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RESEARCH ARTICLE

CLOCK and TIMELESS regulate rhythmic

occupancy of the BRAHMA chromatin-

remodeling protein at clock gene promoters

Christine A. TabulocID, Yao D. CaiID, Rosanna S. Kwok, Elizabeth C. Chan,

Sergio HidalgoID, Joanna C. ChiuID*

Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University

of California Davis, Davis, California, United States of America

* jcchiu@ucdavis.edu

Abstract

Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that

regulate rhythmic gene expression. The circadian clock promotes rhythmic expression,

timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers

regulate accessibility of clock transcription factors to the DNA to influence expression of

clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling com-

plex promotes the repression of circadian gene expression in Drosophila. In this study, we

investigated the mechanisms by which the circadian clock feeds back to modulate daily

BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to

clock gene promoters despite constitutive BRM protein expression, suggesting that factors

other than protein abundance are responsible for rhythmic BRM occupancy at clock-con-

trolled loci. Since we previously reported that BRM interacts with two key clock proteins,

CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the

period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, sug-

gesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repres-

sion at the conclusion of the activation phase. Additionally, we observed reduced BRM

binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM

removal from DNA. These conclusions are further supported by elevated BRM binding to

the per promoter in flies subjected to constant light and experiments in Drosophila tissue cul-

ture in which the levels of CLK and TIM are manipulated. In summary, this study provides

new insights into the reciprocal regulation between the circadian clock and the BRM chro-

matin-remodeling complex.

Author summary

Circadian clocks are endogenous time-keeping mechanisms that allow organisms to antic-

ipate and adapt to daily changes in their external environment. These clocks are driven by

a molecular oscillator that generates rhythms in the expression of many genes, termed

clock-controlled genes. The genomic DNA containing these clock-controlled genes are
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also modified in a rhythmic manner throughout the day. DNA is more tightly packaged

with histone proteins when transcription of clock-controlled genes is repressed while the

interaction between DNA and histone proteins is more relaxed during transcriptional

activation. We found that two key clock proteins, CLOCK and TIMELESS, regulate daily

rhythmicity in the binding of BRAHMA, a chromatin remodeler, to DNA spanning

clock-controlled genes to facilitate their rhythmic gene expression cycles. Moreover,

because TIMELESS is sensitive to light, our study provides new insights into how light

can affect DNA structure and gene expression.

Introduction

The circadian clock is an endogenous time-keeping mechanism that enables organisms to syn-

chronize their behavioral and physiological processes to their external environment [1–4]. Cel-

lular clocks are driven by molecular oscillators, each of which is composed of a negative

transcriptional translational feedback loop (TTFL) [5]. In Drosophila melanogaster (herein

referred to as Drosophila), transcription factors CLOCK (CLK) and CYCLE (CYC) heterodi-

merize and bind to the Enhancer box (E-box) sequences located in the promoters of clock-

controlled genes, including period (per) and timeless (tim), thereby activating their transcrip-

tion in early to midday [6–8]. Delay in the accumulation of PER and TIM proteins contributes

to the extension of the TTFL to 24 hours (reviewed in [1,4]). This delay is mediated by post-

transcriptional mechanisms including RNA splicing [9], translation [10,11], control of subcel-

lular localization [12], and protein degradation [13–15]. Around midnight, when PER and

TIM levels accumulate to sufficient levels, they heterodimerize and translocate into the nucleus

[16–18], where they interact with the CLK-CYC complex to repress their own transcription

and the transcription of other CLK-activated genes [8,19,20]. Finally, proteasome dependent

degradation of PER and TIM [13,15,21,22] and modulation of CLK activity by post-transla-

tional modifications [23–28] terminates the circadian repression phase in late day to early

morning, initiating the next circadian cycle.

The chromatin at clock-controlled genes undergoes rhythmic modifications mediated by

the activities of histone modifiers and chromatin-remodeling proteins, thus facilitating rhyth-

mic gene expression over the 24-hour cycle [29–31]. There is accumulating evidence showing

that these proteins interact with core clock components to impose temporal control of their

activities at clock gene loci. For instance, the mammalian homolog of Drosophila CLK,

CLOCK, interacts with histone acetyltransferases [32] and ubiquitin ligases [33] to modulate

histone density at clock gene loci. In Drosophila, CLK interacts with NIPPED-A, a component

of both the SAGA and TIP60 chromatin-remodeling complexes to promote circadian tran-

scription [34,35]. And finally, the transcriptional activator of the Neurospora clock, White Col-

lar 1, interacts with the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling

complex to activate clock gene expression [36]. These interactions suggest that core clock pro-

teins closely coordinate with chromatin remodelers and histone modifiers to shape chromatin

landscape and rhythmic gene expression.

We previously characterized the BRAHMA (BRM) complex, a member of the SWI/SNF

chromatin-remodeling family, as a regulator of circadian transcription in Drosophila [30,37].

Specifically, we found that BRM condenses the chromatin and possibly serves as a scaffold for

repressive complexes at the promoters of per and tim. We also observed that BRM interacts

with core clock proteins, CLK and TIM, in fly tissues at specific times of the day-night cycle

[37], prompting the question of whether clock proteins might reciprocally regulate BRM
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activity to shape rhythmic nucleosome density and gene expression. In addition to clock-con-

trolled genes, BRM regulates genes involved in cell cycle [38–41], DNA damage response [42–

44], development [45,46], and stem cell renewal and differentiation [47–50]. In fact, BRM is

estimated to regulate the expression of approximately 80% of the Drosophila genome [51].

This further begs the question of how BRM regulates certain loci in a rhythmic manner while

majority of its targets are not rhythmically regulated. Given the precedents of interactions

between core clock transcription factors and histone modifiers/chromatin remodelers, we

hypothesize that core clock proteins regulate BRM occupancy at circadian loci to ensure rhyth-

mic BRM activity at these sites.

Here, we investigated the mechanisms that promote rhythmic BRM activity, specifically at

CLK-activated loci. We observed that BRM rhythmically binds to the promoters of clock-con-

trolled genes despite its constitutive protein expression in fly heads. Using the per gene as a

prototypical CLK-activated gene, we revealed that core clock components, CLK and TIM, play

key roles in regulating rhythmic BRM occupancy at clock gene promoters. In particular, we

found that CLK promotes the recruitment of BRM to these promoters and paves the way for

the initiation of circadian repression by stabilizing BRM protein, which functions to increase

nucleosome density. TIM, on the other hand, promotes the removal of BRM from the DNA to

reset the chromatin landscape following transcriptional repression to prepare for the next tran-

scriptional cycle. Our study provides new insights into how general chromatin remodelers col-

laborate with clock proteins to facilitate expression of the circadian transcriptome.

Results

BRM exhibits rhythmic occupancy at clock gene promoters despite

constitutive protein expression

We first sought to determine whether BRM occupancy at CLK target loci is rhythmic.

Although we previously showed that BRM localizes at the E-boxes of per and tim promoters,

specifically the per circadian regulatory sequence (CRS) and tim E-box 1 (E1) [37], those

experiments were performed in flies expressing epitope tagged BRM expressed under the con-

trol of the tim promoter. We therefore generated a polyclonal antibody against BRM to more

accurately detect endogenous BRM occupancy. We validated the antibody in Drosophila
Schneider (S2) cells and fly head tissue. The new antibody was able to detect endogenous BRM

expression in both preparations (Fig 1A). In S2 cells, a sharp band is observed around 250

kDa, consistent with the predicted size of BRM. Higher protein levels are observed when over-

expressing BRM by transient transfection as compared to untransfected control S2 cells

(t = 4.683, df = 2, p = 0.0427) (Fig 1B). We generated flies overexpressing BRM with a 3XFLA-

G-HIS (FH) epitope tag in tim-expressing cells by crossing a tim-UAS-Gal4 (TUG) driver line

with a responder line expressing UAS-brm-FH. We observed higher BRM signal in head

extracts of flies overexpressing BRM as compared to the TUG parental control (t = 4.941,

df = 2, p = 0.0386) (Fig 1B). Furthermore, the specificity of the signal was confirmed with pre-

adsorption of the antibody with a dilution series of the BRM antigen (S1 Fig). As increasing

amounts of the BRM antigen were incubated with the BRM polyclonal antibody prior to addi-

tion to western blots, the BRM signal became progressively weaker (0.1ul antigen at 1ul/ug:

q = 23.90, df = 8, p<0.0001; 1ul antigen: q = 31.92, df = 8, p<0.0001; 10ul antigen: q = 31.21,

df = 8, p<0.0001). BRM signal was normalized to a non-specific band on the same blot.

Leveraging the new BRM polyclonal antibody, we assayed daily BRM occupancy at a num-

ber of clock gene promoters in whole head extracts collected from wild type (WT, w1118) flies

entrained in 12:12 light:dark (LD) conditions (Fig 1C-F). We observed robust rhythmicity of

BRM occupancy at each of the tested promoters, including per, tim, vrille (vri), and clockwork
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orange (cwo) (Fig 1C RAIN p = 0.0053; peak: ZT16, Fig 1D RAIN p = 0.0487; peak: ZT16, Fig

1E RAIN p = 0.0124; peak: ZT16, and Fig 1F RAIN p = 0.0005; peak: ZT16; ZT is defined as

Zeitgeber Time, and ZT0 denotes lights on time in the LD cycle). To assess the specificity of

rhythmic BRM occupancy, we also assessed BRM binding at the promoters of two non-clock

Fig 1. BRM binding to clock gene promoters in fly heads is rhythmic despite constitutive BRM protein

expression. (A) Western blot validation of the BRM antibody detecting proteins extracted from Drosophila S2 cells

and heads of flies collected at ZT16 on LD3 (light-dark cycle day 3) subsequent to 2-day entrainment at 12h:12h LD. S2

cells were either untransfected or transfected with pAc-brm-3XFLAG-His. The two fly lines used for validation are flies

expressing either endogenous levels of BRM (w; tim(UAS)-Gal4 parental driver line referred to as TUG) or flies

expressing FLAG-His-tagged BRM (referred to as brmOE) (top panel). FLAG epitope was simultaneously detected to

confirm expression of FLAG-tagged BRM (middle panel). HSP70 was used as a loading control (bottom panel). (B)

Quantification of BRM signal shown in Fig 1A. Each data point represents a biological replicate. Error bars represent

±SEM (S2 cells: n = 3; Fly heads: n = 4). Asterisks denote significant p-values: �p<0.05. (C-H) BRM occupancy at the

promoters of (C) period (per), (D) timeless (tim), (E) vrille (vri), (F) clockwork orange (cwo), (G) heat shock protein 27
(hsp27), and (H) glycine transporter (glyT) was detected in heads of w1118 (WT) flies collected at the indicated time

points on LD3 subsequent to 2-day entrainment at 12h:12h LD. The grey background denotes the dark phase of the LD

cycle. Each data point represents a biological replicate (n = 4), and each biological replicate is an average of 2 technical

replicates of qPCR. RAIN: (C) p = 0.0053; peak: ZT16, (D) p = 0.0487; peak: ZT16, (E) p = 0.0124; peak: ZT16, (F)

p = 0.0005; peak: ZT16, (G) p = 0.9543, and (H) p = 0.3140 (I) Western blot showing BRM expression in heads of w1118

flies (top panel) collected at the indicated time points on LD3. HSP70 was used as a loading control (bottom panel). (J)

Quantification of BRM signal normalized to HSP70 as shown in Fig 1I (n = 3, RAIN p = 0.5811).

https://doi.org/10.1371/journal.pgen.1010649.g001
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gene promoters, heat shock protein 27 (hsp27) and glycine transporter (glyT), (Fig 1G and 1H).

Neither of these genes exhibit rhythmic BRM occupancy over the 24-hour LD cycle (Fig 1G

RAIN p = 0.9543; Fig 1H RAIN: p = 0.3140). To determine whether rhythmic BRM occupancy

is a result of rhythmic BRM protein abundance, we analyzed BRM protein levels in WT fly

head extracts over a LD cycle. We observed that BRM protein expression is constitutive

throughout the 24-hour cycle (Fig 1I and 1J) (Fig 1J RAIN p = 0.5811), indicating that the

daily oscillation in BRM occupancy at clock gene promoters is not dependent on rhythmic

BRM abundance.

CLK promotes BRM occupancy at the per promoter

We have previously observed that BRM binds to CLK in fly head extracts between ZT12 to

ZT20 while BRM-TIM interactions were observed at and after ZT20 [37]. We therefore

hypothesized that CLK promotes BRM occupancy to CLK target loci since BRM occupancy at

clock genes starts to increase around ZT10 (Fig 1C–1F). We reasoned that if CLK promotes

BRM occupancy to clock gene promoters, BRM binding to the DNA would be lower in the

absence of CLK. To test this hypothesis, we performed chromatin immunoprecipitation in

combination with quantitative real-time PCR (ChIP-qPCR) to compare BRM occupancy in

WT (w1118) and clk null (w1118;clkout) flies. Because BRM binds rhythmically to the promoters

of per, tim, vri, and cwo with the same phase (Fig 1C–1F), we opted to use the perCRS as a rep-

resentative CLK-activated promoter in subsequent experiments. We observed that BRM occu-

pancy was not rhythmic (RAIN: WT p = 0.0056, peak: ZT16; clkout p = 0.7915) and

significantly lower in the clkout mutant at ZT16 (t = 4.877, df = 24, p = 0.0002) (Fig 2A), the

Fig 2. CLK promotes BRM occupancy at the per promoter. (A) BRM and (B) Histone H3 occupancy at the perCRS
in head tissues of w1118 (black) and clkout (red) flies (A: n = 4; w1118 RAIN p = 0.0056, clkout RAIN p = 0.7915; B: n = 3;

w1118 RAIN p = 0.0488, clkout RAIN p = 0.2080). Each data point represents a biological replicate, and each biological is

an average of at least 2 technical replicates of qPCR. Asterisks denote significant p-values: �p<0.05, ���p<0.001. Error

bars represent ±SEM. The grey background denotes the dark phase of the LD cycle. (C) BRM binding at the perCRS in

S2 cell nuclear extracts expressing either brm alone (white) or brm co-expressed with clk (grey). Relative fold change of

ChIP signal is calculated with amount of BRM binding in the brm alone condition equal to 1(n = 6). (D) BRM (black)

and CLK (blue) occupancy at the perCRS in heads of w1118 flies collected at the indicated time points on LD3 (n = 3;

BRM ChIP: RAIN p = 0.0016, phase = ZT14; CLK ChIP: RAIN p = 6.17e-6, phase = ZT12; DODR p = 0.0033).

Trendlines connect the mean relative ChIP signal of each time point.

https://doi.org/10.1371/journal.pgen.1010649.g002
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time point at which BRM occupancy normally peaks in WT flies at the time points we sampled

(Fig 1C).

Because BRM condenses the chromatin by increasing nucleosome density at clock loci [37],

we expect rhythms of nucleosome density to match BRM occupancy. Therefore, we assayed

Histone H3 occupancy in WT and clkout flies to assess whether the decrease and loss of rhyth-

micity in BRM binding to the per promoter results in reduced Histone H3 density and rhyth-

micity at the same locus. H3 occupancy is often used to reflect nucleosome density [37,52]. As

predicted, we observed a significant reduction in Histone H3 occupancy at ZT16 (t = 3.629,

df = 16, p = 0.0090) as well as a loss of rhythmicity (RAIN: WT p = 0.0488, peak: ZT16; clkout

p = 0.2080) in the clkout mutant as compared to WT flies (Fig 2B).

We next assayed BRM occupancy in Drosophila S2 cells to further support the function of

CLK on BRM occupancy. S2 cells do not possess a functional molecular clock, so it is a simpli-

fied and valuable system to investigate functions of key clock proteins in the molecular oscilla-

tor without the complication of TTFL. We observed elevated BRM binding to the perCRS
when brm is co-expressed with clk when compared to cells expressing brm alone (t = 3.340,

df = 5, p = 0.0205) (Fig 2C), suggesting that CLK plays a role in promoting BRM occupancy to

the per promoter.

We reasoned that CLK should bind to the promoter prior to BRM if CLK recruits BRM to

this locus. Therefore, we assayed BRM and CLK occupancy every 2 hours from ZT10 to ZT18

to obtain a higher resolution view of the occupancy of these proteins at the perCRS. We

observed that BRM binding peaks at ZT14 while CLK occupancy peaks at ZT12 (BRM RAIN

p = 0.0016; CLK RAIN p = 6.17e-6; DODR: 0.0033) (Fig 2D), confirming that CLK binding to

the per promoter precedes BRM binding. All together, these results suggest that CLK plays a

role in promoting BRM occupancy, potentially via recruitment of BRM to the per promoter or

stabilizing BRM once it has been recruited to the promoter.

CLK expression stabilizes BRM

In addition to recruiting BRM to the per promoter, it is possible that CLK can increase BRM

binding to DNA through other mechanisms such as promoting BRM protein levels. To deter-

mine if CLK influences BRM expression, we compared daily BRM protein abundance in WT

(w1118) and clkout flies (Fig 3A and 3B). We observed significantly lower BRM abundance in clkout

flies at ZT16 (t = 3.111, df = 16, p = 0.0266) (Fig 3B), revealing that lower BRM protein levels

may contribute to decreased BRM occupancy (Fig 2A). Lower BRM levels in clkout flies also sug-

gests that brm could be a CLK-activated gene, and a CLK ChIP-chip dataset showed that CLK

binds to the brm promoter [53]. We therefore assessed daily rhythms in brm mRNA expression

in WT and clkout flies (Fig 3C). We found no difference in brm mRNA levels between the clkout

mutant and the WT control. Thus, rather than regulating brm mRNA expression, it is possible

that CLK stabilizes BRM protein. We tested this possibility by performing a cycloheximide

(CHX) chase experiment in Drosophila S2 cells. BRM protein degrades significantly slower when

co-expressed with clk (t = 7.316, df = 5, p<0.0001) (Fig 3D and 3E). Furthermore, we observed

that BRM migrates slower when co-expressed with CLK, suggesting BRM is post-translationally

modified in the presence of CLK (S2A Fig). When lysate extracted from S2 cells expressing both

BRM and CLK was treated with lambda phosphatase, this shift in migration is no longer present,

suggesting that CLK is promoting BRM stability through phosphorylation (S2B Fig).

TIM reduces BRM occupancy at the per promoter

We next explored the mechanism by which BRM is removed from clock gene promoters.

Since BRM interacts with TIM in fly head tissues at ZT20, which is subsequent to CLK-BRM
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interaction [37], we hypothesized that TIM facilitates BRM removal from the per promoter.

We therefore examined whether increased TIM expression would result in decreased BRM

occupancy by comparing BRM binding to the perCRS in WT (w1118) flies and in flies overex-

pressing tim (w1118;ptim(WT)) (herein referred to as timOE flies) [54]. We observed reduced

BRM binding at ZT16 in timOE flies (t = 2.843, df = 16, p = 0.0462) (Fig 4A) and confirmed

that this reduction is not a result of lower BRM levels in timOE flies as compared to WT control

(S3A and S3C Fig). TIM overexpression in timOE flies was validated by western blot detection

(ZT16: t = 5.661, df = 16, p = 0.0001; ZT22: t = 5.976, df = 16, p<0.0001) (S3A and S3B Fig).

We examined the effect of reduced BRM binding to nucleosome density by measuring Histone

H3 occupancy in WT and timOE flies, and we observed a significant decrease in H3 occupancy

at the per promoter at ZT22 in the mutant (t = 2.963, df = 16, p = 0.0361) (Fig 4B).

We further investigated the effect of TIM on BRM by analyzing BRM occupancy in WT

flies entrained in LD cycles and subsequently released into constant light (LL). Because TIM

undergoes light-dependent degradation [55–57], its expression is drastically reduced in LL

[30,54]. As expected, we observed an increase in BRM binding at CT22 in flies maintained in

LL as compared to flies in LD (t = 11.17, df = 16, p<0.0001; CT is defined as Circadian Time)

(Fig 4C). Because LL can affect the levels of proteins in addition to TIM, e.g. CLK, we sought

to determine the direct effect of TIM on BRM by assaying BRM occupancy at the perCRS in

Drosophila S2 cells by expressing either brm alone or brm co-expressed with tim. In the pres-

ence of tim, BRM occupancy is lower (t = 4.654, df = 3, p = 0.0187) (Fig 4D), supporting the

model that TIM promotes the removal of BRM from the DNA.

Furthermore, we leveraged a brm gain-of-function (brmGOF) mutant fly to confirm our

findings on the effect of TIM on BRM function. This mutant expresses a non-phosphorylatable

Fig 3. CLK stabilizes BRM protein. (A-B) BRM protein and (C) brm mRNA levels in the heads of w1118 (black) and

clkout (red) flies collected at the indicated time points on LD3. (B) BRM signal (A: top panel) was quantified and

normalized to HSP70 (A: bottom panel) (n = 3). The grey background denotes the dark phase of the LD cycle. Each data

point represents a biological replicate. Error bars represent ±SEM. Asterisks denote significant p-values: �p<0.05. (C)

Steady state brm mRNA was normalized to cbp20 mRNA expression. Each biological replicate (n = 4) is an average of 2

technical replicates of qPCR. (D) Western blot detecting FLAG-tagged BRM (top panel) every 2 hours (hrs) post-

cycloheximide (CHX) addition to S2 cells expressing brm alone or brm co-expressed with clk. HSP70 was used as a

loading control (middle panel). V5 was detected to confirm CLK-V5 expression (bottom panel). (E) BRM expression was

normalized to HSP70 (n = 3). Asterisks denote significant p-values: ����p<0.0001.

https://doi.org/10.1371/journal.pgen.1010649.g003
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mutant of brm at specific cyclin dependent kinase (CDK) sites [58]. brmGOF was expressed in

tim-expressing cells using the TUG driver (TUG>brmGOF), and per mRNA expression was

assayed in LD and in constant darkness (DD). We expect that increased levels of TIM protein

in DD would diminish the effect of the gain-of-function brm mutation if TIM indeed removes

BRM from the per promoter. We observed dampening of per mRNA rhythms in the mutant

when compared to the TUG parental control in LD conditions (CircaCompare: MESOR

p = 9.997e-8, amplitude p = 0.0026) (Fig 4E). This can be explained by elevation of per repres-

sion mediated by increased BRM activity in TUG>brmGOF flies. As expected, no differences in

per mRNA expression and rhythm were found between TUG control and TUG>brmGOF flies

in DD, given more TIM is available to remove BRMGOF (CircaCompare: MESOR p = 0.688,

amplitude p = 0.597) (Fig 4F).

Finally, we examined whether lower clock gene expression in LD (Fig 4E) correlates with

higher nucleosome density by measuring Histone H3 occupancy in TUG and TUG>brmGOF

flies. Consistent with per mRNA rhythms, we observed an increase in Histone H3 occupancy

in the mutant, specifically at ZT16 (t = 3.476, df = 16, p = 0.0124) and ZT22 (t = 2.849, df = 16,

p = 0.0124) (Fig 4G). Our results indicate that the brmGOF mutation enhances the ability of

BRM to condense the chromatin at the per promoter, resulting in lower clock gene expression.

This is in agreement with our previous finding that BRM promotes repression of clock genes

[37]. Taken together the results from our four independent approaches, we conclude that TIM

reduces BRM function by reducing its occupancy at the per promoter.

Fig 4. TIM promotes the reduction of BRM occupancy at the per promoter. (A) BRM and (B) Histone H3 occupancy at the perCRS in head nuclear

extracts of w1118 (black) and w1118;ptim(WT) (referred to as timOE) (red) flies collected at the indicated time points on LD3. Each data point represents

a biological replicate (n = 3), and each biological replicate is an average of at least 2 technical replicates of qPCR. Error bars represent ±SEM. The grey

background denotes the dark phase of the LD cycle. Asterisks denote significant p-values: �p<0.05. (C) BRM occupancy at the perCRS in head extracts

of TUG flies entrained for 3 days in 12:12LD and collected on LD4 (white) or LL1 (yellow) (n = 3). (D) BRM binding at the perCRS in S2 cell nuclear

extracts expressing either brm alone (white) or brm co-expressed with tim (grey) (n = 4). ChIP signal is relative to the amount of BRM binding in the

brm alone condition. (E-F) Steady state mRNA expression of per in the heads of TUG (black) and TUG>brmGOF (blue) flies entrained in LD for 3 days

and collected on (E) LD4 and (F) DD1. Steady state cbp20 mRNA levels were used for normalization. Each biological replicate (n = 3) is an average of

at least 2 technical replicates of qPCR. The light grey background denotes subjective day, and the dark grey background denotes subjective night in

complete darkness (DD) conditions. CircaCompare: (E) MESOR: 9.997e-8, amplitude: 0.0026 and (F) MESOR: 0.688, amplitude: 0.597. (G) Histone

H3 occupancy at the perCRS in TUG and TUG>brmGOF flies (n = 3). Asterisks denote significant p-values: �p<0.05 and ����p<0.0001.

https://doi.org/10.1371/journal.pgen.1010649.g004
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Discussion

In this study, we provide evidence that key clock transcription factors facilitate rhythmic BRM

activity at clock gene promoters by mediating rhythmic BRM binding to these loci (Fig 5). Our

findings reveal that following peak CLK-CYC binding, CLK interacts with BRM and increases

BRM occupancy at clock gene loci partly by stabilizing BRM protein. Once bound, BRM mod-

ifies the chromatin to produce a more repressive chromatin landscape by condensing the chro-

matin catalytically and possibly serving as a scaffold for other repressors [37]. At the end of the

activation phase of the circadian transcription cycle, TIM interacts with BRM and promotes its

Fig 5. Model depicting the impact of CLK and TIM on BRM occupancy at the per promoter. CLK-CYC

heterodimers bind to the E-box of per to activate transcription. At the peak of transcription, CLK promotes BRM

binding to the chromatin. While bound, BRM condenses the chromatin and recruits repressors to reduce gene

transcription levels. When PER-TIM complexes are in the nucleus to repress CLK-CYC activated transcription, TIM

promotes the removal of BRM from the DNA to reset the chromatin for the next cycle of transcription. This figure was

created with BioRender.com (license to lab of JCC).

https://doi.org/10.1371/journal.pgen.1010649.g005
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removal from DNA, thus resetting the chromatin state for the next daily transcription cycle.

Based on available data, we cannot determine whether BRM is removed from the DNA

together with clock proteins at the conclusion of the transcriptional activation phase or

whether BRM is removed from the DNA prior to the departure of clock proteins from DNA.

It is now known that rhythmic activity of histone modifiers and chromatin-remodeling

complexes are responsible for creating a dynamic chromatin landscape at clock gene loci

(reviewed in [31,59,60]). Studies have shown that the clock promotes rhythmic activity of

chromatin remodelers [34–36,61], consistent with our results. Our study expands on this body

of work by illuminating on the activity of clock proteins to shape rhythmic recruitment and

removal of the chromatin remodeler BRM at clock-regulated loci, providing an additional

layer of regulation to facilitate robust rhythmic gene expression. Our results also provide new

insights into reciprocal regulation between circadian clock proteins and chromatin remode-

lers. This has significant implication to the maintenance of robust circadian gene expression,

suggesting that any environmental, nutritional, or genetic factors that impact expression of

clock genes, e.g. the aging process [62–64], could disrupt the robustness of rhythmic chroma-

tin landscape and further dampen rhythmic clock output.

Using our newly produced polyclonal BRM antibody, we found that endogenous BRM

binds rhythmically to clock gene loci (Fig 1). This result is different than our previous study

showing that BRM occupancy is constitutive at the promoters of per and tim [37]. This dis-

crepancy is likely due to the fact that our previous study was performed in flies overexpressing

an epitope tagged BRM, while the current study examined BRM occupancy with a polyclonal

antibody in wild type flies. Notably, the rhythmic BRM occupancy we observed here is consis-

tent with a previous study showing that Brahma Regulated Gene 1 (BRG1), the mammalian

homolog of BRM, binds rhythmically to the promoters of Per1 and Per2 [65]. Although BRM

binding is rhythmic, BRM protein expression is not (Fig 1). This is consistent with its role in

regulating the transcription of constitutively expressed genes including heat shock protein
(hsp) 26, hsp67Bc, and hsp70A [51]. Constitutive BRM protein expression indicates that other

factors are involved in regulating rhythmic BRM occupancy at clock gene promoters. We

should point out that we cannot rule out the possibility that BRM expression in non-clock cells

may mask BRM rhythmic expression in clock cells, given BRM expression was measured in

whole head extracts. However, because many cells within the fly head are clock cells, including

photoreceptors, neurons, and glia [66–69], and that we were able to detect rhythmic BRM

occupancy on clock gene promoters (Fig 1C-F) and reduced expression of BRM in clkout flies

(Fig 3A and 3B) using whole head extracts, it is reasonable to assume we would be able to

detect rhythmic BRM expression even if only a portion of BRM-expressing cells have clocks.

Previously, we have shown that BRM interacts with CLK in S2 cells and fly heads [30,37].

Therefore, we investigated the effect of CLK on BRM occupancy. Although our results indicate

that CLK promotes rhythmic BRM occupancy at the per promoter and likely at other clock

gene promoters (Fig 2), the exact mechanism by which CLK promotes BRM occupancy to the

DNA is unclear. We speculate that CLK indirectly promotes BRM binding to the DNA given

that CLK occupancy peaks at ZT12 and BRM occupancy peaks 2 hours after (ZT14) (Fig 2D).

One possibility is that CLK brings in kinases that phosphorylate BRM, increasing its stability

at night, resulting in its increased binding to clock gene promoters. We show that CLK pro-

motes BRM stability when both proteins are co-expressed in S2 cells, and this stability may be

a result of CLK promoting the phosphorylation of BRM (Fig 3 and S2 Fig). We speculate that

CK2, a kinase that regulates PER-TIM nuclear accumulation [18,24,70–73] and phosphory-

lates CLK [28], may phosphorylate BRM to promote its stability given that CK2α phosphory-

lates BRG1 in mice [74,75]. Thus, phosphorylation of BRM by CLK-recruited CK2 could

stabilize BRM protein levels, promoting its activity at clock loci.
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Other mechanisms for CLK to increase BRM occupancy could also be at play apart from

BRM phosphorylation. For instance, it is possible that CLK facilitates a hyperacetylated chro-

matin landscape which BRM recognizes via its bromodomain [76–79]. Mammalian CLOCK

has histone acetyl transferase (HAT) activity [80,81] while Drosophila CLK interacts with the

HAT, NEJIRE [82,83]. Finally, it is possible that BRM binding to clock gene promoters is

directed by other proteins, such as OSA and Histone H2Av. The BAP complex, one of the two

BRM complexes in flies, is directed to its target binding sites by OSA [84]. OSA was shown to

be a rhythmic target of CLK in a ChIP-chip analysis [53], suggesting that it may be rhythmi-

cally expressed in flies. Alternatively, BRM may be recognizing Histone H2Av at CLK-regu-

lated loci. It has been shown that H2Av localizes at the promoters of per and tim in flies [85].

Similarly in Arabidopsis, BRM interacts with H2Az, a H2Av homolog, to coordinate transcrip-

tion [86]. Therefore, rhythmic BRM recruitment could be mediated by daily rhythms of OSA

or H2Av present at clock loci. Future studies will need to be conducted to explore these

possibilities.

We then investigated the mechanism by which BRM is removed from the DNA. We

hypothesized that TIM plays a role in promoting the removal of BRM from the promoter

because peak BRM binding to the DNA (~ZT14, Fig 2D) precedes peak TIM and BRM interac-

tion (~ZT20) [37]. We therefore investigated the effect of TIM on BRM occupancy. We

showed that reduction of BRM occupancy at the per promoter and possibly other clock gene

promoters is mediated by TIM. Given that TIM levels affect PER levels [87–90], it is possible

that rather than TIM, PER is acting on BRM occupancy, however, we reason that this is not

the case because our previous study revealed that BRM binds to TIM and not to PER in fly tis-

sue extracts [37]. However, it is unclear how exactly TIM influences BRM occupancy. Similar

to the effect of CLK on BRM occupancy, we propose that the effect of TIM on BRM occupancy

is indirect. It is possible that TIM recruits phosphatases or deacetylases that affect BRM stabil-

ity and binding to the chromatin respectively. Some phosphatases that the PER-TIM complex

interacts with include Protein Phosphatase 2A, Protein Phosphatase I, and Phosphatase of
Regenerating Liver-1 [91–93]. Alternatively, TIM may be serving as a scaffold for deacetylases

to promote BRM removal since mammalian SWI/SNF ATPase bromodomains stabilize inter-

actions between BRM and the DNA [94]. The deacetylase Sirtuin 1 interacts with the PER-

CRY complex [81,95] and interacts with BRG1 in mice [96]. Future studies can assess BRM

binding to clock gene promoters when co-expressed with these phosphatases and deacetylases

to determine if they are involved in promoting the removal of BRM from clock gene

promoters.

The involvement of TIM in regulating rhythmic BRM occupancy prompts interesting ques-

tions, such as how light and temperature may affect the chromatin landscape. Because TIM

protein abundance is regulated by light [55–57], future work can investigate how artificial light

at night (ALAN) can disrupt the chromatin landscape at clock genes and therefore the clock

itself as well as its output. This could be useful in understanding the impact of ALAN on health

and disease. Additionally, future experiments can explore whether BRM occupancy and the

chromatin landscape change at different temperatures given that tim mRNA is spliced in a

temperature-dependent manner to produce different TIM isoforms that vary in structure and

function [54,97,98].

Finally, given that transcription can be damaging to the DNA (reviewed in [99,100]) and

BRG1 is implicated in DNA damage response [42–44], it is possible that BRM serves as a scaf-

fold for DNA repair proteins. Therefore, CLK may be mediating rhythmic DNA repair at

clock-controlled genes by promoting rhythmic BRM occupancy at these loci. It is also possible

that BRM is not only condensing the chromatin following transcription but also facilitating

chromatin remodeling to enable successful DNA repair. It is known that some DNA lesions
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result in chromatin mobilization to the periphery of the nucleus [101], and a recent study has

shown that CLK and PER are involved in regulating the spatial organization of clock gene loci

near the periphery of the nucleus during the transcriptional repression phase [102]. However,

the mechanism driving this spatiotemporal phenomenon has yet to be fully uncovered. Given

the role of BRG1 in DNA repair, it is possible that BRM is involved in driving this spatiotem-

poral phenomenon.

In summary, our study reveals that core clock proteins are involved in regulating rhythmic

binding of a general chromatin remodeler at clock gene loci to facilitate rhythmic circadian

gene expression. Our work provides additional evidence that the circadian clock creates a

dynamic chromatin landscape at clock genes and provides new insights into how external sti-

muli, such as light, affects chromatin structure.

Materials and methods

Fly strains and genetic crosses

Targeted expression of wild type brm tagged with 3XFLAG or the brm gain-of-function muta-

tion (brmGOF) in tim-expressing neurons was achieved using the UAS-GAL4 system [103].

Virgin females of w1118; tim(UAS)-Gal4 driver line [104] (referred to as TUG) were crossed to

male flies of the following responder lines: w1118; UAS-FLAG-brm (strain M21) [37] and w1118;

UAS-brmGOF (Bloomington Drosophila Stock Center stock no. 59048) [58]. The resulting

progenies of the crosses are referred to as brmOE and TUG>brmGOF respectively. Both male

and female progenies of the crosses were used in protein, mRNA, and chromatin immunopre-

cipitation assays. Other fly strains used in this study include w; clkout, referred to as clkout [27]

(Bloomington Drosophila Stock Center stock no. 56754) and w; ptim (WT), referred to as

timOE [54].

Generating BRM polyclonal antibody

A 558 bp region of the brm CDS (Flybase: FBpp0075278) encoding amino acids 1321–1506

was cloned into pET28a-6XHis (Sigma, St. Louis, MO). The construct was transformed into

BL21-DE3 E. coli competent cells and expression was induced with 0.5M IPTG. Total protein

was extracted from cells using His lysis buffer (50mM sodium phosphate pH 8.0, 300mM

NaCl, 10% glycerol, and 0.1% Triton X-100). The BRM antigen was affinity-purified by IMAC

using the NGC Medium-Pressure Liquid Chromatography System (Bio-Rad, Hercules, CA)

and eluted in elution buffer (50mM sodium phosphate pH 8.0, 300mM NaCl, and 10mM

imidazole). The purified antigen was dialyzed in dialysis buffer (50mM sodium phosphate pH

8.0, 300mM NaCl, and 10% glycerol) using a Slide-A-Lyzer Dialysis Casette 10K MWCO

(Thermo Fisher Scientific, Waltham, MA) prior to being sent to Labcorp Drug Development

(Princeton, New Jersey) for injection into rats. The serum from final bleed was tested for use

in western blot detection of BRM in Drosophila Schneider (S2) cells and fly head protein

extracts (Fig 1A and 1B, and S1 Fig).

Protein extraction from Drosophila S2 cells and fly heads

Drosophila S2 cells were seeded at 3 X 106 cells in 3ml of Schneider’s Drosophila Medium (Life

Technologies, Waltham, MA) supplemented with 10% fetal bovine serum (VWR, Radnor, PA)

and 0.5% penicillin-streptomycin (Sigma). To test the BRM antibody, S2 cells were transiently

transfected with pAc-brm-FLAG-6xHIS using Effectene (Qiagen, Valencia, CA). Cells were

harvested 48 hours after transfection and proteins were extracted using EB2 buffer (20mM

HEPES pH 7.5, 100mM KCl, 5% glycerol, 5 mM EDTA, 1mM DTT, 0.1% Triton X-100,
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25mM NaF, 0.5mM PMSF) supplemented with EDTA-free protease inhibitor cocktail (Sigma)

as described in [105]. To assess protein expression profiles, flies were entrained for 2 days at

25˚C in 12hr light: 12hr dark (LD) conditions. On LD3, flies were flash frozen on dry ice at the

indicated time points (ZT). For experiments conducted in constant conditions, flies were

entrained for 3 days in 12:12 LD conditions, and the treatment groups were then moved into

constant light (LL) or constant dark (DD). Flies were flash frozen on dry ice and collected at

the indicated time points on LD4, LL1, and DD1. Heads were separated from bodies using fro-

zen metal sieves (Newark Wire Cloth Company, Clifton, New Jersey). Protein lysate was

extracted in RBS buffer (20mM HEPES pH 7.5, 50mM KCl, 10% glycerol, 2mM EDTA, 1%

Triton X-100, 0.4% NP-40, 1mM DTT, 0.5mM PMSF, 0.01 mg/ml aprotinin, 0.005 mg/ml leu-

peptin, and 0.001 mg/ml pepstatin A) as described in [17]. Extracts were sonicated for 5 s with

10 s pauses between sonication cycles for a total of 5 cycles. Protein concentration was mea-

sured using Pierce Coomassie Plus Assay Reagents (Thermo Fisher Scientific). 2X SDS sample

buffer was added to the protein lysate, and the mixture was boiled at 95˚C for 5 minutes before

running on an SDS-PAGE gel.

Western blotting of protein extracts, detection, and quantification

Equal amounts of protein lysate were resolved on SDS-PAGE gels and transferred to nitrocel-

lulose membranes (Bio-Rad) using the Semi-Dry Transfer Cell (Bio-Rad). Protein-containing

membranes were incubated in 5% blocking reagent (Bio-Rad) dissolved in 1X TBST (99.95%

Tris buffered saline and 0.05% Tween-20) supplemented with primary antibodies at the appro-

priate dilutions for 16–24 hours. The primary antibodies and corresponding dilutions used in

this study are rat α-BRM (RRID: AB_2827509) at 1:5000, mouse α-HSP70 (Sigma) at 1:10000,

mouse α-FLAG (Sigma) at 1:7000, mouse α-V5 (Invitrogen, Waltham, MA) at 1:5000, and rat

α-TIM (R5839, RRID: AB_2782953) [54] at 1:1000. Blots were washed every 10 minutes with

1X TBST for a total of one hour to remove non-specific antibody binding. The blots were then

incubated in 5% blocking solution containing the appropriate secondary antibodies at their

corresponding dilutions for 1 hour. The secondary antibodies used in this study are α-rat-

IgG-HRP (Cytiva, Marlborough, MA) at 1:2000 if detecting BRM and 1:1000 if detecting TIM

and α-mouse-IgG-HRP (Cytiva) at 1:10000 if detecting HSP70 and 1:2000 if detecting FLAG

or V5. Blots were washed for another hour with 1X TBST. Finally, blots were treated with Clar-

ity Western ECL Substrate (Bio-Rad) according to the manufacturer’s instructions prior to

being imaged on the ChemiDoc MP Imaging System (Bio-Rad). Image analyses were per-

formed using Image Lab Software (Bio-Rad). Protein signal was normalized to HSP70. Values

were scaled such that the highest value of all samples was set to 1.

For the pre-adsorption assay used to validate the BRM antibody, SDS-PAGE and western

blotting were all carried out as described above with the following modification. The BRM

antibody was first incubated with either 0ul, 0.1ul, 1ul, or 10ul of purified BRM antigen (con-

centration 1ug/ul) in 5% blocking solution for 1 hour at room temperature. The blocking solu-

tion containing the antigen and antibody was then added to a protein-containing membrane.

The blot was then washed, probed with secondary antibody, and imaged as described above.

BRM signal was normalized to a non-specific band detected on the same blot.

Chromatin Immunoprecipitation-qPCR (ChIP-qPCR) in Drosophila S2

cells and flies

ChIP in flies was performed as described in [37] with the following modifications. 5.25 μl of α-

BRM (this study), 1.5 μl of α-Histone H3 (Abcam, Cambridge, MA), or 5.63 μl α-CLK (Santa

Cruz Biotechnology, Dallas, TX) were incubated with 25ul of DynaBeads Protein G
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(Invitrogen) per IP. 1.5 μl of α-V5 (Invitrogen) was used for negative IP which was utilized for

background deduction in Fig 1C–1H, and negative ChIP values were replaced with zeroes as

described in [106]. For ChIP using S2 cell extracts, cells were transiently transfected with pAc-

brm-FLAG-6xHIS in combination with pAc-clk-V5-HIS, pAc-tim-HA, pAc-V5-HIS empty

plasmid, or pAc-HA empty plasmid using Effectene (Qiagen). Cells were harvested 48 hours

after transfection for processing. An intergenic region on the X chromosome proximal to

FBgn0003638 was used for background deduction. The primer sets used during quantitative

RT-PCR (qPCR) to amplify specific gene regions subsequent to ChIP, either designed in this

study or in [37], can be found in S1 Table, and a schematic for the location of the primers

designed in this study can be found in S4 Fig. At least 3 biological ChIP replicates were per-

formed per experiment, and each biological replicate is an average of at least 2 qPCR technical

replicates. ChIP signal for the target and background was calculated as a percentage of the

input samples. Background signal was subtracted from the target signal. In experiments com-

paring 2 conditions at multiple time points, values were scaled such that the highest value of all

samples was set to 1. When only one comparison is being made, the value of the control is set

to 1 and the values of the other condition are relative to that value.

Steady state mRNA analysis

Total RNA extraction was performed as described in [24], and cDNA synthesis and quantita-

tive RT-PCR analysis was performed as described in [54]. The primer sets used to detect brm,

cbp20, and per are described in [37,107] and are listed in S1 Table. Each experiment consists of

at least 3 biological replicates, and at least 2 technical replicates were performed for each bio-

logical replicate.

Cycloheximide (CHX) chase and lambda phosphatase (λpp) experiments

Drosophila S2 cells were transiently transfected with pAc-brm-FLAG-6xHIS in combination

with either pAc-clk-V5-HIS or pAc-V5-HIS empty plasmid using Effectene (Qiagen). For

cycloheximide experiments, protein was extracted with EB2 (recipe is listed in “Protein extrac-

tion from Drosophila S2 cells and fly heads” section), and CHX was added to a final concentra-

tion of 10μg/ml 48 hours post-transfection. Cells were harvested every 2 hours over a 6-hour

period after CHX addition. SDS-PAGE and Western blotting and detection were performed as

described in the “Western blotting of protein extracts, detection, and quantification” section.

For λpp experiments, protein was extracted with EB2 supplemented with PhosStop (Roche,

Indianapolis, IN) and were subjected to IP with 15 μl of settled α-FLAG beads (Sigma) per

reaction for 4 hours at 4˚C. Beads were washed 2 times with EB2 without NaF or PhosStop

and one time with λpp buffer (New England Biolabs, Ipswich, MA) before resuspension in

40 μl of λpp buffer. Experimental reactions were treated with 0.6ul λpp (New England Biolabs),

and both experimental and control reactions were then incubated in a 30˚C water bath for 30

mins. 45 μl of 2X SDS sample buffer was added to the beads for protein elution. Eluted protein

was subjected to SDS-PAGE and Western blotting and detection. CHX and λpp experiments

were each performed 3 times.

Statistical analysis

Rhythmicity Analysis Incorporating Non-parametric methods (RAIN) [108] was used to

determine rhythmicity and phase of protein occupancy in ChIP assays, protein expression,

and mRNA expression. Differences in daily rhythmicity were assessed using Detection of Dif-

ferential Rhythmicity (DODR) [109] and differences in overall expression of rhythmic data

(MESOR and amplitude) was measured using CircaCompare [110]. RAIN, DODR, and
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CircaCompare were performed using R version 4.0.3. To analyze the differences between treat-

ments at each time point, two-way ANOVA followed by Sidak’s multiple comparisons test was

used. Comparisons between only two conditions was determined using One sample t and Wil-

coxon test to a hypothetical mean value corresponding to the normalization condition. One-

way ANOVA followed by Dunnett’s multiple comparison tests was performed to analyze the

comparisons of a control and experimental conditions, e.g. in S1B Fig. Two-way ANOVA,

One sample t, and one-way ANOVA were performed using GraphPad Prism Version 9.3.1

(GraphPad Software, La Jolla, California, USA).

Supporting information

S1 Fig. Pre-adsorption of BRM polyclonal antibody with BRM antigen supports the speci-

ficity of the BRM antibody signal. (A) The BRM antibody was incubated with a dilution

series of the BRM antigen (0.1ul, 1ul, and 10ul at 1ug/ul) prior to detecting BRM in protein

lysate extracted from w1118 flies collected at ZT16. The non-specific band is denoted as NS.

(B) BRM signal was normalized to the NS signal (n = 3). Each data point represents a

biological replicate. Error bars represent ±SEM. Asterisks denote significant p-values:
����p<0.0001.

(TIFF)

S2 Fig. Lambda phosphatase treatment reveals BRM is phosphorylated when expressed

with CLK. (A) BRM (top panel) and CLK (bottom panel) expression prior to lambda phospha-

tase (λpp) treatment in protein lysate from S2 cells expressing either BRM alone or BRM co-

expressed with CLK. (B) BRM protein after treatment with λpp.

(TIFF)

S3 Fig. Protein expression in timOE flies. (A) TIM (top panel) and BRM (middle panel) pro-

tein in w1118 and w1118;ptim(WT) fly heads collected at the indicated time points on LD3.

w1118;ptim(WT) flies are denoted as timOE flies. HSP70 (bottom panel) was used as a loading

control. (B-C) Normalized (B) TIM and (C) BRM expression in w1118 (black) and timOE (red)

flies (n = 3). Each data point represents a biological replicate. Error bars represent ±SEM. The

grey background denotes the dark phase of the LD cycle.

(TIFF)

S4 Fig. Primer locations. Schematic of region amplified by primers (grey) used in ChIP to

assess BRM occupancy at the promoters of vrille (vri), clockwork orange (cwo), heat shock pro-
tein 27 (hsp27), and glycine transporter (glyT). Positions are relative to the transcription start

site (TSS). Locations of other ChIP primers are shown in [37].

(TIFF)

S1 Table. Sequences for primers used for generation of BRM antigen, Chromatin Immuno-

precipitation-qPCR, and steady-state mRNA analysis.

(DOCX)

S2 Table. Raw Data Excel File.

(XLSX)
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