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Abstract

Chronic methamphetamine use poses potentially devastating consequences for directly affected 

individuals and for society. Lower dopamine D2-type receptor availability has been observed in 

striata of methamphetamine users as compared with controls, but an analogous comparison of D1-

type receptors has been conducted only on postmortem material, with no differences in 

methamphetamine users from controls in the caudate nucleus and putamen and higher D1 receptor 

density in the nucleus accumbens. Released from neurons when methamphetamine is self-

administered, dopamine binds to both D1- and D2-type receptors in the striatum, with downstream 

effects on cortical activity. Thus, both receptor subtypes may contribute to methamphetamine-

induced alterations in cortical morphology and behavior. In this study, 21 methamphetamine-

dependent subjects and 23 healthy controls participated in positron emission tomography and 

structural magnetic resonance imaging for assessment of striatal D1- and D2-type receptor 

availability and cortical gray-matter thickness, respectively. Although D2-type receptor availability 

(BPND) was lower in the methamphetamine group, as shown previously, the groups did not differ 

in D1-type BPND. In the methamphetamine group, mean cortical gray-matter thickness was 

negatively associated with cumulative methamphetamine use and craving for the drug. Striatal D1-
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type but not D2-type BPND was negatively associated with global mean cortical gray-matter 

thickness in the methamphetamine group, but no association was found between gray-matter 

thickness and BPND for either dopamine-receptor subtype in the control group. These results 

suggest a role of striatal D1-type receptors in cortical adaptation to chronic methamphetamine use.

Introduction

It is estimated that 1.7 million people in the United States, over the age of 12, engage in the 

non-therapeutic use of methamphetamine (MA)1. Despite the prevalence and untoward 

consequences of MA use2, there is no FDA-approved medication for MA-use disorder. A 

better understanding of the associated neurobiological features may help guide the 

development of treatments.

Positron emission tomography (PET) has revealed dopaminergic abnormalities, including 

lower dopamine transporter availability (i.e., binding potential, BPND)3, 4, higher vesicular 

monoamine transporter BPND5, and lower striatal dopamine D2-type receptor BPND6, 7, in 

striata of MA users. Dopamine D1 receptors have been evaluated in MA users only 

postmortem, showing no differences vs. controls in the caudate nucleus and putamen but 

higher density in the nucleus accumbens8. In rats, however, administration of a D1 

antagonist attenuates cocaine-seeking behavior and behavioral sensitization9, and injection 

of D1 antagonist into striatum attenuates the MA-induced decrease in monoamine 

transporter density and cerebral cortical neuronal activity10, 11. Thus, D1-type receptors may 

influence the untoward effects of MA.

Activities in the direct and indirect pathways from the striatum adjust the output of the basal 

ganglia12. D1-type receptors are expressed on direct-pathway striatal neurons projecting to 

the substantia nigra pars reticulata and the globus pallidus pars interna (SNr/GPi), whereas 

D2-type receptors are expressed on dendrites of indirect-pathway striatal neurons, projecting 

to SNr/GPi via the globus pallidus pars externa (GPe) and subthalamic nucleus. The two 

pathways have inhibitory and excitatory effects, respectively, on SNr/GPi, which provides 

inhibition to the thalamus, regulating glutamatergic excitatory signals to the cortex. 

Dopamine enhances activity in D1-type receptor-expressing neurons and inhibits neurons 

expressing D2-type receptors13.

MA-induced striatal dopamine release can influence cortical function. In rats, intra-striatal 

injection of either a D1- or D2-type receptor antagonist prevented MA-induced c-Fos protein 

expression in the cerebral cortex11. In contrast, intrastriatal injection of SKF 38393, a D1-

type receptor agonist, increased cortical c-Fos expression, a marker of neuronal activity14, 

but administration of quinpirole, a D2-type agonist, did not; the increased expression was 

blocked by systemic administration of SCH23390, a D1-receptor antagonist15.

We compared D1-type BPND in MA-dependent and healthy-control subjects, and tested for 

associations of striatal BPND of D1- and D2-type receptors with cortical structure. Given 

prior findings6–8, we expected MA users not to differ from controls in D1-type BPND 

despite lower D2-type BPND. Moreover, we considered the fact that MA promotes 

dopamine efflux, increasing striatal concentrations of synaptic dopamine to levels adequate 
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to stimulate D1 receptors, which have relatively lower affinity for dopamine than D2 

receptors 16. Because activation of D1 receptors on medium spiny neurons of the direct 

pathway inhibits firing of GABAergic basal ganglia output nuclei, thereby disinhibiting 

thalamocortical circuitry 17, we expected cortical gray-matter thickness to be associated with 

cumulative MA use and with striatal D1-type BPND in MA users, reflecting adaptation to 

MA-induced activation.

Methods

Participants

All procedures were approved by the Institution Review Boards of the University of 

California Los Angeles and the Greater Los Angeles Veterans Affairs Health Care System. 

Participants (23 control; 21 MA) were recruited through Internet and newspaper 

advertisements. PET data presented here have not been published before.

After receiving a complete explanation of the study, participants gave written, informed 

consent. Exclusion criteria were: use of psychotropic medications; CNS, cardiovascular, 

pulmonary, hepatic or systemic disease; HIV seropositivity; pregnancy; lack of English 

fluency; MRI contraindications; and left-handedness. The Structured Clinical Interview or 

Mini International Neuropsychiatric Interview for DSM-IV was used to determine Axis-I 

diagnosis. Any Axis-I diagnosis except nicotine dependence was exclusionary for controls. 

MA-group participants met criteria for MA dependence and had positive urine toxicology 

for MA at screening; any current Axis-I diagnosis other than MA dependence or nicotine 

dependence was exclusionary. All participants were deemed physically healthy, according to 

medical history and physical examination. Participants were instructed to abstain from MA 

for ≥ 4 days, from marijuana for ≥ 2 days, and from cigarette smoking for 2 h before each 

PET scan. Abstinence from recent MA use and negative pregnancy status were determined 

immediately before each PET and MRI scan by urine tests, and the participants reported the 

duration of their abstinence. Two control-group subjects and seven MA-group subjects had 

urine tests positive for tetrahydrocannabinol (THC). Due to the long elimination half-life of 

THC18, these participants were not excluded. PET and MRI scans were performed on 

separate days within 3 months of one another.

Demographics and drug-use characteristics

Drug use and demographic variables were collected using a survey that queried amount, 

frequency and duration of MA use, and age of first use. An index of MA exposure was 

calculated as follows: average use (grams) × frequency (days/month)/30 × duration 
(months). Information was obtained regarding use of other substances of abuse in the month 

prior to study, and sleepiness19. Smokers completed the Fagerström Test for Nicotine 

Dependence (FTND)20.

MA craving was assessed using the Brief Methamphetamine Craving Scale, adapted from 

the Cocaine Craving Questionnaire-Brief21; with possible scores ranging from 10–70.
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Brain scanning

PET data were acquired using a Philips Gemini TF PET-CT, with transverse and axial 

resolution of 4.8 mm FWHM in the three-dimensional scanning mode. Images were 

obtained with a 2-mm voxel size (field of view = 128 × 128 × 90). A low-dose CT scan was 

performed for attenuation correction. Participants were placed in the scanner, in the supine 

position with the head positioned to avoid movement during scanning. For D1-type receptor 

scans, emission data were collected for 90 min after a bolus injection of 14.4 ± 1.85 mCi 

[11C]NNC11222. D2-type receptor data were collected in two 80-min blocks, with a 20-min 

intermission, after a bolus injection of 5.0 ± 0.37 mCi [18F]fallypride23. Data were 

reconstructed using the row action maximum likelihood (RAMLA) algorithm24 for each 1-

min frame.

Structural scans were acquired on a Siemens Sonata 1.5-T scanner for 39 participants (21 

control; 18 MA) and a Siemens Trio 3-T scanner for 5 participants (2 control; 3 MA) due to 

logistical reasons. T1-weighted data, acquired with a magnetization-prepared rapid 

acquisition with gradient echo (MPRAGE) sequence (TR = 1900 ms, TE = 4.38 ms, flip 

angle = 15°, field of view = 256 × 256 × 160, 1-mm voxels) were used for co-registration 

with PET images and definition of volumes-of-interest (VOIs) (see below). Analyses of 

cortical gray-matter thickness and subcortical volumes (hippocampus, amygdala, globus 

pallidus, thalamus, and striatum) were performed on data from the Sonata 1.5-T scanner (n = 

39).

PET data processing

Reconstructed [11C]NNC112-scan data were combined into 23 images, consisting of four 1-

min frames, three 2-min frames, and sixteen 5-min frames. The reconstructed data from 

[18F]fallypride scans were combined into 16 images, each containing data averaged over 10 

min. FSL MCFLIRT (FMRIB Centre, Dept. Clinical Neurology, University of Oxford) was 

used for motion correction25. The images were then co-registered to the MPRAGE image 

using a 6-parameter, rigid-body spatial transformation (FSL FLIRT).

VOIs were derived from individual MPRAGE images using FSL FIRST26. Caudate and 

putamen VOIs were combined to constitute a single striatum VOI. The cerebellum was used 

as the reference region27. A cerebellum VOI, including the hemispheres but not the vermis, 

was manually created in standard space (MNI152 template) and transformed into native 

space with FSL FNIRT.

Time-activity data within VOIs were extracted from PET images and imported into PMOD 

Kinetic Modeling (PKIN) (PMOD Technologies Ltd., Zurich). The simplified reference 

tissue model (SRTM)28 was used to calculate BPND with time–activity curves from VOIs as 

follows: CT(t) = R1CR(t) + (k2 − R1k2/(1 + BPND))CR(t) *exp(-k2t/(1 + BPND)) where 

CT(t) is the total radioactivity concentration in the striatum VOI measured by PET, R1 is the 

ratio of K1 to K1′ (K1, influx rate constant for the striatum; K1′, influx rate constant for the 

cerebellum), CR(t) is the radioactivity concentration in the reference region (cerebellum), 

and * denotes the convolution integral. The parameters R1, k2, and BPND in this model were 

estimated by a nonlinear curve-fitting procedure.
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Morphological analysis

FreeSurfer (version 5.3) was used to assess cortical thickness and subcortical volume from 

MPRAGE images, as described29–31. The intensity of the images was normalized to remove 

bias fields, and a hybrid watershed/surface deformation procedure was applied to remove 

non-brain tissue32. After Talairach transformation, subcortical structures were 

segmented33, 34. To generate cortical surfaces, white matter was segmented, and errors in 

white-matter topology were corrected35. A tessellation was formed along the boundary 

between gray and white matter. The tessellation on the white-matter surface was grown 

outward towards the intensity gradient separating gray matter from cerebrospinal fluid. One 

control and two MA participants were excluded because of inaccurate segmentation. 

Following demonstration of a significant association between D1-type BPND with the 

global mean of cortical gray-matter thickness in the MA group, associations of D1-type 

BPND with thickness in individual cortical regions were tested. Frontal, temporal, occipital, 

and insular regions were selected for analysis because age-related gray-matter deficits in 

these regions were reportedly accelerated by MA use36.

Statistical analyses

Group differences in demographic data were evaluated by Student’s t or chi-squared tests. 

ANCOVA was used to evaluate group differences in BPND, cortical gray-matter thickness 

and subcortical gray-matter volumes. Age, sex and smoking status were included as 

covariates of no interest because of evidence that they affect dopamine-receptor density37–40 

and brain structure41.

Associations of D1- and D2-type BPND in the caudate/putamen VOI with cortical gray-

matter thickness and subcortical volumes were evaluated using partial correlation analysis, 

controlling for age, sex and smoking status. The nucleus accumbens was not included in this 

analysis because of evidence that the coding of direct and indirect pathways by D1 and D2 

receptors, respectively, is not valid for projections from the nucleus accumbens42. Group 

differences in correlation were tested using Fisher’s r to z transformation. Associations of 

gray-matter thickness with cumulative MA use and MA craving were evaluated using 

partial-correlation analysis controlling for age, sex and smoking status. These analyses were 

conducted using SPSS IBM 19 (IBM, Armonk, NY) with p < 0.05, two-tailed, as the 

criterion for significance. Results are shown as mean ± SD.

Results

Participant characteristics (Table 1)

Twenty-three control and 20 MA participants had [18F]fallypride scans, and 18 control and 

19 MA participants had [11C]NNC112 scans. Brain structure from 20 control and 16 MA 

participants, who all had [18F]fallypride scans, and from 15 control and 14 MA participants 

who had [11C]NNC112 scans, was analyzed. The groups did not differ in age or sex 

distribution, but the MA group gave higher sleepiness scores. The MA group included a 

higher proportion of smokers. Smokers in the groups did not differ on nicotine dependence, 

smoking history or cigarettes smoked per day. Nine control and 12 MA subjects reported 

alcohol use in the month before study. Seven control and 12 MA subjects reported marijuana 
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use in the month before study. MA-group participants reported using MA on 24.8 ± 8.08 

days in the month before study, first using MA at 22.7 ± 8.40 years of age. Abstinence time 

from last MA use to scanning was 10.2 ± 6.22 days, 7.2 ± 4.61 days and 8.50 ± 5.03 days 

for the [11C]NNC112, [18F]fallypride and MRI scans, respectively.

D1- and D2-type receptor BPND (Figure 1, Table 2)

The groups did not differ in D1-type BPND in the caudate/putamen [1.9 ± 0.31 (control), 1.8 

± 0.47 (MA); F1, 32 = 0.050, partial η2 (ηp
2) = 0.002, p = 0.82] or in striatal subregions: 

caudate (p = 0.40), putamen (p = 0.88), and nucleus accumbens (p = 0.27). However, D2-

type BPND was lower in the MA group than the control group in the caudate/putamen [24.0 

± 6.57 VS. 30.6 ± 3.65; F1, 38 = 13.674, ηp
2 = 0.265, p = 0.001] and striatal subregions: 

caudate (p < 0.001), putamen (p = 0.002), and nucleus accumbens (p = 0.002).

Brain structure

There were no group differences in global mean cortical gray-matter thickness [2.39 ± 0.11 

(control), 2.38 ± 0.14 (MA); F1, 31 = 0.001, ηp
2 < 0.001, p = 0.98], or in subcortical volumes 

(hippocampus: F1, 31 = 0.103, ηp
2 = 0.003, p = 0.75; amygdala: F1, 31 = 0.653, ηp

2 = 0.002, 

p = 0.43; globus pallidus: F1, 31 < 0.000, ηp
2 < 0.000, p = 0.99; thalamus: F1, 31 = 3.590, ηp

2 

= 0.10, p = 0.07; striatum: F1, 31 = 0.889, ηp
2 = 0.028, p = 0.35).

Association of striatal dopamine receptor BPND with brain structure

D1-type BPND was negatively correlated with global mean cortical gray-matter thickness in 

MA subjects (r = −0.736, p = 0.01), but not in controls (r = 0.046, p = 0.89) (Figure 2). The 

correlation coefficients differed significantly between groups (z = −2.50, p = 0.01). D1-type 

BPND was negatively correlated with gray-matter thickness in temporal (r = −0.845, p = 

0.001) and occipital lobe (r = −0.748, p = 0.008) [significant after Bonferroni correction 

(i.e., p < 0.0125)], but not in prefrontal (r = −0.494, p = 0.12) or insular (r = −0.034, p = 

0.92) regions in MA users. D2-type BPND was not correlated with cortical gray-matter 

thickness in either group (control: r = 0.005, p = 0.99; MA: r = −0.043, p = 0.89) (Figure 2).

Among subcortical regions, hippocampal gray-matter volume was negatively associated with 

D1-type BPND in MA subjects (r = −0.790, p = 0.004) [significant after Bonferroni 

correction (p < 0.01)]. In addition, trends of negative association between D1-type BPND 

and gray-matter volume in the thalamus (r = −0.715, p = 0.013) and striatum (r = −0.659, p 
= 0.03) were observed. In controls, D1-type BPND was not significantly associated with 

hippocampal or other subcortical volumes (p’s > 0.23). The correlation coefficient between 

D1-type BPND and hippocampal volume showed no group difference (z = −1.21, p = 0.22). 

D2-type BPND was not correlated with hippocampal or any subcortical volumes in either 

group.

Associations of cortical gray-matter thickness with MA use and craving

Global mean cortical gray-matter thickness was negatively associated with cumulative MA 

use (entire sample: r = −0.843, p < 0.001; excluding one outlier: r = −0.575, p = 0.04). Post-

hoc correlation analyses showed that gray-matter thickness was negatively associated with 

duration (r = −0.638, p = 0.02), but not amount (r = −0.107, p = 0.73) or frequency of use (r 
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= −0.086, p = 0.75). Global cortical gray-matter thickness was also negatively correlated 

with MA craving (r = −0.569, p = 0.04) (Figure 3).

In post-hoc analyses, negative associations between cumulative MA use and gray-matter 

thickness in temporal (r = −0.839, p < 0.001) and frontal (r = −0.899, p < 0.001) lobes were 

significant after Bonferroni correction (i.e., p < 0.0125), with a trend in the occipital lobe (r 
= −0.676, p = 0.013) but not the insula (r = −0.525, p = 0.07). MA craving was negatively 

associated with gray-matter thickness in the temporal lobe (r = −0.759, p = 0.003), but not in 

other regions (p’s > 0.06).

Discussion

That striatal dopamine D1-type receptor availability, measured in vivo, did not differ 

between MA users and controls, is consistent with postmortem findings in the dorsal 

striatum but not with the finding of elevated D1-receptor density in the nucleus accumbens8. 

One postmortem study reported partial desensitization of D1-receptor function in MA users 

despite unchanged receptor density43. Studies in rodents have produced mixed results, 

depending on the treatment regimen. Daily administration of 4 mg/kg MA daily for 14 days 

produced no change in striatal D1-receptor density44, 45, but five 15-mg/kg doses at 6-h 

intervals lowered D1-receptor density in the caudate and putamen46. In the human 

postmortem study showing elevated nucleus accumbens D1-receptor density, recent MA use 

was confirmed in biological samples, but participants studied here were abstinent for ≥ 4 

days. MA may upregulate D1 receptors in the nucleus accumbens acutely, with subsequent 

reduction over several days of abstinence from MA. As observed here with MA-dependent 

subjects, cocaine-dependent subjects, abstinent >14 days, did not differ from controls in D1-

type BPND47.

Cigarette smoking, which is common among stimulant users48–50, can be a confounding 

factor, and there were more smokers in the MA group than the control group. However, 

smoking status was controlled statistically, and D1-type BPND did not differ between 

nonsmokers and smokers in the control group (controlled for age and sex, p = 0.926). We 

also controlled for the contribution of smoking to the group difference in D2-type BPND, 

which was seen as well in a separate comparison of smokers alone in our sample (14 

controls vs. 18 MA users; controlled for age and sex, p = 0.002). Lower D2-type BPND in 

MA users vs. controls demonstrates similarity of our sample with those studied before6, 7, 

indicating that negative findings regarding D1-type BPND were not an artifact of sample 

selection. Recent findings suggest that lower D2-type BPND in cocaine-dependent 

individuals is associated with sleep disturbance51. Adenosine A2 receptors, predominantly 

expressed in striatum, co-localize with D2-type receptors on striatal medium spiny 

neurons52, which form the indirect pathway, but not with D1-type receptors. Enhanced 

adenosine levels due to sleep deprivation53 may potentiate internalization of D2-type 

receptors54, leading to reduced D2-type BPND in MA users. Greater self-reported sleepiness 

in MA users supports this hypothesis. Thus, sleeplessness can contribute to a deficit in D2-

type BPND in MA users.
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The negative associations of cortical gray-matter thickness with striatal D1-type receptor 

availability in MA users may reflect adaptation to striatal D1 receptor activation with 

chronic MA use. Most striatal neurons (≥ 77%) are GABAergic projection neurons55 that 

transmit signals via the direct and indirect pathways to SNr/GPi12. Striatal dopamine release 

enhances the activity of D1-expressing direct-pathway neurons but suppresses activity of 

D2-receptor-expressing indirect-pathway neurons13. Thus, chronic MA-induced striatal 

dopamine release may affect cortical responses and produce adaptation. That local injection 

of D1- but not D2-receptor agonists into the striatum increases cortical c-Fos expression in 

rats15, suggests a greater contribution of striatal D1 than D2 receptors to cortical activity, 

consistent with an association between striatal D1- but not D2-type receptors and cortical 

structure.

Although this study replicated a previous report of negative association of global mean 

cortical gray-matter thickness with cumulative MA use56, there were no group differences in 

the cortical gray-matter thickness. We previously found no difference in global gray-matter 

volume between MA users and controls recruited using inclusion/exclusion criteria identical 

to those reported here57. However, focal abnormalities in cerebral cortical structure have 

been observed in MA users58. Such group differences may be masked by averaging gray-

matter thickness to generate a global mean. In addition, the greater proportion of females in 

the control group than the MA group included in structural analysis may have influenced a 

group difference, although age and sex were statistically controlled.

Post-hoc analyses indicated a negative association of gray-matter thickness in the occipital 

and temporal lobes with striatal D1-type BPND. The temporal lobe is the only region where 

gray-matter thickness was associated with cumulative MA use and MA craving. In a 

previous study, temporal cortical gray-matter volume in MA users was smaller than in 

controls matched for smoking status59. In another, the effect of MA use on age-related loss 

in gray-matter was substantially greater in the temporal lobe than in other cortical areas36.

This study also found no group difference in hippocampal gray-matter volume despite its 

negative association with D1-type BPND in the MA group, and no group difference in 

striatal volume despite previously reported greater volume in the striata of MA users60, 61. 

Some previous studies showed smaller hippocampal volumes in MA users than 

controls57, 62, but others did not59, 63. The largest of these studies (44 controls, 61 MA users) 

had a negative finding. Some previous studies also found no group difference in striatal 

gray-matter volume59, 63. These inconsistencies may reflect differences in methods, sample 

sizes, or duration of abstinence. Although previous studies suggested an effect of abstinence 

on recovery from cortical gray-matter deficits in stimulant users59, 64, duration of abstinence 

was not associated with measures of gray-matter thickness or volume here (Pearson 

correlation: p’s > 0.3). Finally, the negative association between global mean cortical gray-

matter thickness and MA craving was consistent with the finding of negative association 

between MA craving and gray-matter volume in a distributed set of brain regions including 

temporal and occipital cortex in an independent sample of MA users65.

This study has limitations, including a modest sample size. For logistical reasons, there were 

some gaps in time between the self-report, PET, and MRI measures, which ideally would 
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have been collected on the same day, given evidence for effects of abstinence on cortical 

gray-matter volume59. However, duration of abstinence prior to each scan was not 

significantly different, and including days abstinent at MRI scanning as a covariate did not 

change the correlation between D1-type BPND and cortical gray-matter thickness (r = 

−0.706, p = 0.02). That some of the participants studied had positive urine tests for 

marijuana even though they endorsed abstinence from marijuana use for at least 2 days 

before testing is a potential limitation. Indeed, dopaminergic neurons are modulated by the 

endocannabinoid system 66, and recent reviews indicate effects of both THC and cannabidiol 
67, 68. Most relevant to our manuscript are findings related to striatal dopamine receptors. 

The findings are inconsistent, with one study finding that acute THC administration 

decreased dopamine type D1 and D2 receptor Bmax values in rat striatum 69, and another 

finding no effect 70. In a human PET study, cannabis users did not differ from controls in 

striatal D2-type receptor BPND 71. Concern regarding effects of possible recent marijuana 

use by participants in our study is tempered, however, by the observation that THC status, 

determined by urine toxicology, was not a significant covariate of no interest in the results. 

Other limitations are associated with the radiotracers. Some affinity of [11C]NNC112 to 5-

HT2A receptors72 precludes definitive statements regarding D1-type receptors, but this 

nonspecificity should not be problematic for measurements in the striatum, which has a 

negligible density of 5-HT2A receptors73. [18F]Fallypride has high affinity for D2-type 

receptors, but it does not distinguish between D2 and D3 receptor subtypes74.

Finally, causal relationships among biochemical, clinical and brain structural measures 

cannot be claimed as this is a cross-sectional study. Nonetheless, the results suggest a 

possible role of striatal dopamine D1-type receptors in MA-induced neuroadaptation in 

cortical gray-matter structure and, in turn, MA craving. More work is needed to define the 

link between D1 receptors and effects on cortical gray matter and various clinical aspects of 

MA-use disorder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Averaged D1- and D2-type receptor BPND maps of participants in control (D1-type: n = 18; 

D2-type: n = 23) and MA groups (D1-type: n = 19; D2-type: n = 20) (top). No group 

difference was observed in D1-type BPND in striatum (caudate and putamen collectively) 

(F1, 32 = 0.050, p = 0.82) whereas striatal D2-type BPND differed between groups reflecting 

a lower mean value for the MA group (F1, 38 = 13.674, p = 0.001). In a jittered plot at 

bottom, blue dots represent subjects in the control group and green dots are those in the MA 

group.
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Figure 2. 
Striatal D1-type receptor BPND is negatively correlated with global mean cortical gray-

matter thickness in the MA group. Scatter plots displaying the correlations of the cortical 

gray-matter thickness with D1- (top) and D2-type (bottom) receptor BPND by group. 

Correlation coefficients (r) and significance (p) were determined, controlling for age, sex 

and smoking status.
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Figure 3. 
Global mean of cortical gray-matter thickness is negatively associated with cumulative MA 

use and craving. Correlation coefficients (r) and significance (p) were determined controlling 

for age, sex and smoking status.
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