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where y is the measured raw expression level for a single
color. a is the mean background noise. J.L is the true
expression level, and 1/ and e are normally-distributed
error terms with mean 0 and variance a; and a;.
respectively. This model also works well for Affymetrix
GeneChip arrays either applied to the PM-M?v1 data or to
individual oligos.

The variance of y under this model is

Var(y) = J.L2 S~ + a;. (2)

ABSTRACT

Motivation: A variance stabilizing transformation for

microarray data was recently introduced independently

by several research groups. This transformation has

sometimes been called the generalized logarithm or glog

transformation. In this paper, we derive several alternative

approximate variance stabilizing transformations that may

be easier to use in some applications.

Results: We demonstrate that the started-log and the log-

linear-hybrid transformation families can produce approx-

imate variance stabilizing transformations for microarray

data that are nearly as good as the generalized logarithm

(glog) transformation. These transformations may be more

convenient in some applications.

Contact: dmrocke@ucdavis.edu

2 2
where S~ = err" (err" -1). In Durbin et at. (2002); Huber
et at. (2002) and Munson (2001), it was shown that for
a random variable z satisfying V(z) = a2 + b2.u2, with
E (y) = .u, there is a transformation that stabilizes the
variance to the first order, meaning that the variance is
almost constant no matter what the mean might be. There
are several equivalent ways of writing this transformation,
but we will use

(3)

1 INTRODUCTION
Many traditional statistical methodologies, such as
regression or the analysis of variance, are based on the
assumptions that the data are normally distributed (or at
least symmetrically distributed), with constant variance
not depending on the mean of the data. If these assump-
tions are violated, the statistician may choose either to
develop some new statistical technique which accounts
for the specific ways in which the data fail to comply with
the assumptions, or to transform the data. Where possible,
data transformation is generally the easier of these two
options (see Box and Cox, 1964; Atkinson, 1985).

Data from gene-expression microarrays, which allow
measurement of the expression of thousands of genes
simultaneously, can yield invaluable information about
biology through statistical analysis. However, microarray
data fail rather dramatically to conform to the canonical
assumptions required for analysis by standard techniques.
Rocke and Durbin (2001) demonstrate that the measured
expression levels from micro array data can be modeled as

where c = a/b. This transfoTnlation converges to In(z) for
large z, and is approximately linear at 0 (Durbin et at.,
2002). Since this is exactly the natural logarithm when
c = 0, it was called the generalized logarithm or glog
transformation by Munson (2001), a terminology that we
adopt. The inverse transfoTnlation is

fc-l(w) = ew -c2e-w /4.

Both fc and its inverse are monotonic functions, defined
for all values of z and w, with derivatives of all orders.
For array data, we use z = y -cx or z = y -a so that
the random variable satisfies (exactly or approximately)
V(z) = a2 + b2E(zf.

y = a + lLe" + e (1) 2 THE STARTED LOGARITHM

In some situations, it may not be convenient to use the
glog transfonnation (3). In particular, the supposed ease of.To whom correspondence should be addressed.
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Variance-stabilizing transformations

The condition to minimize the maximum deviation from
constant variance is

a2 a2b2
--b2 = b2 -or
c2 a2 + b2c2

ac = 2i74b

interpretation of log ratios has provided a major justifica-
tion for use of the log transformation on microarray data.
However, for a random variable z satisfying E (z) = JL and
V(z) = a2 + b2JL2, the logarithmic transformation In(z)

has certain disadvantages. The delta method (i.e. propoga-
tion of errors) shows that V(ln(z» ~ b2 + a2 / JL2, which
goes to infinity as JL ~ O. Furthermore, when JL = 0, z
will be frequently non-positive, for which the transforma-
tion is not defined.

A common modification of the logarithmic transforma-
tion, designed at a minimum to avoid negative arguments,
is to add a constant to all of the values before taking the
logarithm. Following Tukey (1964, 1977) we call this the
'started logarithm;' its form is

The achieved minimum deviation is b2.J2 -b2, and the
ratio of the standard deviation at 0 to the asymptotic
standard deviation b is about 1.2.

We illustrate this transformation with a case from
Durbin et ai. (2002) in which (X = 24800, a = 4800
and b = 0.227. Figure 1 shows the standard deviation
function for the optimal started-log transformation with
c = a/(21/4b) = 17781, as well as two other values of c.
The dashed line shows the value b, which is the value that
all of the transformations tend to as the expression gets
large. The upper (dotted) curve is for c = 0, corresponding
to the logarithm of the background corrected data. The
standard deviation approaches infinity as the estimated
expression approaches O. The lower curve (dot-dash) is
for c = 24800, corresponding to the log uncorrected
intensity. Here the variance at zero and at the minimum is
too low. The optimal choice of c = 17781 (middle curve,
solid line) has the correct balance between the two. In this
case, the logarithm of the raw intensity data is not too bad.
There is no guarantee that this would be true in general,
since the zero of the intensity scale is rather arbitrary.

gc(z) = In(z + c)

with c > O. This transformation can, given the appropriate
constant c, mitigate some of the problems with negative
observations that plague the log transformation. A trans-
formed observation gc(z) has approximate variance func-
tion

a2 + b2J.L2
V(gc(z)) = (JL + C)2 .

This will not completely stabilize the variance of z if the
variance function is (2), but we can ask for the choice of
constant c which minimizes the maximum deviation from
constancy. An examination of the function (4) shows that
it takes the value a2 / c2 at JL = 0 and has an asymptote
at b2 as JL -+ 00. We will focus on the deviation of the
variance from the limiting value b2.

The derivative of (4) with respect to JL is

2b2JL(JL + c)2 -2(a2 + b2JL2)(JL + c)

(4)

(,u + c)4 (5)

The denominator of (5) is never zero for,u ~ 0, so any
change in sign of the derivative will occur where

2b2,u(,u + c)2 -2(a2 + b2,u2)(,u + c) = 0 or

a2
,u--

-b2c'

Note also that the derivative of the variance function at
,u = 0 is -2a2 / c3 < 0 (so long as c > 0), indicating that
the variance decreases initially, before increasing again
at,u = a2/(b2c). It is clear that the value of c that
minimizes the maximum deviation of (4) from b2 is where
the variance at 0 (a2/c2) is as much above b2 as the
variance at the minimum is below b2 (see Figure 1). Since
the minimum is at,u = a2/b2c, the variance at the
minimum is

3 LOG-LINEAR HYBRID
According to the two-component model (1), the untrans-
formed data have approximately constant variance for J.L
close to 0 and approximately constant coefficient of vari-
ation for J.L large. This suggests that we might use a lin-
ear transformation for small z and a log transformation
for large z. Keeping this in mind, another variant of the
logarithm that may be appropriate for microarray data is
the log-linear hybrid transformation (Holder et al., 2001).
Here we take the transformation to be In(z) for z greater
than some cutoff k, and a linear function c+dx below that
cutoff. This eliminates the singularity at zero. We choose
c and d so that the transformation is continuous with con-
tinuous derivative at k.

The last requirements give the two equations

ck + d = In(k)
c = 1/ k

and thus d = In(k) -

is
Thus, our transfonnation family

hk(Z) = Z/ k + In(k) -1,

= In(z), Z > k
z~ka2b2

a2 + b2C2 (6)
a2 + b2a4/(b4c2) -(a2/b2c + C)2 -
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Fig. 1. Standard deviation of the started-log for three values of the constant.

The asymptotic delta-method variance function is given by

V(hk(Z»= (a2+b2,u2)/k2, z~k
= b2 + a2 / ,u2, Z > k.

glog transfonnation of Durbin et at. (2002); Huber et at.
(2002); Munson (2001).

It should also be noted that the started log and log-linear
hybrid each correspond to a variance function. The started
log will be the optimal variance stabilizing transformation
if V(z) = (E(z) + c)2 and the log linear hybrid will be
optimal if the variance is constant at V (z) = P when
z < k and V(z) = E(z)2 for z ~ k. These functions
will be difficult to distinguish from the variance function
(2) generated by the two-component model (1), although
it may be possible with large data sets. We prefer the
transformation (3) corresponding to the variance function
(2) because it is generated by the physically plausible
model (1), but the results are likely to be similar if the
parameters are chosen carefully.

(7)

Note that the two expressions agree at the splice point. due
to the choice of c and d to make the derivative continuous
atk.

It is easy to see that the choice of k that leads to the
minimum deviation from constant variance is the one in
which the variance at 0 is as much below b2 as the variance
at the splice point is above b2. Thus

b2 -a2j k2 = (b2 + a2j k2) -b2 or

k = J"iajb (8)

Figure 2 shows the optimal log-linear hybrid (solid line),
the optimal started log (dotted line) and the optimal glog
transformation (dot-dash line). In this case, the started log
has a smaller maximum deviation from constant variance,
but this is dependent on the parameter values and this
can be reversed. Any of these transformations may be
sufficient to stabilize the variance for practical purposes.

One can further reduce the maximum deviation from
constant variance by employing both a linear segment
and a started log, so that the transformation would be
linear below a cutoff k and above that point be In(z +
c). However, the extra complexity that this would entail
would make this choice an unlikely alternative to the

4 SIMULATION STUDIES
The relative perfonnance of each of the three trans-
fonnations was tested on data simulated from the
two-component model of Rocke and Durbin (2001). The
parameters used were 0"1 = 0.227 and O't = 4800. We
use the value b = 0"1 = 0.227 rather than 8'1 = 0.236
since the logartithms of data distributed according the
the two-component model have a standard deviation
that tends exactly to 0"1 for large J.L. To the order we
are working, these quantities are the same, and make no
practical difference for data analysis, but the difference
can show up in large simulations. Data were simulated
for values of J.L ranging from 0 to 1 000 000 at increments
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Fig. 2. Standard deviation of the optimal log-linear hybrid and the optimal started log.

of 5000. For each value of j.L, 1000 samples of size 1000
were simulated from

log-linear hybrid transformation. However, the skewness
of the simulated data can also be informative, as symmetry
of data is also important when applying standard statistical
methodologies. Figure 4 shows the skewness of simulated
data from each of the three transformations, averaged over
1000 samples. For a dataset of size 1000, the skewness
differs significantly from 0 at the 95% level if it is greater
than 0.1518 in absolute value. The glog transformation
shows significant skewness between J1, = 10000 and
J1, = 35000, with a maximum skewness of -0.2475
occuring at J1, = 15000. The started-log transformation
shows significant skewness for values of J1, < 30000,
with a maximum skewness of -1.2254 occuring at
J1, = O. Finally, the log-linear-hybrid transformation
shows significant skewness for values of J1, between
35 000 and 65000, with a maximum skewness of -0.227
occuring at J1, = 45000. The glog and log-linear-
hybrid transformations appear to perform equivalently
at symmetrizing the simulated data, and both do far
better than the started log transformation. Taking both
variance-stabilization and symmetry into account, the glog
transformation appears to perform best on the simulated
data, followed by the log-linear hybrid.

5 EXAMPLE
Figures 5-7 show the results of applying the three
transfonnations to the data from Durbin et at. (2002). All
are much improved from the raw data or the logarithms
of the background corrected data. Of these, the glog

Z = J1,e'1 + s,

where 17 '" N (0,0-;) and e '" N (0, 0-;). The simulated
data sets were transformed using each of the three
transformations and used to calculate confidence intervals
for the standard deviation and skewness of the transformed
data. The optimal transformation within each family was
used in all cases.

Figure 3 shows the standard deviation of the trans-
formed simulated data, averaged over 1000 samples, for
all three transformations. As would be expected, the glog
transformation shows the most nearly constant standard
deviation. The standard deviation of the data transformed
using the log-linear-hybrid transformation stabilizes
somewhat sooner than that using the started-log transfor-
mation, but otherwise these two transformations appear of
similar quality.

Graphs (not shown) of the actual and model-predicted
standard deviation of simulated data transformed using
each of the three transformations, averaged over 1000
samples, show that the simulated data conform closely
to the theoretical values, supporting the use of the delta-
method theory in this analysis.

Upon examining the standard deviation of simulated
data for each of the three transformations, it appears
that the glog transformation provides the most nearly
constant variance of transformed data, followed by the
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hybrid (Fig. 7) appears to have more low-variance genes
near the low end (thus departing more from constancy
of variance) than is the case with the variance-stabilizing
transformation.

transfonnation (Fig. 5) appears to have done the best job.
The started log (Fig. 6) has several high-variance genes
at the low end that deviate more from constancy than
is the case with the glog transfonnation. The log-linear
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et at. (2002); Huber et at. (2002) and Munson (2001) is
probably the best choice when it is convenient to use it.

6 CONCLUSIONS
We have compared three transfonnation families, each
optimized for stability of variance, for use with microarray
data. Any of these could be usefully employed in this
application, although evidence from theory and from an
application suggest that the glog transformation of Durbin
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