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Fig. 1. Highly sulfated HS produced by macrophages (left) maintain c
quiescent state through sequestration of IFN-b. Genetic or enzymatic red
cell-associated HSPGs (right) increases the bioavailability of IFN-b res
activation of macrophages. This shift in tonic Type I IFN signaling boosts a
of macrophages and sensitizes mice and possibly human subjects to disea
chronic inflammation such as atherosclerosis and obesity.
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Macrophages are important mediators of diseases associated with metabolic inflammation such as
obesity and atherosclerosis. In this Stimulus we discuss recent findings showing that heparan sulfate
proteoglycans on macrophages serve as an important inflammatory rheostat. This observation has
significant implications as the degree of macrophage proteoglycan sulfation can determine and possibly
predict disease outcomes of metabolic inflammatory disorders.

� 2014 Elsevier Ltd. All rights reserved.
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Macrophages play a central role in both acute and chronic
inflammation and have remarkable plasticity when it comes to
their inflammatory phenotype. Naïve macrophages are directed
to distinct phenotypic programs designated as classically activated
pro-inflammatory macrophages (M1) or alternatively activated
resolving macrophages (M2). The transition of a naïve macrophage
to an M1 phenotype is mediated by lipopolysaccharides as well as
cytokines produced by Th1 lymphocytes, such as interferon (IFN)-c
and tumor necrosis factor (TNF)-a [1]. M1 macrophages produce
several other inflammatory cytokines including Type I IFNs. Several
of these cytokines interact with heparan sulfate (HS), which are
linear sulfated glycosaminoglycans covalently linked to a specific
subset of proteoglycan core proteins [2]. Heparan sulfate (HSPGs)
are expressed by virtually all animal cells and are a major constit-
uent of the glycocalyx and extracellular matrix [2]. Their role in
cytokine presentation and their abundance in the extracellular
environment place HSPGs in a unique position to modulate
macrophage phenotypes.

In a current study published in Cell Metabolism, we investi-
gated the importance of macrophage HSPGs in atherosclerosis
and diet-induced obesity [3]. Atherosclerosis and obesity are very
distinct conditions, but both are characterized by low-grade
chronic inflammation and accumulation of M1-like macrophages
[4]. We examined the role of HSPGs in these processes using mice
bearing a conditional ‘‘floxed’’ allele of N-acetylglucosamine N-
deacetylase-N-sulfotransferase 1 (Ndst1f/f) and the bacterial Cre
ulting in
ctivation
ses with
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recombinase under control of the lysozyme 2 promoter (LysMCre)
to drive inactivation of the gene in myeloid cells. Ndst1 inactivation
reduced the overall sulfation of HSPG in macrophages by �15%. In
spite of this modest change in HS composition, Ndst1f/fLysMCre+

mice on a high fat diet exhibited excessive body weight gain
compared to control mice, became profoundly type-2 diabetic
and developed exacerbated atherosclerosis on an Ldlr�/� back-
ground. The increased fat content in adipose tissue and the more
advanced atherosclerotic lesions seen in Ndst1f/fLysMCre+ mice
were associated with hallmarks of metabolic inflammation such
as increased macrophage infiltration and expression of chemoat-
tractant chemokines Ccl5, Ccl7, Ccl8 and Tnf-a. Gene expression
analysis of naïve bone marrow derived macrophages from
Ndst1f/fLysMCre+ mice confirmed that in fact the macrophages
were responsible for this increased expression of inflammatory
genes. Motif analysis of promoters of up-regulated genes revealed
increased Type-I IFN signaling in mutant macrophages. Also STAT1
phosphorylation induced by IFN-b was elevated in Ndst1f/fLysMCre+

macrophages.
It is well established that macrophages constitutively express

very low levels of IFN-b [5]. Based on our results we propose a
model wherein HSPGs determine the bioavailability of IFN-b for
its receptors IFNAR1 and IFNAR2 on macrophages under naïve
conditions (Fig. 1). Thus, highly sulfated macrophage HS maintains
type I IFN reception in a quiescent state through sequestration of
IFN-b. Reduction of cell-associated HSPG or alteration of HS
composition either genetically or enzymatically increases the
bioavailability of IFN-b resulting in macrophage activation. Further
support for this hypothesis derived from the observation that IFN-b
interacts in a sulfation dependent manner with macrophage HS.
Importantly, the data imply that natural variation in macrophage
heparan sulfate [6–9] or conditions that result in proteolytic
shedding of cell surface HSPGs [10], or desulfation [11] and
cleavage of the chains [12] might render some individuals more
prone to atherosclerosis, obesity and Type-2 diabetes.
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