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Abstract

Exploring Computational Intelligence to Improve Network Performance

by

Yalda Edalat

Several network protocols, services, and applications adjust their operation dy-

namically based on current network conditions. Consequently, keeping accurate

estimates of network conditions and performance as they fluctuate over time is

critical. In this thesis, we explore the use of computational intelligence, in partic-

ular machine learning techniques to estimate "near-future" network performance

based on past network conditions. We call our approach to network performance

estimation SENSE for Smart Experts for Network State Estimation. SENSE

is able to respond to network dynamics at different time scales, i.e., long- and

medium-term fluctuations as well as short-lived variations.

Then, by applying SENSE, we proposed a novel algorithm to dynamically

enable and disable IEEE 802.11 DCF’s RTS/CTS handshake. Our algorithm

uses current packet size and transmission rate, as well as an estimate of network

contention to dynamically decide whether to use RTS/CTS. To the best of our

knowledge, the proposed algorithm is the first to enable and disable the RTS/CTS

handshake based on a set of current network conditions, and automatically adapt

as these conditions change. Simulation results using a variety of WLAN- as well

as wireless multi-hop ad-hoc network scenarios, including synthetic and real traffic

traces, demonstrate that the proposed approach consistently outperforms current

best practices, such as never enabling RTS/CTS or using a pre-specified threshold

to decide whether to switch RTS/CTS on or off.

We also propose a modified version of a simple, yet effective machine learning

x



technique called "Fixed-Share" algorithm to optimize IEEE 802.11’s backoff algo-

rithm. To the best of our knowledge, this is the first approach that uses machine

learning to dynamically set the IEEE 802.11’s contention window based on past

performance. Through simulations using a variety of network scenarios, we show

that our method outperforms IEEE 802.11’s original exponential back off algorithm

as well as an approach that adapts based on a few recent data transmission events.
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Chapter 1

Introduction

Computer networks have become one of our society’s essential commodities

and, like power- and water distribution systems, are now considered part of our

critical infrastructure. Consequently, it is crucial to keep them operating continu-

ously and delivering adequate performance. This is especially true as networks

become increasingly more complex and the services they provide increasingly more

sophisticated and demanding.

Like any complex dynamical system, computer networks’ performance fluctuates

over time influenced by a variety of factors such as traffic load, end system load,

communication link conditions (e.g., propagation channel impairments especially

in the case of wireless links), etc. In order to adapt to network dynamics, most

computer network protocols and algorithms employ a number of operational

parameters that constantly estimate current conditions in the network.

Motivated by the need to accurately estimate near-term future network state

that may slowly or rapidly change, in our research we have focused on machine-

learning techniques, specifically Multiplicative Weight algorithmic family [21] to

estimate "near-future" network state based on past network conditions.

Our predictor can be applied to any protocol or application requiring near future
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network state in order to adapt its performance and parameters. IEEE 802.11

standard is one of the protocols which can benefit from tunning its parameters

dynamically based on near future network conditions. Encouraged by that, we

focus on 802.11 features and parameters and use our estimator to optimize it.

1.1 Contributions

The thesis main contributions can be summarized as follows:

1. Introduce a computational intelligence method to estimate "near-future"

network state based on past network conditions [12] [13].

2. Propose a new approach that uses machine learning techniques to dynamically

switch RTS/CTS on and off ahead of data transmission by considering a

combination of a set of current network conditions [15].

3. Propose a machine learning technique to dynamically tune the contention

window of IEEE 802.11 [14].

1.2 Publications

1. A poster on our algorithm was accepted in ACM SIGCOMM, Chicago 2014.

2. “Network state estimation using smart experts” is published in 11th Inter-

national Conference in Mobile and Ubiquitous Systems (MOBIQUITOUS),

London 2014.

3. “Smart Experts for Network State Estimation.” is published in IEEE Trans.

Network and Service Management 13, no. 3 (2016): 622-635.
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4. “A machine learning approach for dynamic control of RTS/CTS in WLANs”

is published in 15th International Conference in Mobile and Ubiquitous

Systems (MOBIQUITOUS), New York 2018.

5. “Dynamically Tuning IEEE 802.11’s Contention Window Using Machine

Learning” is published in 22nd ACM International Conference on Modeling,

Analysis and Simulation of Wireless and Mobile Systems, 2019.

6. In preparation: “Smart Adaptive Collision Avoidance for IEEE 802.11”.

1.3 Patents

Patent pending: “Dynamically Tuning IEEE 802.11’s Contention Window

Using Machine Learning.”

1.4 Road Map

The remainder of this document is organized as follows. In Chapter 2 we

present a complete description of our network state estimator, SENSE. Chapter

3 introduces a machine learning technique to dynamically switch IEEE 802.11’s

RTS/CTS on and off based on a set of current network conditions. In Chapter 4

we introduce a machine learning method to dynamically set the contention window

size of IEEE 802.11. Finally, Chapter 5 concludes the thesis.

3



Chapter 2

Smart Experts for Network State

Estimation

There are several network protocols and applications adapt their parameters

based on the network conditions. Notable examples include the Transmission

Control Protocol (TCP) and IEEE 802.11 (Wi-Fi) which adjust the retransmission

timeout and contention window size, respectively, according to network congestion

and wireless channel state. More specifically, to recover lost packets in a timely

manner yet minimizing the number of unnecessary retransmissions, TCP peri-

odically evaluates the degree of network congestion under the assumption that

network conditions will stay almost the same until the next evaluation period. It

uses the round-trip time (RTT), i.e., the time between sending a segment and

receiving confirmation from the other end that the segment was received, as a way

to gage network load. TCP adjusts its retransmission timeout, i.e., the interval

of time the TCP sender will wait for a segment’s acknowledgment from the TCP

receiver before retransmitting the segment, based on TCP’s current estimate of the

RTT. To compute its estimate of the RTT, TCP runs a simple mechanism known

as Exponentially Weighted Moving Average (EWMA) with one tunable parameter,

4



which determines the relative weight between the current RTT measurement and

the previous RTT estimate.

The IEEE 802.11 responds to congestion buildup in the network by exponentially

inflating its back-off window, which stipulates the average amount of time that a

node should wait to transmit after a collision has occurred. The rationale for this

exponential back off is that collisions are used as congestion indicators; and, after

a failed attempt to transmit due to a collision, the transmitter needs to wait longer

before trying again. To estimate the "near-future" channel state, IEEE 802.11

counts the number of consecutive collisions that took place during the current

estimation time window and exponentially expands the size of the back-off window

according to this collision count.

Clearly, the performance of these widely used network protocols heavily relies

on how correctly their prediction mechanisms forecast "near-future" network state.

Their implicit assumption is that network conditions change smoothly, i.e., that

"near-future" state is closely correlated to previous history. As a result, their

performance can be negatively affected when their operational parameters are

set without accurately accounting for network dynamics. TCP, for instance,

statically presets the weight factor in its RTT EWMA equation irrespective of

the target network environment and conditions. The fixed weight factor in TCP’s

RTT EWMA calculation is a relative ratio deciding how much the current RTT

measurement and the current RTT estimate should influence the new RTT estimate.

The more dynamic the network conditions, the more weight should be placed on

the current RTT measurement. Therefore, to achieve better performance, the fixed

weight factor should change dynamically depending on network conditions.

IEEE 802.11 rigidly cold-starts and counts collisions at every new frame’s trans-

mission without considering previous channel state. This means that considerable

5



resources may be wasted in the process of reaching an adequate congestion window

since 802.11’s network estimation technique does not keep track of the network

state after successful transmissions.

In this chapter, we introduce Smart Experts for Network State Estimation

(SENSE) [12] [13] which is a simple, yet efficient machine learning predictor

based on the Fixed-Share approach [21] [40] [35] [9]. Unlike conventional network

state estimators, SENSE provides a general framework that can incorporate any

traditional estimator as an "expert". SENSE can then dynamically select the best

experts among the set of all experts being used depending on their performance. It

swiftly chooses experts that more faithfully capture network dynamics by penalizing

poorly performing experts.

The original Fixed-Share algorithm [21] has four main drawbacks. First, for

every dataset, a fix value within the range we are trying to predict is assigned to each

expert. Thus, the range of the estimation is required for proper assignment of these

values. Second, its accuracy is sensitive to the number of experts and typically, the

more experts, the more accurate the prediction since the algorithm basically singles

out a few well-behaved experts among the set of competing experts. There is clearly,

a "diminishing return" effect after the number of experts gets too high. Third, the

"loss function" penalizing experts, relies exclusively on the magnitude of the current

error, instead of whether errors have recently increased or decreased. Additionally,

all poorly performing experts are equally penalized. Depending on the recent error

variation history, the loss function should intensify or alleviate the penalty for each

individual expert to accelerate convergence. Finally, to promptly adapt to abrupt

changes even when recent measurements become distinctly different from previous

ones, the original Fixed-Share algorithm constantly tries to boost the weight given

to poorly performing experts while offsetting the weight of well performing ones.

6



This feature leads to precision degradation as too much emphasis is placed on

poorly performing experts, especially when sudden changes rarely happen. To

address these problems, SENSE introduces three techniques, namely: (1) smart

experts, (2) META-learning, and (3) Level-shift. SENSE’s smart experts reduce

sensitivity to the number of experts and eliminate the need for a-priori knowledge

of the data that we are trying to predict. SENSE employs EWMA equations with

different weights as its experts and normalizes errors by the maximum observable

output. SENSE’s META-learning algorithm expedites convergence by tracing

recent past history and adjusting each expert’s penalty accordingly. Finally, the

Level-shift mechanism [18] employed by SENSE improves its response to sudden

data changes by bounding SENSE’s learning time window, and upon detecting

dissimilar data patterns, SENSE reinitializes its tunable parameters and starts to

relearn.

We evaluate SENSE using a variety of datasets including synthetic and real

data. In all cases, SENSE outperforms predictors based on pure EWMA as well

as Fixed-Share. Furthermore, a key advantage of SENSE is that it automatically

adjusts to the data it is trying to predict. As a result, SENSE yields superior

performance for all datasets used in our experiments when compared to "pure"

Fixed-Share and EWMA. Our results also indicate that the performance of EWMA

is quite sensitive to its "smoothing" factor, which determines how much weight

will be placed on the "past" versus the "present" when predicting the "future".

Another key advantage of SENSE’s ability to automatically adjust to the data

is that, unlike Fixed-Share, it needs no a-priori information about the dataset

and is minimally sensitive to the number of experts. In our experiments, SENSE

yields higher prediction accuracy when compared to the Fixed-Share algorithm

and EWMA.
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The rest of this chapter is organized as follows. Section 2.1 presents some

background on history-based prediction algorithms, namely EWMA, Fixed-Share,

and its predecessor, Static Experts. Section 2.2 provides an overview of related

works. Section 2.3 describes SENSE in detail and Section 2.4 compares the

performance of SENSE against EWMA and Fixed-Share algorithm. Finally,

Section 2.5 evaluates SENSE’s new techniques and parameters.

2.1 Background

SENSE is based on a combination of history-based predictors, more specifically

EWMA and Fixed-Share. In this section we review EWMA as well as Fixed-

Share and its predecessor, Static Experts, both of which are examples of the

Multiplicative Weight algorithmic family.

2.1.1 EWMA

Exponentially Weighted Moving Average (EWMA) based predictors, calculate

an exponentially weighted mean of the previous data. Equation 3.1 shows the basic

equation of exponential smoothing given by Hunter [23] where xt and yt represent,

respectively, a sequence of data point that has been observed and a sequence of

forecasts given by the predictor. Furthermore, α in 3.1 is the "smoothing factor",

a value between 0 and 1 specifying how much relative weight is given to previous

estimates (i.e., the "past") versus new samples (the "present").

xt = α× yt−1 + (1− α)× xt−1 (2.1)

The problem of using EWMA based predictors is choosing appropriate α, which

should be based on the dataset. Even though there has been no generally accepted
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statistical technique for choosing α, our observations indicate that α needs to be

determined based on the small-lag autocorrelation. Recall that the autocorrelation

is a correlation coefficient that instead of measuring the correlation between two

different variables, it measures the correlation between two values of the same

variable at times ti and ti+k. The autocorrelation can be used to detect the degree

of randomness in data i.e., whether data similar to the present data would appear

in the future. The autocorrelation parameter named "time lag" measures how soon

the same data pattern will repeat.

Our experiments with a variety of datasets indicate that α should be chosen

based on the small-lag autocorrelation. If data is random, the small-lag autocor-

relation should be near zero. In this case, low values of are desirable: low has

EWMA act as a low-pass filter smoothing out sudden fluctuations occurred in

the input data series. In other words, low values of α, favor the "past" over the

"present" when computing the current estimate. On the other hand, if data is

non-random, then small-lag autocorrelations will be significantly non-zero. In this

case, high α acts as a high-pass filter hardly filtering out measurement noise. It

means that, with high α, the "present" plays a more important role.

The problem of current EWMA based predictors is that they have to statically

set α, for example, by trying to guess what the data will look like in the future.

SENSE, however, runs a small number of EWMA experts with different α’s and,

using the Fixed-Share technique, dynamically picks the best performing EWMA

depending on network dynamics.

2.1.2 Multiplicative Weights Method

The Multiplicative Weight algorithmic family has shown to yield performance

improvements in a variety of on-line problems [19]. Aiming at minimizing the
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Figure 2.1: Hardware block diagram of Multiplicative Weight algorithm

prediction error, this family of algorithms combines predictions of a set of experts

{x1,x2,...,xN} to compute the overall prediction denoted by ŷt. To denote the

impact of each expert on the overall predictor, it associates each expert with a

weight from {w1,w2,...,wN}. After each trial, the weight of each expert is updated

depending on the difference between its prediction and the real data represented

by yt. Weights of "well- performing" experts are not changed, while the weights of

experts that are not performing well are reduced. As an illustration, Figure 2.1

shows the implementation of the Multiplicative Weight algorithm with N experts

using a hardware block diagram. The shaded boxes on the left- and middle columns

correspond, respectively, to the experts denoted as xi and the penalty function.

The process of updating weights and generating the final predictions is represented

as a circuit employing the addition, division, and multiplication operators.

Equation 3.2 represents the circuit of Figure 2.1 as a mathematical expression.

As shown in 3.2, ŷt+1 can be represented by a sum of products of αi,t and xi,t where

αi,t is the experts’ weights (0 < αi,t< 1) which are dynamically and systematically

adjusted and xi,t is each expert’s prediction. Equation 3.2 confirms that the Fixed-

Share algorithm is a selection process, which favors experts whose predictions are

closer to the real data by incrementally growing their weights, while reducing other

experts’ weights.
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As highlighted in [21], several schemes have been proposed for updating experts’

weights in multiplicative weight algorithms. In the remaining of this section, we

discuss two well-known Multiplicative Weight algorithms, namely Static Experts

and Fixed-Share.

ŷt+1 =
∑N
i=1 xi,t × wi,t × e−η×

∑N

i=1 Li,t(xi,yt)∑N
i=1 wi,t × e−η×

∑N

i=1 Li,t(xi,yt)
=

N∑
i=1

αi,t × xi,t

Where αi,t = wi,t × e−η×
∑N

i=1 Li,t(xi,yt)∑N
i=1 wi,t × e−η×

∑N

i=1 Li,t(xi,yt)

(2.2)

Static Experts Algorithm

Static Experts, whose pseudo code is presented in Algorithm 8, is the simplest

version of the Multiplicative Weight algorithmic family. Its steps, as described

in Algorithm 8, are common to all Multiplicative Weight algorithms with N

experts. The Prediction step in Algorithm 8 computes the current prediction by

(1) summing, over N experts, the products of the expert multiplied by its current

weight and then (2) normalizing the result by the sum of the weights. Using a

given "loss function", the Loss function step checks, at each prediction trial, how

good of a prediction each expert yields. Then, in the Exponential updates step,

the loss computed in the Loss function step is used to adjust the experts’ weights,

which will be used in the next trial. The Static Experts algorithm has one main

drawback: it is not able to adjust to abrupt changes in data fast enough. This is

because it takes a relatively long time for the weight of an expert to either shoot

up or down when the expert’s performance suddenly changes following an abrupt

change is the data.
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Algorithm 1 Static Expert Algorithm
Parameters:

η > 0, 0 ≤ α ≤ 1
Initialization:

w1,1=...=wN,1= 1
N

Prediction:

ŷt=
∑N

1 wi,t×xi∑N

1 wi,t

Loss Function:

Li,t(xi, yt) =

(xi − yt)2 , xi ≥ yt

2× yt , xi < yt

Exponential Update:
ẃi,t = wi,t × e−η×Li,t(xi,yt)

Fixed-Share Algorithm

To solve the problem of slow convergence of well-performing experts in the

Static Experts algorithm, [21] introduced Fixed-Share. The main goal of the

Fixed-Share approach is to improve Static Experts’ performance, while keeping

its simplicity. The basic idea of Fixed-Share is to prevent large differences among

experts’ weights; to this end, it shares a fixed fraction of the weights of experts

that are performing well among the other experts. This additional step, called

"Sharing weights" and shown in 2.3, redistributes evenly a certain fixed fraction of

pool, which is the sum of a preset portion of each weight.

Pool =
N∑
i=1

α× ẃi,t wi,t+1 = (1− α)× ẃi,t + 1
N
× Pool (2.3)

Although the Fixed-Share algorithm has been shown to perform well when

estimating network variables in [40], it exhibits four main weaknesses. First, it must

have a priori knowledge of the dataset’s range in order to properly set the value of
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its experts. Likewise, the degree of sharing in the Sharing weights step 2.3 cannot

be appropriately determined unless the number of level shifts is known in advance.

Level shift [18] is defined as a significant change in the mean of observed data and

is discussed in detail in Section 2.3. Second, the accuracy of the algorithm is quite

sensitive to the number of experts whose values determine the granularity over

the range of values that the variable in question can assume, and ultimately its

accuracy. However, as discussed in Section 2.1.2, more experts may also introduce

additional errors. Third, since the loss function is predetermined and not changed

considering the target environment and application, it is not always able to exhibit

adequate convergence. Finally, if experts perform consistently well for long periods

of time, sharing their weight with other experts whose performance is not adequate,

compromises the algorithm’s overall convergence and performance.

2.2 Related Work

Several network protocols and applications make use of heuristics to estimate

and adapt to the dynamics of the underlying network. Since the literature on

the topic is quite extensive, in this section, we focus on reviewing work that is

more closely related to ours. EWMA is a well-known technique adopted by several

communication protocols. As previously pointed out, TCP uses EWMA to estimate

near-term round-trip time (RTT), which is used to set TCP’s retransmission

timeout (RTO). Since, depending on the network environment, RTTs may vary

considerably in short timescales, a number of mechanisms have been proposed

to either replace or augment EWMA. DualPats, a real time TCP throughput

prediction service for distributed applications, was introduced in [36]. It utilizes

EWMA to make throughput predictions of large transfers augmented with active

probing. In [18], EWMA along with other simple linear predictors was employed
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to show that; in general, history-based methods predict the throughput of TCP

transfers more accurately than formula-based techniques, i.e., mathematical models

that express TCP performance as a function of network path characteristics. In

[17], collision rate is estimated by an EWMA based mechanism to dynamically

adjust the contention window parameters in 802.11 MAC protocol.

More recently, a few efforts have used machine learning techniques to estimate

near-term network variables. For instance, the work in [40] proposed a TCP RTT

predictor based on a simple yet efficient machine learning algorithm called Fixed-

Share [21]. The results presented in [40] show that, for a variety of network scenarios

and conditions, the proposed Fixed-Share based predictor was able to improve RTT

estimation significantly (thus yielding higher throughput) compared to existing

approaches. Support Vector Regression (SVR) [48] also introduced a machine

learning method, which can accept multiple inputs to generate accurate predictions.

This method was used in [37] to predict the end-to-end TCP throughput for

arbitrary file sizes.

A variant of the Fixed-Share approach has also been employed in the context of

medium-access control (MAC). More specifically, in [43], a collision-free schedule

based MAC that uses Fixed-Share to predict offered traffic load was proposed.

Simulations as well as testbed results show the benefits of traffic prediction to

schedule flows at the MAC layer in terms of delivery delay and delivery ration when

compared to contention based MAC protocols. In [32], a method to predict direct

and staggered collision probabilities of each node in WLANs has been introduced.

Using information from an access point (AP) about network traffic broadcast as

well as the AP’s local measurements, each node obtains a spatial picture of the

network in order to estimate probabilities of collisions locally. Similar techniques

to the one used in [32] have been employed in [33] to improve throughput and

14



link adaption in 802.11 networks with hidden terminals. In particular, a link

adaption algorithm, in which nodes estimate the channel conditions by comparing

the observed loss statistics to the expected loss statistics based on the estimated

collision probability, is employed to select the ideal modulation rate under the

estimated network conditions.

2.3 SENSE

This section provides a detailed description of our online estimator, SENSE,

which employs a combination of Fixed-Share with EWMA. Then, we discuss

SENSE’s accuracy compared to Multiplicative Weight algorithmic algorithms.

More specifically, SENSE, whose pseudo-code is shown in Algorithm 9, is an

enhanced version of the Fixed-Share estimator, where, instead of fixed-value

experts, EWMA filters are employed as experts. Table 2.1 summarizes SENSE’s

variables and their descriptions.

2.3.1 SENSE Algorithm

More specifically, in the EWMA experts step of Algorithm 9, the prediction of

each expert, xi,t , is calculated as a weighted sum of the previously observed data

item yt−1 and the previous prediction xi,t−1 where α represents the relative weight

between xi,t−1 and yt−1. Initially, each expert is assigned a weight, wi,1 = 1/N ,

where N is the total number of experts; each expert is also assigned an αi value

between 0 and 1 which differentiates experts from each other. In SENSE, EWMA

experts replace numeric experts used in the Fixed- Share algorithm, which results

in making SENSE’s accuracy less sensitive to the number of experts used.

15



Algorithm 2 SENSE
Initialization:

ηmin = ηMIN−INIT ηmax = ηMAX−INIT β = βINIT
EL = ELUSER−DESIRED−ACCURACY w1,1=...=wN,1= 1

N

EWMA Experts:
xi,t = αi × yt−1 + (1− αi)× xi,t−1

Prediction:

ŷi,t=
∑N

1 wi,t×xi,t∑N

1 wi,t

Loss Function:
NEi,t= |xi,t−yt|

ymax

L(xi, t)i,t =

NULL ,NEi,t ≤ EL

NEi,t , Otherwise

META Learning:

ηi,t =



min(ηmax, (ηi,t−1 × β))
, NEi,t > NEi,t−(j−1) > NEi,t−j

max(ηmin, (ηi,t−1
β

))
, NEi,t < NEi,t−(j−1) < NEi,t−j

ηi,t−1

, Otherwise

Weight Update:
wi,t+1 = wi,t × e−ηi,t×L(xi,t)i,t

Restart Learning:
If Level Shift is detected at nk then,

wi,t = wi,t × e
∑t=−T

t=−2T
ηi,t×L(xi,t)i,t
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Table 2.1: SENSE’s Variables

Parameter Description
xi Prediction of expert i
yt Observed data at time t

ŷt
SENSE’s prediction for time
t

wi Weight of expert i
NEi Normalized error of expert i
N Total number of experts
L(xi, t)i,t Loss of expert i at time t

ymax
Maximum data observed so
far

ηi
Determines degree of penal-
izing expert i

β
Determines how much ηi
should be increased or de-
creased

EL
Error limit (based on user’s
desired accuracy)

ηmin, ηmax Limit experts’ weight

j
Determines the time window
to evaluate expert’s perfor-
mance (used to update ηi )

As illustrated in the Prediction step of Algorithm 9, at every trial t, SENSE

calculates the current prediction ŷt by adding the weighted predictions from N

experts. After computing ŷt, the loss function step in Algorithm 9 calculates the

absolute difference between the actual outcome, yt, and each expert’s forecast xi,t;

Then it normalizes this error with the maximum outcome ymax, which is updated

with the largest outcome observed yet. We have experimented with different loss

functions and picked the one shown in Algorithm 9 for its efficiency as well as

simplicity. Finally, the loss function, L(xi, t)i,t, is set to either the normalized

error NEi,t or the NULL function depending on NEi,t’s value. If NEi,t lies within
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the satisfactory boundary EL, SENSE does not penalize experts differently than

the original Fixed-Share algorithm, which constantly adjusts the weight until the

prediction equals the outcome. Here, EL can be set to any fraction between 0 and

1 according to the accuracy required by the application.

SENSE then runs the META-learning step, which either multiplicatively in-

creases or decreases ηi,t by β if the normalized error keeps growing or shrinking,

respectively, for j consecutive trials. Otherwise, it does not change ηi,t. This

META-learning step aims at deciding how to adjust the experts’ weights based

on their recent-past predictions.Clearly, the less accurate an expert’s prediction

is, the more severe that expert is penalized. In our experiments, we considered

a three-trial observation window (i.e., j = 2) to characterize the recent past but

larger observation windows can be used. To prevent each expert’s η from becoming

too small or too large, ηi,t’s range is specified as [ηmin,ηmax]. We explore how

ηi,t’s range impacts SENSE’s behavior in Section 2.5.2. Recall that the goal

of META-learning is to speed up convergence of each expert’s prediction to the

observed outcome. Thus, the Weight update step updates wi,t with what has been

learned, i.e., it multiplies wi,t by e to the power of the product of the loss function

L(xi, t)i,t learning factor ηi,t.

Finally, SENSE employs a Level-shift step [18] to detect any significant change

in the mean of the observed data. Suppose {X1,X2,...,Xn} is the sequence of data,

where X1 is the first data after the last detected level shift. The measurement Xk

is an increasing (decreasing) level shift if it satisfies the following three conditions:

1. Data {X1,X2,...,Xk−1} are all lower (higher) than the data {Xk,...,Xn},

2. The median of {X1,X2,...,Xk−1} is lower (higher) than the median of {Xk,...,Xn}

by more than a relative difference χ , and

3. k + 2 ≤ n.
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The last condition helps to prevent misinterpreting an outlier as a level shift by

making sure that a long enough sequence of data is observed to filter out ephemeral

fluctuations. Upon the detection of a level shift, SENSE restarts its experts by only

considering data after the level shift occurrence and resetting η for each expert.

This means that the weight of each expert is determined only by the accuracy of

prediction after the last level shift. In other words, the Level-shift step slides its

learning window to consider only data after the last level shift in the experts’ weight

computation. SENSE’s level shift mechanism improves estimation accuracy when

compared to Fixed-Share, which keeps weights of poorly performing experts from

becoming negligible. It enables SENSE to adapt to persistent conditions as swiftly

as Fixed-Share, while allowing poor experts’ weight to become as infinitesimal as

in Static Experts algorithm.

In summary, SENSE employs three main techniques as follows:

• Smart experts reduce the sensitivity to experts and eliminate the need for

a-priori data knowledge. SENSE employs EWMA equations with different

weights as its experts and normalizes errors by the maximum observable

output.

• META-learning expedites convergence by tracing recent past history and

adjusting each expert’s penalty accordingly.

• Level-shift improves SENSE’s response to sudden data changes by bounding

SENSE’s learning time window; upon detecting dissimilar data patterns,

SENSE reinitializes its tunable parameters and starts to re-learn.
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2.3.2 SENSE’s Accuracy

According to [21], Static Experts’ inaccuracy or "loss" is bounded by the sum

of two terms, the total loss of the best expert and the total number of experts

involved. This is described in (4), where L(S,A) and L(S,Experti) represent the

loss of Static Experts algorithm A over the whole dataset S and the loss of the

best expert i respectively. Furthermore, c is a constant determined by the type of

loss function employed while n is the total number of experts. This upper bound

represents how far Static Experts’ prediction will deviate from the corresponding

real data. Equation 2.4 confirms that the more experts used, the higher the

additional loss (i.e., on top of the best expert’s loss) incurred by the Static Experts

algorithm.

L(S,A) ≤ L(S,Experti) + c lnn (2.4)

This upper bound on Static Experts’ loss is only valid under the assumption

that a given expert acts as the best expert over the whole dataset. However, when

data patterns change so that experts take turns as the best expert, this upper

bound needs to be recalculated as follows. At first we need to count all possible

scenarios that can happen under dynamic environments. When all samples (trials)

l are divided into k + 1 segments, for example, the number of ways to place k + 1

segments over l trials is lCk + 1. Here, a segment refers to a sequence of trials for

which a given expert is the best one. Since the number of ways to map n experts to

the best expert in each k+ 1 segments is n(n− 1)k, then all possible cases amount

to lCk + 1n(n− 1)k. If we consider each case as a ”partition” expert, a specific

partition expert can act as the best one over the whole trial set so that we can

adopt 2.4 to predict the accuracy of Static Experts under dynamic environments.

Here, the sequence of segments and its associated sequence of best experts are

called a partition. Namely under dynamic datasets, the additional loss of Static
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Experts due to the number of experts becomes c[(k + 1) lg n+ k lg l/k + k].

To mitigate the dependence of Static Experts’ upper bound on l and k, the

Fixed-Share was introduced in [21]. Its main goal is to lessen the additional loss

of the best partition, not the best expert like Static Experts, by introducing the

Share Update operation. In Fixed-Share, the loss consists of three components

as shown in 2.5, namely: the loss of the best partition L(Pk(S)), the number of

experts, and the final loss incurred by the Share update operation L(sharing).

However, Fixed-Share has a problem of inappropriately distributing weights of

experts. This is because L(sharing) has a term that depends on the number of

whole trials l, similarly to Static Experts. Note that Fixed Share tends to cut down

a relatively large portion of the best expert’s weight in preparation for sudden

changes in the dataset, whose occurrence times are unpredictable.

L(S,A) ≤ L(Pk(S)) + c lnn+ L(sharing) (2.5)

Unlike Fixed-Share and Static Experts, SENSE’s loss upper bound is independent

of the length of whole trials. It is dependent on SENSE’s Level-shift mechanism,

which restarts experts’ weights more rapidly without sacrificing of the best expert.

2.4 Evaluating SENSE’s Performance

We evaluate SENSE using a variety of datasets and compare SENSE’s perfor-

mance against that of the original Fixed-Share algorithm and EWMA. In the first

set of experiments, we use synthetic data that exhibit different periodic patterns.

We use both sine and square wave signals with a range of frequencies. These

experiments systematically test how well SENSE can track the variation of input

data over a wide spectrum of frequencies when compared to Fixed-Share and
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EWMA with different values of its smoothing factor, α. For a thorough compara-

tive study, we also apply SENSE to the RTT dataset used in [40] and compare

its predictions against estimates obtained using: (1) the original Fixed-Share

algorithm, (2) Jacobson’s TCP RTT estimation algorithm [24] (which is a variant

of EWMA), and (3) ”pure” EWMA with different smoothing factors.

In addition, we run SENSE over real collision rate data collected from a

production Wireless LAN environment where access points (APs) periodically

collect traffic and load statistics such as the number of retransmissions, total

number of frames transmitted, etc. Table 3.2 lists the default values of SENSE’s

parameters common to all results presented in this section. The performance

impact of SENSE’s techniques and parameters is evaluated in Section 2.5.2.

Table 2.2: SENSE’s Parameters

Parameter Value
β 2
EL 0.01
ηmin 10
ηmax 100
N 4
Expert 1’s α 0.2
Expert 2’s α 0.4
Expert 3’s α 0.6
Expert 4’s α 0.8
j 2

2.4.1 Datasets with Periodic Patterns

These first sets of experiments compare SENSE’s accuracy with EWMA and

Fixed-Share when estimating datasets that follow periodic patterns. We use a

dataset consisting of 1,000 samples. For the sine wave pattern, these samples
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create one period for 0.001 Hz and 200 periods for 0.5 Hz. The amplitude of our

sine waves fluctuates between 0.25 and 0.75. For the square wave, these samples

generate 40 periods for 0.025 Hz and 200 periods for 0.5 Hz. The amplitude of our

square waves fluctuates between 0.1 and 0.7.

Choosing the best α value depends on data autocorrelation and is a key factor

for EWMA based estimators’ performance. Values of α closer to one have less

of a smoothing effect and give more weight to recent changes in the data, while

values of α closer to zero have a greater smoothing effect and are less responsive to

recent changes. Note that, choosing α should be based on how quickly or slowly

the dataset change; lower α worsens the accuracy for rapidly changing datasets,

while higher α degrades the accuracy when data fluctuations are smoother. We

show that SENSE eliminates EWMA’s dependency on α.

In these experiments, SENSE uses four EWMA experts with α values evenly

spaced between 0 and 1, i.e., 0.2, 0.4, 0.6, and 0.8. We compare SENSE against

four EWMA equations with same α values as SENSE, namely: 0.2, 0.4, 0.6, and

0.8 which represent low, medium, and high EWMA smoothing factors. We also

compare SENSE with Fixed-Share using 100 experts. In our prior work [40],

we used the Fixed-Share algorithm with 100 experts to estimate TCP’s RTT

and, as expected, observed that beyond 100 experts the resulting improvement

in prediction accuracy is not significant given the additional processing cost and

convergence time. Each expert was assigned a value in the dataset’s range; recall

that the expert’s value represent its prediction. In the case of sine and square

waves, each expert’s prediction in the Fixed-Share Expert algorithm is drawn from

a uniform distribution from 0 to 1. As for the input data function, we use two

patterns: sine-(results plotted in Figure 2.2a) and square waves (results shown in

Figure 2.2b).

23



(a) Sine waves

(b) Square Waves

Figure 2.2: Average error comparison over periodic data
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Figure 2.2a plots the accuracy of the three approaches as measured by their

average error as a function of the sine wave frequency. Each point in Figure 2.2a

is calculated by averaging the absolute error of all 1,000 samples. As expected, at

higher frequencies, the input’s current value tends to be further apart from the

last outcome, which makes it harder to accurately predict. Figure 2.2a confirms

that SENSE produces lower average error than any of the four EWMA filters and

Fixed-Share over the entire frequency range. As the frequency goes up, errors

from EWMA filters rise steeply regardless of the α value. EWMA with higher α

tends to exhibit better accuracy over the lower frequency range, while EWMA

with lower α performs better for frequencies higher than 0.1 Hz.

The reason for this phenomenon is that at lower frequencies, each sample tends

to be similar to its previous one; consequently, tracking the sine wave with higher α

by placing more weight on recent trials, yields higher accuracy. At high frequency

where recent trials are less correlated to the upcoming trial, however, it is better

to stick to previous history that will repeat after a short period of time. Indeed,

the higher α causes some constant amount of error at every measurement while

the lower alternatively results small and large errors.

Fixed-Share’s average error for various frequencies does not change significantly

and its graph has a smaller slope. For sine wave’s low frequencies, Fixed-Share

shows larger error than other methods. The reason is that it takes longer for

Fixed-Share to offset its large number of poor experts’ weights and boost few

well performing experts’ weights. In the case of higher frequencies, it does not

follow rapid data fluctuations and rather stays around the average value of sine

wave due to a large number of experts and few trials for adaptation. In contrast

to "pure" EWMA and Fixed-Share, SENSE dynamically adapts according to the

frequency by choosing an appropriate EWMA expert for a given frequency range.
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As the frequency increase, SENSE shifts its reliance from EWMA with higher α

to EWMA with lower α.

Figure 2.2b shows the average error of SENSE, four EWMA filters and Fixed-

Share method when driven by square waves. This figure exhibits very similar

trend as Figure 2.2a where SENSE outperforms other methods at all frequencies.

SENSE’s smart experts are able to automatically switch between EWMA with

high α value at low frequencies and EWMA with low α over the high frequency

range.

2.4.2 Estimating TCP Round-Trip Times (RTT)

We also evaluated SENSE’s accuracy when applied to real datasets. TCP, one

of the most widely deployed Internet protocols, uses round-trip time (RTT) as

an indication of network load. TCP employs its RTT estimates to trigger TCP’s

core functions such as error- and congestion control. Motivated by how critical

accurate RTT estimates are for TCP’s performance, we evaluate SENSE’s accuracy

in estimating RTTs in comparison to the Fixed-Share algorithm employed in [40],

as well as TCP’s original RTT estimator based on Jacobson’s well-known EWMA

variant [15] as shown in 2.6, where α is typically set to 0.85.

EstRTT = α× EstRTT + (1− α)×RTT (2.6)

For these experiments, we use the RTT dataset in [40]. These RTTs were measured

when a 16 MB file was transferred over a real network. As shown in Figure 2.3,

SENSE is able to keep track of the RTT variations more faithfully than Fixed-Share

and Jacobson over the entire observation period.

Table 2.3 summarizes the average normalized error of SENSE, the four different

EWMA filters, Fixed-Share and Jacobson’s algorithms when applied to the same
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Figure 2.3: RTT prediction by SENSE, Fixed-Share and Jacobson for each data
sample (represented by a trial number)

RTT data of Figure 2.3. In order to calculate the average normalized error, we

first divide the absolute error of each sample by the real data it is trying to

predict; then, we average these normalized errors. To compute the error ratio, we

choose SENSE’s average normalized error as baseline. Then, we calculate the other

methods’ relative error compared to SENSE as the difference between their average

normalized error divided by SENSE’s average normalized error. The resulting

error ratio confirms that SENSE’s accuracy outperforms both Fixed-Share and

EWMA.

2.4.3 Estimating Collision Rates

To further evaluate SENSE’s ability to forecast network dynamics in real

environments, we applied SENSE to collision rate datasets measured in a production

Wireless LAN (WLAN) environment. Collision rates were collected at access points

(APs) as they send traffic to a node associated with it while other associated nodes
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Table 2.3: Average Normalized Error Comparison for RTT Dataset

Average Normalized Error Error Ratio (%)
SENSE 0.26 -

Fixed-Share 0.33 26%
Jacobson 0.79 191%

EWMA-0.2 0.63 142%
EWMA-0.4 0.44 71%
EWMA-0.6 0.34 32%
EWMA-0.8 0.29 11%

concurrently communicate with the AP, as they usually do. Specifically, we

transmit 100 Mbps of UDP traffic from the AP to a node for 200 seconds while we

simultaneously run different types of traffic between interfering APs and interfering

nodes (i.e., located close to the node receiving data from the AP). Collision rates

are calculated every second as the ratio of the number of retransmitted packets to

the total number of transmitted packets. Since the test AP and the test node are

physically close to one another, we assume that retransmitted packets are solely

due to collision, and not to noise interference.

Figure 2.4 depicts how SENSE and Fixed-Share track a time series of real

collision rates gathered from the test network for 200 seconds. Similarly to the

previous experiment, we use 100 experts for Fixed-Share and, based on the collision

rate data, Fixed-Share’s 100 experts are uniformly distributed between 0 and 0.2.

We observe from Figure 2.4 that, initially, the dataset contains considerable "noise"

caused by bursty traffic generated by short-lived flows from applications like the

Web. After 100 trials (seconds), longer-lived flows resulting from traffic such as

wireless video transmission becomes dominant, yielding "smoother" collision rate

variations. Figure 2.4 shows that, while SENSE does not exactly follow the

sudden jumps in the first half of the time series, its accuracy is significantly higher
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Figure 2.4: Trace of SENSE’s collision rate prediction vs. Fixed-Share for each
data sample (represented by a trial number)

than Fixed-Share’s. And, in the second half of the graph, SENSE is capable of

accurately tracking variations in the data.

As shown in Figure 2.4, Fixed-Share does not exhibit adequate accuracy and,

according to Table 2.6, results in an unacceptably high error ratio. These results

confirmed that Fixed-Share’s lack of agility is due to the very short-lived data

variations, which do not allow enough time to "train" Fixed- Share’s experts.

Figure 2.5 shows a closer view of the behavior of SENSE compared against

two EWMA filters over a 25-second interval between 65-90 seconds of Figure 2.4.

Note that in this span of time, data fluctuate significantly, which makes it very

difficult for any predictor to predict accurately. In this period, SENSE behaves

like a low-pass filter, e.g., EWMA with α set to 0.2, while the curve corresponding

to EWMA with value α of 0.8 looks like the real data but delayed by a full trial,

which results in the highest error. Table 2.4 summarizes the results shown in

Figure 2.5 by comparing the average error and error ratio for the first 100 trials of
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Figure 2.5: SENSE vs. EWMA for highly variant portion of collision rate

the collision rate dataset. It confirms that, for the first half of the dataset, which is

quite "noisy", SENSE acts as an EWMA predictor with lower α and yields highest

accuracy.

Figure 2.6 zooms in the performance of SENSE and two EWMA filters over

the interval of 100-145 seconds in Figure 2.4. As shown in Figure 2.6, SENSE

quickly catches up with collision rate changes and behaves similarly to EWMA

with α = 0.8 (acting as a high-pass filter). In contrast, EWMA with α value of

0.2 lags behind and cannot keep up with the collision rate variation. During this

period, EWMA with α value of 0.2 exhibits poor performance comparing to the

other methods.

Table 2.5 lists the average error and error ratio for the last 100 trials of Figure

2.4. During this interval where EWMA with α = 0.8 is clearly a better choice,

SENSE behaves as EWMA predictor with high α but achieves slightly higher

accuracy.

Table 2.5 summarizes the average error and error ratio of the five different
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Figure 2.6: SENSE vs. EWMA for smooth portion of collision rate

Table 2.4: Average Error for First 100 Trials of Collision Rate Dataset

Average Error Error Ratio (%)
SENSE 0.0323 -

EWMA-0.2 0.033 2.5%
EWMA-0.4 0.0335 4%
EWMA-0.6 0.0346 7%
EWMA-0.8 0.0365 13%

forecast schemes over the whole collision rate dataset depicted in Figure 2.4. It

confirms SENSE’s ability to automatically adapt its performance based on network

dynamics. In the case of uncorrelated behavior, SENSE gives more weight to

experts with low α and in the case of correlated data, more weight is given to

experts with high α value. Since EWMA does not have this capability, for the first

half of the dataset, EWMA with α = 0.8 is worse than SENSE by 13% (from Table

2.4) and for the second half of the dataset, EWMA with α = 0.2 is significantly

worse than SENSE (40% from Table 2.5). Table 2.6 clearly evidences that SENSE
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Table 2.5: Average Error for Second 100 Trials of Collision Rate Dataset

Average Error Error Ratio (%)
SENSE 0.0138 -

EWMA-0.2 0.0193 40%
EWMA-0.4 0.0158 14%
EWMA-0.6 0.0148 7%
EWMA-0.8 0.0142 3%

yields higher accuracy when compared to all the other four methods by at least 8%

for the complete dataset. This comparison confirms SENSE’s dynamic behavior to

selectively and swiftly chooses the best expert according to the observed network

dynamics. During noisy periods in the dataset, SENSE picks an expert with low

α while during periods when the data changes more smoothly, SENSE prefers an

expert with high α value.

Table 2.6: Average Error for The Whole Collision Rate Dataset

Average Error Error Ratio (%)
SENSE 0.013 -

EWMA-0.2 0.0257 9%
EWMA-0.4 0.0244 8%
EWMA-0.6 0.0244 8%
EWMA-0.8 0.025 8.5%
Fixed-Share 0.0774 466%

2.4.4 Prediction Summary

The accuracy of Fixed-Share algorithm depends on prior knowledge on the

range of dataset, large number of experts, and proper expert distribution that are

not usually available in on-line problem. Even though more experts are essential

for better accuracy, this requires a lot of trials for Fixed-Share algorithm to settle
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down to the best expert, resulting in significant inaccuracy under the dynamic

situations.

EWMA prediction accuracy is significantly dependent on the value of α. As

it is shown in our results, finding the proper α value requires prior statistical

information about data, which is again not available in on-line problems.

SENSE eliminates the requirement for this prior knowledge by using smart

experts. SENSE dynamically determines appropriate expert values and weights to

minimize prediction error. Our results showed that SENSE agility results in best

prediction performance under various scenarios and data set.

2.5 Impact of SENSE’s Techniques and Param-

eters

In this section, we examine the impact of SENSE’s parameters and techniques,

i.e., Level-shift and META- learning. We start by running the same experiments

used in [21] which were designed to show how Fixed-Share algorithm tracks the

predictions of the best expert; tracking best expert’s predictions has been shown

to improve prediction accuracy when compared to the Static Experts for rapidly

changing data. Our results show that SENSE’s best expert weight adjustment

mechanism performs as well as Fixed-Share for rapidly changing data.

2.5.1 Best Expert’s Weight Recovery

As described in Section 2.1.2, Fixed-Share was proposed to overcome the

slow weight recovery of the best expert in the Static Expert algorithm. This

feature of Fixed-Share was evaluated in [21], which reports on how Fixed-Share

tracks the predictions of the best expert compared to the Static Experts algorithm.
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We conducted exactly the same experiments described in [21]; our input data

consists of a sequence of 800 trials with three level shifts at trials 201, 401 and

601. For trials in the range of [1,200], [201,400], [401,600], and [601,800], the

outcome yt, is 0, 10, 5, and 15, respectively. The overall prediction was based on

64 experts. Every group of 200 trials has its own best expert, which changes at

every shift. Best expert’s prediction comes from a uniform random distribution

on a smaller range than typical experts. For example, for trial [0,200], since the

outcome is always 0, expert’s values are chosen from a uniform random distribution

between (0,1
2) and (0,1

2

√
0.1) for the typical and best experts, respectively. Figure

2.7a, 2.7b, and 2.7c plot the weight change of the best expert in the three

algorithms during four 200-trial segments. Confirming the results reported in [21],

Figure 2.7a and 2.7b show that in the first 200-trial segment, Static Experts

performed comparably to Fixed-Share, whereas in the remaining three segments,

it considerably under-performed. For Static Experts, it takes almost 100 trials for

the new best expert’s weight to approach 1 from almost 0. In contrast, as shown

in Figure 2.7b, Fixed-Share can quickly learn the new best expert for the current

segment. We should note that, as in [21], the sharing degree parameter (α) is set

to its best value considering the number of shifts in data, which is not always

the case. Our results as plotted in Figure 2.7c confirm that SENSE can learn

as quickly as Fixed-Share. SENSE’s quick learning ability is accomplished using

Level-shift.

2.5.2 Impact Of Parameters

In this section, we evaluate the effect of SENSE’s tunable parameters such as

number of experts, β, ηmin and ηmax. Although results presented in this section

are from experiments using datasets following sine wave patterns only, we observed
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(a) Best expert’s weight in Static Expert Algorithm

(b) Best expert’s weight in Fixed-Share algorithm

(c) Best expert’s weight in SENSE

Figure 2.7: Best expert’s weight recovery test
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similar results when we ran these experiments with our other datasets.

Table 2.7: Values for Different Number of Experts

Number of Experts Values of α
1 0.5
2 0.25, 0.75
4 0.2, 0.4, 0.6, 0.8
8 0.125, 0.25, ..., 0.875, 1
16 0.0625, 0.125, ..., 0.875, 0.9375, 1
32 0.03125, 0.0625, ..., 0.9375, 0.968, 1
100 0.01, 0.02, 0.03, ..., 0.98, 0.99, 1

The experiments whose results are shown in Figure 2.8 evaluate SENSE’s

sensitivity to the number of experts. We run SENSE with different numbers of

experts on a sine wave input over a range of frequencies. The values of α are

uniformly distributed between 0 and 1; for instance, in the case of 4 experts, we use

α values of 0.2, 0,4, 0.6 and 0.8. Table VII shows α values used for this experiment.

As can be observed in Fig. 8, SENSE’s performance changes only slightly when

the number of experts increases beyond 2. This is consistent with our observations

in [40].

Figure 2.9 shows the impact of META-learning’s β parameter on SENSE’s

behavior by plotting the average error-frequency curves for different β values. We

observe that the difference in accuracy is almost indistinguishable for different β.

This can be explained by the fact that each expert does its best to keep track of

the input data. META-learning is invoked only when errors tend to continuously

increase or decrease since it is designed to severely penalize static experts that

maintain their prediction regardless of current measurements.

We also evaluated the impact of the META-learning parameters, ηmin and

ηmax on SENSE’s performance. Figure 2.10 shows the average error rate for each
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Figure 2.8: SENSE’s sensitivity to number of experts over sine waves

Figure 2.9: SENSE’s sensitivity to β over sine waves
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Figure 2.10: SENSE’s sensitivity to ηmin and ηmax over sine waves

pair of (ηmin,ηmax) using, as input, to sine waves with different frequencies. We

observed that different values of ηmin and ηmax do not have significant effect on

SENSE’s performance. In our experiments, we used ηmin = 10 and ηmax = 100.

2.5.3 Impact of Level-shift and META-learning

We evaluate the effect of the Level-shift and META- learning methods on

SENSE’s performance. Figure 2.11 and 2.12 show the increase in accuracy

(percentage of average error improvement) when SENSE uses: (1) Level-shift only,

(2) META-learning only, and (3) Combined Level-shift and META-learning. Both

figures confirm that these techniques improve the performance of SENSE. Note

that the improvements resulting from Level-shift on RTT are much higher than

on collision rate. The reason is that the RTT data has a larger number of level

shifts and SENSE’s Level-shift mechanism can detect them and adjust the experts’

weights to follow the variations in the data. On the other hand, in the collision

rate dataset, data fluctuates significantly and does not trigger the Level-shift
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Figure 2.11: Impact of Level-shift and META-learning methods on RTT dataset

mechanism.

Figure 2.12: Impact of Level-shift and META-learning methods on collision rate
dataset

Similarly to Level-shift, META-learning yields larger contribution to SENSE’s

performance for the RTT dataset than collision rate. And again, the reason is
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that the RTT dataset exhibits smoother behavior; therefore, META-learning is

able to effectively increase the weight of "good" experts and decrease the weight of

"bad" experts, which improves SENSE’s performance overall. Consequently, the

combined improvement of both techniques for the RTT dataset is almost 25% and

just below 10% for the collision rate dataset.
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Chapter 3

Smart Adaptive Collision

Avoidance for IEEE 802.11

The IEEE 802.11 standard, also known as WiFi, specifies both physical layer

(PHY) and medium-access control (MAC) protocols for wireless local area network

(WLAN) communication [1]. It is considered the de-facto standard for WLANs

and, as such, has attracted considerable attention from both networking researchers

and practitioners over the years. The first IEEE 802.11 standard was released

in 1997, and since then, has grown to a large family of WLAN protocols as new

frequency bands and PHY technologies became available. IEEE 802.11 defines two

different types of MAC protocols, a mandatory one called Distributed Coordination

Function (DCF) and an optional one called Point Coordination Function (PCF),

built atop of DCF. IEEE 802.11 DCF, which is by far more widely deployed

than its PCF counterpart, arbitrates access to the shared communication medium

using a random-access (or contention-based) approach, in particular the Carrier

Sense Multiple Access (CSMA) [30] protocol with or without collision avoidance

(CA) [27]. In other words, IEEE 802.11 DCF defines a base mode which uses

physical carrier sensing and a link-layer acknowledgment (ACK) to confirm correct
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reception of the transmitted data frame. DCF also specifies an optional mode

which employs both physical- (i.e., CSMA) as well as virtual (i.e., CA) carrier

sensing. As described in more detail in Section 3.1, CSMA/CA [27] was proposed

as a way to combat the so-called hidden terminal problem. It allows nodes to

reserve the channel before engaging in data communication by exchanging short

control frames, namely Request to Send (RTS) and Clear to Send (CTS) ahead of

transmitting data. RTS/CTS has been part of the IEEE 802.11 standard since

its early versions and has been in use since then including more recent variants

such as 802.11n and 802.11ac. However, as described in Section 3.1, the RTS/CTS

handshake can also negatively impact performance since it introduces additional

delay and overhead.

For this reason, IEEE 802.11 has defined a configurable parameter named

RTS Threshold (RT), which is used to enable and disable the RTS/CTS exchange.

However, the standard does not specify what RT value(s) to use. For example, in

some implementations, RT is set such that for small data frames, DCF’s base mode

is used. Otherwise, RTS/CTS is used when frame size is large enough. There are

also cases where the RT value is set to the maximum frame size, so that RTS/CTS

is never used. However, 802.11 product manufacturers make recommendations to

users that if they are experiencing degraded performance, they should test their

network with lower RT values.

As described in more details in Section 3.2, a number of studies have explored

techniques to dynamically set the value of the RT based not only on packet size

but also on other characteristics (e.g., transmission rate) and conditions (e.g.,

packet delivery ratio).

In this chapter, we start by conducting an empirical characterization of

RTS/CTS performance as a function of a number of factors including packet
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size, transmission rate (for both data and control), and network contention. Our

experimental RTS/CTS performance characterization study complements existing

work that have analytically and/or experimentally studied RTS/CTS performance.

It shows that network contention, as well as packet size, and transmission rate must

be collectively considered in order to decide whether to enable or disable 802.11’s

RTS/CTS mechanism. Based on the results of our RTS/CTS performance charac-

terization, we propose a novel approach that uses machine learning to dynamically

switch RTS/CTS on and off ahead of data transmission by considering a combina-

tion of "air time", i.e. the ratio between the size of data/control information being

transmitted and transmission rate, as well as network contention. It is noteworthy

that (1) by accounting for network contention, the proposed mechanism is able to

automatically adapt to different WLAN environments and dynamics and (2) by

considering packet size and transmission rate, it will also accommodate different

IEEE 802.11 variants, especially as new versions target new applications and have

increasingly larger packet sizes and transmission rates. Additionally, as wireless

networks become denser (e.g., in urban scenarios), the importance of avoiding

potential interference amongst them grows and thus efficient use of RTS/CTS

becomes even more critical to achieve adequate performance.

To the best of our knowledge, our algorithm is the first to allow automatically

enabling and disabling the RTS/CTS handshake based on a set of current network

conditions, and dynamically adapt when these conditions change. As current and

emerging wireless network environments evolve and become increasingly more

heterogeneous in terms of the underlying network technologies, connected devices,

as well as driving applications, being able to dynamically adapt protocol behavior

in response to changing conditions and requirements is critical to achieve adequate

performance in a seamless manner. Our experimental results using both synthetic
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workloads as well as real traces show that our mechanism consistently outperforms

current best practices, such as never enabling RTS/CTS or setting the RTS

Threshold (RT ), which is used to decide whether to switch RTS/CTS on or off, to

a static value.

The rest of this chapter is organized as follows. Section 3.1 provides a brief

overview of IEEE 802.11 DCF and discusses RTS/CTS’ trade-offs. Related work

is presented in Section 3.2 and Section 3.3, conduct our empirical performance

evaluation of 802.11’s RTS/CTS as a function of different factors. Our method to

dynamically enable or disable RTS/CTS is described in Section 3.4. In Section

3.5 and Section 3.6 our experimental methodology and results are presented

respectively.

3.1 Background

IEEE 802.11’s Distributed Coordination Function (DCF) [1] is based on the

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol.

In DCF’s base mode, CSMA [30] is used by stations that have data to send to

check whether the shared medium is being used. More specifically, a station that

wants to transmit a data frame senses the channel to check whether it is idle for a

DCF Inter-frame Space (DIFS) interval. If the channel is sensed idle, the station

transmits the data. Otherwise, it defers transmission using a random backoff timer.

Figure 3.1 illustrates how DCF’s base mode works. After transmitting data, the

station waits for an acknowledgement (ACK). If the ACK is received, the station

considers the data frame delivered. If not, it will assume a collision occurred and

uses a slotted Binary Exponential Backoff (BEB) scheme to retransmit the frame

at a later time.

IEEE 802.11’s DCF can be configured to use, in addition to physical carrier
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Figure 3.1: IEEE 802.11 Base Mode: CSMA

sensing, virtual carrier sensing, or Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA) [27]. CSMA/CA avoids hidden terminal collisions by

reserving the channel ahead of data transmission. Channel reservation is achieved

via a two-way handshake using small control frames, namely the Request to Send

(RTS) and Clear To Send (CTS). The RTS/CTS handshake works as follows: the

sender sends the RTS frame to the receiver, and the receiver responds with a CTS.

Other stations that overhear either the RTS, CTS, or both mark the channel as

busy and set their network allocation vector (NAV) based on the time offered

in sender’s RTS and/or receiver’s CTS. This means that they will defer their

transmissions for the interval indicated in their NAV. The sender uses the receipt

of the CTS frame from the receiver as the indication that the channel has been

reserved for its transmission, and therefore, the sender transmits the data frame.

Figure 3.2 shows how the RTS/CTS handshake works.

Although the RTS/CTS handshake has clear benefits, it also introduces over-

head. In the remainder of this section, we discuss RTS/CTS’ pros and cons.
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Figure 3.2: IEEE 802.11 CSMA/CA

3.1.1 RTS/CTS Upsides

The RTS/CTS exchange was proposed as a way to combat the hidden node

problem as illustrated in Figure 3.3. In the scenario of Figure 3.3, node B is in

the transmission range of both nodes A and C. However, because A and C are

outside each other’s transmission range, they cannot hear each other, and thus are

said to be "hidden" from one another. Suppose that DCF’s base mode is used and

A is sending a packet to B. Suppose that C also has data to send to B. Since C

cannot hear A, it senses the channel idle and sends data to B which results in a

collision and node B discards both frames.

If RTS/CTS is used, A sends a RTS frame before the actual data. All of A’s

neighbors mark the channel as busy. Upon reception of the RTS, B sends a CTS

back to A if it is not busy. All of B’s neighbors, including C, mark the channel

as busy after hearing the CTS. As a result, C defers its transmission for the time

specified in the CTS frame. To show how effective RTS/CTS can be in avoiding

collisions, we ran a basic experiment with four hidden nodes sending to a central

node, e.g., and access point. We use four CBR streams each sending at 5.5 Mbps

with 1500 byte packets. Comparing the throughput obtained with and without
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Figure 3.3: Hidden Node Scenario

RTS/CTS (Table 3.1), we observe that RTS/CTS can yield significant performance

benefits (in this scenario, more than 70%).

Table 3.1: Throughput Comparison: DCF’s Base Mode (CSMA) versus RTS/CTS
(CSMA/CA)

Basic Mode (Mbps) RTS/CTS Mode (Mbps)
Stream 1 0.109 0.627
Stream 2 0.124 0.595
Stream 3 0.1 0.535
Stream 4 0.134 0.568

3.1.2 RTS/CTS’ Downsides

While the RTS/CTS mechanism can mitigate the hidden terminal problem

and avoid collisions, it has some drawbacks as described below.

Overhead

One of the main problems is the latency and additional load that RTS and

CTS control frames introduce, which, in some scenarios, outweighs RTS/CTS

benefits. IEEE 802.11 defines the RTS and CTS frame sizes as 20 and 14 bytes,

respectively. So, in the case of short data frames, it may not be worthwhile
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Figure 3.4: 5 Nodes Scenario

incurring the additional delay needed to perform the RTS/CTS exchange. That

was the motivation behind proposing the RTS Threshold, or RT , which determines

the minimum data frame size that will trigger the RTS/CTS handshake to reserve

the channel to transmit the data frame. Frames smaller that RT will be sent using

DCF’s base mode.

Disabling Safe Concurrent Transmission

As illustrated in Figure 3.4, there are scenarios where the RTS/CTS reservation

prevents concurrent transmissions that would not result in collisions. For example,

suppose that node B is sending data to node A. Assuming that the interference-

and the transmission ranges are equal, if node C also wants to send data to D, it

would not impair node B’s transmission. However, because of B’s RTS packet C

overhears, C unnecessarily defers its transmission to D for the time defined in B’s

RTS NAV. This of course negatively impacts the throughput.

Another example scenario that illustrates how RTS/CTS can negatively impact

throughput is as follows. Suppose that while node A is transmitting to node B, D

has data to send to C and transmits an RTS frame to C. However, C is blocked

because of B’s CTS sent in response to A’s RTS to B and is not able to respond

to D with a CTS. In this case, all nodes in the transmission range of D will be
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Figure 3.5: RTS collision scenario

Figure 3.6: CTS collision scenario

blocked for the time specified in D’s RTS frame.

It is worth pointing out that Denial of Service attacks could be staged/caused

by malicious/malfunctioning nodes who can (un)- intentionally keep sending RTS

or CTS frames possibly reserving the channel for long periods of time.

RTS/CTS Collision

In crowded areas, where hidden terminals are prevalent, the RTS/CTS hand-

shake is less effective as a collision avoidance technique [51]. This is because

RTS and CTS frames are themselves subject to collision in the same way as data

frames. When the traffic load is heavy and the number of hidden terminals is high,

the chance of unsuccessful RTS/CTS handshake increases due to higher channel

contention and thus higher collision probability. Figure 3.5 and 3.6 shows scenarios

where RTS or CTS collision may happen. Besides the delay and overhead incurred

by the retransmission of the RTS, the channel would be unusable for nodes who

overhear the RTS and CTS for the time specified in the NAV.
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3.2 Related Work

Wireless networks has evolved a lot during the past few years and lots of

works have been done to improve its performance. Many research papers have

been published with focused on studying the performance of IEEE 802.11’s DCF

optional collision avoidance mechanism which uses the RTS/CTS handshake. We

categorize these efforts in two groups. The first group investigates throughput

performance when using or not using RTS/CTS and believe that the problems

introduced by the RTS/CTS mechanism will tend to counterbalance those benefits.

[44], discusses the problems introduced by the RTS/CTS mechanism with focus

on the virtual jamming problem which allows a malicious node to effectively jam a

large fragment of a wireless network at a minimum expense of power.

In [52], authors show that in some situations, the interference range is much

larger than transmission range, where RTS/CTS cannot function well. So,

RTS/CTS handshake cannot prevent all interference as we expect in theory. [49]

analyzes the maximum throughput of traffic in the IEEE 802.11 DCF network

that uses RTS/CTS and believes that as the number of RTS/CTS control frames

increases, the collisions between RTS/CTS control frames occur more frequently.

As a result, the analysis of networks that use RTS/CTS has been considered diffi-

cult because of the complex behaviors of RTS/CTS. The second group proposes

ways to dynamically tune the value of RTS Threshold. In a more recent study

[47], it was shown that, when the network is under "stress", e.g., high node density,

high traffic load, etc, the RTS/CTS threshold RT value can significantly impact

performance in terms of end-to-end delay, medium access delay, retransmission

attempts, network load, and throughput. In [31] and [50], RTS/CTS performance

was evaluated under different data rates and it was concluded that RTS/CTS does

not show much benefit at higher data rates.
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The other group of researchers explore how to enable/disable RTS/CTS dy-

namically. In [25], a mechanism in which the sender counts the number of "Waiting

for CTS" timeouts is proposed. If this value exceeds a certain threshold, RTS/CTS

is disabled. In [45] Authors propose a new adaptive RTS/CTS control method

on the basis of existence of hidden terminals.The proposed algorithm in [38] can

dynamically adjusts RT based on the frame delivery ratio and shows a significant

improvement over existing CSMA/CA and RTS/CTS schemes. In [2], RT is set

based on current frame distribution of the network. This value is set to a value

such that some specific percentage of frames size’s fall below that value. In [31],

the RT is adjusted dynamically according to the data rate and number of stations.

As previously discussed, to our knowledge, no prior work has explored the

combination of factors we consider in our approach to automatically enable or

disable the RTS/CTS handshake in response to changing network- and traffic

conditions.

3.3 Characterizing RTS/CTS Performance

In this section, we conduct an empirical characterization of RTS/CTS perfor-

mance as a function of a number of factors, namely packet size, transmission rate

for both data and signaling traffic, as well as network contention. The goal here

is three-fold, namely: (1) confirm experimentally some analytical results on the

performance of RTS/CTS in the literature; (2) make the case for dynamically

adjusting the RTS Threshold, RT based on data and control transmission time as

well as network contention; and (3) validate our experimental methodology and

setup.

To show the effect of each factor on RTS/CTS performance, we run several

simulation experiments using the NS-3 network simulator for both infrastructure-
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based and infrastructure-less network scenarios. In our experiments, we associate

5, 10, and 20 nodes to an access point (AP) which are either all hidden or not

hidden from each other. We use NS-3 ’s Matrix Propagation Loss Model and set the

propagation loss between each pair of nodes to make them hidden or not hidden

from each other. For example, if we set the propagation loss between nodes A and

B to a very high value, then A becomes hidden from B, and vice-versa. Nodes

send CBR traffic to the AP with packet sizes of 200, 500, 1000, 1500, and 2000

bytes and data rates of 2, 5.5, 11, 24, and 54 Mbps, while signaling transmission

rate is kept at 2 Mbps. The graphs shown in Figures 3.7, 3.8, and 3.9 plot

RTS/CTS throughput gain, TGain which is defined as follows:

TGain = (TRTS/CTS − TBase)/TRTS/CTS (3.1)

where TRTS/CTS and TBase are the throughput when using RTS/CTS and the

throughput when using DCF’s base mode, respectively.

3.3.1 Data Transmission Time

As previously pointed out, data packet transmission time, which is a function

of the data packet size and the transmission rate, is an important factor affecting

RTS/CTS performance. Data packet transmission time should be long enough to

warrant the overhead of the RTS/CTS handshake. When data packet transmission

time is comparable to the latency of the RTS/CTS exchange, there is no need

to add the extra overhead of RTS/CTS since the cost of data frame collision is

comparable to collision of the control frames themselves.

This is illustrated in Figure 3.7 which shows the normalized RTS/CTS through-

put gain over IEEE 802.11 DCF’s base mode as a function of data packet air time.

As expected, for larger data packet sizes, RTS/CTS is more effective (throughput
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gains above 0). For smaller packets, e.g. 200 bytes, sent at high data rate, e.g.

54 Mbps, the airtime used by data packets is small enough that collision cost is

negligible.

One of the current practices to decide when to use RTS/CTS employs a fixed

RTS Threshold, RT based on packet size. In fact, it is common to set the RT to

the maximum data packet size which results in never using RTS/CTS, which may

be adequate in some scenarios, but not in others as exemplified by the results in

Figure 3.7.

A notable practical factor in the performance of RTS/CTS, which is frequently

neglected, is that, in multi-rate WLANs, control frames such as ACK, RTS, and

CTS are transmitted at a fixed basic rate regardless of the data rate. One of the

main reasons is to enable interoperability and to accommodate legacy devices,

since all devices in the network must be able to receive these frames. This increases

the overhead of the RTS/CTS mechanism in high data rate networks, which is

also captured by the results in Figure 3.7 as the signaling rate is kept at 2 Mbps.

Figure 3.7: RTS/CTS throughput gain as a function of data packet size for
different data rates.
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3.3.2 Signaling Rate

In this section, we consider network scenarios where signaling can be transmitted

at the same rate as data.

Figure 3.8 plots the RTS/CTS throughput gain for different signaling rates

(equal to the data rate). It shows positive throughput gains across the board.

These results confirm that adjusting RT also needs to account for transmission

rate of control packets (signaling rate).

Figure 3.8: RTS/CTS throughput gain as a function of signaling rate for different
packet sizes.

3.3.3 Network Contention

Network contention is clearly a critical factor in deciding whether to use

RTS/CTS. Recall that the original goal of the RTS/CTS handshake is to avoid

collisions, so if collisions are not likely to occur (e.g., low network load), there

is no need to use RTS/CTS and incur the additional overhead. In IEEE 802.11

networks, collisions occur either because of the existence of hidden terminals or due
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Figure 3.9: RTS/CTS throughput gain as a function of packet size for different
data rates when no hidden nodes are present.

to (quasi) simultaneous transmissions (e.g., as a result of back off synchronization).

As described in Section 3.2, there have been a number of proposals to estimate

network contention, such as number of hidden terminals [45], mean medium access

delay [31], packet delivery ratio [38], number of waiting for CTS [25], to name a

few. We measure network contention by calculating the collision probability, which

we describe in Section 3.4.

We conducted similar sets of experiments as the ones described in Section 3.3.1,

except for the fact that we use a topology with no hidden nodes. As shown in

Figure 3.9, for most data rates and small- to medium packet sizes, there is no

benefit in using RTS/CTS when there is no hidden terminal. These results confirm

the importance of accounting for network contention when deciding whether to

use RTS/CTS.
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3.4 Proposed Approach: Dynamically Switching

RTS/CTS On-Off

In this section, we first explain an earlier version of our method which is a

simple yet effective algorithm to dynamically enable or disable RTS/CTS [15].

Then, we introduce SACA, Smart Adaptive Collision Avoidance, which is an

optimized version of our earlier proposed method.

3.4.1 First Version

Unlike most previous efforts which typically consider individual factors in

deciding when to use or not use RTS/CTS, our method considers all factors, i.e.,

network contention, as well as data and signaling transmission time, also known

as air time, which is given by Equation 3.2 below.

transmission time = data/signaling size

data/signaling rate
(3.2)

Algorithm 3 describes our approach which essentially evaluates on an ongoing

basis the benefit of using RTS/CTS compared to its overhead. If RTS/CTS is

deemed beneficial, i.e., it avoids collisions, when collision cost is higher than

the cost of the RTS/CTS exchange, then RTS/CTS is enabled, otherwise it

is disabled. Note that we define collision cost as a function of network con-

tention and data transmission time, which we represent by network contention⊗

data transmission time in Algorithm 3. Data transmission time, as well as

RTS/CTS cost (or signaling transmission time) are calculated according to

Equation 3.2. Note that data frame size, data transmission rate, signaling trans-

mission rate, and RTS/CTS frame size (which amounts to 34 bytes) are known at

the time of transmission. However, current network contention conditions must be
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estimated on an ongoing basis.

Algorithm 3 Proposal
If (network contention ⊗ data transmission time) ≥
signaling transmission time
then enable RTS/CTS
else disable RTS/CTS

Network contention depends on the number of competing stations that are

simultaneously trying to access the shared communication medium in order to

transmit. In this work, we use collision probability as an indicator of network

contention and measure it by dividing the number of failed receptions at the

receiver by the total number of transmissions at the sending node.

As illustrated in Figure 3.10, we divide time into slots, and at the begin-

ning of each slot, there is a short learning period, during which RTS/CTS is

disabled. Collision probability is measured a number of times during the learning

period. Then, using the SENSE estimator (described in chapter 2) [13], we esti-

mate the collision probability for the remaining of the slot. Based on SENSE’s

collision probability estimate, our current implementation of Algorithm 3 cal-

culates network contention ⊗ data transmission time as the product between

data transmission time and collision probability. It then decides whether to turn

RTS/CTS on or off for the duration of the slot. Time slot and learning period

duration as well as the number of times we calculate collision probability during

the learning period are parameters of our approach. In our performance evaluation,

we experimented with different values of these parameters and did not observe

significant changes in the results.
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Figure 3.10: Time slot

3.4.2 SACA

In this section, we describe our Smart Adaptive Collision Avoidance mechanism,

or SACA for short, a simple yet efficient technique to dynamically enable or disable

IEEE 802.11’s collision avoidance in order to automatically adapt to a number of

factors such as frame size, transmission rate (for both data and control frames),

and network contention. SACA is an optimized version of the algorithm proposed

in 3.4.1 and is improved by changing the following items:

• We propose a new approach to evaluate network contention which is carried

out at regular periods instead of during a learning period at the beginning of

a time slot when RTS/CTS is switched off.

• We use a more accurate model to calculate the cost incurred by data- and

RTS/CTS collisions. These cost calculations are at the core of SACA since

they determine whether RTS/CTS should be turned on or off on a per-frame

basis.

• In addition to evaluating SACA in infrastructure-based scenarios, we also

conduct experiments to assess SACA’s performance in multihop wireless
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ad-hoc networks, or MANETs.

The main idea behind SACA is to evaluate the cost-performance tradeoff of

using RTS/CTS to avoid data collisions. If RTS/CTS is deemed beneficial, i.e.,

it avoids collisions or reduces collision duration when the cost of a data collision

is higher than the cost of the RTS/CTS exchange, then RTS/CTS is enabled;

otherwise it is disabled. We discuss how these costs are defined and calculated

later in this section. SACA’s pseudocode is shown in Algorithm 4.

Algorithm 4 SACA
Collision estimation timeout:

Collision_Estimation();
Frame transmission:

If (Data_Retransmission_Cost() ≥ RTS/CTS_Cost())
then enable RTS/CTS

else disable RTS/CTS

SACA is event-driven and handles two different events, namely: (1) colli-

sion estimation timeout and (2) frame transmission. When the collision esti-

mation timer expires, a collision estimation timeout event is triggered. The

Collision_Estimation() procedure is then invoked to measure the current collision

rate and to compute an estimate of the collision rate for future use.

When a data frame is ready to be transmitted, a frame transmission event

is triggered and the cost of using and not using RTS/CTS is calculated by

RTS/CTS_Cost() and Data_Retransmission_Cost(), respectively. Based on

how the cost of a data collision compares to the cost of the RTS/CTS exchange, a

decision is made to enable or disable RTS/CTS. In the remainder of this section,

we describe SACA in more detail.

59



Adapting to Network Contention

As discussed in Section 3.4.2, network contention can be measured in a va-

riety of ways. In this work, we use collision rate as an indicator of network

contention and measure it by dividing the number of failed transmissions, i.e.,

the number of unacknowledged frames at the transmitter by the total number

of transmissions as shown in Equation 3.3. Other ways to evaluate network con-

tention in a node’s neighborhood include the node’s MAC queue length, mean

time to access the medium, etc. In this work, because we are using a network

simulator, more specifically ns-3 [8], we use the expression in Equation 3.3 be-

cause both its nominator (number of failed transmissions) and denominator

(total number of transmissions) are readily available in ns-3 and provide fairly

accurate collision measurement since losses that are not due to collisions are quite

rare in the experimental scenarios we use.

collision rate = number of failed transmissions

total number of transmissions
(3.3)

In order to continuously adapt to current network contention conditions, SACA

measures collisions regularly. This is accomplished by the Collision_Estimation()

procedure, which is invoked periodically triggered by the collision estimation

timeout event. Collision_Estimation(), whose pseudo-code is shown in Algo-

rithm 5, measures current data- and RTS/CTS collision rates. Based on current

collision measurements, Collision_Estimation() also estimates near-future colli-

sion rates using the SENSE estimator [13] described in Chapter 2.

Measuring Network Contention

The question of how to measure network contention is central to our approach.

While we chose to use collision rate as an indicator of network contention, there
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Algorithm 5 Collision_Estimation
Initialization:

Data collision rate = 0
RTS/CTS collision rate = 0
Data_collision_estimation = 0
RTS_collision_estimation = 0

Collision rate measurment:
Compute Data collision rate

Compute RTS/CTS collision rate

Collision rate estimation:
SENSE computes Data_collision_estimation
SENSE computes RTS/CTS_collision_estimation

have been a number of proposals to estimate network contention, such as number

of hidden terminals [45], mean medium access delay [31], frame delivery ratio [38],

number of RTSs waiting for a CTS [25], to name a few. As part of our future work,

we plan to evaluate how different approaches to measuring network contention

impact the performance of SACA.

Another question that needs to be addressed is how often collision should be

measured. We discuss some alternatives and their pros and cons below.

In SACA’s preliminary version (described in Section 3.4.1), time is divided

into slots and during a learning period at the beginning of each slot, RTS/CTS

is disabled and data collision rate is measured. Based on these measurements,

SENSE estimates the data collision rate for the rest of the slot. The advantage of

using the learning period to measure collision rate is less overhead overall. However,

since collision rate is calculated only during learning periods, information about

network contention may be out of date by the time collision rate is used to decide

whether to switch RTS/CTS on/off. Another problem is that, if contention is high,

turning off RTS/CTS for the learning period may result in degraded performance.

Additionally, sudden changes in network contention during the time slot will
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not be captured until the next learning period. Considering all the pros and

cons discussed above, in SACA’s current version, which is described in this paper,

we decided not to include a learning period and measure the contention every t

seconds.

There is a clear trade-off in setting the value of t. Using a smaller t may

allow SACA to better capture variations in contention conditions; however, it will

incur higher overhead by invoking Collision_Estimation() more often. Another

drawback of setting t too small is to capture short-lived variations in contention

conditions. On the other hand, setting t too large results in less computation at the

expense of running the risk of not adequately capturing network contention dynam-

ics. t also needs to be set large enough such that sufficient frame transmissions can

be observed. Therefore, setting the value of t should also consider the underlying

link speed and frame size. In order to set the value of t for our experimental

evaluation of SACA, we ran several preliminary experiments with different values

of t, namely 0.5, 1, 2, and 3 seconds and did not notice any significant differences

in the results obtained. In the results reported in Section 4.4, we use t equal to 1

second.

Switching RTS/CTS On-Off

As shown in Algorithm 4, when a frame is ready for transmission, based

on the collision estimation from Collision_Estimation() and the information

from the frame itself, i.e., frame size and transmission rate, the cost of re-

transmitting data and the cost of the RTS/CTS handshake are calculated by

Data_Retransmission_Cost() and RTS/CTS_Cost(), respectively. RTS/CTS

is enabled for that specific frame if the data retransmission cost is higher or equal to

the RTS/CTS handshake cost; RTS/CTS is disabled otherwise. Costs’ calculations
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are described in the remaining of this section.

Data Collision versus RTS/CTS Handshake

In an ideal scenario when there is no contention, a node can avoid RTS/CTS

handshake since there is no risk of collisions. But in congested environments,

packets transmitted by different nodes which start to transmit at the same time

can collide. Also, frames transmitted by hidden terminals may collide at the

receiver even if the sender’s transmission does not start exactly at the same

time. In these situations, a node can decide to use RTS/CTS to reserve the

channle and avoid data frame collisions. However, performing the RTS/CTS

handshake ahead of data transmission will incur additional overhead. In order

to determine if enabling RTS/CTS is beneficial, SACA compares the cost of the

RTS/CTS exchange (calculated by RTS/CTS_Cost()) against the cost of data

retransmission in case of collision (computed by Data_Retransmission_Cost()).

Basically, for every data frame transmission, the sender calculates the cost of

retransmitting the frame in case of collision and compares it against the RTS/CTS

overhead. The idea is to make this decision based on current network conditions

as well as frame size and transmission rate.

Cost of data frame collision: The cost of a data frame collision, i.e., the cost

to retransmit a frame until successfully received is calculated as:

Data Retransmission Cost =

overhead of one frame retransmission ×

average number of retransmissions (3.4)
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To calculate the overhead of one frame retransmission, we consider IEEE

802.11’s base mode which uses only CSMA (no RTS/CTS). As shown in Figure 3.11,

which shows the transmission sequence of base mode according to the IEEE 802.11

standard, either the data frame will be transmitted successfully and will not

incur any retransmission overhead, or the frame will collide which will require

retransmission. Figure 3.11 illustrates a scenario with two hidden terminals,

Sender1 and Sender2, in which Sender 1’s first transmission to Receiver is

successful, but the second one collides with Sender2’s transmission. 1 When

a collision happens, the total amount of time spent retransmitting the frame

includes: the DIFS, backoff time (BO), retransmission time, plus the ACK

timeout which is SIFS plus ACK time. Therefore, the overhead of one frame

retransmission is:

DIFS +BO +Data+ SIFS + ACK (3.5)

Meanwhile, the average number of retransmissions is calculated by:

inf∑
k=0

k ∗ (PDC)k ∗ (1− PDC) = PDC/(1− PDC) (3.6)

where PDC is the probability of data packet collision.

From Equations 3.4, 3.5, and 3.6, we derive Algorithm 6:

Algorithm 6 Data_Retransmission_Cost()

(DIFS +BO +Data+ SIFS + Ack)× ( PDC

1−PDC
)

1Note that, as mentioned earlier, there is the possibility of collisions with non-hidden nodes
as well which is not demonstrated in this figure.
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Figure 3.11: Successful and unsuccessful data transmission in IEEE 802.11 base
mode

Figure 3.12: Successful and unsuccessful data transmission in IEEE 802.11
collision avoidance mode

Cost of RTS/CTS handshake: To calculate the RTS/CTS overhead cost, we

consider IEEE 802.11’s operation in congestion avoidance mode as illustrated in

Figure 3.12, which shows the transmission sequence of congestion avoidance mode

according to the IEEE 802.11 standard. In this mode, either the RTS/CTS will

be transmitted successfully and then will be followed by data and ACK frames or

there is a possibility that the RTS frame collides with a frame from another node.

In this figure, we show the case of RTS collision from two hidden nodes, Sender1

and Sender2, but RTS collisions can also happen between two non-hidden nodes

if they start transmission at the same time. When RTS and CTS frames are

successfully transmitted, the overhead incurred includes RTS transmission time

(RTS), SIFS, CTS transmission time (CTS) and another SIFS. However, when

an RTS collides, the overhead includes DIFS, BO, RTS, and CTS timeout which

is SIFS plus CTS. RTS collision cost is much less than data frame collision cost

since RTS and CTS frames are typically much smaller than data frames. Similarly

to previous work (e.g., [26]), we use the number of CTS timeouts as an indicator
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of the number of RTS collisions. We denote by PRC the probability of an RTS

collision. In the case of RTS/CTS transmission:

RTS/CTS Cost =

RTS/CTS successful transmission overhead +

overhead of RTS/CTS retransmission ×

average number of RTS/CTS retransmissions (3.7)

where the RTS/CTS successful transmission overhead is:

RTS + CTS + 2× SIFS (3.8)

The overhead of RTS/CTS retransmission is:

DIFS +BO +RTS + SIFS + CTS (3.9)

and the average number of RTS/CTS retransmissions is:

inf∑
k=0

k ∗ (PRC)k ∗ (1− PRC) = PRC/(1− PRC) (3.10)

From equations 3.8, 3.9 and 3.10, we arrive to Algorithm 7 for overall RTS/CTS

cost:

Algorithm 7 RTS/CTS_Cost()

(RTS + CTS + 2× SIFS)+
[(DIFS +BO +RTS + SIFS + CTS)× ( PRC

1−PRC
)]

66



SACA’s Implementation and Overhead

Here, we discuss the implementation and deployment of SACA in real networks

as well as SACA’s overhead.

Simplicity and low overhead were among SACA’s main design goals. Addi-

tionally, SACA was designed so that each node can run independently of other

nodes and only needs information about local conditions, i.e., contention in its

neighborhood. In other words, each node evaluates network contention it has been

experiencing in recent past and, for each frame to be transmitted, decides to enable

or disable RTS/CTS regardless of other nodes.

SACA can be implemented as a separate module that is invoked by 802.11 on

a per-frame basis. SACA uses collision ratio as an indicator of network contention

in order to dynamically decide whether RTS/CTS should be used or not. To do

that, each node keeps track of the total number of successful- and unsuccessful

transmissions (see Equation 3.3), both of which are usually readily available in real

systems, along with frame size and transmission rate (available from the frame’s

header).

3.5 Experimental Methodology

We evaluate SACA through extensive simulations using a variety of infrastructure-

based as well as ad-hoc scenarios and show that it can automatically adjust to

changes in network contention while accounting for airtime to decide whether to

enable or disable the RTS/CTS handshake. In this section, we describe our experi-

mental setup and performance metrics. Our results are presented in Section 3.6.

We run experiments using the ns-3 network simulator [8] and its implementation

of the IEEE 802.11n. We use ns-3 ’s Matrix Propagation Loss Model and set the
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propagation loss between each pair of nodes to make them hidden or not hidden

from each other. According to ns-3 ’s channel model, if the propagation loss

between two nodes is greater than 200dB, they are considered hidden from one

another. For example, if we set the propagation loss between nodes A and B to a

very high value, then A becomes hidden from B, and vice-versa. Table 3.2 lists

simulation parameters and their values used in all our experiments.

Table 3.2: Simulation parameters

Simulator ns-3
Area 500x500 m2

Total number of
nodes 50

Routing protocol AODV
Traffic type CBR
DIFS and SIFS 50 and 10 µs
802.11 version 802.11 n

3.5.1 Traffic Traces

We use three different traffic traces to drive our experiments, namely a synthetic

data trace as well as traces collected in real networks. In the synthetic data trace,

we vary frame size and the number of senders, and consequently collision rate, every

5 seconds (total simulation time is 50 seconds) to evaluate how closely SACA is

able to track network contention fluctuations. Table 3.3 summarizes the synthetic

trace we use showing the sequence of frame sizes and number of senders as they

vary every 5 seconds. In all cases, sender- and receiver nodes are selected randomly

from the set of participating nodes.

We also drive SACA using real traffic traces captured in a public hot spot and

a company campus using a wireless sniffer. Data rates and frame sizes provided in
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the Radiotap Header are used to calculate a frame’s airtime. Tables 3.4 and 3.5

summarize the real traffic traces used in our experiments. For the hot spot trace,

we captured 10 flows between users and the access point (AP) for 20 minutes

and feed the flows to the ns-3 simulator. In the 10-sender scenario, each of the

10 flows is assigned to a single sender, while in the 30- and 50-sender scenario,

each flow is assigned to 3- and 5- senders, respectively. Each flow has a slightly

different start time to avoid excessive contention at the start of the experiments.

For the company campus trace, 5 individual flows were captured and each flow

was assigned to 1, 2, 6, and 10 senders in the 5-, 10-, 30-, and 50-sender scenarios

respectively.

Table 3.3: Synthetic traffic trace

Time (s) frame Size Number of senders
0 to 5 1500 5
5 to 10 500 8
10 to 15 2000 14
15 to 20 200 20
20 to 25 1000 24
25 to 30 2000 30
30 to 35 500 35
35 to 40 200 38
40 to 45 1500 43
45 to 50 500 45

3.5.2 Performance Metrics

We evaluate SACA by comparing its performance against IEEE 802.11’s base

mode and congestion avoidance mode with different RT values. As performance

metrics, we use average throughput and average throughput improvement, which

are calculated as follows: average throughput is the ratio between the number of
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Table 3.4: Hot-spot trace

Location Coffee shop
Time Around noon
Number of flows 10
Duration 20 minutes
Frame size range 34-2150 bytes
802.11 version 802.11n
Data rate range 6-300 Mbps

Table 3.5: Company campus network trace

Location Company campus
Number of
flows

5

Duration 30 minutes
Frame size
range

34-11000 bytes

802.11 version 802.11n
Data rate
range

6-1300 Mbps

received packets to the number of transmitted packets, averaged over all nodes;

average throughput improvement is calculated as the difference in throughput

between SACA and the other approach divided by the other approach’s through-

put. For infrastructure-based scenarios, we also examine the contention an AP

experiences when all nodes are hidden from each other as well as when all nodes

are exposed to one another, in order to evaluate how well SACA can estimate and

adapt to contention by dynamically enabling/disabling RTS/CTS.
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3.6 Results

Results from our performance evaluation study comparing SACA against IEEE

802.11 are presented in two parts, namely: infrastructure-based scenario results and

ad-hoc scenario results. For these experiments, 50 nodes are placed randomly in a

500x500 meters area in the transmission range of an Access Point (AP). Table 3.2

summarizes simulation parameters and their values used in both infrastructure-

based and ad-hoc experiments.

3.6.1 Infrastructure-Based Scenarios

Figure 3.13: Average throughput with the synthetic trace in infrastructure-based
scenario. 95% confidence intervals are shown.

Average Throughput

In these experiments, we compare SACA’s average throughput against IEEE

802.11’s DCF base mode (i.e., no RTS/CTS), IEEE 802.11’s DCF congestion
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Table 3.6: SACA’s slot-by-slot behavior using the synthetic trace with different
data rates in infrastructure-based scenario

Time (s) Frame Size (bytes) Collision 54Mbps 24Mbps 11Mbps 5.5Mbps 2Mbps
0 to 5 1500 5% Basic Basic Basic Basic Basic
5 to 10 500 9% Basic Basic Basic Basic RTS/CTS
10 to 15 2000 26% Basic Basic RTS/CTS RTS/CTS RTS/CTS
15 to 20 200 38% Basic Basic Basic Basic RTS/CTS
20 to 25 1000 47% Basic RTS/CTS RTS/CTS RTS/CTS RTS/CTS
25 to 30 2000 59% RTS/CTS RTS/CTS RTS/CTS RTS/CTS RTS/CTS
30 to 35 500 66% Basic RTS/CTS RTS/CTS RTS/CTS RTS/CTS
35 to 40 200 71% Basic Basic RTS/CTS RTS/CTS RTS/CTS
40 to 45 1500 78% RTS/CTS RTS/CTS RTS/CTS RTS/CTS RTS/CTS
45 to 50 500 83% Basic RTS/CTS RTS/CTS RTS/CTS RTS/CTS

avoidance mode (i.e., RTS/CTS always enabled), and when using statically con-

figured values for the RTS Threshold RT , namely 200-, 500-, 1000-, 1500-, and

2000 bytes. In all experiments (unless otherwise specified), half of the nodes are

hidden from other nodes. For example, in the 10-sender scenario, 5 senders are

hidden, i.e., they can see the AP but they cannot see any other sender. The other

senders, which are not hidden, can see the AP as well as the other senders. Each

experiment is run for 10 times using different seeds and nodes are selected to be

hidden or not hidden randomly.

Synthetic trace: To show how SACA adjusts to network dynamics, we period-

ically changed the frame size and number of senders (see Table 3.3). Note that

by varying the number of simultaneous transmitters, we vary network contention

and consequently collision rate. In order to observe the impact of data rates on

performance, we ran this experiment with data rates of 54-, 24-, 11-, 5.5-, or

2Mbps, while signaling transmission rate is kept at 2Mbps.

Figure 3.13 shows SACA’s average throughput compared against IEEE 802.11

DCF’s base mode ("Basic") and IEEE 802.11’s DCF congestion avoidance mode

with different RT values. We observe that SACA outperforms all other approaches
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Figure 3.14: Average throughput using hot-spot trace in infrastructure-based
scenario. 95% confidence intervals are shown.

Figure 3.15: Average throughput using company campus network trace in
infrastructure-based scenario. 95% confidence intervals are shown.

for all data rates. As expected, for lower data rates, "Basic" has the lowest

performance because frame transmission takes longer and therefore collision rate

is higher. At lower data rates, RTS/CTS enabled with lower RT values provides

better performance. As the data rate increases, performance of Th = 0 (i.e.,

RTS/CTS enabled all the time) improves and eventually outperforms "Basic".
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For example, for 24 Mbps, RTS/CTS with mid-range RT values provide better

performance than both "Basic" and RTS/CTS with larger RT values. The reason

is that throughput improves when larger frames are "protected" by RTS/CTS at

this data rate while, for smaller frames, throughput is higher without RTS/CTS.

Our proposed algorithm performs consistently well because it can dynamically

decide when to enable or disable RTS/CTS based on current conditions, i.e., frame

size, transmission rate, and contention.

Table 3.6 shows how one of the senders uses RTS/CTS during the experiment

as contention and frame size change every 5 seconds. These results confirm that,

in addition to frame size and network contention, data transmission rate plays

an important role in determining whether RTS/CTS should be used or not. For

example, in seconds 10 to 15, where frames are 2000 bytes and collision rate is 26%,

when data transmission rate is 54- and 24 Mbps, RTS/CTS is disabled. However,

at 11-, 5.5-, and 2Mbps, RTS/CTS is used. This is because, for lower data rates,

using RTS/CTS is more advantageous.

Hot-spot trace: We ran similar experiments using the hot-spot trace with 10-,

30-, and 50 senders using ns-3 ’s IEEE 802.11n. Since there are 10 individual flows

in our trace, each flow is assigned to 1-, 3-, and 5 senders in the 10-, 30-, and

50-sender scenarios, respectively, with each flow starting at slightly different start

times. Similarly to the synthetic trace experiments, we compare SACA’s average

throughput against IEEE 802.11’s base mode (no RTS/CTS), as well as statically

configured RT values of 0 (RTS/CTS always enabled), 200-, 500-, 1000-, 1500-, and

2000 bytes. Figure 3.14 show SACA’s average throughput in infrastructure-based

scenario with 10-, 30-, and 50 senders.

In the 10-sender scenario, since there is less contention, using IEEE 802.11’s

base mode or higher RT values is more beneficial. With 30 senders, which results
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in higher contention, using lower thresholds, e.g., 200- and 500 bytes, yields better

performance. In the 50-sender scenario, RTS/CTS should be used all the time

because of the high contention. In all cases, SACA outperforms all other methods

because of its ability to automatically adjust to network contention and airtime.

Note that, while in the 10-sender experiment, "Basic" yields similar throughput

when compared to SACA, in the 50-sender scenario, "Basic" is the worst performer.

In other words, SACA outperforms the best performer among the static methods

in all cases.

Company campus trace: Similarly to the hot-spot trace, data rates provided

in the Radiotap Header are used to calculate airtime. We ran experiments with

10-, 30-, and 50 senders by assigning each captured flow to 2-, 6- and 10 senders,

respectively. Compared to the hot-spot trace, the average frame size and data

rate are considerably higher. As shown in Figure 3.15, SACA outperforms all

other methods in all scenarios, which is consistent with the results observed in

the hot-spot experiments. This is due to SACA’s ability to dynamically adjust to

frame size, transmission rate, and network contention. For instance, even though

contention is not high in the 10-sender scenario, since the ratio of frame sizes

to the data rates is larger on average, enabling RTS/CTS yields higher average

throughput when compared to Basic. As the number of senders increases, the

optimal RT value decreases. So in the 50-sender scenario, RTS/CTS should be

used all the time.

SACA’s Throughput Improvement

To further explore SACA’s performance, we ran experiments varying not only

the number of senders but also the percentage of hidden terminals and measure

SACA’s throughput improvement.
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Synthetic trace: The set of experiments driven by the synthetic trace used two

different data rates, lower and higher, namely, 2Mbps and 54Mbps. Figure 3.16(a)

and Figure 3.16(b) show SACA’s throughput improvement over IEEE 802.11 DCF’s

collision avoidance mode with RTS/CTS always on for 2- and 54Mbps, respectively.

As expected, when the number of senders and hidden nodes increase, the benefits

of using RTS/CTS all the time increase. However, SACA is still performing better

in all cases. For lower data rates (Figure 3.16(a)), SACA’s improvement is not

as pronounced compared to higher data rate. The reason is that, at higher data

rates (Figure 3.16(b)), the cost of using RTS/CTS all the time is relatively more

expensive since control frames are sent at lower data rate (i.e., 2Mbps).

We also evaluate SACA’s throughput improvement over IEEE 802.11 DCF’s

base mode (i.e., no RTS/CTS) for data rates of 2- and 54Mbps. is getting more by

increasing the number of nodes and hidden nodes. Figure 3.17(a) and Figure 3.17(b)

show almost the exact inverse behavior when compared to Figures 3.16(a) and

3.16(b). In other words, SACA’s throughput improvement is more accentuated at

lower data rates when compared to higher data rates. This is because SACA, in

some cases, enables RTS/CTS and RTS/CTS’ cost is lower at lower data rates.

Hot-spot trace: We ran similar experiments using the hot-spot trace and eval-

uated SACA’s improvement over IEEE 802.11 DCF’s congestion avoidance mode

(RTS/CTS on) and IEEE 802.11 DCF’s base mode (RTS/CTS off). From Fig-

ure 3.18(a), we observe that SACA performs much better than IEEE 802.11 DCF’s

congestion avoidance mode when chance of collision is low. However, by increasing

the number of senders and hidden nodes, SACA’s throughput improvement is less

pronounced. Figure 3.18(b) shows SACA’s throughput gain over IEEE 802.11

DCF’s base mode (RTS/CTS off). We observe that as network contention and

number of hidden nodes increase, so does SACA’s average throughput improvement
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(a) 2 Mbps

(b) 54 Mbps

Figure 3.16: SACA’s average throughput improvement compared to IEEE 802.11
DCF’s congestion avoidance mode (RTS/CTS ON) for synthetic trace

over RTS/CTS off. The reason is that SACA turns on the RTS/CTS dynamically

when contention is high, which decreases the collision rate and, as a result, improves

overall throughput performance. In all cases, SACA outperforms both IEEE 802.11

DCF’s base- and congestion avoidance modes.

Company campus network trace: We observe similar behavior for the com-

pany campus network trace. As shown in Figure 3.19(a), when there is less

77



(a) 2 Mbps

(b) 54 Mbps

Figure 3.17: SACA’s average throughput improvement compared to IEEE 802.11
DCF’s congestion avoidance mode (RTS/CTS OFF) for synthetic trace

contention and no hidden nodes, there is no need to use RTS/CTS. Therefore,

SACA disables RTS/CTS and, as a result, throughput goes up compared to having

RTS/CTS on all the time. Although the performance of both techniques are

closer in higher contention scenarios, SACA still performs better since it switches

RTS/CTS off considering airtime in addition to contention. From Figure 3.19(b),

we observe that, since RTS/CTS is always off, in scenarios that exhibit higher

contention and number of hidden nodes, SACA’s throughput improvement is more
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(a) RTS/CTS ON

(b) RTS/CTS OFF

Figure 3.18: SACA’s average throughput improvement for hot-spot trace

pronounced, while SACA’s throughput improvement decreases in scenarios with

lower contention and lower number of hidden nodes.

SACA’s Network Contention Adaptation

In this section, we examine SACA’s ability to adapt to network contention in

more detail. More specifically, we investigate how well SACA estimates contention

based on its collision rate measurements and then how it uses that information to

enable/disable RTS/CTS.
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(a) RTS/CTS ON

(b) RTS/CTS OFF

Figure 3.19: SACA’s average throughput improvement for company campus
trace

To do that, we collect collision rate measurements as well as SACA’s collision

rate estimates, which are calculated using the SENSE algorithm. We collect data at

an AP with 20 senders transmitting according to the public hot-spot and company

network datasets. Collision rates were collected with RTS/CTS disabled in order

to measure "raw" network contention.

Based on its collision rate estimates, SACA decides whether to enable/disable

80



RTS/CTS. Then, we also show the AP’s RTS/CTS usage time series, where "1"

indicates that RTS/CTS is enabled and and "0" that RTS/CTS is disabled. We

run experiments for two scenarios, namely when all nodes are hidden from each

other when all of them are exposed.

Hot-spot trace: Figure 3.20(a) shows SACA’s collision rate measurements and

collision rate estimates at the AP when all senders are hidden from each other. As

expected, in the presence of hidden nodes, collision rates can be quite high (in this

case, as high as 90%). We also observe that SACA can track collision rates closely.

Figure 3.20(b) shows the time when RTS/CTS is enabled and disabled. Since

in this scenario collision rates are relatively high, RTS/CTS is used frequently

(around 30% of the time).

Figure 3.21(a) shows collision rate measurements and SACA’s collision rate

prediction at the AP when nodes are exposed. As expected, since nodes can

see each other, the chance of collision is lower. Therefore, collision rates are

considerably lower when compared to the ones plotted in Figure 3.20(a). As a

result, Figure 3.21(b) shows that RTS/CTS is rarely enabled (only for around 3%

of the time).

Company campus network trace: For the company campus trace, Fig-

ure 3.22(a) shows the collision rate and SACA’s collision rate estimates at the

AP when all nodes are hidden from each other. In this dataset, collision rates

are generally higher than in the hot-spot trace. Again, we observe that SACA’s

estimates are able to follow real collision rate measurements quite closely. Because

of the higher average collision rate, as shown in Figure 3.22(b), RTS/CTS usage

in the company network trace is around 40% of the time and is higher than in the

hot-spot experiment.
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(a) Collision rate and SENSE’s prediction

(b) RTS/CTS usage

Figure 3.20: Collision rate, SENSE’s prediction and RTS/CTS usage for AP in
hot-spot trace when all nodes are hidden from one another

In Figures 3.23(a) and 3.23(b), respectively, we show the collision rate mea-

surements, SACA’s collision rate predictions, and RTS/CTS usage for company

campus trace where all nodes can see each other. Similarly to what was observed

in the hot-spot experiment and as expected, collision rates are considerably lower

than the case when nodes are hidden (Figure 3.22(a)) and, as a result, RTS/CTS

is used less (around 8% of the time).

82



(a) Collision rate and SENSE’s prediction

(b) RTS/CTS usage

Figure 3.21: Collision rate, SENSE’s prediction and RTS/CTS usage for AP in
hot-spot trace when all nodes are exposed to one another

3.6.2 Ad-Hoc Scenarios

Experiments similar to the ones conducted for infrastructure-based typologies

were run for ad-hoc scenarios using the parameters summarized in Table 3.2. Note

that, unlike the infrastructure-based experiments which did not need to use routing,

ad-hoc scenarios employed the AODV protocol.
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(a) Collision rate and SENSE’s prediction

(b) RTS/CTS usage

Figure 3.22: Collision rate, SENSE’s prediction and RTS/CTS usage for AP in
company campus trace when all nodes are hidden from one another

Average Throughput

We compare SACA’s average throughput against that of IEEE 802.11’s DCF

base mode (RTS/CTS always off) and congestion avoidance mode (RTS/CTS

always on) in a variety of ad-hoc scenarios. We also show average throughput
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(a) Collision rate and SENSE’s prediction

(b) RTS/CTS usage

Figure 3.23: Collision rate, SENSE’s prediction and RTS/CTS usage for AP in
company campus trace when all nodes are exposed to one another

when using statically configured values for the RTS Threshold, RT , namely 200-,

500-, 1000-, 1500-, and 2000 bytes.

Synthetic trace: To show how our algorithm adjusts to network dynamics, we

periodically changed frame size and number of nodes transmitting in our synthetic

data trace. Note that by varying the number of simultaneous transmitters, we
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Figure 3.24: Average throughput using the synthetic trace in ad-hoc scenario.95%
confidence intervals are shown.

vary network contention and consequently collision rate. We ran each experiment

with data transmission rates of 54-, 24-, 11-, 5.5-, and 2Mbps, while signaling

transmission rate is kept at 2Mbps. We ran each experiment 10 times randomly

selecting senders and their receivers.

Figure 3.24 shows SACA’s average throughput as well as that of IEEE 802.11

DCF’s base mode ("Basic"), and RTS/CTS enabled based on different RT values.

Consistent with results from infrastructure-based scenarios, we observe that our

algorithm outperforms all other methods tested for all data rates used. As expected,

for lower data rates, "Basic" has the lowest performance because frame transmission

takes longer and therefore collision rate is higher. In the low data rate cases, lower

RT values provide better performance. As the data rate increases, performance

of "Basic" (RTS/CTS disabled all the time) improves and eventually outperforms

"Th=0". For example, for 24 Mbps, RTS/CTS with mid-range RT values provide

better performance than both "Basic" and RTS/CTS with larger RT values. The
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reason is that throughput improves when larger frames are "protected" by RTS/CTS

at this data rate while, for smaller frames, throughput is higher without RTS/CTS.

SACA always performs well because it can dynamically decide when to enable or

disable RTS/CTS based on current conditions, i.e., frame size, transmission rate,

and contention.

Table 3.7 shows the usage of RTS/CTS at a specific node as contention and

frame size changes every 5 seconds. It confirms that, in addition to frame size and

network contention, data transmission rate plays an important role as well. For

example, in seconds 10 to 15, when frames are 2000 bytes and collision rate is

21%, at 54 and 24 Mbps, RTS/CTS is disabled. However, in 11, 5.5 and 2 Mbps,

RTS/CTS is used. This is because, for lower data rates, using RTS/CTS turns

out to be more advantageous.

Table 3.7: SACA’s slot-by-slot behavior using the synthetic trace with different
data rates in ad-hoc scenario

Time (s) Frame Size (bytes) Collision 54Mbps 24Mbps 11Mbps 5.5Mbps 2Mbps
0 to 5 1500 2% Basic Basic Basic Basic Basic
5 to 10 500 7% Basic Basic Basic Basic RTS/CTS
10 to 15 2000 21% Basic Basic RTS/CTS RTS/CTS RTS/CTS
15 to 20 200 33% Basic Basic Basic Basic RTS/CTS
20 to 25 1000 39% Basic Basic RTS/CTS RTS/CTS RTS/CTS
25 to 30 2000 52% RTS/CTS RTS/CTS RTS/CTS RTS/CTS RTS/CTS
30 to 35 500 59% Basic Basic RTS/CTS RTS/CTS RTS/CTS
35 to 40 200 63% Basic Basic Basic RTS/CTS RTS/CTS
40 to 45 1500 67% RTS/CTS RTS/CTS RTS/CTS RTS/CTS RTS/CTS
45 to 50 500 71% Basic Basic RTS/CTS RTS/CTS RTS/CTS

Hot-spot trace: For the hot-spot trace, we employed a similar strategy as

in the infrastructure-based scenarios. In order to vary network contention, we

used 10-, 30-, and 50 senders and assigned each flow to 1-, 3-, and 5 senders,

respectively. Flows have slightly different start times. Similarly to the synthetic

trace experiments, we compare the average throughput when using SACA against
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IEEE 802.11’s base mode (no RTS/CTS), as well as statically configured RT

values of 0- (RTS/CTS always enabled), 200-, 500-, 1000-, 1500-, and 2000 bytes.

Figure 3.25: Average throughput using hot-spot trace in ad-hoc scenario. 95%
confidence intervals are shown.

As shown in Figure 3.25, in the 10-sender scenario, since there is less contention,

using the base mode ("Basic) or higher RT values is more beneficial. By adding

more nodes and, as a result, increasing contention, lower RTS thresholds like 200-

and 500 bytes perform better. In the 50-sender scenario, RTS/CTS should be

used all the time because of the high contention. In all cases, SACA outperforms

all other methods because of its ability to adjust to network contention and

airtime. While in the 10-sender experiment, "Basic" yields similar throughput

when compared to our approach, in the 50-sender scenario, "Basic" is the worst

performer. In other words, SACA can beat the best static method in all cases.

Company campus network trace: Similarly to the hot-spot trace, data rates

provided in the Radiotap Header are used to calculate the airtime in the company

campus network trace. We ran experiments with 10-, 30-, and 50 senders by
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assigning each captured flow to 2-, 6- and 10 senders, respectively. Compared

to the public hot-spot trace, average frame sizes and data rates are considerably

higher in this dataset (see Tables 4.3 and 4.4). As shown in Figure 3.26, in all

scenarios, SACA outperforms all other methods since it adjusts dynamically to

frame size, transmission rate, and network contention. For instance, even though

contention is not high in the 10-node scenario, since frames are larger on average,

enabling RTS/CTS yields higher average throughput when compared to "Basic".

As the number of nodes increases, the optimal RT value decreases. So in the

50-node scenario RTS/CTS should be used all the time.

Figure 3.26: Average throughput using company campus trace in adhoc scenario.
95% confidence intervals are shown.
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Chapter 4

Dynamically Tuning IEEE

802.11’s Contention Window

Using Machine Learning

The IEEE 802.11 standard, also known as WiFi, specifies two types of MAC

protocols, namely the Distributed Coordination Function (DCF) and the Point

Coordination Function (PCF). DCF is IEEE 802.11’s most widely used medium

access mechanism and uses the Carrier Sensing Multiple Access/Collision Avoidance

(CSMA/CA) protocol1. CSMA/CA arbitrates access to the shared communication

medium using a contention-based, on-demand distributed mechanism. One of

the key components of IEEE 802.11’s DCF is the Binary Exponential Backoff

(BEB) algorithm which was introduced to mitigate channel contention and prevent

collisions of packets simultaneously transmitted by multiple stations. It delays the

retransmission of a collided packet by a random time, chosen uniformly over n slots

(n > 1), where n is a parameter called Contention Window, or (CW ). The BEB
1DCF provides two modes of operation: the Base Mode which uses CSMA and the Collision

Avoidance Mode, which uses CSMA/CA.
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algorithm works as follows: CW is initially set based on a pre-specified minimum

value, (CWmin). If a collision happens, the station chooses an exponentially

increased CW until it reaches CW ’s pre-specified maximum value (CWmax). As

such, CW can significantly impact IEEE 802.11’s performance. Choosing small

CW values may result in more collisions and backoffs. On the other hand, choosing

large CW may result in unnecessary idle airtime and additional delay. In either

case, the channel is not used efficiently. Therefore, the value of CW should be

adjusted considering the actual level of contention in the channel.

In this chapter, we use a simple, yet effective machine learning technique called

Fixed-Share to decide the value of CW based on recent past network contention.

Unlike the original BEB algorithm which increases or decreases CW based solely

on the status of the most recently transmitted packet, our method also accounts

for recent network contention conditions in addition to last packet’s transmission

status. Our experimental results show that our method yields up to 72 % and 50

% throughput improvement over the original IEEE 802.11’s binary exponential

backoff (BEB) algorithm and History-Based Adaptive Backoff (HBAB) algorithms

respectively. End to end delay is improved upto 50 % and 30 % compared to the

BEB and HBAB methods respectively.

The rest of this chapter is organized as follows. Section 4.1 provides a brief

overview of IEEE 802.11’s Binary Exponential Backoff (BEB) algorithm and

present related work. Our machine learning based method to dynamically adjust

802.11’s contention window is described in Section 4.2. Section 4.3 and Section 4.4

present our experimental methodology and results in infrastructure-based and

ad-hoc network scenarios respectively.
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4.1 Background and Related Work

IEEE 802.11’s Binary Exponential Backoff (BEB) algorithm was introduced

to decrease the chance of collision of packets simultaneously (re)transmitted by

multiple stations. In the original BEB algorithm, if a node wants to transmit

a data frame, it first senses the channel for a DCF Inter frame Space (DIFS)

interval to check whether the channel is idle. If the channel is sensed idle, the

node transmits the data packet immediately. Otherwise, as shown in Equation 4.1,

it selects a random backoff time in the range of 0 and CW to avoid collisions. The

backoff time is decreased every time thereafter when the node senses the medium

idle. When the backoff time reaches zero, the node can then transmit.

Backoff time = random [0, CW ]× slot time (4.1)

If the transmission is unsuccessful, the CW will be doubled for the next

transmission as shown in (4.2). In case of a successful transmission, CW is reset

to CWmin.

CWnew = min(CWold × 2, CWmax) (4.2)

A number of drawbacks with the original BEB algorithm have been identified.

Fairness is one of them; for instance, resetting CW to CWmin after a successful

transmission may cause the node who succeeds in transmitting to dominate the

channel for an arbitrarily long period of time. As a result, other nodes may suffer

from severe short-term unfairness. Additionally, the current state of the network

(e.g., load) should be taken into account to select the most appropriate backoff

interval.

Motivated by its performance impact, several proposals have focused on op-
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timizing IEEE 802.11’s backoff algorithm. In the remainder of this section, we

provide a brief overview of prior related work.

We categorize related work on improving IEEE 802.11’s BEB performance in

two groups. While the first group focuses on how to increase or decrease the size

of CW more efficiently, the second group tries to set the values of CWmin and

CWmax, i.e., CW ’s upper and lower bounds.

Increasing/decreasing CW

In MACAW [6], a new approach to increasing/decreasing CW ’s size was pro-

posed and works as follows. In the case of unsuccessful transmission, CW is

multiplied by a constant factor set to 1.5, instead of doubling it. When transmis-

sions are successful, CW is decreased by 1, instead of resetting it to its minimum

value, Cmin.

The approach proposed in [11] increases CW linearly by adding CWmin to the

current value of CW in case of unsuccessful transmissions and decreases CW by 1

when transmissions are successful.

An adaptive contention window adjustment algorithm is proposed in [41].

It uses a control parameter called CWbasic whose value is fixed. The proposed

algorithm works as follows: in case of successful transmissions, if CW is less than

CWbasic, CW is decremented by 1. Otherwise, i.e., if CW is greater than CWbasic,

CW is divided by 2. In case of unsuccessful transmissions, CW is doubled and if

the new CW is still below CWbasic, CWbasic is adopted.

In [4], CWthreshold is introduced and its value is fixed and set to half of CWmax.

At the time of transmission, the current value of CW is compared with CWthreshold.

If CW <= CWthreshold, traffic load is considered to be light. Otherwise traffic

load is considered high. If traffic load is light, in case of unsuccessful transmission,
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CW is decremented by 1; otherwise, in case transmission is successful, CW is

decremented by 2. If traffic load is deemed high, in case transmission is successful,

CW is set to CW+2; otherwise, i.e., if a collision occurs, CW is set to 2×CW+2.

The work described in [22] tries to address BEB’s unfairness. According to

the proposed mechanism, participating stations monitor the state of the channel.

Stations use channel state information to keep their CW synchronized so that

they all have uniform probability to access the channel access next time they need

to transmit.

in [39], collision ratio is used as an indicator of network contention and guides

how CW is adjusted. Collision ratio is given by the number of successful trans-

missions divided by the total number of transmissions. When a node experiences

collision, if the collision ratio is lower than a pre-defined threshold, network con-

tention is considered low and CW is incremented by 32. Otherwise, network

contention is deemed high, and CW is doubled. After a successful transmission, if

the collision ratio is less than the threshold, CW is reset to CWmin. Otherwise,

i.e., network contention is high, CW is set to CWmin × 2rc + 32 where rc is the

retransmission count.

The History-Based Adaptive Backoff (HBAB) algorithm [3] updates CW based

on whether the current data transmission succeeds or not, as well as on the success

or failure of the previous N consecutive data transmissions. We describe HBAB

in more detail in Section 4.3 as it is used, along with IEEE 802.11’s BEB, in the

comparative performance study we conduct to evaluate the proposed contention

window adaptation algorithm.

The Inverse Binary Exponential Backoff (iBEB) algorithm [5] tries to improve

BEB’s short-term fairness by allowing devices that experience more collisions

to access the channel with higher probability than devices which experience no

94



Figure 4.1: Collision resolution stage [34]

collision or fewer. As such, the CW of "collided" nodes is decreased so they can

gain higher channel access priority resulting in short-term fairness. Experimental

results reported in [5] show that iBEB is able to improve throughput, delay, and

collision probability, especially in the case of dense network scenarios.

Other variants of the BEB algorithm have been proposed. For example, the

Binary Negative-Exponential Backoff (BNEB) was introduced in [29]. In BNEB,

CW of all node is initialized to CWmax. If a node’s transmission is successful, its

CW is halved and if it fails, its CW is reset to CWmax. New Binary Exponential

Back-off (N-BEB) [46] also tries to mitigate BEB’s fairness problem by monitoring

and then limiting the number of times each node accesses the channel.

Setting CW ’s lower and upper bounds

Another group of papers focuses on optimizing the values of CWmin and CWmax.

For instance, as shown in Figure4.1, in [34], the range [CWmin, CWmax] is split

into sub-ranges where each sub-range is assigned to a contention stage. Contention

stage is initially set to 0 and with each collision, it is increased by 1. With each

successful transmission, the contention stage goes back to stage 0.

Contention window parameters have been studied in the IEEE 802.11e which

is an amendment to the IEEE 802.11 standard. In IEEE 802.11e, the levels of

traffic priority are called Access Categories (AC) where each AC[i] has its own
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CWmin[i] and CWmax[i].

The approach described in [16] proposes a mechanism to set CW [i], i.e., CW for

each IEEE 802.11e’s Access Category. It uses the collision rate which is measured

periodically and smoothed using exponentially weighted moving average. For each

transmission, CW [i] is set as a function of the smoothed collision rate, CWmin[i],

and CWmax[i].

Using machine learning to improve network protocol per-

formance

Recently, machine learning techniques have gained huge traction and have

been used in a wide range of applications. Specifically in the context on computer

networking performance management, in [40], the Fixed-Share algorithm is used to

estimate TCP’s round-trip time. In our prior work [13], we estimate collision rate

using an algorithm called SENSE which employs a combination of Fixed-Share

and Exponentially-Weighted Moving Average (EWMA). In [15], SENSE estimates

network contention which is then used to enable/disable RTS/CTS in IEEE 802.11

networks.

To the best of our knowledge, our proposed algorithm, which is described in

Section 4.2, is the first to use machine learning to automatically adjust IEEE

802.11’s CW . Most proposed methods to-date adjust CW based solely on the last

transmission, whereas our approach takes into account packet transmission history

and adjusts CW accordingly.
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4.2 Automatically Adjusting IEEE 802.11’s Con-

gestion Window

In this section, we introduce a simple yet effective mechanism based on the

Fixed-Share algorithm [19] to tune IEEE 802.11’s CW . We start with a brief

description of Fixed-Share.

4.2.1 Fixed-Share Algorithm

The Fixed-Share algorithm is part of the Multiplicative Weight algorithmic

family which has shown to yield performance improvements in a variety of on-line

problems [19], [40]. This family of algorithms combines predictions of a set of

experts {x1,x2,...,xN} to calculate the overall prediction denoted by ŷt. Each expert

has a weight {w1,w2,...,wN} representing the impact of that expert on the overall

predictor. Based on the difference between each expert’s prediction and the real

data represented by yt, the weight of each expert is updated [13]. Algorithm 8

shows Fixed-Share Experts’ pseudo-code. Each expert is initialized with a value

within the range of the quantity to be predicted and the weight of all experts is

initialized to 1
N
, where N is the number of experts. At every iteration, based on

each expert’s current weight and value, the prediction for the next trial is calculated

as shown in the Prediction step of the algorithm. The Loss Function step then

checks how good the prediction of each expert was using a loss function Li,t(xi, yt).

The result of the loss function loss for each expert is used in the Exponential

Update step to adjust the experts’ weights by multiplying the current weight of

the i− th expert by e−η×Li,t(xi,yt). The learning rate η is used to determine how

fast the updates will take effect, dictating how rapidly the weights of misleading

experts will be reduced. Finally, in the Sharing Weights step, a fixed fraction of
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the weights of experts that are performing well is shared among the other experts.

The goal of this step is to prevent large differences among experts’ weights [21].

The amount of sharing can be adjusted through the sharing rate parameter α.

Algorithm 8 Fixed-Share Algorithm
Parameters:

η > 0, 0 ≤ α ≤ 1
Initialization:

w1,1=...=wN,1= 1
N

Prediction:

ŷt=
∑N

1 wi,t×xi∑N

1 wi,t

Loss Function:

Li,t(xi, yt) =

(xi − yt)2 , xi ≥ yt

2× yt , xi < yt

Exponential Update:
ẃi,t = wi,t × e−η×Li,t(xi,yt)

Sharing Weights:
Pool = ∑N

i=1 α× ẃi,t wi,t+1 = (1− α)× ẃi,t + 1
N
× Pool

4.2.2 Proposed Approach

We propose a modified version of the Fixed-Share algorithm to dynamically set

IEEE 802.11’s CW . More specifically, as illustrated in Algorithm 9, we design loss-

and gain functions that account for current network conditions. Our proposed

technique works as follows. Similarly to the standard Fixed-Share algorithm

(Algorithm 8), in the Initialization step in Algorithm 9, the weight of all experts

is set to 1
N
, where N is the number of experts. Each expert is assigned a fixed

value within the range of [CWmin, CWmax]. We currently assign the values of

15, 22, 33, 50, 75, 113, 170, 256, 384, 576, 865 and 1023 to 12 experts forming a
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geometric sequence with ratio of 1.5. We have experimented with 25 experts with

ratio of 1.2 and have not seen any significant change in the results.

In the CW Calculation step, ˆCW t which is CW ’s estimate for time t is

calculated based on the current value of the experts and their weights. Clearly,

experts with more weight will have more influence on the next CW . In the

Loss/Gain Function step, the performance of all experts is evaluated based on

their value, ˆCW t, and whether the previous packet transmission was successful or

not.

The loss and gain functions are designed to adjust CW to the current conditions

of the network. Our loss/gain function works as follows. If a packet is transmitted

successfully, the weight of experts higher than ˆCW t will be reduced and the weight

of experts lower than ˆCW t will be increased. This will cause the value of the next

CW to be lower and, as a result, the next transmission will be scheduled more

aggressively. Also, for experts with higher value than ˆCW t, the higher the value

of the expert, the higher the loss of its weight will be. Similarly, for experts with

lower value than ˆCW t, the lower the value of the expert, the lower its weight gain

will be.

In the case of unsuccessful transmissions, the loss/gain function will increase

the weight of experts with values higher than ˆCW t and reduce the weight of

experts with values lower than ˆCW t. This will result in a higher CW for the next

packet transmission and less chance of collision. In this case, for experts with

lower value than ˆCW t, the lower the expert’s value, the higher the weight loss. For

experts with higher value than ˆCW t, the higher their value, the lower the weight

gain.

The overhead that comes with of our method is due to the two factors: extra

memory space and additional computations. As for the memory, extra storage
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space is needed to store expert’s values and weights. As for the computations,

some operations are needed to determine the next CW , such as if conditional

statement, multiplications and summations. These operations are done in real

time and as a result, our algorithm is fast enough to catch up with the underlying

physical channel.

Algorithm 9 Proposed Algorithm
Initialization:

w1,1=...=wN,1= 1
N

x1 = CW1, x2 = CW2, ..., xN = CWN ,

CW Calculation:
ˆCW t=b

∑N

1 wi,t×xi∑N

1 wi,t
c

Loss/Gain Function:

• If packet received successfully:

wi,t+1 =

[1− xi− ˆCW t

xi
]× wi,t , xi > ˆCW t

[1 + xi
ˆCW t

]× wi,t , xi ≤ ˆCW t

• If packet is not received successfully:

wi,t+1 =

[1 + ˆCW t

xi
]× wi,t , xi > ˆCW t

[1− ˆCW t−xi
ˆCW t

]× wi,t , xi ≤ ˆCW t

Sharing Weights:
Pool = ∑N

i=1 α× ẃi,t wi,t+1 = (1− α)× ẃi,t + 1
N
× Pool

4.3 Experimental Methodology

In this section, we describe our experimental setup including the scenarios,

traffic loads, as well as performance metrics used when evaluating the proposed
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approach. We compare the performance of our technique against both the original

IEEE 802.11 contention window adjustment technique as well as the History-Based

Adaptive Backoff (HBAB) algorithm [3]. As such, we also provide a brief overview

of HBAB.

4.3.1 Experimental Setup

We ran experiments using the ns-3 [8] network simulator and its implemen-

tation of the IEEE 802.11n for both infrastructure-based and ad-hoc network

scenarios. In our simulations, we use typologies with 100 nodes randomly placed

in a 1000x1000m2 area. In order to vary network contention conditions, we vary

the number of sender nodes. We explore how dynamically our method is able to

adjust the contention window and its effect on network performance. Table 4.1

summarizes the parameters describing our experimental setup and their values.

Note that AODV [42] routing was used only in the multi-hop ad-hoc experiments.

Traffic Load: We used synthetic data traces as well as traces collected in real

networks to drive our simulations. Table 4.2 summarizes the synthetic data

parameters and their values. Our real traffic traces ere collected in two different

settings, namely: (1) a public hot spot (Table 4.3), and (2) a company campus

network (Table 4.4) using a wireless sniffer. Note that since there are 10 and 5

individual flows in the hot spot and company traces, respectively, we replicate

these flows in scenarios with higher number of nodes.

Performance Metrics: We evaluate our contention window adjustment tech-

nique by comparing its performance against IEEE 802.11’s original mechanism

as well as HBAB [3]. As performance metrics, we use average throughput and

average end-to-end delay. Average throughput is calculated as the ratio between the
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number of received packets and the total number of transmitted packets averaged

over all nodes. Average end-to-end delay is given by the interval of time between

when a packet was received and when it was sent averaged over all received packets.

Channel access fairness is an important issue in MAC protocol design. As

such, we also evaluate the proposed approach’s fairness by comparing its minimum,

maximum, and average throughput against those of IEEE 802.11’s BEB and

HBAB.

Table 4.1: Simulation setup parameters and their values

Area 1000mx1000m
Number of nodes 100
Traffic CBR and real traces
IEEE 802.11 Version 802.11n
Number of experts 12
CWmin 15
CWmax 1023
Routing protocol AODV

Table 4.2: Synthetic trace

Simulation time 200s
Traffic type CBR
Frame size 1024 Bytes
Data rate 54 Mbps

4.3.2 History-Based Adaptive Backoff

History-Based Adaptive Backoff (HBAB) [3] increases or decreases the conges-

tion window CW based on the current- as well as past data transmission trials.

HBAB defines two parameters α and N ; α is a multiplicative factor used to update
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Table 4.3: Hot spot trace

Location Coffee shop
Time Around noon
Number of flows 10
Duration 20 minutes
Frame size Varies within 34-2150 byte range
802.11 version 802.11n

Table 4.4: Company campus network trace

Location Company campus network
Number of flows 5
Duration 30 minutes
Frame size Varies within 34-11000 byte range
802.11 version 802.11n

CW and N is the number of past transmission trials considered by the algorithm.

The outcome of the previous N transmission trials is stored in ChannelState;

failed transmissions are represented by 0 while successful ones bt 1. For example,

if N = 2, ChannelState={0,1} means that the last transmission succeeded but

the previous one failed. Larger values of N mean larger windows into the past but

require, albeit relatively small, additional memory.

Algorithm 10 shows HBAB’s pseudo-code. Note that we follow HBAB’s

implementation in [3] and use α = 1.2 and N = 2, i.e., HBAB examines the status

of the two previous and consecutive data transmissions, as well as the current

one, to make a decision on how to adjust CW . In case the current transmission is

successful, but the two previous transmissions failed, i.e., ChannelState[0] = 0 and

ChannelState[1] = 0, the new value of CW is set to the current CW divided by α.

Otherwise, CW is set to CWmin. In case the current transmission is unsuccessful,

CW is multiplied by α.
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Algorithm 10 HBAB Algorithm
Initialization:

CW = CWmin, α > 1
ChannelState[0] = 1, ChannelState[1] = 1

If current transmission succeeds:

CW =


CW
α

, ChannelState[0] = 0
and ChannelState[1] = 0

CWmin , otherwise

If transmission failed:
CW = CW × α

ChannelState update:
ChannelState[0] = ChannelState[1]
ChannelState[1] = 0, last transmission failed
ChannelState[1] = 1, last transmission succeeded

We use HBAB in the performance evaluation of our proposed contention window

adjustment mechanism as it represents mechanisms that are similar to ours, i.e.,

that use transmission status history to set CW .

4.4 Results

As described in Section 4.3, we evaluate our approach using two types of

scenarios, namely: infrastructure-based and infrastructure-less (or multi-hop ad-

hoc) networks. We start by presenting results obtained for the infrastructure-based

scenarios followed by the infrastructure-less scenario results. In all graphs, each

data point is calculated by averaging over 10 runs that use different random seeds.
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(a) Average throughput

(b) Average delay

Figure 4.2: Average throughput and delay as a function of number of senders for
the synthetic traffic trace in the infrastructure based scenario

4.4.1 Infrastructure-based Scenarios

In the infrastructure-based experiments, randomly selected nodes send traffic

to the Access Point (AP) which is placed in the center of the area being simulated.

We drive the experiments using the synthetic and real (i.e., hot spot and company

campus) traffic traces described in Section 4.3 and vary the number of senders as
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(a) Average throughput

(b) Average delay

Figure 4.3: Average throughput and delay as a function of number of senders for
hot-spot traffic trace in infrastructure based scenario

follows: 3, 5, 10, 30, 50, and 100.

Average Throughput and End-to-end Delay: Figures 4.2, 4.3, and 4.4

compare the average throughput and end-to-end delay of our method against

IEEE 802.11’s BEB and HBAB for different number of nodes and traffic traces,

i.e., synthetic, hot-spot, and company campus data traces. We observe in all
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(a) Average throughput

(b) Average delay

Figure 4.4: Average throughput and delay as a function of the number of senders
for company campus traffic trace in infrastructure based scenario

three figures similar trends for both average throughput and end-to-end delay.

As expected, average throughput decreases and end-to-end delay increases as

the number of senders increases. For lower number of senders, e.g., 3 and 5, all

three algorithms perform similarly. However, as the number of senders increases

resulting in higher network contention, our approach is able to achieve better
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Table 4.5: Throughput and delay improvement of proposed congestion window
adaptation algorithm compared to IEEE 802.11’s BEB and HBAB in infrastructure-
based scenario with 100 senders for all traffic traces

BEB Throughput HBAB
Throughput

BEB Delay HBAB Delay

Synthetic 180% 90% 28% 12%
Hot-spot 220% 92% 33% 20%
Company 170% 64% 31% 21%

average throughput and end-to-end delay performance when compared to IEEE

802.11’s BEB and HBAB for all three traffic traces.

Table 4.5 summarizes the throughput and delay improvement achieved by our

congestion window adaptation algorithm when compared to BEB’s and HBAB’s

for 100 senders in the infrastructure-based scenario for all traffic traces. We observe

that in such more heavily loaded environments, our approach is able to achieve

significant gains both in throughput (up to 220% over BEB and 92% over HBAB)

as well as in end-to-end delay (up to 33% over BEB and up to 21% over HBAB).

Fairness: In order to evaluate the ability of our contention window adaptation

algorithm to provide a fair share of the channel to participating stations, Table 4.6

shows the minimum, average, and maximum throughput reported by stations when

using our algorithm compared against BEB and HBAB for the synthetic data trace

in the infrastructure-based scenario with 100 senders. Both the difference between

the maximum and minimum throughput as well as the standard deviation (also

reported in Table 4.6) show that our approach yields superior fairness performance

when compared to both BEB and HBAB. As previously discussed, the main reason

for BEB’s less fair channel allocation is due to the reset of CW to CWmin upon

a successful transmission, which gives certain nodes higher chance to seize the
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Table 4.6: Minimum, average, and maximum throughput, and standard devi-
ation achieved by our approach, BEB, and HBAB for synthetic data trace in
infrastructure-based scenario with 100 senders

Minimum Average Maximum Standard
(Mbps) (Mbps) (Mbps) Deviation

Proposed 0.64 1.2 1.96 0.48
BEB 0 0.51 2.12 0.89
HBAB 0 0.75 1.56 0.62

channel. HBAB shows improvement over BEB’s fairness by avoiding immediate

reset of CW to CWmin after single successful transmission, but still only considers

short term packet transmission history which results in less fair channel allocation

when compared to our approach. We should point out that BEB is able to yield

the highest maximum throughput which is consistent with its resetting of CW to

CWmin upon a successful transmission.

The graphs in Figure 4.5 showing CW variation over time for the nodes with

minimum and maximum throughput for the synthetic trace in the infrastructure-

based scenario with 100 senders reiterate our observations. We notice from Fig-

ure 4.5 that for both BEB and HBAB, CW for the node that reports the minimum

throughput stays practically constant at CWmax for almost the whole experiment.

In the case of the maximum throughput node, its CW varies considerably between

CWmin and CWmax, i.e., 1023, during the whole run under both BEB and HBAB.

Under our approach, the maximum throughput node’s CW is able to reach steady

state quite fast around 400.

CW Variation:

In Figure 4.5a which shows the CW variation for the node with maximum

throughput, we observe significant CW oscillation between CWmin and CWmax
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(a) Maximum throughput

(b) Minimum throughput

Figure 4.5: Contention window size variation over time for the nodes with
minimum and maximum throughput for synthetic trace in infrastructure-based
scenario with 100 senders

under BEB and HBAB. In the case of our approach, CW stays fairly constant

throughout the experiment. The reason is that, after each successful transmission,

the weight of experts with value higher than the current CW will be reduced and

the weight of experts with value lower than CW will be increased. Therefore,

for the next transmission, since the CW is calculated as the weighted sum of all
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experts, its value decreases slowly. Also, in the case of unsuccessful transmission,

the weight of experts with values higher than current CW are increased and the

weight of experts with values lower than CW are decreased. And again, since the

CW is calculated as the weighted sum of all experts, the next CW will be slightly

higher for the next transmission. In other words, through the experts and their

weights, our approach is able to account for recent past as well as the present.

Figure 4.5b shows the variation of CW over time for the node with the lowest

average throughput in the infrastructure-based scenario with 100 senders using the

synthetic traffic trace. As the results in Table 4.6 indicate, BEB’s and HBAB’s

minimum throughput is 0 which indicates that there are some nodes in the network

that suffer from starvation. We observe that, relatively early in the experiment,

CW of the node with the lowest throughput stabilizes at CWmax which explains

why certain nodes suffer from starvation.

4.4.2 Infrastructure-less Scenarios

In the ad-hoc experiments, randomly selected senders send data traffic to

randomly selected receivers according to the three traffic traces described in Sec-

tion 4.3. Similarly to the infrastructure-based experiments, the number of senders

vary as follows: 3, 5, 10, 30, 50, and 100.

Average Throughput and End-to-end Delay: Figures 4.6, 4.7, and 4.8 show

the average throughput and end-to-end delay of our method compared with BEB

and HBAB for different number of senders and traffic traces in the ad-hoc scenario.

Similarly to the trend reported in the infrastructure-based experiments, we observe

that, for lower number of senders, all three methods perform similarly. However,

when the number of senders increase, which result in higher network contention, our
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Table 4.7: Throughput and delay improvement of proposed congestion window
adaptation algorithm compared to IEEE 802.11’s BEB and HBAB in ad-hoc
scenario with 100 senders for all traffic traces

BEB Throughput HBAB
Throughput

BEB Delay HBAB Delay

Synthetic 230% 75% 31% 21%
Hot-spot 240% 78% 37% 23%
Company 257% 63% 35% 17%

method is able to achieve higher average throughput and lower average end-to-end

delay when compared to both BEB and HBAB.

Table 4.7 summarizes the throughput and delay improvement achieved by our

congestion window adaptation algorithm when compared to BEB’s and HBAB’s

for 100 senders in the ad-hoc scenario for all traffic traces. Similarly to what was

observed for the infrastructure-based experiment, in high contention networks, our

approach yields significant improvement both in average throughput (up to 257%

over BEB and 78% over HBAB) and average end-to-end delay (up to 37% over

BEB and 23% over HBAB).

Fairness: To evaluate our algorithm’s fairness in ad-hoc scenarios, we show the

minimum, average, and maximum throughput for the synthetic traffic trace with

100 senders in Table 4.8. Like the results reported for the infrastructure-based

experiments, our approach is able to reduce the gap between the minimum and

maximum average throughput with a lower standard deviation, an indication of

its ability to deliver improved fairness when compared to BEB and HAB.

CW Variation: Figure 4.9 shows CW variation over time for both the nodes

that yield the maximum and minimum average throughput under our approach
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Table 4.8: Minimum, average, and maximum throughput, and standard deviation
achieved by our approach, BEB, and HBAB for synthetic data trace in ad-hoc
scenario with 100 senders

Minimum Average Maximum Standard
(Mbps) (Mbps) (Mbps) Deviation

Proposed 0.43 1.05 1.6 0.41
BEB 0 0.3 1.8 0.75
HBAB 0 0.6 1.2 0.52

as well as under BEB and HBAB in the ad-hoc scenario with 100 senders using

the synthetic traffic trace. Like the trend observed in the infrastructure-based

experiments, our approach is able to achieve steady state relatively quickly for both

the nodes with maximum- and minimum throughput. The graphs in Figure 4.9

also show that our approach is able to close the gap between the CW s of the

highest- and lowest throughput nodes which is another indication of improved

fairness.
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(a) Average throughput

(b) Average delay

Figure 4.6: Average throughput and delay as a function of the number of nodes
for synthetic data in ad-hoc scenarios
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(a) Average throughput

(b) Average delay

Figure 4.7: Average throughput and delay as a function of the number of senders
for hot-spot data in ad-hoc scenarios
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(a) Average throughput

(b) Average delay

Figure 4.8: Average throughput and delay as a function of the number of nodes
for company data in ad-hoc scenarios
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(a) Maximum throughput

(b) Minimum throughput

Figure 4.9: Contention window size variation over time for the nodes with
minimum and maximum throughput for synthetic trace in ad-hoc scenario with
100 senders
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Chapter 5

Conclusion

In this thesis, we introduced SENSE (Smart Experts for Network State Esti-

mation) a novel network state predictor based on a simple, yet efficient machine

learning technique called Fixed-Share. SENSE improves the Fixed-Share algorithm

by employing Exponentially Weighted Moving Average (EWMA)-based "smart"

experts, META-learning, and Level-shift techniques. Our experiments on both

synthetic and real datasets confirm that SENSE can automatically adapt to fluc-

tuations of different time scales, which sets it apart from "static" techniques such

as "pure" EWMA and Fixed-Share.

Then, we conducted an empirical characterization of IEEE 802.11’s RTS/CTS

performance as a function of packet size, transmission rate, and network contention.

Based on our RTS/CTS performance characterization, we proposed a novel al-

gorithm that dynamically decides whether to enable or disable RTS/CTS based

on current network conditions and characteristics. Through simulations using

a variety of WLAN network scenarios, we showed that the proposed algorithm

consistently outperforms current best practice approaches which either do not

enable RTS/CTS at all or use a static value of the RTS Threshold (RT) to decide

whether to switch RTS/CTS on or off.
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At the end, we introduced a modified version of a well-known machine learning

technique and apply it to dynamic tuning of the contention window size of IEEE

802.11’s DCF. Our method can set the CW wisely based on the history of trans-

mitted packets. Our results confirm that the proposed technique outperforms the

BEB algorithm of IEEE 802.11.
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