases. a Schematic of
the coherent magnetic X-ray scattering geometry. b Real space (top
panel) and reciprocal space (lower panel) of the different magnetic
phases present in a Fe/Gd system. The scattering images were taken
at H = 0 mT; T = 85 K (disorder stripes), H = 0 mT; T = 225 K (order
stripes) and H = 190 mT; T = 239 K (skyrmions). A small residual in-
plane field is present during ramping down of field from saturation
to zero. c Variation of the 1st and 2nd order magnetic diffraction
peak with field at 239 K. The Inset image shows the appearance of
both 1st and 2nd order diffraction peaks.
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increases, the magnetization increases and the size of the
favorable perpendicular domains (spins along the field directions)
also increases leading to an increased domain periodicity which
results in a decrease in the Q-value 2π/L0, where L0 is the
periodicity with respect to zero field Q-value. Interestingly, we
observed that the Q-value corresponding to the magnetic Bragg
peak decreases in discrete steps as a function of applied magnetic
field giving rise to a staircase-like structure.
The evolution of domain periodicity obtained from scattering

data happens in several steps that involve sudden jumps and
appearance of modulated periodicities. We find that along with
the main magnetic Bragg peak, a much weaker satellite peak
forms at a smaller Q-value, and both the peaks evolve in an
interesting way as the field is changed. The increase in field leads
first to the appearance of an initially weaker intensity satellite peak
at Q2 (at a smaller Q-value than zero field Bragg peak at Q1). With
further increase in the field, the main Bragg peak (Q1) suddenly
merges with Q2 giving rise to a step-like feature in Fig. 2(a). Since
the position and intensity of the Bragg peak gives the periodicity
of the stripe domains and density of domain scattering
respectively, we can conclude that the number of domains with
periodicity P1= 2π/Q1 decreases with increasing field while the
number of domains of periodicity P2= 2π/Q2 starts to increase
and finally all domains suddenly transform to the periodicity P2.
This sequence of events, changing Q from Q1 to Q7 with a similar
mechanism of peak shifts (Q1→Q2; Q3→Q4; Q5→Q6) was
observed throughout the stripe phase (see Fig. 2(a)). In some
cases, a direct change in Q-values corresponding to the Bragg
peaks without any satellite peaks (Q2→Q3; Q4→Q5) was also
observed.
In Fig. 2(b) we convert the wavevector into real space

periodicity (2π/Q) and plot it as a function of applied field at
different temperatures. At higher temperatures the total number
of steps increases which results in the appearance of the first step
at much lower fields for higher temperatures than the lower ones.
The plot of the correlation values of the stripe-diffraction spot at
different fields with respect to the one at remanence for
increasing magnetic fields is shown in Fig. 2c. Any subtle changes
in the speckle pattern between two frames taken at 0 mT and H

mT will result in a value of the correlation coefficient (CC) which is
defined by

CC ¼
P

m

P
nðAmn � AÞðBmn � BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPm

P
nðAmn � AÞ2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPm

P
nðBmn � BÞ2Þ

q ; (1)

where A and B correspond to the two images taken at two
different field values. Amn denotes the intensity value of the pixel
position atmth row and nth column of the 2D scattering image. A is
the mean value of the 2D image. If CC = 1 then the two images
are perfectly correlated, CC = 0 means completely de-correlated
and CC values lying between 0 and 1 mean partially correlated.
Thus the variation of the correlation-coefficient can be attributed
in the real space as either a change in magnetization or density or
periodicity of the stripes or any combination of these factors with
the applied field.
In Fig. 2c the CC for the stripe phase observed at 85 K is

calculated between the scattering image taken at remanence
(zero-field) and another image taken at high fields. The field-
dependent variation of the CC is plotted in Fig. 2c (blue color line).
The correlation coefficient also exhibits distinct steps and most
interestingly the horizontal portion of the steps are populated
with small step-like features identical to a self-similarity devil’s
staircase like behaviour. As a measure of the stability of the entire
set-up during the measurement we also calculated the correlation
coefficients for the Airy pattern (green color line), which remains
fairly close to unity at all the fields.

Resolving staircase along Qx and Qy direction
A typical diffraction pattern consisting of the centrosymmetric first
order peaks in the stripe phase is shown in Fig. 3(a) along with
their in-plane Q-vectors. The enlarged image of the diffraction
spot in Fig. 3(b) exhibit modulation with speckles indicative of
heterogeneity in the ordering of the magnetic domains in the real
space. The diffraction spots appears at about 45∘ to the beam
propagation direction (see Fig. 3(a)), meaning the stripe-domains
are oriented 45∘ to the X-ray propagation direction. We note here
that a small in-plane field of magnitude ≈ 1mT is present along
y-direction (see Fig 1(a)) in the magnet during rampdown from

Fig. 2 Evolution of stripe diffraction peak, periodicity and correlation with field. a Plot of the q-vector of the satellite peaks as a function of
the applied out-of-plane (OOP) magnetic field at 230 K as the system transitions from magnetic stripe phase to skyrmion phase. Dotted arrows
indicate the Q-value of the Bragg peak positions (purple symbol) starting from at different fields. b Evolution of the stripe-periodicity with field
at various temperatures showing discrete steps like feature. c Correlation coefficient values with respect to the remanent state (0 mT) for
increasing magnetic field at 85K.
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Fig. 3 Stripe orientation and staircase-like behaviour. a A typical scattering pattern of the stripe lattice along with the projection of the in-
plane Q-vectors. b Enlarged image of the stripe-diffraction spot in Q-space. c Schematic real space view of stripe-domain orientation
according to scattering image of Fig. 3a, where blue circles with dot resemble the spin along the field direction while the red small circles with
cross resemble the spins opposite to the field direction and L ¼ L2x+L2y corresponds to the periodicity of the stripe domains. Plot of the
evolution of d Ly (= 2π/Qy) at 85 K and e–g Lx (= 2π/Qx) as a function of the applied magnetic field at T = 85 K, 183 K and 236 K.
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saturation to zero fields. We resolved the resultant Q-vector into
Qx and Qy components, to get information about the stripe
periodicity along real space X and Y direction thereby obtaining
real space value Lx and Ly as shown in the schematic
representation in Fig. 3(c). From this we find that the steps along
Lx are significantly distinct compared to that in the Ly direction
(see Fig. 3(d and e)).
Interestingly, we found that the steps in the plot of Lx change in

multiples of 7 nm. That is, the minimum change in periodicity
along Lx is 7 nm. No such relationship exists for the Ly evolution.
The magnitude of the change in Ly is typically smaller than 7 nm
and random compared to Lx (Fig. 3(d and e)). A schematic of a
possible stripe domain arrangement is shown in Fig. 3(c). The blue
(red) domains are majority (minority) domains. The stripes are
slanted with respect to the applied perpendicular field direction
(z). We know from the experimental results that as the applied
field is increased, the Q-vector of the magnetic Bragg peak moves
to a lower value, but maintains its orientation of 45∘ with respect
to beam direction. This indicates that the majority domain
expands but the stripe-domains maintain the 45∘ orientation.
Step changes in multiples of 7 nm along Lx imply that the
x-component of the periodicity (2π/Qx) changes in units of 7 nm.
Interestingly, this value matches with the exchange length (Lex) of

the studied Fe/Gd system. One of the ways to think about this
behavior is that as the minority domains shrink (the horizontal
region of the steps), there is a minimum distance between
successive domain walls below which there cannot be a smooth
deformation of the spin texture, as a result, a sudden jump
happens. In the theoretical section we will show that indeed by
defining a term that signifies the ratio of spin kink to the spin chain,
it is possible to predict jumps. At higher temperatures, we observed
an increase in the number of steps in the average-periodicity curves
(see Fig. 3(f and g) as a function of the applied perpendicular field.
This is due to the fact that thermal fluctuations aid in a faster
transition from one step to the other as a result we obtain more
steps at 236 K than 85 K even though the field range over which
such steps occur is much higher at lower temperatures.
The existence of steps in solitonic systems with DMI has been

observed experimentally and explained theoretically19,22. The
presence of DMI introduces a topologically protected kink in the
spin texture. The topological protection of the kink means that there
is an energy cost to kink annihilation. Different topological sectors
have different energy which is the reason for step-like features. In
contrast, in the Fe/Gd systems, the dominant interactions are
exchange, dipole, and anisotropy. This supports an achiral magnetic
structure. So far there have been no theoretical studies of the step-
like behaviour on dipole interaction dominant achiral spin-structures
in an amorphous system. In the theoretical model presented in the
next section, we have mimicked the experimental conditions by
investigating a one-dimensional dipolar mediated spin chain which
is achiral in nature. We have numerically solved the LL equation of
motion to understand the magnetization dynamics observed in the
Fe/Gd system experiment. Based on our calculations we show that
the origin of the step-like behaviour under the application of an
external perpendicular magnetic field could be explained by the
spin dynamic behavior of an achiral spin chain.

Model and theory
The spin kinks caused by long-range dipolar interaction in the
Fe/Gd system can be classified by a number n. In Fig. 4 we show
the local spin arrangement in a finite-size chain under zero
applied magnetic field with fixed boundary condition on both
ends. We consider a N-site 1D chain where spins interact with
exchange interaction, dipolar interaction, anisotropy, the in-
plane, and the out-of-plane (perpendicular) magnetic field. The

spin on each site is parameterized as

Si ¼ ðsin θi cosφi; sin θi sinφi; cos θiÞ; (2)

where the site spin angle φi ¼ 2πni=N and θi ¼ π
2. Here

i ¼ 0; 1; 2; :::;N where N ¼ N þ 1. The kink sectors are classified
by n which indicates the number of domains existing in the chain.
The Hamiltonian for our Fe/Gd system is

H ¼ HJ þ HD þ HK þ Hh; (3)

where the meaning and expression of each term is given by

HJ ¼ �J
X
i2N

Si � Siþ1ðexchangeÞ; (4)

HD ¼ D
X
i;j2sc

Si � SjΠij ðdipolar interactionÞ; (5)

HK ¼ �KU

X
i

ðSi � xÞ2 ðanisotropyÞ; (6)

Hh ¼ �gμBHx

X
i

Sxi � gμBHy

X
i

Syi ðmagneticfieldÞ: (7)

In the above i either denotes the lattice site in the 1D chain or
the location of a spin site inside a supercell (sc). The exchange
interaction strength is given by J > 0, the dipolar interaction
coupling by D, the anisotropy by KU, and the out- and in- plane
magnetic field is given by Hx and Hy, respectively. The symbol g
denotes the gyromagnetic ratio and the μB is the Bohr magneton.
The Πij in the dipolar interaction term is the Ewald coefficient
which captures the long-range nature of the dipolar interaction.
Using the angular representation of the spin Si we can write the
total energy as
H
JS2

¼ �P
i2N

cosðφiþ1 � φiÞ þ Jd
P

i;j2sc
Πij cosðφi � φjÞ

�K
P
i
cos2φi � hx

P
i
cosφi � hy

P
i
sinφi;

(8)

where we have now introduced the scaled variables Jd ¼ D
J ,

K ¼ KU
J , hx ¼ gμBHx

J and hy ¼ gμBHy

J . In all our figures we will report
the scaled fields in milli-units, that is, hx= 1 stands for 10−3 scaled
field units.

Fig. 4 Achiral spin chain arrangement. Achiral magnetic order is
generated due to the competition between exchange interaction
and dipolar interaction. The magnetic texture shown in the cartoon
depicts an achiral spin arrangement where the spins rotate 180∘ out
of plane (say in the positive screw direction, z) and then rotate back
to the original position (with an opposite negative screw rotation,
−z). The spatial distance over which the achiral twist occurs can be
captured by defining a local coefficient T= Ld/Lc, where Ld is the
length of the achiral domain area and Lc is the chain length. The
cartesian coordinate system shows the definition of the angle φi and
the angle θ used in the simulation.
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We implement the local achiral spin structure N= 216 sites, shown
in Fig. 4, to perform the LL simulation. To mimic the finite size of the
experimental sample and to allow for the domains to grow and
collapse as observed experimentally, we utilized an embedding trick
to simulate the LL equations-of-motion (EOM). To capture experi-
mentally realistic sample conditions, from a computational perspec-
tive, we introduced the concept of a local coefficient T. From a
physical perspective, T represents the ratio of the length of the achiral
structure (which contains the twist sectors solely) over the length of
the 1D chain. Thus, the achiral structure is embedded within a
uniform ferromagnetic background spin texture. The computational
embedding trick allows us to capture the spontaneous rearrangement
of the twist sectors in the chain configuration, thereby simulating the
growth and collapse of the achiral domain walls. Our numerical
simulations indicate that the eventual fate of the twist sectors and
subsequent realization of jumps (as observed experimentally) is a
subtle balance between Jd, K, and N. We compute the minimum
energy Emin using Eq. (8). The magnetization M is calculated using

M ¼ 1
N

XN
i¼0

cosφi : (9)

We present the energy and corresponding magnetization response
of the local achiral state in Fig. 5. When the anisotropy is absent, we
observe that the energy is degenerate for different twist sectors and
no jumps are created by enhancing the dipolar interaction (see Fig.
5(a)-(c)). Moreover, it indicates that larger dipolar parameters induce a
downshift in energy with no visible effects on the magnetization

behavior in the local achiral state. In the presence of anisotropy, we
keep the dipolar interaction constant and increase the K parameter as
shown in Fig. 5(c)-(e). We compute the LL dynamics on a chain of
local achiral state with different anisotropy parameters. We find that
upon enhancing anisotropy in the presence of a magnetic field, the
energy degeneracy of the different twist sectors is broken with a
simple upshift. With a relatively small T ¼ 1

4 and a strong enough
anisotropy K= 0.2, we observed jumps in both energy and
magnetization in response to magnetic field as shown in Fig. 5(e).
In Fig. 5f–j we show our calculations of energy and magnetization

response as T is varied. With decreasing T, jumps begin to happen in
energy response with higher twist sector. When T> 1

2, jumps happen
in energy curves with n= 6 as shown in Fig. 5(f)-(h). However, jumps
happen in energy curves with smaller twist sectors n and lower
magnetic field intensity hx. In both Fig. 5i and Fig. 5j, jumps happen
when twist sector is n⩾ 4. And the critical magnetic field intensity
for the first jumps to happened decreases as T decreases. It is found
that energy response is more powerful to show the disappearance
of kinks while the jumps in magnetization response might be
caused by the position shifting of the kinks.
We have considered a chain with larger number of sites. When

the number of sites is N= 432 and the dipolar parameter
Jd= 0.00916, jumps can be observed in energy curve with twist
sector n= 4 and local coefficient T ¼ 1

4. However, no jumps can be
observed with T ¼ 1

3 and 1
2 (plots not shown). This behavior can

also be seen in a system with N= 864. The result that the
decreasing T contribute to the jumps, is also consistent with the
N= 216 system. Moreover, when the Jd increases, more kinks are
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able to establish and more jumps are observed. Thus, we draw a
conclusion that not just the declining local coefficient T, but also
the rising dipolar parameter Jd results in the jumps happening in
energy curve with smaller twist sector n and weaker magnetic
field hx. Note, that for particular parameters J, D, K and the number
of sites N, the value of the ground state energy remains almost the
same when the local coefficient T changes.

DISCUSSION
In this work, we have shown experimentally that in an amorphous
and centrosymmetric Fe/Gd magnetic thin film that exhibits stripe
and skyrmion lattice phases, the stripe-domain periodicity changes
in steps because of the abrupt disappearance of stripe-domains. This
result is interesting in itself because similar to a DMI-based solitonic
system, exchange-dipole mediated Fe/Gd system also shows similar
step-like behavior even though a sole global chirality is absent in the
system. Since the presence of a global DMI can be ruled out in the
Fe/Gd systems26,27, we can conclude that the predicted spin twists
are formed due to the competition between exchange and dipolar
interactions, and the spin twist sectors can be smoothly transformed
to the uniform phase by any number of finite deformations.
Intuitively, due to the achiral spin texture of the domains, as the

magnetic field is increased, the minority domains start to shrink,
resulting in two “like-domains" to come closer. The minimum
distance between the two domains is guided by two spin-kinks on
either side which should be equivalent to the length of two domain
walls. Using the well-known formula lw ¼ ffiffiffiffiffiffiffiffi

J=K
p

, where lw is the
domain wall width, the domain wall width for Fe/Gd comes out ≈3.2
nm, twice of which is 6.4 nm, which is in close agreement to the
experimental value of 7 nm. Thus the minimum distance between
the two like-domains comes out to be equivalent to the exchange
length (Lex) of the system from our experimental study. The above
explanation also points to the existence of a “global" and “local"
length scales in the system which will give rise to two energy scales.
It is these competing energy scales that give rise to steps. Our
system is reminiscent of the case of modulated periodicities.
Our 1D model suggests the existence of discrete magnetization

steps in the REXS experiment results from magnetic spin textures
exhibiting achiral spin-twist characteristics. Recently, a transport
and micromagnetic study30 of a patterned Fe/Gd specimen, with
the same material composition as the one addressed in this work,
suggests the domain walls of the stripe domains undergo a local
chirality spin rearrangement from chiral to achiral, under similar
applied perpendicular field conditions, which results in stripe
domains exhibiting achiral spin-twist characteristics as the one
addressed in the 1D model of this paper. Although Ref. 30 addresses
the formation mechanism of skyrmion lattice phases in the Fe/Gd
system specimen, close inspection of the field-dependent micro-
magnetic vector magnetization (mx,my, mz) evolution, in their work,
shows the magnetization components attributed to the domain
wall (mx, my) undergoes abrupt/sharp changes as the perpendicular
field is swept from zero-field towards magnetic saturation which is
likely correlated to the collapse and local rearrangement of
magnetic spin textures with achiral spin-twist characteristics.
We take the achiral nature of the stripe spin structure as an

important point in our theoretical development and show that the
magnetization steps can indeed be observed in a dipolar magnet
with net global achirality. The variations and interplay of the length
scales is captured in the parameter T. Analysis of the energy
expression with different values of T suggests that in an achiral spin
arrangement staircase structure can be observed only under certain
specific ratios of 1D spin-to-spin-twist length scale. Although
simplistic, our LL calculations using local achiral spin structure shown
in Fig. 4 is able to capture the essential feature that the system has
jumps in response to an external magnetic field. The jumps happen
only when anisotropy is present. The absence of anisotropy leads to a

degeneracy of energy response for different twist sectors, meaning
the absence of jumps in the system. Our study provides evidence and
further impetus to study magnetic spin textures in a centrosymmetric
magnetic, both from an experimental and theoretical viewpoint.

METHODS
Sample details
The samples studied were nominally [Gd (0.4 nm)/Fe(0.34 nm)] ×
80 multilayers deposited using DC magnetron sputtering with 20
nm Ta seed and capping layers. The samples were deposited on
50-nm or 200-nm thick Si3N4 membranes to allow for transmis-
sion RSXS experiments, respectively. Non-resonant 12 keV x-ray
diffraction indicated strong intermixing of Gd and Fe layers
thereby forming an amorphous structure rather than a multilayer.
Given the centrosymmetric nature of the Fe/Gd system, negligible
Dzyaloshinskii-Moriya exchange interactions are expected27,28.

Experimental details
The coherent X-ray magnetic scattering measurements were
performed at beamline 12.0.2.2 of the Advanced Light Source,
LBNL. The incident beam was tuned to the Fe L3 edge (707 eV).
Transverse coherence of the X-ray beam was established by
inserting a 10 μm pinhole in the beam path before the sample.
The scattering experiment was done in the transmission geometry
at temperatures ranging from 40 K to 300 K as a function the
perpendicular magnetic field from 0 mT to 500 mT. (Fig. 1(a)). The
sample was subjected to the following initial magnetic field
protocol. First the field was raised to 500 mT, then lowered to
−500 mT and finally to zero before taking the measurements. The
field ramp rate for the first two legs is 13 mT/sec, while the final
drop of field from -500 mT to 0 mT took place at a rate of 380 mT/
sec. We start our measurement at this zero-field condition and
proceed to measure the diffraction signal as a function of applied
magnetic field at a constant rate of 1.575 mT/s. A Charge Coupled
Device (CCD) camera placed at about 0.5 m downstream of the
sample was used to record the scattered intensity patterns.

Ewald method
In the Hamiltonian calculation, Ewald summation is applied, which
is given by

Πij ¼
ffiffi
2
π

q
1

3σ3
P
n
e�

rij�nLj j3
2σ2 þ 4π

Ω

P
k≠0

e�
σ2k2
2 cosðkrijÞ

�
ffiffi
2
π

q
1
3σ3 δij;

(10)

where rij represents the distance between two spin sites, L is the
size of the supercell, n is the supercell label, σ is the real-space cut-
off, k is the momentum space label, and Ω is the volume of the
supercell which in our case is equal to L. The Ewald parameter will
be redefined as Πij= Π∣i−j∣ ≡ Πm, where the symbol m tracks the
number of Ewald parameters for the specific supercell size choice.
The values of Πm are shown in Table 1.

Table 1. Ewald parameter symbols and the corresponding Ewald
parameter values given by Eq. (10).

Ewald parameter symbol Ewald parameter value

Π1 2.00

Π2 1.72

Π3 1.32

Π4 0.85

Π5 0.38
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Landau-Lifshitz (LL) equation of motion
We perform a LL EOM spin dynamics calculation on Eq. (3). We
obtained an iterative equation which can be used to calculate the
angle φi of each spin on the chain. Based on our computations, we
are able to generate a stabilized spin order along the chain. Next,
we computed the twist angle Δφ of the ground state in the
absence of an external magnetic field using the energy
minimization condition for the supercell given by the expression

E

JS2
¼ � cosΔφþ Jd

XL�1

m¼1

ðL�mÞ cosðmΔφÞΠm: (11)

The angle φi was analyzed to obtain the relationship between
the range of Jd and the number of kinks for a given lattice size of
site N. The relationship between the number of sites N, dipolar
parameter Jd and the maximal sector nmax is shown in Table 2.
Note that to perform the calculation, one needs to choose a
supercell size that stabilizes the ground state and ensures that
there will be minimal to no numerical oscillations in the computed
result due to convergence issues. We found that L= 6 is the
optimal supercell size which yields numerically stable results for
our LL analysis. Using the numerically stable data, we computed
the minimum energy Emin (scaled relative to JS2) and magnetiza-
tion M (scaled relative to S). To compare our numerical results with
the experimental setup of the Fe/Gd system, we need to mimic
the experimental conditions. Therefore, all the results are
calculated by applying a tiny in-plane field hy.
The two angular variable EOMs are given by (for ℏ= 1)

S sin θi∂tθi ¼ ∂H
∂φi

; S sin θi∂tφi ¼ � ∂H
∂θi

; (12)

where only the first equation is required because the angle θ is
held constant. Using Eq. (12) we can obtain the following
expressions

0 ¼ 1
2 sinðφi � φi�1Þ � sinðφiþ1 � φiÞ
� �

þJd
P

j 2 sc
sinðφiþji�jj � φiÞ � sinðφi � φi�ji�jjÞ
h i

Πij

þ2K sinφi cosφi þ hx sinφi � hy cosφi :

(13)

The above can be split further into a form convenient for a
numerical iterative self-consistent approach to solve for the angle

ϕi. Hence, we write

Ai ¼ 1
2
ðsinφiþ1 þ sinφi�1Þ � Jd

X
j2 sc

ðsinφiþji�jj þ sinφi�ji�jjÞΠij

�K sinφi þ hy;

(14)

Bi ¼ 1
2
ðcosφiþ1 þ cosφi�1Þ � Jd

X
j2 sc

ðcosφiþji�jj þ cosφi�ji�jjÞΠij

þK cosφi þ hx ;

(15)

with the site angle φi is defined as

sinφi ¼
Aiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
i þ B2i

q ; cosφi ¼
Biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
i þ B2i

q : (16)

The LL equation is solved with the boundary condition
φ0 = 0 and φN ¼ 2πn. To obtain the final spin structure, we
need to do the following things. First, we set the spin structure
as a local achiral structure in which ratio of the length of the
domain area over the chain length equals to T (see Fig. 4).
Second, we setup the dipolar and anisotropy parameters and
run the LL simulation program to compute the stabilized spin
structure. Finally, we change the magnetic field to compute the
system’s magnetization and energy response to the magnetic
field.
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