
UC Irvine
Working Paper Series

Title
A Lower Bound for Uncapacitated, Multicommodity Fixed Charge Network Design Problems

Permalink
https://escholarship.org/uc/item/03m5f37c

Authors
Lamar, Bruce W.
Sheffi, Yosef
Powell, Warren B.

Publication Date
1987-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03m5f37c
https://escholarship.org
http://www.cdlib.org/

A Lower Bound for Uncapacitated,
Multicommodity Rxed Charged

Network Design Problems
UCI-ITS-WP-87-4

Bruce W. Lamar 1

Yosef Sheffi 2

Warren B. Powell 3

1 Graduate School of Management and
Institute of Transportation Studies

University of California, Irvine

2 Department of Civil Engineering
Massachusetts Institute of Technology

Cambridge, Massachusetts

3 Department of Civil Engineering
Princeton University, Princeton, New Jersey

August 1987

Institute of Transportation Studies
University of California, Irvine

Irvine, CA 92697-3600, U.S.A.
http://www.its.uci.edu

UCI-ITS-WP-8 7-4

ABSTRACT

Network design problems concern flows over networks in which

a fixed charge must be incurred before an arc becomes available

for use. The uncapacitated, multicommodity network design

problem is modeled with (i) aggregate, and (ii) disaggregate

"forcing" constraints. (Forcing constraints ensure logical rela

tionships between the fixed charge-related and the flow-related

decision variables.] A new lower bound for this problem

-referred to as the capacity improvement {CI) bound-is

presented; and an efficient implementation scheme (using shortest

path and linearized knapsack programs) is described. A key

feature of the CI lower bound is that based on the LP relaxation

of the aggregate version of the problem. A numerical example

illustrates that the CI lower bound (i) can be as tight as the

disaggregate LP relaxation, and (ii) can converge to the optimal

objective function value of the IP formulation.

INTRODUCTION

Fixed charge network design problems concern flows in

networks in which a quantum of cost must be incurred before an

arc becomes available for us~. This problem structure, reflect

ing the cost tradeoffs between the procurement of and operation

on networks links, has been used to model a wide variety of

logistical problems including multicommodity transshipment and

distribution, facility location, highway planning, and~ com

puter/communications networking (Magnanti and Wong {1984)).

This paper f oclises on a new lower bound for the class of

multicommodity network design problems whose arc cost function

consists of a fixed charge and a linear routing cost. Since the

routing cost is linear, these problems are uncapacitated. A dis

tinctive feature of this lower bound is that it is based on an

aggregate problem formulation; that is, aggregate (rather than

disaggregate) constraints are used to enforce logical rela

tionships among the decision variables. Compared to their dis

aggregate counterparts, aggregate formulations are considered

"weaker" in the sense that the LP relaxation of aggregate

formulations is generally looser than that of disaggregate ones.

This paper presents theoretical and computational results,

however, which show that, in some circumstances, this new lower

bound can be as tight as the disaggregate LP relaxation. Thus,

strong bounds can be derived from aggregate formulations.

The paper is organized into four sections. Section 1 formu

lates the fixed charge network design problem as an aggregate

integer programming problem and compares this program to alter-

- 1 -

native disaggregate formulations. Section 2 presents a new lower

bound to the integer program and describes an efficient algorithm

for computing it. Section 3, using a set of numerical examples,

illustrates the use of this algorithm. Finally, Section 4 con

cludes the paper.

- 2 -

1. MODEL FORMULATION

The focus of this section is on problem formulation. It in

cludes three parts. The first part defines notation and formu

lates the uncapacitated, multicommodity, fixed charge network

design problem as an aggregate integer program. The second part

shows that the LP relaxation of this problem has a very simple

structure. The third part introduces the more common disaggre

gate formulation of the problem considered here and compares it

to our aggregate formulation.

• Integer Programming Formulation

The following notation is used to define the problem. Let

N = Set of nodes with generic element n

A= Set of directed arcs with generic element a

K = Set of commodities with generic element k

For each arc aEA the "tail" and "head" nodes incident to arc a _,

are denoted by I(a) and J(a), respectively. Also, for each node

nE~, let ~n denote the set of arcs whose tail node is n and let

~n denote the set of arcs whose head node is n. That is,

~n = {a: aEA and I(a)=n}

~n = {a: aEA and J(a)=n}

For each commodity kE~, let O(k) and D(k) denote, respectively,

the "origin" and "destination" nodes for commodity k; and let dk

- 3 -

denote the quantity of commodity k supplied at node O(k) and de

manded at node D(k). It is assumed that dk is nonnegative.

The fixed charge for arc a is denoted by fa and the routing

cost (i.e. , cost per unit flow) for arc a and commodity k is

denoted by ca,k· It is assumed that these coefficients are non

negative. In addition, a parameter used in the aggregate problem

formulation is u!ax. This parameter denotes the maximum flow

coefficient for arc a and can be taken as the sum lk dk. Note

that this coefficient is not intended to capacitate the problem;

rather, it is used in the problem formulation to enforce logical

relationships among the decision variables.

The decision variables in the problem designate which arcs

are selected in the network design and how much flow is carried

on each of the selected arcs. For each arc a, let Ya= 1 if arc

a is selected to be in the network and let ya = O otherwise.

Also, let Xa k denote the flow of commodity k carried on arc a
I

and let xa denote the sum of the commodity flows carried on a~c

a. The {xa k} and {Xa} decision variables are referred to, re-,

spectively, as the commodity-specific and the aggregate arc

flows.

As part of the problem formulation, let~ denote the set of

(aggregate) arc flow vectors~= (..• ,xa,···> that conform to the

following multicommodity flow balance equations:

- 4 -

X a,k

X ~ 0 a,k

• 11,11 (Unless denoted otherwise, L

if n=O(k)l
if n=D(k)
otherwise

V a

V a,k

V n,k (la)

(lb)

(le)

and 11 \1' 11 include all elements of the

relevant set. For instance, in eg. (lb),
II\ II

Lk means III II and
kEK

"Va" means "V aE~11
-]

The uncapacitated, multicommodity fixed charge network de

sign problem (denoted FCND) can now be formulated as the follow

ing integer program:

Program FCND:

min I f a·Ya + I I C ·X
XEX a,k a,k
- - a k a

(2a)

Subject to:

Xa ;;; umax,y
a a Va (2b)

Ya E {0,1} V a (2c)

Let ¥..* = (..• , y:, •••) denote the optimal arc selection

vector, let x* = (... , x:, ...) denote the optimal (aggregate) arc

flow vector, and let z*[FCND] denote the optimal objective func-

tion value of program FCND. [Throughout this paper, the optimal

- 5 -

objective function value for any problem Pis denoted as z*[P].]

Objective function (2a) minimizes the total system costs,

including both fixed and variable costs, for all arcs and com

modities in the network. Carrying the minimization· over set X

guarantees that the arc flows for each commodity are restricted

to feasible paths in the network. The aggregate "forcing" con

straints (2b) ensure that an arc carries flow only if it is

selected to be in the network. Constraints (2c) ensure the in

tegrality of the arc selection decision variables, {Ya}·

Fixed charge network design problems of the type considered

here have been widely studied in the literature. Wong (1978)

noted that this problem is a generalization of the Steiner tree

problem on a network (Dreyfus and Wagner (1972)) which is itself

NP-hard (Karp (1975)); thus, the fixed charge network design

problem is also NP-hard. This means that (probably) there is no

efficient exact procedure for large scale problems. Some of the

largest problems for which optimal solutions have been obtained

are those reported by Barr, Glover, and Klingman (1981) and Mag

nanti, Wong, and Mireault (1984). Barr et al. tailored the

branch and bound penalty scheme proposed by Driebeek (1966) to

obtain optimal solutions to uncapacitated bipartite networks con

taining 50 source nodes, 150 sinks nodes, and 600 fixed charge

arcs. Magnanti et al. used Benders decomposition to obtain

optimal solutions for uncapacitated general networks containing

30 nodes and 90 fixed charge arcs. Other exact procedures have

been proposed by Gray (1971), Kennington and Unger (1976) and

Fisk and McKeown (1981). Malek-Zavarei and Frisch (1972) demon-

- 6 -

strated the equivalence between general and bipartite fixed

charge network design problems.

For large scale problems, analysts have typically relied on

heuristic procedures coupled with lower bound methods. Fixed

charge network design heuristics have been developed by Balinski

(1961), Kuhn and Baumol (1962), Billheimer and Gray (1973), Los

and Lardinois (1982), and Powell and Sheffi (1983). The near

optimality of a heuristic solution can be gaged by comparing its

cost with a lower bound to the optimal objective function value.

A number of researchers have developed lower bounds that are

specifically tailored to fixed charge network design problems.

Billheimer and Gray (1973) and Los and Lardinois (1982) based

their lower bounds on the marginal penalty of arc exclusion;

Geoffrion (1977), Rardin (1982), and Balakrishnan (1984) relied

on Lagrangian relaxation techniques; Rardin and Choe (1979) ,

Balakrishnan (1984), and Balakrishnan, Magnanti and Wong (1987)

used dual ascent algorithms (i.e., approximate solutions to the

dual problem); and Wong (1978), Magnanti and Wong (1981), and (as

previously cited) Magnanti, Wong, and Mireault (1984) applied

Benders decomposition procedures to develop lower (and upper)

bounds.

The lower bound presented in this paper is based on the LP

relaxation of program FCND. This relaxation is presented next.

• Linear Programming Relaxation

The following paragraphs show that the LP relaxation of

program FCND is equivalent to a shortest path program. This

- 7 -

means that the LP relaxation is very easy to solve.

The LP relaxation of program FCND is formed by replacing the

integrality conditions (2c) with the following nonnegativity con

straints:

Ya~ o 'v' a (3)

Observe the this relaxation is equivalent to the following

shortest path program (with flow assignment):

Program SP:

min
XEX k a

fa
(-- + c k) ·x k max a, a,
ua

(4)

Let x* = (•.. ,x:, ...) denote the optimal (aggregate) arc flow

vector and let z*[SPJ denote the optimal objective function value

of program SP.

The equivalence between program SP and the original LP re

laxation (using eq. (1), (2a), (2b), and (3)) can be shown by

using Balinski's (1961) observation that constraints (2b) will

always be satisfied with equality in the LP relaxation of program

FCND. Thus, since u:ax > o 'v' a, constraints (2b} can be solved

explicitly for {Ya}· Substituting {xa/u:ax} for {Ya} yields the

formulation given in eq. (4). (Note that constraints (3) can be

omitted in SP because the nonegativity of {Ya} is ensured by the

fact that the arc flows in set~ are required to be nonegative.J

Because program SP is uncapacitated, it separates by com

modity into a series of independent subprograms. Let SPk denote

the subprogram for commodity k. For each k, program SPk is

- 8 -

solved by determining the shortest path from O(k) to D(k) using

the linearized cost coefficients given in formulation (4) and

sending the entire commodity demand, dk, over that path. [See Deo

and Pang (1984) for a recent survey of shortest path algorithms.)

The optimal solution to program SP, then, is simply the aggrega-

tion of the individual subprograms. The optimal aggregate flow

for an arc is the sum of the optimal commodity-specific flows

determined in each of the subprograms (see eq. (lb)) ; and the

optimal objective function value of SP is the sum of the optimal

objective function values for each of the subprograms; i.e.,

Z*[SP] = lk Z*[SPk].

The analysis conducted later in this paper involves an

ensemble of shortest path programs in which the maximum flow

t t max (max) • parame er vec or u = .•• ,ua , •.• is altered systematically.

- Thus, let SP(~) denote the shortest path program of the form of

eq. (4) in which the vector~= (•.. ,ua,···> is substituted for

For any given vector ~, program SP(~) is solved by the

same method discussed after eq. (4). [In this paper, it will be

convienent to use both "SP" and "SP(umax)" to refer to the LP re

laxation of program FCND.]

The significance of basing a lower bound on program SP is

discussed next.

• Aggregate Versus Disaggregate Formulations

As mentioned earlier, the "forcing" constraints (2b) in

program FCND are aggregated (i.e. , summed) over commodities.

Many researchers, however, have chosen to formulate the fixed

- 9 -

charge network design problem using disaggregate II forcing" con

straints. In the disaggregate formulation, denoted DFCND, con

straints (2b) are replaced with

. 'v' a,k (5)

Observe that programs FCND and DFCND are equivalent: they have

the same feasible region, optimal solution (s), and objective

function value. The reason that most analysts have preferred

formulation DFCND is that the feasible region of its LP relaxa

tion, denoted DLP, is contained within the feasible region of

program SP (the LP relaxation of program FCND) . Consequently,

the following relationships hold (Rardin 1982):

z*[SP] ~ z*[DLP] ~ z*[DFCND] = z*[FCND] (6)

In short, the disaggregate formulation yields a tighter LP re

laxation than that of the aggregate model. In fact, in many

cases the solution to DLP is also optimal (or nearly optimal) in

DFCND (and FCND).

A number of authors have stressed the {apparent) inferiority

of aggregate formulations. In their location and distribution

model, Geoffrion and Graves (1974) found that an aggregate

formulation produced much looser Benders cuts than an alternative

disaggregate formulation. For certain classes of uncapacitated

facility location problems, Cornuej ols, Fisher, and Nemhauser

{1977) showed that the LP relaxation of the aggregate version of

the problem became successively looser as the probiem size in

creased. Aggregate and disaggregate formulations for fixed

- 10 -

charge network design ~roblems have been compared by Wong (1978),

Rardin and Choe (1979), Rardin (1982), Balakrishnan (1984), Mag

nanti, Wong, and Mireault (1984), and Balakrishnan, Magnanti and

Wong (1987). Additional discussion of aggregate verses disaggre

gate formulations is contained in Efroymson and Ray (1966), Davis

and Ray (1969), Garfinkel, Neebe, and Rao (1974), Erlenkotter

(1978), Guignard and Spielberg (1979), and Magnanti and Wong

(1981) .

In light of the discussion above, it is somewhat surprising

that our lower bound is based on a seemingly weaker aggregate

formulation. Our reasons are twofold. First, as shown per

viously, program SP(!;!) is very easy to solve; and second, as

shown in the next section, the "capacity" parameter vector, !!,

can be adjusted so as to produce bounds that are significantly

tighter than the LP relaxation of the aggregate program formula

tion.

- 11 -

2. CAPACITY IMPROVEMENT PROCEDURE

The capacity improvement (CI) procedure presented in this

section is a method of obtaining a lower bound to z*[FCNDJ. Nat

urally, since SP is the LP relaxation of FCND, z*[SPJ is a lower

bound to z*[FCND]. However, as mentioned in connection with eq.

(6), because FCND is an aggregate formulation, its LP relaxation

will, in general, yield a loose lower bound. A tighter lower

bound can be obtained by using a capacity parameter vectqr, ~,

that is smaller than um.ax. Clearly, then, z*[SP(u)] ;;:; z*[SP).

The "trick" to this approach is to determine conditions on u such

that Z*[SP(~)] ~ z*[FCND]~ This is the idea behind the CI

procedure described in this section.

The presentation here is divided into four parts. The first

part proves the validity of the lower bound developed by the CI

procedure. The second part shows that this lower bound is easy

to compute because it can be determined by solving a set of lin

earized knapsack problems. The third part demonstrates how the

CI procedure can be used in an iterative fashion to obtain a suc

cessively tighter lower bound to z* [FCND). Finally, the last

part presents an algorithm summarizing the CI procedure.

• Lower Bound

The following paragraphs develop a method for obtaining a

lower bound to z*[FCND] that is at least as tight as z*[SP]. The

approach uses a value t, referred to as the "target value".

Suppose, for purposes of discussion, that t is known to be an

- 12 -

upper bound to z*[FCND]. This information can be used to deter

mine an upper bound (or "capacity") on the flow of a generic arc,

say arc b, in the optimal solution to FCND. Let wb be a trial

value of such a "capacity" and consider the program Ab (wb) (re

ferred to as the "auxiliary program for arc b") obtained by

adding the constraint

to program SP, the LP relaxation of FCND. The optimal objective

function value of Ab(wb) as a function of wb is shown in Figure

1. If z* [Ab (wb)] is greater than or equal to t (and t, by

assumption, is greater than z*[FCND]), then clearly the flow on

arc b cannot exceed wb in any optimal solution to FCND. Thus, wb

is a valid capacity for the flow on arc b. The "best" capacity

parameter (i.e. , the tightest valid upper bound on flow) is

identified by finding the minimum of u~ax and the smallest value

of wb such that z*[Ab(wb)] is greater than or equal tot. That

is, let

(8)

(see Figure 1) and define ub(t), referred to as an "improved

capacity parameter for arc b", as

(9)

[Program LKb(t), presented shortly, finds such a capacity

parameter.]

- 13 -

The procedure described in the preceding paragraph can be

performed for each arc bE~ (or any subset of the arcs contained

in~)- That is, for each arc bEA, a separate auxiliary program

Ab(wb) is created and eq. (8) and (9) are used to determine the

improved capacity parameter for that arc. This, then, determines

an improved capacity parameter vector, ~(t) = (... ,ub(t), ••.).

Next, consider program SP(~(t)). [Remember that SP(u(t)) is

the shortest path program defined in eq. (4) with umax replaced

by ~(t).] Because t > Z*[FCND], this means that ~(t) is an upper

bound to~* (where x* is the optimal aggregate arc flow vector in

FCND) and so the optimal solution to FCND is contained in the

feasible region of SP(~(t)). Thus, z*[SP(~(t))] is a valid lower

bound to z*[FCND].

The discussion above assumed that twas known to be an upper

bound to z*[FCND]. Suppose, now, that t is an arbitrarily se

lected value. Then either t must itself be a lower bound to

z*(FCND] or (if t > z*[FCND]) then z*(SP(~(t))] must be a valid

lower bound to z*[FCND]. This information can be combined to

define the "capacity improvement (CI) lower bound", £(t).

Specifically,

£(t) = min { t, z*[SP(~(t))] } (10)

Note, in addition, that since ub(t) is less than or equal to u~ax

for all arcs (see eq. (9)), then z*[SP(u(t))] must be greater

than or equal to z*(SPJ, the optimal objective function value of

the original LP relaxation. Thus, if tis greater than or equal

to z*[SP], then so is £(t).

- 14 -

In summary, the above discussion has proved the following

proposition (Lamar (1985)):

Proposition 1:

If t ~ z*[SP], then z*[SP] ~ i(t) ~ z*[FCND]

An efficient method for determining i(t) is described next.

• Knapsack Interpretation

The following paragraphs show how the improved capacity

parameter vector, ~(t), can be obtained by solving a set of lin

earized knapsack programs. Since such programs can be solved by

a "greedy-type" algorithm, this means that ~(t) can be determined

very efficiently.

This procedure can be described once again by considering a

generic arc bEA. Remember that the intermediate capacity

parameter, wb(t), is obtained by adding constraint (7) to program

SP. To describe the effect of this constraint, let Ab k denote ,

the marginal cost difference between the following two quanti

ties:

(i) the optimal LP routing of a unit of commodity k
from O(k) to D(k) using arc b; and

(ii) the current LP routing of a unit of commodity k
from O(k) to D(k) (which is optimal in program SP
without the constraint that arc b be used).

[The calculation of Ab,k is described at the end of this subsec

tion.]

- 15 -

Now consider the following linear program which is also

focused on a particular arc b.

max l dk-rb k
I

k

Subject to:

L {dk-ab,k) ·rb,k ~ t - z*[SPJ
k

V k

{lla)

{llb)

{llc)

The decision variables {rb,k} give the proportion of commodity k

that is routed via arc b; and tis a parameter of the program.

Figure 2 depicts the optimal objective function value of LKb{t)

as a function oft. Observe that this program is a linearized

0-1 knapsack program and thus can be solved simply be ranking the

I !51 marginal costs {~bk} in increasing order {Dantzig (1957)).
I

By using efficient sorting techniques (see, for example, Ahrens

and Finke {1975)), this program can be solved very fast.

The purpose of program LKb(t) is to determine the value of

wb{t). Specifically,

To see this relationship, compare Figures 1 and 2. As mentioned

earlier, Figure 1 shows the parametric analysis of z*(Ab(wb)] as

wb increases from zero whereas Figure 2 shows the parametric

- 16 -

analysis of z*(LKb(t)] as t increases from z*[SP]. Note,

however, that Figure 2 is simply the "inversion" of the graph in

Figure 1. Thus, for any specific target value, t, the optimal

objective function value of program LKb(t) corresponds to the

right-hand-side parameter of constraint (7) in program Ab(wb(t)).

Once wb(t) has been determined using eq. (12), the improved

capacity parameter, ub (t) , can be obtained by the minimization

given in eq. (9). Similarly, the improved capacity parameter
.

vector, g(t)=(... ,ub(t), ...), can be computed by solving a separ-

ate linearized knapsack program for each arc bEA.

bound, £(t), can then be determined using eq. (10).

The lower

The determination of the marginal costs {l:.b,k} in program

LKb(t) is now described. For each arc bEA and commodity kE~, the

cost of routing, via arc b, one unit of commodity k can be decom

posed into the following four components (see Figure 3):

• the linearized unit cost on arc b

• the shortest path from O(k) to I(b)

• the shortest path from J(b) to D(k)

• the shortest path from O(k) to D(k)

(13a)

(13b)

(13c)

(13d)

The marginal cost t.b,k is then computed as {13a) plus (13b) plus

(13c) minus (13d).

Observe that t.b,k can be determined directly from the solu

tion of program SP. To see this, let {vn,k} denote the optimal

dual variables associated with constraints (la) in program SP.

Using these values, the four cost components given above can be

reexpressed as follows:

- 17 -

• (fb/u~ax) + cb k (13a')
I

• VI(b),k - VO(k),k (13b')

• VD(k),k - VJ(b),k (13c')

• VD(k),k - VO(k),k (13d')

Combining (13a') plus (13b') plus (13c') minus (13d') yields the

following relationship:

(14)

Notice, however, that the right-hand-side of eq. (14) is simply

the reduced cost for arc band commodity k and so is directly

available from the optimal solution to program SP.

An important feature of the procedure outlined in the pre

ceding paragraphs is that f (t) is relatively easy to compute. As

described above, the calculation of the coefficients {~b,k} is

straightforward and the solution of program LKb(t) can be deter

mined by a greedy-type algorithm. This means that it is easy to

determine the vector ~(t) used in program SP(~(t)). And, since

SP(~(t)) is itself easy to solve (it is a shortest path program),

the lower bound, f(t), can be determined very efficiently.

The techniques introduced above can also be used iteratively

to generate a successively tighter lower bound. This procedure

is discussed next.

- 18 -

• Iterative Procedure

The CI procedure can be used within an iterative framework

to obtain a successively tighter lower bound to z* [FCND]. The

concept here is to use the · improved capacity parameter vector

from the previous iteration to determine the vector for the

current iteration. [Thus, the material presented earlier in this

section can be viewed as the initial iteration of this pro-

cedure.] Changes in the target value between i teratio11s are

allowed, although the procedure requires that the sequence of

target values be nonincreasing. [The reason for this restriction

is explained at the end of this subsection.]

To describe the iterative process, let i be the iteration

counter for i = 1,2, .•.. Iterations i-1 and i are referred to,

respectively, as the "previous" and "current" iterations. Let ti

denote the target value for the current iteration. Because the

procedure depends, in general, on the entire sequence of target

values (not just the current value), it is useful to define !i =
0 .

{ t , ••. , t 1 } as the current target value set. [Note that the

number of elements in this set increases by one in each itera-

tion. Also, by definition, let to = 00 ; i.e., TO - {oo}.] In

addition, denote the current improved capacity

parameter vector and let i(!i) denote the current CI lower bound

to Z* [FCND].

z*[SP].]

[By definition, let u(!o) = umax and let £ (!o) =

Now consider a generic arc bEA and let /:i.~, k denote the

marginal cost of sending, via arc b, a unit of commodity k based

on the linearized arc cost coefficients used in program

- 19 -

Next, consider the following linearized 0-1

knapsack program:

(15a)

k

Subject to:

(15b)

k

V k (15c)

(Note that, for i=l, the program given above is the same as

program LKb (t) (given in eq. { 11)).] The current intermediate

capacity parameter for arc bis defined as

{16)

and the current improved capacity parameter for arc bis

(17)

The current improved capacity parameter vector, ~(!i) =

(••• ,ub(!i), ...), is obtained by determining eq. (16) and (17)

for each arc bEA.

Then, the current lower bound, £(!i), is defined as follows:

The two terms in the minimization within the brackets above are

- 20 -

analogous to those used in eq. (10); the two terms in the maxi

mization above ensure that the sequence {£(!i)} is nondecreasing.

As mentioned at the beginning of this subsection, the

sequence of target values is required to be nonincreasing. The

reason for this restriction can be explained by considering the

possible consequences of an increasing subsequence of target

values. Specifically, suppose that for some i, ti-l < z*(FCND]

and ti> z*[FCND]. Because ti-l < z*[FCND], it is possible that

ub(!i-l) < xt (where xt is the optimal flow on arc bin FCND) for

some bEA thus making it possible that z*[SP(~(!i-l))] > z*(FCND].

Furthermore, because u (Ti) ~ u (Ti-l) (see eq. (17)) it is also
b - b -

possible that z*[SP(~(!i))] > z*[FCND]. But, if both ti and

z*[SP(u(Ti))] are greater than z*[FCND], then £(!i) will not be

a valid lower bound to z*[FCND].

The situation described in the preceding paragraph can be

avoided by requiring that the sequence {ti} be nonincreasing.

[Note that this is a sufficient, but not necessary, condition to

ensure that £(!i) is a valid lower bound to z*[FCND].] Hence,

the following proposition:

Proposition 2:

For i = 1,2, ... , if ti~ ti-l,

then z*[SP] ~ £(!i-l) ~ £(!i) ~ z*[FCND]

(See Lamar (1985) for additional discussion.] Proposition 2

states that if the sequence of target values {ti} is nonincreas

ing in the iterative procedure, then the sequence {£(!i)}

produced by this procedure contains successively tighter (or at

- 21 -

least nondecreasing) lower bounds to z*[FCNDJ; and that each of

these lower bounds is at least as tight as z*[SP], the optimal

objective function value of the LP relaxation of FCND. (Section

3 gives several numerical examples which illustrate how the

choice of a target value affects the lower bound to z* [FCND]

produced by this iterative procedure.]

Another consequence of Proposition 2 is that if for some

iteration, say the j th , l{Tj) equals tj, then no further improve

ment in the CI lower bound can be obtained. This is because {ti}

is nonincreasing and so for all iterations subsequent to the j th ,

the minimization term in eq. (18) can be no greater then tj.

Thus, the largest value that l{!i) can obtain is tj.

The iterative procedure given here forms the basis of the

algorithm that is outlined next.

• A1gorithm

The algorithm described below summarizes the CI procedure

presented in this section. It produces a lower bound to Z*(FCND]

that is at least as tight as the LP relaxation of FCND. The

steps of the algorithm are shown in Figure 4. The following

paragraphs comment on each of these steps.

Step o initializes the algorithm. Here, the shortest path

program, SP {see eq. (4)), is solved and the following assign-

ments are made: i +- 0;

z*[SP].

Step 1 increments the iteration counter.

- 22 -

Step 2 selects ti, the target value for the current iter

ation. The only condition imposed on this choice is that ti ~

ti-l. [The "art" of choosing the target value is explored in the

examples in the next section.)

step 3 uses eq. (16) to compute wb(!i) for each arc b. A

"greedy-type" algorithm is used to solve each of the linearized

knapsack programs, LKb(!i) (see eq. (15)).

Step 4 uses eq. (17) to compute each of the elements (i.e.,

arcs) in the current improved capacity parameter vector, u(Ti).

Step 5 solves program SP(Q(!i)) using a shortest path

algorithm. (Note that the optimal path in the previous iteration

can be used as the initial path in the current iteration. In

many cases, this initial path is also optimal in SP(u(Ti)).J

Step 6 determines l(!i), the current CI lower bound, using

eq. (18).

Step 7 tests whether or not to terminate the algorithm.

Here, a relative improvement criterion such as

£ (!i) _ l (!i-1)

£ (!i-1)
< 6 (19)

can be used where 6 > O is a suitably small, prespecified con-

stant. If criterion (19) is satisfied, then the algorithm

outputs the current lower bound, l(!i), and stops. Otherwise, if

this criterion is not satisfied, then the algorithm goes to step

1 and performs another iteration.

The next section illustrates the operation of the CI

algorithm with several simple examples.

- 23 -

3. NUMERICAL EXAMPLES

This section, using two numerical examples, illustrates the

operation of the CI procedure presented in Section 2. The first

example shows that the CI lower bound can eliminate the optimal

ity gap associated with the aggregate LP relaxation of the fixed

charge network design problem. The second example further

illustrates the CI algorithm and suggests a simple method for

selecting the sequence of target values. For both of the~e ex

amples, the optimality gap of the CI lower bound, expressed as a

percent, is measured as follows:

{20)

Similarly, expression (20) is used to measure the optimality gap

associated with the aggregate and disaggregate LP relaxations by

replacing .£ ('.!'i) with z* [SP] and z* [DLP], respectively. [Also,

note that z* [DFCND] could be substituted for z* [FCND] in (20)

because Z*[FCND] = Z*[DFCND].]

• First Example

The purpose of this example is to demonstrate that the CI

lower bound can converge to the optimal objective function value

of the aggregate and disaggregate integer programs (i.e., .£('.!'i) =

z*[FCND] = z*[DFCND]). The multicommodity network used here is

shown in Figure 5. For convenience, let the number of commodi

ties, l~I, be denoted ask. For k=l,2, ••• ,k, commodity k origi-

- 24 -

nates at node o and terminates at node k. Each demand dk is

assumed to be unity. Arc (0,1) is designated as "arc b". It has

a fixed charge of fb = 1 and a routing cost of cb,k = 1 for each

commodity k. All other arcs have zero fixed charge and zero

routing costs. The maximum possible flow on arc bis lk dk = k

and so u~ax = k.

The optimal solution to the fixed charge network design

problem for the network in Figure 5 can be obtained by inspec

tion. It consists of sending a unit of flow over each arc (0,k)

for k=l,2, ... ,k and zero flow over all other arcs. The optimal

objective function value is the cost of sending flow over arc b.

Thus, Z*[FCND] = z*[DFCND] = z*[DLP] = 2, and z*[SP] = 1+(1/k).

Note that there is no optimality gap for DLP, but that the gap of

SP is 100·(1-(l/k))/2. Observe also that, as k increases, so

does the optimality gap of SP which, as Cornuejols, Fisher, and

Nemhauser (1977) point out, is a weakness of the aggregate LP re

laxation for this class of problems.

For any k, the optimality gap associated with the aggregate

LP relaxation can be reduced by using the CI procedure. For

i t . (. i purposes of exposition, let t = V 1 i.e., T = {~,t,t, •.. ,t})

where t is a constant target value chosen in the range of

1+(1/k) < t < l+k. [Target values outside this range are not

meaningful because they produce a CI lower bound that is no

better the optimal objective function value of SP.] As mentioned

above, only one arc has a fixed charge: arc b. Thus, only one

capacity parameter needs to be improved (i.e, reduced): ub(!i).

For this simple network, ub(!i) can be expressed as

- 25 -

(21)

with, by definition, ub(!o) = u~ax = k. Eq. (21), a first-order

difference equation, can be solved explicitly (see, for example,

Strang (1986)). This yields

t - 1
ub(!i) = ------------

1 + (t~ i + t;1 l
(22)

where (t)i denotes the constant t taken to the i th power.

For this example, z*[SP(u(!i))], the optimal objective func

tion value of program SP(~(!i)), equals (1/ub(!i)) + 1 and so can

be expressed explicitly (after rearranging terms) as

t

t - 1 -; l (23)

Thus, l(!i), the CI lower bound in the i th iteration, can be ex

pressed as

t

t - 1

1

; l} (24)
t - 1

Figure 6 depicts l (!i) given in eq. (24) as a function of the

constant target value, t, for several iterations of the CI

algorithm. This figure illustrates the two commodity case (i.e.,

- 26 -

k = 2). Fork> 2, a similar set of curves is produced, but the

z*[SP] line is shifted downward. Observe that for any choice of

tin the range 1+(1/k) < t < l+k, the CI lower bound is strictly

greater than the aggregate LP relaxation.

Eq. (22), (23), and (24) can also easily be evaluated as i ➔

00 • Specifically, note that for any k, because t > 1, 1/(t)i ➔ o

as i ➔ co.
00

z*[SP(:!:!(!))] =

t/(t - 1), and

(25)

Eq. (25) is depicted in Figure 6 as the line with i = co. This

line represents, for any given target value, the maximum value

that the CI lower bound can attain. Observe that, in particular,

for the "critical" target value oft= 2, the CI lower bound con-

- verges to the optimal objective function value of the IP program,

thus eliminating the optimality gap associated with the aggregate

LP relaxation. This is true regardless of the problem size, k.

The next example further illustrates the CI procedure.

• Second Example

This example illustrates how alternative sequences of target

values influence the accuracy versus efficiency of the CI

procedure. The rules for choosing the target value given below

are intended to provide an easy mechanism for generating a nonin

creasing sequence of target values (as required by Proposition

2). Naturally, alternative rules could also be used.

- 27 -

Recall that the target value is determined in step 2 of each

iteration of the CI algorithm (see Figure 4). The target value

for the first iteration, t 1 , is obtained by "rounding-up" the

solution to program SP (solved in step 0). Specifically,

t 1 = \ f . fy*l L a a
a

+ I I
k a

C ·x* a,k a,k (26)

where X! k is the optimal flow of commodity k on arc a in program
I .

SP, y: = (1/u!ax) ·Ik x:,k, and fy:l is the "ceiling" function of

y: (i.e., the smallest integer greater than or equal toy:). The

target value for the i th iteration (i = 2,3, •..) is determined by

taking a convex combination of the target value and lower bound

from the previous iteration. That is,

where e is a "discounting" factor in the range o < e < 1. Eq.

(27) guarantees that, for any allowable e, the sequence {ti} is

nonincreasing. If e is close to one, then the target values

decrease slowly between iterations; if e is close to zero, then

the target values decrease more rapidly. Thus, the CI algorithm

can be run several times, each time with a different value of e,

to measure the effect of a slow versus a rapid decrease in the

sequence of target values.

The target value selection rules outlined in eq. (26) and

(27) were tested on a fixed charge network design problem com

prised of I~ I = 5 nodes, I~ I = 2 o fixed charge, uncapaci tated

arcs, and l~I = 20 commodities (i.e., there was an arc and a com-

- 28 -

modity "market" for each pair of nodes in the network). [The

test network was limited to this size so that the IP and the dis

aggregate LP could be solved exactly using a commercially avail-

able simplex code.] For each arc ae~, the routing cost

for all commodities keK and the fixed charge (fa) was drawn

randomly from a uniform distribution, UNIFORM(0,10). Also, for

each commodity kE!5, the demand (dk) was drawn randomly from

UNIFORM(0,10). The maximum flow coefficient (u!ax) was taken as

the total demand in the network; that is, u!ax = lk dk v a.

Nine "random" networks were generated using the procedure

described above. For each of these networks, the IP and the

aggregate and disaggregate LP relaxations were solved. In each

case, OLP, the disaggregate LP, had a zero percent optimality gap

indicating that, for this class of problems, the disaggregate re-

laxation is exceedingly tight. In contrast, the optimality gap

for SP, the aggregate LP, ranged from 7 to 13 percent with a

median gap of nearly 11 percent.

For purposes of illustration, the CI procedure using the

sequence of target values prescribed by eq. (26) and (27) was

applied to the network that produced the median optimality gap

for the aggregate LP. The results of this analysis are shown in

Figure 7. The figure depicts the CI lower bound, £(:!'i), versus

the iteration counter, i, for several selected values of 0. As

reference points, the figure shows that z*[SP] = 389 and z*[FCND]

= 436. In each run of the CI procedure, the algorithm started

with £ (:!'o) = z* [SP] a.nd terminated when £ (:!'i) = ti. The figure

shows, on the one hand, when the target values decrease more

- 29 -

slowly (i.e., e is nearer to 1), the lower bound increases more

slowly but the algorithm terminates with a tighter lower bound.

For instance, fore= 0.99, the CI algorithm terminates with a

lower bound of £ (!i) = 428 (i.e., 1.8 percent from optimal)

after i = 45 iterations. On the other hand, when the target

values decrease more rapidly, the converse is true. For in

stance, fore= 0.80, the algorithm terminates with £(!i) = 421

(i.e., 3.4 percent from optimal) after only i = 3 iterations.

For this example, a discount factor of e=0.95 seems to acheive a

good balance between the rate of convergence and the size of the

optimality gap. In general, the choice of the target value

provides for considerable flexibility in the operation of the CI

algorithm.

The next section concludes the paper.

- 30 -

4. SUMMARY

This paper, using a capacity improvement (CI) procedure,

developed a lower bound for fixed charge, multicommodity, un

capacitated network design problems. Perhaps the most distinc

tive feature of this procedure is that it is based on an aggre

gate-rather than disaggregate-problem formulation. In other

words, the "forcing" constraints (which enforce logical rela

tionships between the fixed charge-related and the flow-r~lated

decision variables) are combined to the greatest extent possible.

Thus, compared to its disaggregate counterpart, the aggregate

form of the integer program has fewer constraints, but its LP re

laxation generally produces a weaker (i.e., looser) lower bound.

The purpose of the CI procedure is to tighten this weaker bound.

An algorithm for the CI procedure was presented in this

paper. This algorithm, comprised of shortest path and linearized

knapsack programs, can be used iteratively to obtain a succes

sively tighter lower bound.

Theoretical and numerical results for the CI lower bound

were also presented. The theoretical material showed that the CI

procedure produces a lower bound to the fixed charge network

design problem that is at least as tight as the LP relaxation of

the aggregate integer program. The numerical results demonstrat

ed that CI lower bound can (i) be strictly tighter than the

aggregate LP relaxation, (ii) converge to the optimal objective

function value of the integer program, and (iii) be adjusted by

the sequence of "target values" to tradeoff accuracy versus com

putational effort.

- 31 -

Besides network design, the CI procedure can also be used to

obtain bounds to other fixed charge problems as well. To apply

the CI procedure, though, requires an efficient implementation

scheme, such as the set of linearized knapsack programs used to

determine the CI lower bound for program FCND. Moreover, the

efficiency of the CI procedure must be compared to that of

techniques based on alternative disaggregate formulations of the

problem. Since the LP relaxation of a disaggregate formulation

is, in many cases, very tight (see discussion at end of Section

1), methods such as dual ascent and Lagrangian relaxation are

frequently very efficient ways of (approximately) solving dis

aggregate relaxations. Thus, the aggregate-based CI procedure

presented in this paper is intended simply as one additional

"tool" available to reseachers for developing bounds to certain

classes of integer programming problems.

- 32 -

ACKNOWLEDGMENTS

This work was supported, in part, by a research contract

from I.U. International to the Massachusetts Institute of

Technology and Princeton University. Additional computational

funds were provided by the Institute of Transportation Studies

and the Graduate School of Management, University of California,

Irvine. The authors would like to acknowledge the many thought-
-

ful suggestions-including the knapsack interpretation of the CI

procedure-given by the referees of this article. Their comments

have resulted in an improved paper.

- 33 -

REFERENCES

J.H. Ahrens and G. Finke (1975), "Merging and Sorting Applied to
the 0-1 Knapsack Problem", Operations Research, vol. 23, pp. 19-
32.

A. Balakrishnan (1984), "Valid Inequalities and Algorithms for
the Network Design Problem with an Application to LTL Consolida
tion", unpublished Ph.D. dissertation, Sloan School of Manage
ment, Massachusetts Institute of Technology, Cambridge, MA.

A. Balakrishnan, T.L. Magnanti, and R.T. Wong (1987), forthcom
ing.

M.L. Balinski (1961), "Fixed-Cost Transportation Problems", Naval
Research Logistics Quarterly, vol. 8, pp. 41-54.

R.S. Barr, F. Glover, and D. Klingman (1981), "A New Optimization
Method for Fixed Charge Transportation Problems", Operations Re
search, vol. 29, pp. 448-463.

J.W. Billheimer and P. Gray (1973), "Network Design with Fixed
and Variable Cost Elements", Transportation Science, vol. 7, pp.
49-74.

G. Cornuejols, M. Fisher, and G.L. Nemhauser (1977), "Location of
Bank Accounts to Optimize Float: An Analytical Study of Exact and
Approximate Algorithms", Management Science, vol. 23, pp. 789-
810.

G.B. Dantzig (1957), "Discrete-Variable Extremum Problems", Ope·r
ations Research, vol. 5, pp. 266-276.

P.S. Davis and T.L. Ray (1969), "A Branch-Bound Algorithm for the
Capacitated Facilities Location Problem", Naval Research Log
istics Quarterly, vol. 16, pp. 331-344.

N. Deo and C.Y. Pang (1984), "Shortest-Path Algorithms: Taxonomy
and Annotation", Networks, vol. 14, pp. 275-323.

S.E. Dreyfus and R.A. Wagner (1972), "The Steiner Problem in
Graphs", Networks, vol. 1, pp. 195-207.

N .J. Driebeek (1966), "An Algorithm for the Solution of Mixed
Integer Programming Problems", Management Science, vol. 12, pp.
576-587.

M.A. Efroymson and T.L. Ray (1966), "A Branch-Bound Algorithm for
Plant Location", Operations Research, vol. 14, pp. 361-368.

D. Erlenkotter (1978), "A Dual-Based Procedure for Uncapacitated
Facility Location", Operations Research, vol. 26, pp. 992-1009.

- 35 -

J. Fisk and P. McKeown (1981), "The Pure Fixed Charge Transporta
tion Problem", Naval Research Logisitics Quarterly, vol. 26, pp.
631-642.

R.S. Garfinkel, A.W. Neebe, and M.R. Rao (1974), "An Algorithm
for the M-Median Plant Location Problem", Transportation Science,
vol. 24, pp. 1622-1630.

A.M. Geoffrion (1977), "How can Specialized Discrete and Convex
Optimization Methods be Married?", in Annals of Discrete Mathe
matics 1: Studies in Integer Programming, P.L. Hammer, E.L.
Johnson, B.H. Korte, G.L. Nemhauser (eds.), Elsevier/North
Holland Publ. Co., New York/Amsterdam, Holland, pp. 205-220.

A.M. Geoffrion and G.W. Graves (1974), "Multicommodity Distribu
tion System Design by Benders Decomposition", Management Science,
vol. 20, pp. 822-844.

P. Gray (1971}, "Exact Solution of the Fixed-Charge Transporta
tion Problem", Operations Research, vol. 19, pp. 1529-1538.

M. Guignard and K. Spielberg (1979), "A Direct Dual Method for
the Mixed Plant Location Problem with Some Side Constraints",
Mathematical Programming, vol. 17, pp. 198-228.

R.M. Karp (1975), "On the Computational Complexity of Combina
torial Problems", Networks, vol. 5, pp. 45-68.

J. Kennington and E. Unger (1976), "A New Branch-and-Bound
Algorithm for the Fixed-Charge Transportation Problem", Manage
ment Science, vol. 22, pp. 1116-1126.

H.W. Kuhn and W.J. Baumol (1962), "An Approximate Algorithm for
the Fixed-Charges Transportation Problem", Naval Research Log
istics Quarterly, vol. 9, pp. 1-15.

B.W. Lamar
to Freight
Department
Technology,

(1985), "Network Design Algorithms with Applications
Transportation", unpublished Ph. D. dissertation,

of Civil Engineering, Massachusetts Institute of
Cambridge, MA.

M. Los and c. Lardinois (1982), "Combinatorial Programming, Sta
tistical Optimization and the Optimal Transportation Network
Problem", Transportation Research-B, vol. 16B, pp. 89-124.

T.L. Magnanti and R.T. Wong (1981), "Accelerating Benders Decom
position: Algorithmic Enhancement and Model Selection Criteria",
Operations Research, vol. 29, pp. 464-484.

T.L. Magnanti and R.T. Wong (1984), "Network Design and Trans
portation Planning: Models and Algorithms", Transportation
Science, vol. 18, pp. 1-55.

- 36 -

T.L. Magnanti, R.T. Wong, and P. Mireault (1984), "Tailoring
Benders Decomposition for Uncapacitated Network Design", Working
Paper No. OR-127-84, Operations Research Center, Massachusetts
Institute of Technology, Cambridge, MA.

M. Malek-Zavarei and I.T. Frisch (1972), "On the Fixed Cost Flow
Problem", International Journal of Control, vol. 16, pp. 1-23.

W.B. Powell and Y. Sheffi (1983), "The Load Planning Problem of
Motor Carriers: Problem Description and Proposed Solution
Approach", Transportation Research-A, vol. 17A, pp. 471-480.

R. L. Rardin (1982) , "Tight Relaxations of Fixed Charge Network
Flow Problems", Report No. J-82-3, School of Industrial and
Systems Engineering, Georgia Institute of Technology, Atlanta,
GA.

R. L. Rardin and U. Choe (1979) , "Tighter Relaxations of Fixed
Charge Network Flow Problems", Report No. J-79-18, School of In
dustrial and systems Engineering, Georgia Institute of Technol
ogy, Atlanta, GA.

G. Strang (1986), Introduction to Applied Mathematics, Wellesley
Cambridge Press, Wellesley, MA.

R.T. Wong (1978), "Accelerating Benders Decomposition for Network
Design", unpublished Ph.D. dissertation, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA.

- 37 -

Figure

1

2

3

4

5

6

7

No.

LIST OF FIGURES

Caption

Parametric Analysis of Auxiliary Program

Parametric Analysis of Linearized Knapsack Program

Components of Marginal Cost for Arc b

Flowchart of Capacity Improvement Algorithm

Network for First Example

Capacity Improvement Lower Bound for First Example

Capacity Improvement Lower Bound for Second Example

z*(A b (wb))

t -----------------

z* (SP) i----

0 -'----------'--------a. w b

0

Figure 1

Parametric Analysis of Auxiliary Program

z*(LK (t))
b

-
0 -t-----i----------~ t -z* (SP)

0 t -z*(SP)

Figure 2

Parametric Analysis of Linearized Knapsack Program

Shortest Path
O(k)-. D(k)

O(k) 7 . D(k)

~--------------------------------....
', ~ ' , ', ,' ' , ' ,

Shortest Path/,, ,, Shortest Path
O(k)-. l(b) '-._• ►• ,' J(b)--. D(k)

l(b) ; J(b)

Arc b

Figure 3

Components of Marginal Cost for Arc b

y
0. Preliminaries

1. Seti~ i+ l

2. Select target value.ti

3. Compute intermediate capacity parameter.

w b <!i) .forall b e ~

4. Compute improved capacity parameter.

u b (~ i) • for all b E A

5. Solve shortest path program.

SP(u <Ti)) --

6. Set lower bound. ~ c T 1)

No

Figure 4

Flowchart of Capacity Improvement Algorithm

Arcb

Figure 5

Network for First Example

-
t:1
o!

-g
:,
0

a:i ... ;
0
0

2.2

2.1

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

E z*(FCND) =z*(DFCND)=z*(DLP)

------ ------ -------------------------·

------- ----,--------------------------
z*(SP)

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 22 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1

Target Value, t

Figure 6

Capacity Improvement Lower Bound for First Example

440 ___________ -..::.::.: z*(FCND) _ = z*(DFCND) = z*(DLP) ___ _

- 430 e =0.98 e =0.99

.,_l

~ 420
'O
C
:,

410 0 co
~

Cl)
~ 400 .9

(.)

390

.c::::!': z*(SP)

380

0 10 20 30 40 50
Iteration Counter, i

Figure 7

Capacity Improvement Lower Bound for Second Example

