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Abstract
Humans not only can effortlessly imagine a wide range of
novel instances and scenarios when prompted (e.g., a new
shirt), but more remarkably, they can adequately generate ex-
amples which satisfy a given set of constraints (e.g., a new,
dotted, pink shirt). Recently, Nobandegani and Shultz (2017)
proposed a framework which permits converting deterministic,
discriminative neural nets into probabilistic generative models.
In this work, we formally show that an extension of this frame-
work allows for generating examples under a wide range of
constraints. Furthermore, we show that this framework is con-
sistent with developmental findings on children’s generative
abilities, and can account for a developmental shift in infants’
probabilistic learning and reasoning. We discuss the impor-
tance of integrating Bayesian and connectionist approaches to
computational developmental psychology, and how our work
contributes to that research.
Keywords: Cascade correlation neural networks; Determin-
istic discriminative models; Probabilistic generative models;
Bayesian vs. connectionist modeling of development

1 Introduction
Can you imagine a pink shirt? How about a dotted pink shirt?
Or a slim, dotted, pink shirt? Humans often can not only
effortlessly imagine a wide range of novel instances and sce-
narios when prompted (e.g., a shirt), but more remarkably,
they can adequately imagine exemplars which satisfy a given
set of constraints (e.g., a dotted, pink shirt), suggesting flexi-
ble generative abilities. For example, when given incomplete
sentences or fragments of a picture, people can generate pos-
sible completions (Sanborn & Chater, 2016). However, ex-
ample generation under some constraints appears to be easier
than others (e.g., generating a word ending in ing vs. gener-
ating a nine-letter word whose third, fifth, and seventh letters
are x,a,o, respectively), leading us sometimes to settle for
partially satisfied constraints (e.g., a word whose third letter
is x, with the other constraints dropped).

But how could human abilities of example generation un-
der constraints be formalized in computational terms? Given
that example generation can be computationally character-
ized in terms of sampling from some underlying probabil-
ity distribution (e.g., Nobandegani & Shultz, 2017; Jern &
Kemp, 2013), constraints can be viewed as an inductive bias
or a prior distribution over the domain of interest.

Bridging the computational, algorithmic, and implemen-
tational levels of analysis (Marr, 1982), Nobandegani and
Shultz (2017) presented a framework which allows for
converting cascade correlation neural networks (CCNNs)
(Fahlman & Lebiere, 1989) into probabilistic generative mod-
els. CCNNs are a well-known class of self-organized, dis-
criminative (as opposed to generative) models that have been

successful in simulating a variety of phenomena in the devel-
opmental literature, e.g., infant learning of word-stress pat-
terns in artificial languages (Shultz & Bale, 2006), syllable
boundaries (Shultz & Bale, 2006), visual concepts (Shultz,
2006), and have also been successful in capturing important
developmental regularities in a variety of tasks, e.g., the bal-
ance scale task (Shultz, Mareschal, & Schmidt, 1994; Shultz
& Takane, 2007), transitivity (Shultz & Vogel, 2004), con-
servation (Shultz, 1998), and seriation (Mareschal & Shultz,
1999).

In this work, we formally show that an extension of the
Nobandegani and Shultz (2017) framework allows for proba-
bilistically generating examples under a wide range of con-
straints. We show how both equality and inequality con-
straints can be effectively incorporated into that framework
in the form of prior distributions, thereby tailoring the gen-
erated samples into regions of interest. Also, we formally
demonstrate how hard-to-satisfy constraints can be encoded
in a relaxed fashion (i.e., by softening those constraints) such
that they can be partially satisfied. As suggested by Noban-
degani and Shultz (2017), converting CCNNs into generative
models also gives rise to the notion of self-organized, prob-
abilistic generative models: probabilistic generative models
possessing the self-constructive property of CCNNs. Such
self-organized generative models could provide a wealth of
quantitative developmental hypotheses as to how the genera-
tive and probabilistic abilities of children change over devel-
opment. We show that the Nobandegani and Shultz (2017)
framework is consistent with developmental findings on chil-
dren’s generative abilities, and can account for a developmen-
tal shift in infants’ probabilistic learning and reasoning.

After a brief overview of CCNNs and the main ingredi-
ents of the Nobandegani and Shultz (2017) framework, we
formally present an extension of our framework enabling it
to generate examples under a wide range of constraints, fol-
lowed by extensive simulations confirming the efficacy of the
proposed extension. We then turn our attention to features
of Nobandegani and Shultz’s (2017) framework which are of
significance for the developmental literature, and conclude by
discussing the importance of integrating Bayesian and con-
nectionist approaches to computational developmental psy-
chology, and how the research presented here may contribute
to that line of work.

2 Background
Cascade-Correlation Neural Nets (CCNNs): CCNNs are
a special class of deterministic, discriminative neural net-
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works, which construct their topology in an autonomous
fashion—an appealing property for simulating developmen-
tal phenomena (Westermann et al., 2006). CCNN training
starts with a two-layer network (i.e., the input and the out-
put layer) with no hidden units, and proceeds by recruit-
ing hidden units one at a time, as needed. Each new hid-
den unit is trained to correlate with residual error in the net-
work built so far, and is recruited into a hidden layer of
its own, giving rise to a deep network with as many hid-
den layers as the number of recruited hidden units. CCNNs
use sum-of-squared error as an objective function, and typi-
cally use symmetric (with range -0.5 to +0.5) or asymmetric
(with range 0 to +1) sigmoidal activation functions for hid-
den and output units. Some variants have been proposed:
Sibling-Descendant Cascade-Correlation (SDCC) (Baluja &
Fahlman, 1994) and Knowledge-Based Cascade-Correlation
(KBCC) (Shultz & Rivest, 2001). Although this work focuses
on standard CCNN and SDCC, the proposed extension is ap-
plicable to KBCC as well.

Nobandegani and Shultz (2017) Framework: Nobande-
gani and Shultz (2017) presented a framework that converts
CCNNs into probabilistic generative models. Importantly, the
framework bridges computational, algorithmic, and imple-
mentational levels of analysis (Marr, 1982). Concretely, this
framework induces a probability distribution p(X|Y) (in the
form a Gibbs distribution for non-probabilistic energy-based
models) on the deterministic input-output mapping f (X;W ∗)
learned by a CCNN, and uses a Markov chain Monte Carlo
(MCMC) method to sample from the induced distribution:1

p(X|Y = Y ) =
1
Z1

exp(−β||Y − f (X;W ∗)||22), (1)

where || · ||2 denotes the l2-norm, β ∈R+ is a damping factor,
W ∗ the set of weights for a CCNN after training, and Z1 is a
normalizing constant (aka partition factor).

It is worth noting that this framework allows for converting
any deterministic, discriminative neural network into a prob-
abilistic generative model.

3 Example Generation Under Constraints
In this section, we present a formal extension of our frame-
work, allowing probabilistic generation of examples under a
wide range of equality and inequality constraints. As noted
earlier, the notion of example generation under constraints
computationally amounts to sampling from a distribution,
with constraints serving as an inductive bias or a prior dis-
tribution over the domain of interest. To further flesh out this
understanding, we formally show that a wide range of equal-
ity and inequality constraints (or soft variants thereof) can be
encoded, as an inductive bias, into the expression given in (1)

1Although our framework advocates a particular neurally-
plausible and computationally-efficient gradient-based MCMC,
called the Metropolis-Adjusted Langevin (MAL) (Savin & Deneve,
2014; Moreno-Bote et al., 2011), it can accommodate any MCMC
method.

in the following generic format:

p(X|Y = L j) =
1
Z2

exp
(
−β

{
||L j− f (X;W ∗)||22 + γ φ(X)

})
, (2)

with φ(X) compactly encoding the set of constraints of inter-
est, γ ∈R+ denoting a trade-off factor, and L j a vector whose
element corresponding to the desired class is +0.5 (i.e., its jth

element) and the rest of its elements are -0.5s. (Likewise, in
case the activation function of the output units are asymmetric
sigmoidals, L j denotes a vector whose element corresponding
to the desired class is +1 and the rest of its elements are 0s.)
Concretely, the parameter γ moderates how deviations from
the desired class (encoded in the term ||L j− f (X;W ∗)||22) and
deviations from the constraints (compactly encoded in φ(X))
should trade off.

Next, we formally articulate how (2) lets us handle a wide
range of equality (Sec. 3.1) and an arbitrary set of inequality
(Sec. 3.2) constraints, in a unified fashion.

3.1 Handling Hard and Soft Equality Constraints
Consider the general case of having a CCNN with n ∈ N in-
puts and m ∈ N outputs, i.e., X = (x1,x2, . . . ,xn) and Y =
(y1,y2, . . . ,ym). A broad class of equality constraints cor-
responds to having a subset of {xi}n

i=1, {x j} j (i.e., {x j} j ⊆
{xi}n

i=1), expressible as functions of the remaining variables
X\{x j} j ,: Xrest. That is, formally, ∀ j : x j = c j(Xrest), with
c j(·) denoting the corresponding function. Note that, in the
simplest case, c j(·) can be a constant function, corresponding
to setting x j to a fixed value. Then, all these equality con-
straints can be compactly encoded into (2) by having:

p(X|Y = L j) ∝ exp
(
−β

∣∣|L j− f (Xrest,{ck(Xrest)}k;W ∗)||22
)
, (3)

Although the above formalism can capture a wide range
of equality constraints, not all equality constraints lend them-
selves to this formulation. For example, consider the equality
constraint x1 sin(x2)= 2exp(x1 3

√
x2). A glance at this expres-

sion reveals that x1 cannot be cast as a function of x2 or vice
versa (i.e., separability is not attainable). In such cases, the
idea of only approximately satisfying a constraint (i.e., soft-
ening a constraint) comes into play. For example, instead of
aiming at perfectly satisfying the said constraint (i.e., to find
pairs of (x1,x2) which exactly satisfy the constraint), we can
strive for approximate satisfaction of the constraint, by find-
ing pairs of (x1,x2) for which

(
x1 sin(x2)−2exp(x1 3

√
x2)

)2 is
sufficiently small, with deviations from zero (i.e., loss) being
penalized quadratically. Assuming that L(·) denotes a (non-
negative) loss function, the idea of approximately satisfying a
set of equality constraints of arbitrary forms {(ck(X) = 0)}k
(e.g., c1(X) : x1 sin(x2)− 2exp(x1 3

√
x2)) can be compactly

encoded into (2) by having:

φ(X) := ∑
k

L(ck(X)). (4)

A wide range of loss functions have been entertained in
the mathematical statistics, decision theory, optimization, and
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statistical machine leaning literature, e.g., the quadratic loss
function, the 0−1 loss function, the hing loss function, the
lp-norm of the error for various p, etc. The choice of loss
function is made based on the the requirements of the task.
In Sec. 4 we present several simulations to demonstrate the
efficacy of the formalism developed in this section.

3.2 Handling Hard and Soft Inequality
Constraints

Drawing further on the formalism developed in Sec. 3.1, in
this section we formally articulate how (2) lets us gener-
ate examples under an arbitrary set of inequality constraints.
Let us first consider the case of satisfying arbitrary inequal-
ity constraints only approximately (i.e., softened inequality
constraints). We then formally discuss the case of satisfying
an arbitrary set of inequality constraints exactly (i.e., without
any approximation, hence hard inequality constraints).

Before presenting our general result, and to convey the in-
tuition behind it, let us consider our old example, but this time
an inequality variant of it: Generating examples under the in-
equality constraint x1 sin(x2)−2exp(x1 3

√
x2)≤ 0. Satisfying

exactly this inequality constraint would formally amount to
having φ(X) := L∞(x1 sin(x2)− 2exp(x1 3

√
x2)) with the loss

function L∞(·) defined as:

L∞(e) =
{

+∞ if e > 0,
0 if e≤ 0, (5)

wherein any pair (x1,x2) violating that inequality constraint
would be assigned zero likelihood (see expression (2), and
note that exp(−∞) = 0), ensuring that such a pair would never
be generated.

A relaxed version the above loss function, Lα(·) (∀α≥ 1),
as defined below, allows us to satisfy the said inequality con-
straint only approximately when generating examples:

Lα(e) =
{

eα if e > 0,
0 if e≤ 0, (6)

Simply put, Lα(·) penalizes any violations of an inequality
constraint polynomially with respect to the error, e.

We are now well-positioned to formally present how (2)
allows us to generate examples under an arbitrary set of in-
equality constraints, with those constraints being only ap-
proximately satisfied. Consider again the general case of hav-
ing a CCNN with n ∈ N inputs and m ∈ N outputs, i.e., X =
(x1,x2, . . . ,xn) and Y = (y1,y2, . . . ,ym). Let {(c j(X) ≤ 0)} j
denote an arbitrary set of constraints (e.g., in above c1(X) :
x1 sin(x2)− 2exp(x1 3

√
x2)). Assuming that L(·) denotes a

(non-negative) loss function, the problem of approximately
satisfying an arbitrary set of inequality constraints {(c j ≤
0)} j can be compactly encoded by having φ(X) := ∑ j L(c j).
Again, the loss function L(·) can be selected from the many
available loss function already entertained in the mathemat-
ical statistics, decision theory, optimization, and statistical
machine leaning literature, or it can be designed according to
the specifications and requirements of the example generation

task of interest. Also note that, since c(X)≥ 0⇐⇒ c̄(X)≤ 0
with c̄(X) :, −c(X), all forms of inequality can be cast into
the formalism developed above.

Finally, note that the problem of exactly satisfying an ar-
bitrary set of inequality constraints {(c j ≤ 0)} j can be com-
pactly encoded by having φ(X) := ∑ j L∞(c j(X)), where L∞

is given in (5). In Sec. 4, we present several simulations to
demonstrate the efficacy of the formalism developed in this
section.

4 Simulations

Figure 1: A CCNN trained on the continuous-XOR classification
task. Top-left: Training patterns. All the patterns in the gray quad-
rants are negative examples with label -0.5, and all the patterns in
the white quadrants are positive examples with label +0.5. Red dot-
ted lines depict the boundaries. Top-right: The input-output map-
ping, f (x1,x2;W ∗), learned by a CCNN, along with a colorbar. Bot-
tom: The top-down view of the curve depicted in top-right, along
with a colorbar.

In this section we demonstrate the efficacy of our proposed
formalism (Sec. 3) for generating examples under equality
and inequality constraints through simulations. We particu-
larly focus on learning which can be accomplished by two
input and one output units. This permits visualization of the
input-output space, which lies in R3. Note that our formal-
ism can handle an arbitrary number of input and output units;
this restriction is solely for ease of visualization. As a run-
ning example, we show how we can get a CCNN trained on
the continuous-XOR classification task (Fig. 1) to generate
examples under a wide range of equality (Sec. 3.1) and an ar-
bitrary set of inequality (Sec. 3.2) constraints. The output unit
has a symmetric sigmoidal activation function with range -0.5
and +0.5. After training, a CCNN with 6 hidden layers is ob-
tained whose input-output mapping, f (x1,x2;W ∗), is shown
in Fig. 1(top-right).

Following Nobandegani and Shultz (2017), for all the
following simulations (Figs. 2-4), we used the Metropolis-
adjusted Langevin (MAL) algorithm, with the time-step pa-
rameter τ = 5× 10−3; number of generated samples is set
to N = 2× 104. Parameter τ featured in MAL (see Noban-
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Figure 2: Generating examples (black dots) from the positive category of continuous-XOR (blue regions) under the equality constraint
x2 = 0.25sin(8πx1)+0.5 (solid black curve). The quartic loss function L(e) = e4 was adopted. Top-row (left to right): Increasing γ ensures
that deviations from the sin curve are increasingly more penalized, all while lying outside the blue regions is only negligibly penalized (β= 1).
Bottom-row (left to right): Lying outside the blue regions is more heavily penalized (β = 15). (h) The equality constraint is treated as a hard
constraint, hence satisfied exactly, using the formalism introduced in (3).

Figure 3: Generating examples (black dots) from the positive category of continuous-XOR (magenta regions) under the inequality constraint
x2 > 0.25sin(8πx1)+ 0.5 (yellow region). Lα(x) with α = 4 was adopted as a loss function; see Eq. (6). Top-row (left to right): Increasing
γ ensures that lying outside the yellow region is increasingly more penalized, all while lying outside the magenta regions is only negligibly
penalized (β = 1). Bottom-row (left to right): Lying outside the magenta regions is more heavily penalized (β = 15).
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Figure 4: Generating examples (black dots) from the positive cat-
egory of continuous-XOR (magenta regions) under non-separable,
complicated constraints. (a) Generating examples under the equality
constraint: (x2

1 + x2
2)

0.5
= |cos(8tan−1( x2

x1
))| (solid black curve, on

petals’ boundaries); L(e) = e4 was adopted as the loss functions. (b)
Example generation under the inequality constraint: (x2

1 + x2
2)

0.5
<

|cos(8tan−1( x2
x1
))| (yellow region, inside the petals); Lα(x) with

α = 4 was adopted as the loss function.

degani and Shultz, 2017, Algorithm 1) controls how distant
proposed examples should be from each other, with large val-
ues of τ inducing larger distances; the effect of parameter τ is
qualitatively investigated in Nobandegani and Shultz (2017).

5 Simulation of Denison et al. (2013)
As a demonstration, we simulated the experiment of Deni-
son et al. (2013) with a neural network learning algorithm
known as Sibling-Descendant Cascade-Correlation (Baluja &
Fahlman, 1994). SDCC has been used to simulate many phe-
nomena in cognitive development and learning (Shultz, 2012;
Shultz & Fahlman, 2010). It automatically constructs the net-
work in between the input and output layers by recruiting as
many asigmoidal hidden units as needed to solve the problem
being learned, thus capturing both development (unit recruit-
ment) and learning (weight adjustment).
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In the experiment, 4.5- and 6-month-olds were shown two
boxes, one containing a ratio of 1 pink to 4 yellow balls, the
other containing the opposite ratio (Denison et al., 2013). The
experimenter drew from, say, the mostly yellow box, remov-
ing a sample of either 1 pink and 4 yellow balls (expected)
or 4 pink and 1 yellow balls (unexpected) on alternating tri-
als. Only the older infants looked longer at an unexpected,
improbable sample than at an expected, probable sample.

Because depth of learning, manipulated by the score-
threshold (ST) parameter in SDCC, has been shown to cap-
ture many developmental phenomena (Shultz, 2011, 2012),
we set ST to either the default 0.4 to represent the appar-
ent deeper learning of the older infants or the higher value
of 0.6 to represent the apparent shallower learning of the
younger infants. Technically, ST is the maximum distance
from target training values (in this case 0 or 1) considered to
be correct. In both conditions, SDCC was run in the learn-
ing cessation mode, which insured quitting when no further
progress is being made in reducing network error (Shultz &
Doty, 2014). Previous work has established that SDCC with
automatic learning cessation accurately learns either discrete
or (un-normalized) continuous probability distributions from
patterns of positive and negative outcomes (Kharratzadeh &
Shultz, 2016). Because SDCC is a deterministic learner,
learning cessation ensures that learning stops when error re-
duction does. This affords a realistic learning, and compact
representation, of probability distributions.

We trained 20 SDCC networks in each condition on 10
samples illustrating the 1/5 or 4/5 color ratios of the boxes
from Denison et al. (2013). After training, the networks were
tested on 5 samples representing either expected or unex-
pected outcomes. Fig. 5 shows that these probability distribu-
tions were accurately learned only with deeper learning char-
acteristic of the older infants. SDCC recruited 3 hidden units
with a ST of 0.4 and no hidden units with an ST of 0.6. As
in previous work, error on test patterns represents surprise at
seeing an unexpected event, in this case an improbable sam-
ple of 5 balls. Fig. 6 shows that this surprise was noted only
by networks which had successfully learned the probability
distribution, with ST of 0.4.

Fully consistent with Nobandegani and Shultz (2017), the
joint probability distribution assigned to an input-output pair
(X,Y) can be modeled by (see the expression given in (1)):

p(X,Y) =
1
Z3

exp(−β||Y− f (X;W ∗)||22), (7)

with Z3 denoting a normalizing constant. Note that the
term ||Y− f (X;W ∗)||22, when unpacked, evaluates to sum-of-
squared error corresponding to the input-output pair (X,Y).
Hence, the probability of observing a sample is proportional
to exp(−βΣ), with Σ denoting the sum-of-squared error cor-
responding to that sample.

Given the pattern of error observed for 4.5- and 6-month-
olds reported in Fig. 6, it is clear that the differential looking-
times of 4.5- and 6-month-olds for the expected, probable

Figure 5: Mean output activations (with SDs) as a function of
score-threshold and test sample. Probabilities are estimated accu-
rately only with deeper learning. The output activation of shallower
networks (ST = 0.6, for 4.5-month-olds) estimates the probability
of both probable and improbable balls as near 0.5. However, the
output activation of deeper networks (ST = 0.4, for 6-month-olds)
accurately estimates the probability of a probable (= 0.8) and an
improbable (= 0.2) sample of balls.

Figure 6: Mean error (with SDs) as a function of score-threshold
and test-pattern expectedness. Substantial surprise to unexpected
events only with deeper learning.

vs. unexpected, improbable sample can be accounted for by
the joint distribution given in (7).

Interestingly, the Nobandegani and Shultz (2017) frame-
work enables sampling from the SDCC-learned probability
distribution, thus quantitatively simulating the samples chil-
dren would generate; see Fig. 7. In that light, the Nobande-
gani and Shultz (2017) framework is consistent with a sub-
stantial body of work in developmental psychology provid-
ing evidence for the sampling abilities of children, including
infants (e.g., Denison et al., 2010; Bonawitz et al., 2014a;
Denison et al., 2013; Bonawitz et al., 2014b).

6 General Discussion
Recently, Nobandegani and Shultz (2017) presented an in-
tegrative framework which allows transforming any deter-
ministic, discriminative neural network into a probabilis-
tic, generative model. Most notably, the Nobandegani and
Shultz (2017) framework: (i) bridges computational, algo-
rithmic, and implementational levels of analysis, (ii) gives
rise to self-organized, probabilistic generative models, and fi-
nally (iii) connects two dominant schools of thought in cogni-
tive science: connectionism and Bayesian cognition. Impor-
tantly, by virtue of being able to handle any MCMC method,
Nobandegani and Shultz’s (2017) framework is consistent
with substantial developmental findings suggesting that chil-
dren mentally engage in sampling processes closely resem-
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Figure 7: Means (and SDs) of MCMC-generated probable and im-
probable samples for Denison et al. (2013). The average propor-
tions are plotted for the probable and improbable outcomes within
a sequence of 2× 105 MCMC-generated samples using 20 SDCC
networks trained in each condition of Denison et al. (2013). Eq. (1)
with β = 2 is used, together with the Metropolis-Hastings MCMC
using a uniform proposal distribution.

bling MCMC (e.g., Denison et al., 2010; Bonawitz et al.,
2014a; Denison et al., 2013; Bonawitz et al., 2014b).

It is worth noting that the Nobandegani and Shultz (2017)
framework promotes the Metropolis-adjusted Langevin
(MAL), a gradient-based MCMC, which can be implemented
in a neurally-plausible manner (Savin & Deneve, 2014;
Moreno-Bote et al., 2011), and which exploits the gradient
of the target distribution to guide its explorations towards re-
gions of high probability, thereby significantly reducing the
undesirable random walk often observed at the beginning of
an MCMC run (aka the burn-in period). Importantly, in the
Nobandegani and Shultz (2017) framework, by exploiting the
gradient signal (which can be efficiently computed by Back-
prop) learned by a deterministic neural net, MAL allows for
computationally-efficient example generation, showcasing a
computational complementarity of MAL and neural nets.

In this paper, we show that a novel extension of this frame-
work nicely allows for generating exemplars under a wide
range of equality (Sec. 3.1) and an arbitrary set of inequality
(Sec. 3.2) constraints, either exactly (i.e., hard constraints) or
approximately (i.e., soft constraints). Extensive simulations
demonstrated the efficacy of this extension. We also showed
how a joint probability distribution fully consistent with the
Nobandegani and Shultz (2017) framework can account for a
developmental shift in infants’ probabilistic learning and rea-
soning abilities. This framework allows for sampling from
the distribution (implicitly) learned by the model (Eqs. 2, 7),
and hence is capable of quantitatively modeling infants’ be-
havior which can be seen as sampling, e.g., infants’ search for
desired objects (Denison & Xu, 2010).

In recent years, there has been a surge of interest in
Bayesian approaches to computational developmental psy-
chology (e.g., Denison et al., 2010; Buchsbaum et al., 2011;
Denison et al, 2013; Bonawitz et al., 2014a; Hu et al.,
2015; Buchsbaum et al., 2012; Bonawitz et al., 2014b; Ot-
subo et al., 2017), primarily focusing on the computational
(e.g., Buchsbaum et al., 2011; Hu et al. 2015; Buchsbaum
et al., 2012; Otsubo et al., 2017) and, to a lesser extent,
on the algorithmic level of analysis (e.g., Bonawitz et al.,

2014), with relatively little attention to the implementational-
level. Not long ago, however, the primary focus of com-
putational developmental psychology was on connectionist
approaches to development (Shultz, 2003). By now, evi-
dence for both Bayesian and connectionist approaches to de-
velopment abounds, calling for a unified take on phenom-
ena linking connectionism and Bayesian cognition. Mov-
ing forward, integrated approaches—which bridge computa-
tional, algorithmic, and implementational levels of analysis—
become increasingly more imperative to achieve. We believe
the Nobandegani and Shultz (2017) framework, together with
the extension formally outlined and experimentally tested in
this paper would be a satisfying first step in this direction.

Acknowledgments: This works is supported by an operating grant
to TRS from NSERC of Canada.
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