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ABSTRACT OF THE DISSERTATION

Aspects of Density Wave States and Quantum Phase Transitions

by

Ian Emmanuel Powell

Doctor of Philosophy in Physics

University of California, Los Angeles, 2021

Professor Sudip Chakravarty, Chair

In chapter 2 we offer a pedagogic introduction to quantum phase transitions and quan-

tum critical behavior in scalar φ4 theory. We focus on characterizing the quantum critical

fan, and we explicitly show how one can identify the borders of said fan using the familiar

arguments introduced by S. Chakravarty, B. I. Halperin, and D. R. Nelson[CHN89] in 1989.

By calculating the renormalization group flow equations to one loop we are able to approxi-

mately calculate the correlation lengths in the theory, and from the behavior of the obtained

correlation length we are then able to identify the phases of our theory as ordered, quantum

critical, or quantum disordered.

In chapter 3 we investigate the effect that density wave states have on the Hofstadter

Butterfly. We first review the problem of the d-density wave on a square lattice and then

numerically solve the d-density wave problem when an external magnetic field is introduced.

As the d-density wave condensation strength is tuned the spectrum evolves through three

topologically distinct butterflies, and a relativistic quantum Hall effect is observed. The chiral

p + ip-density wave state demonstrates drastically different Hofstadter physics–inducing a

destruction of the gaps in the butterfly which causes electrons’ cyclotron orbits to not obey

any type of Landau quantization, and the creation of a large gap in the spectrum with

Hall conductance σxy=0. To investigate the quantum phases in the system we perform

a multifractal analysis of the single particle wavefunctions. We find that tuning the d-

ii



density wave strength at a generic value of magnetic flux controls a metal-metal transition

at charge neutrality where the wavefunction multifractality occurs at energy level crossings.

In the p + ip case we observe another metal-metal transition occurring at an energy level

crossing separated by a strongly multifractal quasi-insulating island state occurring at charge

neutrality and strip dimerization of the lattice.

In chapter 4 we discuss recent anomalous transport measurements that have been ob-

served through a wide doping range in the cuprates. We investigate the effects of a state

that shares many features consistent with those of the pseudogap, the mixed triplet-singlet

d-density wave state, and examine whether its presence could help explain these observa-

tions. For a sufficiently doped system Li & Lee [arXiv:1905.04248v3] showed that that these

density wave states produce a nonzero thermal Hall effect. Through the effect that den-

sity waves have on the localized spins of a square lattice in a magnetically ordered phase,

we find that the mixed triplet-singlet d-density wave state induces stable Dzyaloshinskii-

Moriya (DM) interactions among the localized spins in the presence of an external magnetic

field. As similar antisymmetric exchange couplings have yielded nonzero thermal Hall con-

tributions, we examine this induced DM interaction by applying Holstein–Primakoff (HP)

transformations to study the resulting magnon excitations of the spin models for both an-

tiferromagnetic and ferromagnetic backgrounds–relevant to the near-half-filling and heavily

overdoped regimes respectively. Furthermore, because the triplet-singlet d-density wave is

experimentally challenging to detect directly, we discuss the magnetic signatures that this

state can possibly induce away from the pseudogap regime. We calculate the magnon dis-

persion for La2−xSrxCuO4 (LSCO) and find that the density wave induces a weak dx2−y2

anisotropy; upon calculating the non-abelian Berry curvature for this magnon branch, we

show explicitly that the magnon contribution to κxy is zero. Finally, we calculate corrections

to the magnetic ground state energy, spin canting angles, and the spin-wave dispersion due

to the topological density wave for ferromagnetic backgrounds. We find that terms linear in

the HP bosons can affect the critical behavior, a point previously overlooked in the literature.
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CHAPTER 1

Introduction

With the development of quantum mechanics in the early 20th century came a flurry of

exciting, new ideas related to the implications of its predictions. One of these ideas was

that of a quantum phase transition. Classically it is understood that a phase transition is

driven by the competition between the energy of a system and the entropy of its thermal

fluctuations. The critical point–i.e. the temperature, pressure, etc. at which the system

undergoes a phase transition, demarcates phases from one another and is signified as the

location of a cusp (singularity of a derivative) in the free energy. Given this classical notion

of a phase transition, and given the fact that the entropy of an isolated system at zero

temperature must also be zero, phase transitions at zero temperature could never occur.

Quantum mechanical fluctuations, on the other hand, offered a new mechanism by which

phase transitions may occur at zero temperature.

In the seminal work by S. Chakravarty, B. I. Halperin, and D. R. Nelson [CHN89] the

low energy properties of the two-dimensional quantum Heisenberg antiferromagnet were

analyzed in detail via a mapping of the problem to that of the non-linear sigma model in

2+1 dimensions. By categorizing the system in terms of the behavior of the correlation

length in the physical coupling space the authors were able to identify the phases of the

model: ordered, renormalized classical, quantum disordered, and quantum critical. The

quantum critical regime being a relatively large portion of the coupling space in which

the system’s behavior is entirely dictated by the zero-temperature quantum critical point.

This quantum critical regime displays interesting, and unusual behavior–from a correlation

length that decays away from the critical point algebraically in its temperature dependence,

to gapless excitations. In chapter 2 we offer a pedagogic introduction to characterizing the
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quantum critical fan for a φ4 theory of the Ising universaltiy class. By working through

similar arguments we offer some foundation to understand the peculiar physics emanating

from the quantum critical point into a finite region of temperature.

Another fascination of the 20th century is the Hofstadter butterfly. When electrons in

two dimensions are subjected to both a periodic potential of a crystalline lattice and a uni-

form magnetic field the two competing length scales, that of the Landau cyclotron orbits and

that of the crystalline lattice, give rise to quantum fractal spectra–“Hofstadter’s butterfly.”

This system has provided an interesting basis for much research over the years. The effects

of mutual Coulomb interactions in GaAs[GG96] and Graphene[AC14],[LC15]have been con-

sidered, as well as disorder[ABA05], impurity effects[PG92], and much more. Despite the

beauty and the complexity of the structure it has remained somewhat elusive because these

length scales are typically severely mismatched. Advances in experimentally measuring the

fractal energy spectrum in GaAs heterostructures[ASK01],[MBZ04] as well as in the moiré

superlattice of bilayer graphene [YJ18] have opened up the possibility of investigating emer-

gent behavior within a fractal landscape. In chapter 3 we investigate a certain family of

models in this landscape that we will discuss in what follows.

The cuprate phase diagram (shown in Fig. 1.1), namely the so-called “pseudogap” phase,

found to the left of the line marked T ∗ in Figure 1.1 has perplexed physicists for decades.

It is so far unclear which of a variety of order parameters is responsible for the development

of the gap in this phase. Promising candidates are the family of d-density wave (DDW)

orders–namely the singlet and triplet versions previously proposed[CLM01] to potentially

develop in the pseudogap phase. These density waves are the generalizations of charge and

spin density waves to higher angular momentum channels. A general density wave state is

comprised of a particle-hole condensate (in a similar spirit to that of the BCS state which can

be visualized as a particle-particle condensate), and, in the d angular momentum channel,

can be visualized as an alternating charge (singlet DDW) or spin (triplet DDW) currents

on the bonds of the square lattice. In Chapter 3 we investigate these d-density waves, and

chiral p+ ip density waves, in the fractal landscape of the Hofstadter butterfly–focusing on

2



characterizing the various quantum phase transitions that take place.

In Chapter 4 we discuss the relevance of a certain “hidden” DDW order, the topological

triplet-singlet DDW, to results obtained in a recent experiment [GLB19] that showed an

anomalous thermal Hall conductance for a variety of doping strengths in multiple cuprate

compounds. Recently Z.X. Li and D. H. Lee have shown that this topological variant of

the d-density wave produces a nonzero thermal Hall conductance [LL19] in the pseudogap

regime of doping, and Samajdar, Scheurer et al. have shown that there can be spin-wave

contributions to the thermal Hall effect [SCS19]. With these results in mind, we investigate

the effects that this topological variant of the d-density wave can have on an underlying spin

system (both ferromagnetic and antiferromagnetic for the heavily overdoped and underdoped

case respectively), and show that it produces an effective Dzyaloshinskii-Moriya interaction.

We show that the magnon excitations of the resulting effective magnetic Hamiltonian can

not contribute to the thermal Hall effect, which is consistent with speculations on the nature

of the excitations responsible for the signal. The signatures that a triplet d-density wave

leaves on the underlying spin system could be used to detect the presence of such a hidden

order, which is not detectable using typical experimental probes such as neutron scattering,

and thus assess its relevance to the pseudogap phase of the cuprates.
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Figure 1.1: Simplified phase diagram of the high Tc cuprate superconductors plotted against

the temperature, T , and hole doping, x. At sufficiently low temperature, and low doping,

the material is in its Mott insulating antiferromagnetic phase (A.F.). Increasing the doping

brings us to the enigmatic pseudogap phase (P.G.) where the Fermi surface has characteristic

hole pockets on the diagonals in the Brillouin zone[CLM01]. T ∗ demarcates the pseudogap

phase from the strange metal (S.M) phase where the resistivity is linear in temperature, and

the physics is consistent with that of a quantum critical regime emanating from a quantum

critical point obfuscated by the superconducting (S.C.) dome. In the underdoped regime

there are a host of other competing orders, such as stripe, checkerboard charge order, and

spin glass order. In the highly overdoped regime it was recently conjectured [KGC07] and

experimentally confirmed that the cuprates develop Ferromagnetic order (F).
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CHAPTER 2

Characterizing the Quantum Critical Fan of a φ4

Theory

2.1 Introduction

This chapter is meant to serve as an introduction to quantum criticality in many body

systems with a particular emphasis on characterizing what is known as the quantum critical

fan. The quantum critical fan is the finite-temperature region in which the physics of the

system is governed by the zero temperature quantum critical point that demarcates quantum

phases from one another. We focus on characterizing the quantum critical fan, and we

explicitly show how one can identify the borders of said fan using the arguments introduced

by S. Chakravarty, B. I. Halperin, and D. R. Nelson (CHN) in 1989[CHN89]. In their

work, CHN categorized the phases of the two dimensional non-linear sigma model in d =

2 + 1 dimensions by the behavior of the correlation length which is yielded via a 1-loop RG

approach. In this chapter we utilize and discuss these tools developed by CHN in the familiar

setting that is φ4 theory in hopes of providing a pedagogic introduction to characterizing

quantum critical fans.

We begin by reviewing the calculation of the renormalization group flow equations to one

loop for the couplings and dimensionless temperature for the one component φ4 theory of the

Ising universality class in d+1 space-time dimensions. Working in a convenient dimension

we then identify the quantum critical fan, and characterize the rest of the parameter space
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as either quantum disorded, or ordered in accordance with the behavior of the correlation

length.

2.2 The mass RG Equation

The Euclidean action we investigate is

S[φ] =

∫
ddx

∫ β

0

dτ
1

2

(
(∇φ)2 + (∂τφ)2

)
+

1

2
m2

0φ
2 +

λ0

4!
φ4, (2.1)

where we are working in units where ~ = kB = 1. This action can be understood as arising

from either of two equivalent models: (1) this action can be interpreted as that of an classical

Ising model in d + 1 dimensions where the imaginary temporal dimension corresponds to a

compactified spatial dimension which is periodic in β, with the mass variable, m2
0, function-

ing as a reduced temperature; (2) this action can be understood as that which corresponds

to a quantum Ising model in d dimensions[Sac11] where m2
0 controls a quantum phase tran-

sition from an Ising ferromagnet to a quantum disordered state. From the point of view of

(1), going from Ising variables to this field theory in the auxiliary variable, φ, is typically

achieved by utilizing a Hubbard Stratonovich substitution, and then dropping higher order

terms O(φ6) and above. In the following we will step away from the classical Ising inter-

pretation of this action, and instead associate the mass m2
0 as the variable which delineates

ordered and disordered quantum phases depending on its sign. Going to momentum space

we Fourier/Matsubara expand the fields

φ =
∞∑

n=−∞

∫
dd~k

(2π)d
φ̃(~k, ωn)ei(

~k·x−ωnt), (2.2)

where ωn = (2πn)/β. Integrating out position and imaginary time we yield

S[φ̃] = S0[φ̃] + Sint[φ̃], (2.3)

where

S0[φ̃] =
∞∑

n=−∞

∫
dd~k

(2π)d
β

2
φ̃(~k, ωn)(~k2 + ω2

n +m2
0)φ̃∗(~k, ωn), (2.4)
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and

Sint[φ] =
λ0β

4!

∞∑
n1,n2,n3=−∞

∫
dd ~k1

(2π)d
dd ~k2

(2π)d
dd ~k3

(2π)d
φ̃(~k1, ωn1)φ̃(~k2, ωn2)φ̃(~k3, ωn3)φ̃(~k4, ωn4), (2.5)

where ~k4 = −(~k1 + ~k2 + ~k3), n4 = −(n1 + n2 + n3), and we integrate the momenta up to a

cutoff Λ.

We can read the propagator directly from the free part of the Lagrangian as

〈φ̃∗(~k, ωn)φ̃(~k′, ωm)〉 =
1

β

(2π)dδ(~k + ~k′)δn+m

~k2 + ω2
n +m2

0

. (2.6)

To yield the RG equations we follow the Wilsonian method of systematically integrating out

the high momentum modes and rescaling our system. The interval which we integrate out

is bΛ < |~k| < Λ, where 0 < b < 1. We thus divide our field into high and low momenta

components

φ̃(~k, ωn) = Θ(~k − bΛ)φ̃H(~k, ωn) + Θ(−~k + bΛ)φ̃L(~k, ωn). (2.7)

Substituting this expression into our action yields

S[φ̃] = SL[φ̃L] + S0
H [φ̃H ] + Sint[φ̃L, φ̃H ], (2.8)

where

SL[φ̃L] =
∞∑

n=−∞

∫ bΛ

0

dd~k

(2π)d
β

2
φ̃L(~k, ωn)(~k2 + ω2

n +m2
0)φ̃L

∗
(~k, ωn)

+
λ0β

4!

∞∑
n1,n2,n3=−∞

∫ bΛ

0

dd ~k1

(2π)d
dd ~k2

(2π)d
dd ~k3

(2π)d
φ̃L(~k1, ωn1)φ̃L(~k2, ωn2)φ̃L(~k3, ωn3)φ̃L(~k4, ωn4), (2.9)

S0
H [φ̃H ] =

∞∑
n=−∞

∫ Λ

bΛ

dd~k

(2π)d
β

2
φ̃H(~k, ωn)(~k2 + ω2

n +m2
0)φ̃H

∗
(~k, ωn), (2.10)

and

Sint[φ̃L, φ̃H ] =
λ0β

4!

∞∑
n1,n2,n3=−∞

∫
dd ~k1

(2π)d
dd ~k2

(2π)d
dd ~k3

(2π)d

[
φ̃H

4
+ φ̃Lφ̃Lφ̃H φ̃H + ...

]
, (2.11)
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where the ... corresponds to all possible permutations of terms bilinear in both of the low and

high fields. It is implied that the momentum and Matsubara frequency number associated

with each field corresponds to its position in the expression.

The partition function for the theory is rewritten as

Z =

∫
Dφ̃e−S[φ̃] =

∫
Dφ̃LDφ̃He

−SL[φ̃L]e−S
0
H [φ̃H ]e−Sint[φ̃L,φ̃H ]. (2.12)

All of the math done above has been motivated by the finding of our effective theory at low

energies which is governed by the Boltzmann factor

e−Seff[φ̃L] = e−SL[φ̃L]

∫
Dφ̃He

−S0
H [φ̃H ]e−Sint[φ̃L,φ̃H ] = e−SL[φ̃L]〈e−Sint[φ̃L,φ̃H ]〉H . (2.13)

We must solve this problem perturbatively so we perform a cumulant expansion on the

interacting term

〈e−Sint〉 = e−〈Sint〉+1/2(〈S2
int〉−〈Sint〉2)+.... (2.14)

Going to one loop we must calculate the terms 〈Sint〉H and 〈S2
int〉H . This amounts to cal-

culating the diagrams in Fig. 2.1, where the external legs have low momenta and the loops

have high momenta. One should also notice that terms of the form 〈Sint〉2 do not contribute

to renormalizing our couplings because they do not represent one particle irreducible graphs.

We first calculate the self energy diagrams that couple to the low momenta fields.

〈Sint〉H =
λ0β

4!

∞∑
n1,n2,n3=−∞

∫
dd ~k1

(2π)d
dd ~k2

(2π)d
dd ~k3

(2π)d

[
φ̃Lφ̃L〈φ̃H φ̃H〉H + ...

]
, (2.15)

Because of the symmetry of the fields in their momentum arguments we can just rewrite this

as

〈Sint〉H =
λ0β

4

∞∑
n1,n2,n3=−∞

∫
dd ~k1

(2π)d
dd ~k2

(2π)d
dd ~k3

(2π)d

[
φ̃Lφ̃L〈φ̃H φ̃H〉H

]
, (2.16)

because there are six terms bilinear in the low and high momenta fields. Using Eq. 2.6 we

write

〈φ̃∗H(~k, ωn)φ̃H(~k′, ωm)〉H =
1

β

(2π)dδ(~k + ~k′)δn+m

~k2 + ω2
n +m2

0

, (2.17)
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Figure 2.1: Feynmann diagrams associated with the terms generated in the cumulant

expansion.

which, upon substitution into Eq. 2.16, yields

〈Sint〉H =
λ0

4

∞∑
n1,n2,n3=−∞

∫
low

∫
low

∫
high

dd ~k1

(2π)d
dd ~k2

(2π)d
dd ~k3

(2π)d

[
φ̃Lφ̃L

(2π)dδ(−~k1 − ~k2)δn1+n2

~k3

2
+ ω2

n3
+m2

0

]
.

(2.18)

Integrating over the Dirac delta functions and summing over the Kronecker-delta gives us

〈Sint〉H =
λ0

4

∞∑
n=−∞

∫ Λ

Λb

dd~p

(2π)d
1

|~p|2 + (2πn/β)2 +m2
0

∞∑
m=−∞

∫ Λb

0

dd~k

(2π)d
|φ̃L(~k, ωm)|2. (2.19)

We make use of the fact that

∞∑
n=−∞

1

|~p|2 + (2πn/β)2 +m2
0

=
β

2
√
|~p|2 +m2

0

coth

[
β

2

√
|~p|2 +m2

0

]
, (2.20)

to perform the summation in equation 2.19 resulting in

〈Sint〉H =
λ0

4

∫ Λ

Λb

dd~p

(2π)d
β

2
√
|~p|2 +m2

0

coth

[
β

2

√
|~p|2 +m2

0

] ∞∑
m=−∞

∫ Λb

0

dd~k

(2π)d
|φ̃L(~k, ωm)|2.

(2.21)

Because this expression is bilinear in the low momenta fields we add this pre-factor to the

bare mass to yield the renormalized mass in the effective theory. In other words

m2 = m2
0 +

λ0

4

∫ Λ

Λb

dd~p

(2π)d
1√

|~p|2 +m2
0

coth

[
β

2

√
|~p|2 +m2

0

]
(2.22)
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to one loop. We now define b = e−l, rescale the couplings, and differentiate Eq. 2.22 to yield

the RG flow. Rescaling the couplings amounts to nondimensionalizing them according to

our new cutoff bΛ. Thus

m2(l) = m̃2Λ2e−2l, (2.23)

λ(l) = λ̃Λ(3−d)e−(3−d)l, (2.24)

β(l) = uΛ−1el, (2.25)

where the tilde denotes a coupling being dimensionless. After nondimensionalizing our cou-

plings we write Eq. 2.22 as

m̃2Λ2e−2l = Λ2m̃0
2 +

λ̃0Λ(3−d)

4

∫ Λ

Λe−l

dd~p

(2π)d
1√

|~p|2 +m2
0

coth

[
β

2

√
|~p|2 +m0

2

]
. (2.26)

The momentum integration is performed over the d-dimensional hypersphere. We perform

d-1 angular integrations and yield

m̃2Λ2e−2l = m̃0
2Λ2+

λ̃0Λ(3−d)

4

∫ Λ

Λe−l
dp

2πd/2

(2π)d/2Γ(d/2)

pd−1√
p2 +m2

0

coth

[
β

2

√
p2 +m0

2

]
. (2.27)

Finally we differentiate both sides with respect to our rescaling parameter l

dm̃2

dl
= 2m̃2 +

λ̃

4

2πd/2

(2π)d/2Γ(d/2)

coth
(
u
√

1+m̃2

2

)
√

1 + m̃2
, (2.28)

where, as defined in Eq. 2.25, u ≡ βΛe−l is the dimensionless measurement of the size in

imaginary time, and we have taken λ̃0e
−(d−3)l = λ̃, and m̃0

2e2l = m̃2.

2.3 The φ4 coupling RG Equation

To calculate the RG equation for the coupling λ to one loop we must calculate the next term

in the cumulant expansion 〈S2
int〉H . We first square Eq. 2.11

〈S2
int〉H ≈

λ2
0β

2

4!2

∑
n1,...,n6

3∏
i=1

7∏
i=5

[∫
ddki
(2π)d

]
〈(φ̃Lφ̃Lφ̃H φ̃H φ̃H φ̃H φ̃Lφ̃L + ...)〉H , (2.29)

where the ... here denotes all possible permutations of the 8 field operators in the momentum

variables as it did in Eq. 2.11, ~k4 = −(~k1+ ~k2+ ~k3), n4 = −(n1+n2+n3), ~k8 = −(~k5+ ~k6+ ~k7),
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and n8 = −(n5 + n6 + n7). The three diagrams that correspond to this full expansion are

depicted in Fig. 2.1 (b). Each one of these channels has a symmetry factor of 12 and each

diagram contributes an equal amount to the renormalization of λ so we write

〈S2
int〉H ≈

36λ2
0β

2

4!2

∑
n1,...,n6

3∏
i=1

7∏
i=5

[∫
ddki
(2π)d

]
φ̃Lφ̃L〈φ̃H φ̃H φ̃H φ̃H〉H φ̃Lφ̃L, (2.30)

which means that the correction to λ to one loop is given by

δλ = −36λ2
0β

4!

∑
n3,n5,n6

∫ ∫ ∫
ddk3

(2π)d
ddk5

(2π)d
ddk6

(2π)d
〈φ̃H φ̃H φ̃H φ̃H〉H . (2.31)

Computing the four point function and simplifying the expression yields

δλ = − 3

2β
λ2

0

∑
n5,n6,n7

∏
i=3,5,6

[∫
ddki
(2π)d

]
(2π)2dδ(~k3 + ~k5)δ(~k4 + ~k6)δn3+n5δn4+n6

(|~k3|2 + ω2
n3

+m2
0)(|~k6|2 + ω2

n6
+m2

0)
. (2.32)

Integrating over the Dirac delta functions and the Kronecker deltas we have

δλ = − 3

2β
λ2

0

∑
n

∫
ddk3

(2π)d
1

(|~k3|2 + ω2
n3

+m2
0)(| − ~k1 − ~k2 − ~k3|2 + ω2

n4
+m2

0)
. (2.33)

We Taylor expand this expression and extract the term that is independent of the external

momentum and external Matsubara frequency–the reasoning behind this is twofold: our

renormalized coupling constant should not depend on these arbitrary low energy parame-

ters, and taking higher order terms in the Taylor expansion would generate terms that are

increasingly irrelevant to our theory. With this prescription we have

δλ = − 3

2β
λ2

0

∑
n

∫
ddp

(2π)d
1

(|~p|2 + ω2
n +m2

0)2
. (2.34)

Thus, integrating over the d-1 angular directions on the d-dimensional hypersphere, and

using the fact that

∞∑
n=−∞

1

(|~p|2 + (2πn/β)2 +m2
0)2

=
β

4(|~p|2 +m2
0)3/2

coth

[
β

2

√
|~p|2 +m2

0

]
+

β2

8(|~p|2 +m2
0)

csch2

[
β

2

√
|~p|2 +m2

0

]
,

(2.35)
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we yield

δλ = −3

8
λ2

0

2πd/2

(2π)d/2Γ(d/2)

∫ Λ

bΛ

pd−1dp

(p2 +m2
0)3/2

(
coth

[
β

2

√
p2 +m2

0

]
+
β

2

√
p2 +m2

0csch2

[
β

2

√
p2 +m2

0

])
.

(2.36)

Following the procedure highlighted in section I we nondimensionalize our couplings,

rescale, and differentiate with respect to our parameter l to yield the RG equation to one

loop

dλ̃

dl
= (3−d)λ̃−3

8

2πd/2

(2π)d/2Γ(d/2)

λ̃2

(1 + m̃2)3/2

(
coth

[
u
√

1 + m̃2

2

]
+
u
√

1 + m̃2

2
csch2

[
u
√

1 + m̃2

2

])
(2.37)

2.4 The dimensionless temperature RG equation

The dimensionless measurement of imaginary time u has a trivial recursion formula

du

dl
= −u, (2.38)

which immediately follows from Eq. 2.25. We can define a dimensionless measurement of

the temperature of the system, t, by the relationship

u =
λ̃

t
, (2.39)

which means that

t =
λ̃

u
=
λΛ(d−3)e(3−d)l

βΛe−l
= λTΛ(d−4)e(4−d)l. (2.40)

Using Eq. 2.38 and Eq. 2.39 gives

du

dl
= − λ̃

t
=

d

dl

(
λ̃

t

)
=
dλ̃

dl

1

t
− dt

dl

λ̃

t2
, (2.41)

which we solve for dt/dl. Doing some algebra and subbing in Eq. 2.37 yields

dt

dl
= (4−d)t−3

8

2πd/2

(2π)d/2Γ(d/2)

λ̃t

(1 + m̃2)3/2

(
coth

[
λ̃
√

1 + m̃2

2t

]
+
λ̃

2t

√
1 + m̃2csch2

[
λ̃
√

1 + m̃2

2t

])
.

(2.42)
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2.5 RG Flows

Putting together the results of the last three sections, our RG equations are

dm̃2

dl
= 2m̃2 +

2

3

λ̄√
1 + m̃2

coth

[
λ̄
√

1 + m̃2

t̄

]
, (2.43)

dλ̄

dl
= (3−d)λ̄− λ̄2

(1 + m̃2)3/2

(
coth

[
λ̄
√

1 + m̃2

t̄

]
+
λ̄
√

1 + m̃2

t̄
csch2

[
λ̄
√

1 + m̃2

t̄

])
, (2.44)

dt̄

dl
= (4− d)t̄− λ̄t̄

(1 + m̃2)3/2

(
coth

[
λ̄
√

1 + m̃2

t̄

]
+
λ̄
√

1 + m̃2

t̄
csch2

[
λ̄
√

1 + m̃2

t̄

])
. (2.45)

where we have defined

λ̄ = λ̃
3

8

2πd/2

(2π)d/2Γ(d/2)
, (2.46)

and

t̄ = 2
3

8

2πd/2

(2π)d/2Γ(d/2)
t. (2.47)

To justify one’s neglect of the higher loop terms in that arise in the cumulant expansion

one typically takes ε = 3 − d << 1 as the perturbative RG applies extremely well for all

values of the parameters in the theory in this regime. In the following we characterize the

quantum critical fan for 0 < ε ≤ 1–for illustrative purposes we will take ε = 1 in all plots

of the RG flows and fans. Taking ε=1 implies that our perturbative expansion in λ is not

very well controlled, but we carry on because the quantum critical fan is simpler to visualize

at ε = 1, and the results we yield will be quite close to those that one would obtain via

other, more sophisticated, approaches to the problem such as using conformal field theory

techniques. Taking 0 < ε << 1 yields the same qualitative physics as the case ε = 1–the

quantum critical fan will manifest itself in the same surface that we investigate for ε = 1,

but with a surface area which is merely scaled down by ε, and the theory will possess all of

the same types of critical points at coupling strengths which are also scaled by ε. In other

words, in both of these cases there exists a quantum critical point at zero temperature, above

which a quantum critical fan is formed in a similar surface. For general 0 < ε = 3 − d < 1
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the nontrivial fixed point of interest at T = 0 is given by

t̄∗ = 0, λ̄∗ =
3ε

3 + ε

√
1− 3ε

3 + ε
, m̃∗

2
= − ε

ε+ 3
. (2.48)

This is the quantum critical point. There is also the trivial fixed point at t̄ = λ̄ = m̃2 = 0.

We plot the flows (for ε = 1) in several planes of interest in Fig.s 2.2, 2.3, 2.4, 2.5 below).

We linearize our RG equations to identify the leading order behavior near the quantum

critical point and find that

d(m̃2 − m̃∗2)

dl
≈
(

2− ε

3

)
(m̃2 − m̃∗2), (2.49)

d(λ̄− λ̄∗)
dl

≈ (ε− 1)(λ̄− λ̄∗), (2.50)

dt̄

dl
≈ εt̄. (2.51)

Here we see that λ̄ is irrelevant at the quantum critical point for ε <1, and marginal at

the quantum critical point when ε = 1. To obtain the asymptotic behavior of the correlation

length, and hence, the critical exponent, we integrate our recursion relations from l = 0

(where the dimensionless couplings are unrenormalized) up to the value l∗ where the fastest

growing coupling (m̃2, λ̄, or t̄) reaches O(1). Given this l∗ we can “work backwards” and

write our asymptotic correlation length in terms of the original UV cutoff (Λ−1 ∼ a, where a

is lattice spacing) as ξ = ael
∗
. Because the relevant couplings at the quantum critical point

are m̃2 and t̄ (the relevant coupling dictate which recursion relation grows fastest) we can

immediately identify the critical exponent νm via the linearized RG equations to be

ξ ≈ a

(m̃2 − m̃∗2)νm
, νm =

1

2− ε/3
. (2.52)

This correlation length expression is valid near criticality for t̄ → 0 at λ̄ = λ̄∗, and (m̃2 −

m̃∗
2
) < δ, where δ is an arbitrarily small, positive number.

This critical exponent is what one would typically get via other methods when studying

the models in the Ising universality class. To gain some intuition on the physics in lower
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dimensions we compare our results to those known for the 3D Ising model. The most rigorous

methods of calculating νm have reported νm ≈ 0.63, whereas Eq. (2.52) predicts νm = 0.6–

and so for our simple and somewhat naive calculation at ε = 1 we are still “close” to what

is correct.

Figure 2.2: RG flows in the λ̄-m̃2 plane at t̄ → 0+. The blue dot indicates the quantum

critical point at λ̄∗, m̃∗
2
.
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Figure 2.3: RG flows in the t̄-m̃2 plane at λ̄→ 0+. The blue dot indicates the fixed point

t̄, m̃2=(9/16, -1/4).
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Figure 2.4: RG flows in the t̄-λ̄ plane with m̃2 = m̃∗
2
.
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Figure 2.5: RG flows in the t̄-m̃2 plane at λ̄ = λ̄∗.
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2.6 The Quantum Critical Fan

One can characterize the RG parameter space into phases depending on the behavior of

the correlation length [CHN89]. In the following we will characterize the quantum critical

fan when ε = 1. Taking ε = 1 turns out to be convenient because λ̄ is marginal at the

quantum critical point, and hence does not initially flow upon lowering the momentum

cutoff. Explicitly, for small values of the temperature at the critical value λ̄∗, λ̄′ is roughly

zero for values of t̄ < 0.2. Hence, we investigate the λ̄ = λ̄∗ plane for small values of t̄.

Let us first begin by comparing the linearized RG equations of Eq.s (2.49), (2.50), (2.51)

to understand which coupling sets the leading scale during the RG. The coupling space is

divided in three regions: (I) Eq. (2.49) > Eq. (2.51), (II) Eq. (2.49) < Eq. (2.51), and

(III) where m̃2 < m̃∗
2
. In region (III) the fields develop a vacuum expectation value (VEV)

such that 〈φ〉 6= 0–a phenomenon ubiquitous with spontaneous symmetry breaking–namely,

the breaking of the discrete global Z2 symmetry of the original vacuum. In this case one

must expand the fields, φ, about this VEV to understand the nature of the low lying energy

excitations. Instead of working through a similar calculation to that done above for the case

of a non-vanishing VEV we can simply label the region of coupling space “ordered” if the

theory flows to the ordered fixed point at m̃2 = −1, t̄ = 0 (where the VEV 6= 0). For case

(II) the theory is in the quantum critical regime, where the most relevant parameter is the

modified dimensionless temperature, t̄. The borders of the fan can be identified as where

the pertinent recursion relations roughly equal one another. Physically the argument follows

that because the correlation length of the system near a quantum critical point diverges as

ξ−1 ≈ (m̃2 − m̃∗2)νm , there corresponds a vanishing energy scale ∆ ∼ ξ−z, where z is the

dynamic critical exponent (z=1 for our particular theory of interest). Thus, the borders of

our quantum critical fan are roughly given by the relationship

kBT ∼ ∆ ∼ (m̃2 − m̃∗2)νm , (2.53)

which identifies the quantum critical/quantum disordered crossover region. We plot the RG

flows with the corresponding crossover curve in Fig. 2.6. The dashed lines in Fig. 2.6 are
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Figure 2.6: RG flows in the t̄-m̃2 plane at λ̄ = λ̄∗ at low t. The three regions from top to

bottom respectively are: I–the quantum disordered regime, II–the quantum critical regime,

and III–the ordered regime.

given via Eq. (2.51) as t̄/(2λ̄∗) = |(m̃2 − m̃∗2)|3/5.

Directly from Eq. (2.51) we have that the correlation length in the quantum critical

region diverges as

ξ ∼ a

[
1

t̄

]1/ε

, (2.54)

or, upon going to the only meaningful, nontrivial dimension by taking ε = 1 and substituting

in thermodynamic variables via our original definition of the dimensionless temperature,

ξ ∼ 1

2λ̄∗kBT
=

0.77

kBT
, (2.55)

which is consistent with the idea that the correlation length universally diverges when ap-
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proaching the quantum critical point in the quantum critical region as ξ ∼ 1/(kBT ). Restor-

ing ~ and c we finally have that the correlation length behaves as

ξ ≈ 0.77~c
kBT

(2.56)

for low temperatures at λ = λ∗, m̃2 = m̃∗
2
.
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CHAPTER 3

Density Wave States in the Presence of an External

Magnetic Field

This chapter is adapted from the publication:

Powell, I. E., and Chakravarty, S. “Density Wave States in the Presence of an External

Magnetic Field.” Phys. Rev. B, 100(7):075150, 27, August 2019

3.1 Preliminaries

Unlike Cooper pair condensation (particle-particle condensation) density wave states are

comprised of particle-hole condensates. The particle-hole condensate wavefunction does not

have to obey the same spin/orbital antisymmetry requirements that Cooper pair wavefunc-

tions do because particles and holes are distinct objects. A particularly interesting density

wave state is the dx2−y2-density wave, also known as the staggered flux state. The staggered

flux state breaks time-reversal symmetry and is visualized as a series of staggered currents

on the bonds of the square lattice[Nay00a] (See Fig. 3.1). We briefly review particle-hole

condensation in this angular momentum channel on the square lattice in the following.

On the mean field level the single particle Hamiltonian for electrons in an external mag-

netic field with singlet particle-hole pairing in the dx2−y2 channel on the square lattice in
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Figure 3.1: Real space lattice corresponding to the dx2−y2 state. Arrowed lines indicate

current.

position space is written as [JGC09, Hof76]

H =
∑
n,m

(
−t1 + i

W0

4
(−1)n+m

)
eiφx|m+ 1, n〉〈m,n|

+

(
−t2 − i

W0

4
(−1)n+m

)
eiφy |m,n+ 1〉〈m,n|

−t3eiφxy |m+ 1, n+ 1〉〈m,n|

−t4eiφyx|m+ 1, n− 1〉〈m,n|+ H.C.

(3.1)

where each φ is the Peierls phase associated with each unique hopping element, W0 is the

d-density wave strength, we have subtracted off the chemical potential, and we have included

only nearest neighbor (NN) and next-nearest neighbor (NNN) terms. For the remainder of

the paper we take t1 = t2 = t, and omit spin indices.

When there is no external magnetic field present the staggered flux causes the unit cell’s

size to double–comprised of an n+m = even, n+m = odd. Ignoring NNN hopping we write

the (gauge transformed) Hamiltonian in the absence of external magnetic field as

H = −t̃
∑
n,m

e−2iαnm|m+ 1, n〉〈m,n|+ |m,n+ 1〉〈m,n|+ H.C., (3.2)

where we have a new variable, t̃ =
√
t2 + (W0/4)2, and αnm = arctan(W0/4t)(−1)n+m. In
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this language the dispersion is written as

E = ±2t̃
√

cos2(kx) + cos2(ky) + 2cos(2α)cos(kx)cos(ky), (3.3)

where α = |αnm| and

cos(2α) =
1− (W0/4t)

2

1 + (W0/4t)2
. (3.4)

We see that as the density wave strength is tuned on from 0 the dispersion evolves smoothly

from the free electron case to the π-flux fermion case at α = π/4. With this in mind we

rewrite the Hamiltonian in the suggestive form

H = −t̃
∑
n,m

e−2iαnm |m+ 1, n〉〈m,n|+

(cos2(2α) + sin2(2α))|m,n+ 1〉〈m,n|+ H.C.,

(3.5)

which is equivalent to

H = cos(2α)H0 + sin(2α)Hπ, (3.6)

where

H0 = −t̃
∑
n,m

|m+ 1, n〉〈m,n|+ cos(2α)|m,n+ 1〉〈m,n|+ H.C., (3.7)

and

Hπ = −t̃
∑
n,m

−i(−1)m+n|m+ 1, n〉〈m,n|+

sin(2α)|m,n+ 1〉〈m,n|+ H.C..

(3.8)

Here, H0 is a a typical tight binding Hamiltonian, and Hπ is a Hamiltonian for π-flux

fermions.

3.2 Butterflies

3.2.1 Nearest Neighbors

Turning on an external magnetic field in the d-density wave problem amounts to the usual

Peierls substitution [Pei33]. Taking the Landau gauge ~A = (−By, 0, 0), the m direction
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Figure 3.2: Plot of the butterfly for α = 0.

hopping elements in the Hamiltonian (Eq. 3.5) are modified via |m+1, n〉 → e−i2πnΦ/Φ0 |m+

1, n〉, where 2πΦ/Φ0 is the dimensionless magnetic flux penetrating an elementary plaquette.

We numerically diagonalize the Hamiltonian on a 20×20 lattice using periodic boundary

conditions and plot the energy (in units of t) versus Φ/Φ0 at the highest symmetry in Fig.s

3.2, 3.3 and 3.4.

When α = 0 we recover the usual Hofstadter butterfly, and when α = π/4 we recover

the π-shifted butterfly governed by the form of Eq. 3.8. As α is tuned away from 0 linear

Landau levels emerge from the edges of the spectrum at π flux, and relativistic levels emerge

at 0 and 2π flux at charge neutrality yielding a spectrum similar to that of the honeycomb

lattice[Ram85]. All emerging Landau levels are accompanied by gap openings with odd

Chern number which will be discussed further in the following section. The relativistic
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Figure 3.3: Plot of the butterfly for α = π/8.
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Figure 3.4: Plot of the butterfly for α = π/4.
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Landau level energy eigenvalues emerging from 0 flux are given by (see section 3.6)

εn = ±2

√
e0B|W0|t

c
n. (3.9)

As W0 is tuned from 0 to 4t the Hall conductances, σxy, change for a given flux and Fermi

energy. Due to the global nature of the transformation of the topological phase diagram (the

Hofstadter butterfly) we categorize the topologically different types of Butterflies instead

of investigating topological phase transitions local to a given flux and Fermi energy in the

following section.

3.2.2 Topological Maps of the dx2−y2-density wave Butterfly

To characterize the defining topological characteristics of each butterfly we start with the

extremum of the transformation controlled by the density wave strength. First of all, consider

the situation when α=π/4. Directly from our Gauge transformed Hamiltonian we see that

the total flux penetrating a plaquette is Φ± 4|α| = Φ±π, where the plus or minus indicates

that we are at an even/odd plaquette respectively. Thus the Hamiltonian can be written as

H = −
√

2t
∑
n,m

e−i(Φ+π)n|m+ 1, n〉〈m,n|

+|m,n+ 1〉〈m,n|+ H.C.,

(3.10)

because the Hamiltonian in the absence of density wave condensation is symmetric about

Φ = ±π.

This observation explicitly shows that the density wave parameter W0 controls a smooth

transformation between the typical butterfly and the π-shifted, or butterfly. The Hall con-

ductances for the gaps can be written down immediately for these two extremum of the

transformation via a Diophantine equation[TKN82], but because the particular Diophantine

equation which governs the region 0 < α < π/4 is not immediately obvious we follow a

different prescription.

To describe the global distribution of Chern numbers in the gaps of the butterflies we

closely follow work done by Naumis[Nau16] on the “Cut and Projection” solution to the
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Figure 3.5: Skeleton of the butterfly for α=0. Solid (dashed) blue lines correspond to

σxy=1 (-1), solid (dashed) red lines correspond to σxy=2 (-2), and solid (dashed) yellow lines

correspond to σxy=3 (-3).

Diophantine equation

σr = q

{
φr +

1

2

}
− q

2
. (3.11)

Here σ is the Hall conductance, r is the gap index, the curly braces indicate taking the

fractional part of the quantity contained, and φ = Φ/Φ0 = p/q where p/q is a fully reduced

fraction. The filling factor for a gap’s Chern number at a given flux is defined as

f(φ, σ) = {φσr}. (3.12)

Plotting f(φ, σ) against the flux yields the Wannier diagram[Wan78], or the “skeleton,” of

the butterfly. The form of f(φ, σ) dictates the distribution of Hall Conductances in the gaps

of the butterflies. We find the skeletons for α = 0, π/4 using this solution to the Diophantine

equation (see Fig.s 3.5 and 3.6).
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Figure 3.6: Skeleton of the butterfly for α = π/4. Solid (dashed) blue lines correspond to

σxy=1 (-1), solid (dashed) red lines correspond to σxy=2 (-2), and solid (dashed) yellow lines

correspond to σxy=3 (-3).

To construct the Wannier diagram for values of 0 < α < π/4 we note the following: as

soon as W0 is nonzero all gaps that are not associated with the normal butterfly, but are

associated with the π-flux butterfly, emerge (in section 3.6 we see that regardless of how small

W0 is all Landau levels indexed by n emerge). Furthermore, the Chern numbers associated

with all gaps are topological invariants and thus will not change due to perturbations to the

Hamiltonian. Taking these facts into account we draw the topological map for the region

0 < α < π/4 as the combination of the two extremum butterfly skeletons–see Fig. 3.7.

Because our topological map is a combination of the normal butterfly skeleton and the π-

shifted butterfly skeleton we see a doubling of lines associated with odd Hall Conductances,

while the even Hall Conductances remain stationary.

At α = 0, π/4, π/2 the odd numbered Hall band doubling dissapears, and one is left with
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Figure 3.7: Skeletons of the butterflies for 0 < α < π/4 . Solid (dashed) blue lines corre-

spond to σxy=1 (-1), solid (dashed) red lines correspond to σxy=2 (-2), and solid (dashed)

yellow lines correspond to σxy=3 (-3). The vertical green line acts as a guide–indicating that

for the regime 0 < W0 < 4t, at a fixed flux, one would cross double the amount of odd Chern

numbered gaps than those of the typical butterfly as one tunes the Fermi energy from the

minimum value of the dispersion’s energy to its maximum.

topological maps associated with Fig. 3.5. Notice, however, that α=π/2 is an unphysical

region in which W0/t → ∞. Thus we see that there are three topologically distinct phase

diagrams associated with the d-density wave problem in an external magnetic field, and that

these maps change only at W0 = 0, and W0 = 4t.

Using the structure of our obtained diagrams as a guide we label the Hall conductances

for all gaps associated with all butterflies (see Fig.s 3.8, 3.9, 3.10). Due to the odd Hall

conductance line doubling for 0 < α < π/4 there exists a relativistic quantum Hall effect at

low fields near charge neutrality (akin to that of Graphene[Y 05]) in the sense that the Hall
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Figure 3.8: Butterfly with labeled characteristic Hall conductances for α=0 . Solid (broken)

blue lines correspond to σxy=1 (-1), solid (broken) red lines correspond to σxy=2 (-2), and

solid (broken) yellow lines correspond to σxy=3 (-3).

conductances are quantized via

σxy = ±e
2

h
2(2N + 1), (3.13)

where N is an integer and we have included a factor of 2 due to spin degeneracy. The typical

integer Quantum Hall conductances persist at the edges of the spectrum near 0 flux and the

odd Chern numbered gaps only dissapear completely when α=π/4 where the remaining gaps

have

σxy = ±e
2

h
2(2N), (3.14)

where, again, we have multiplied by a factor of 2 due to spin degeneracy.
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Figure 3.9: Butterfly with labeled characteristic Hall conductances for α=π/4 . Solid

(broken) blue lines correspond to σxy=1 (-1), solid (broken) red lines correspond to σxy=2

(-2), and solid (broken) yellow lines correspond to σxy=3 (-3).

33



Figure 3.10: Butterfly with labeled characteristic Hall conductances for α=π/8 . Solid

(broken) blue lines correspond to σxy=1 (-1), solid (broken) red lines correspond to σxy=2

(-2), and solid (broken) yellow lines correspond to σxy=3 (-3).
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Figure 3.11: Real space lattice corresponding to the px + ipy density wave state. Ar-

rowed lines indicate current whereas arrowless lines indicate bonds with no net current with

energetically favored hopping.

3.3 p+ ip Density Wave Order

The singlet ~Q=(0, π) px + ipy-density wave state also breaks translation and time-reversal

symmetry, and is visualized as both a series of staggered currents pointing along the x direc-

tion, and bonds of zero net current that connect nearest neighbors along the y direction[Nay00a]

(see Fig. 3.11). For this ~Q=(0, π) px + ipy-density wave the Hamiltonian is

H =
∑
n,m

(
− t− iW0

2
(−1)n

)
eiφx|m+ 1, n〉〈m,n|

+

(
−t+

W ′
0

2
(−1)n

)
eiφy |m,n+ 1〉〈m,n|+ H.C.

(3.15)

where the density wave order parameter is

〈ψ†(~k + ~Q)ψ(~k)〉 = ±(W0sin(kx) + iW ′
0sin(ky)). (3.16)

In the following we take W0 = W ′
0, and define α = arctan(W0

2t
). We plot the butterflies

at two characteristic points for a 20×20 lattice in Figs. 3.12, and 3.13. We see that

chiral p-density wave condensation breaks the butterfly’s reflection symmetry about π flux,

opens bubbles of σxy = 0, and causes major band gaps to collapse (a phenomenon well
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Figure 3.12: Plot of the butterfly for α = π/8.

known to occur in lattices with anisotropic hoppings[HHK90])–in fact, at α=π/4, when

the system is completely dimerized along the y direction and the lattice is composed of

disjointed 2×L (L being the side length of the lattice along the x direction in units of the

lattice constant) cylindrical strips of alternating density wave induced fluxes, we find that

the butterfly is completely destroyed and all gaps have collapsed except for a major gap near

charge neutrality emanating from π flux. For the p − ip-density wave case the spectrum is

obtained via a reflection of the p+ ip spectrum about π flux–implying that the σxy = 0 gap

would be detectable at modest magnetic field strengths. For either type of chiral p-wave

condensation at W0 = 2t the electrons would not obey any type of Landau quantization

of their cyclotron orbits. Furthermore, because Chern numbers follow a “zero sum” rule,

this major gap at α = π/4 must have σxy = 0–thus, using the arguments highlighted in

the previous section, the topological map of Hall conductances associated with this density

wave state for 0 < W0 < 2t is given by the typical square lattice skeleton (Fig. 3.5) and a
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Figure 3.13: Plot of the butterfly for α = π/4.

f(φ, σ) = 0 line.

3.4 Multifractal Analysis

Multifractality is a defining characteristic of wave function fluctuations at criticality[EM08].

In the following we investigate the nature of the quantum phase transitions that occur as we

increase the density wave strength utilizing a basic multifractal analysis of the generalized

inverse participation ratio. Via this procedure we find that, at a fixed value of magnetic

flux, the zero-energy eigenfunctions undergo metal-metal transitions separated by energy

level crossings and single particle wave function multifractality.

The generalized inverse participation ratio (IPR) scales with the system size

Pq =
∑
m,n

|ψ(rm,n)|2q ∼ L−τ(q) (3.17)
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at a fixed energy, where the summation is taken over the real space lattice defined by rm,n.

The exponents τ(q), indexed by a continuous variable q, are given by τ(q) = Dq(q−1), where

Dq = d for delocalized metallic states and Dq=0 for exponentially localized insulating states.

Exponents τ(q) that depend on q in a nonlinear fashion indicate wave function multifrac-

talilty. In our analyses we focus on the behavior of the system near charge neutrality–thus,

to obtain the wave functions pertinent to Eq. 3.17, we diagonalize the magnetic Hamiltonian

in real space (as we did when plotting the butterflies) and find the corresponding zero energy

eigenvectors of the system for a fixed pair of Φ, and W0.

We choose values of Φ/Φ0 such that there exists a zero energy eigenvalue for all W0. Nu-

merically there is a difficulty in calculating the IPR of a single degenerate energy eigenvector.

To remedy this we add a small amount of flux ∆=1 × 10−15 to Φ/Φ0 which does not alter

the spectrum, or eigenvectors in any appreciable manner but does separate (on the order of

∆) the degenerate zero energy eigenvalues from one another enough for us to calculate the

IPR of a single zero energy eigenvector as a function of W0 without mixing in the IPR of

the other degenerate zero energy eigenvectors.

As W0 is tuned a level crossing occurs in the spectrum. At this (highly degenerate)

crossing point the Chern numbers of the bands participating are no longer well defined,

but still follow the requirement that the sum of all Cherns in the spectrum is zero. For a

28 × 28 lattice we plot both the spectrum and the IPR(q = 2) at Φ/Φ0 = 1/4 + ∆ (see

Fig.s 3.14 and 3.15). All listed values of W0 are in units of t. At this particular flux

there is an energy level crossing which occurs at W ∗
0 = 4tan(π

8
) which is accompanied by

a singular behavior of the IPR(q = 2)–indicating a rapid change in the behavior of the

single particle wave function fluctuations at the point where the energy levels touch. We

find that the multifractal exponents reveal that the zero energy wave functions demonstrate

multifractality at W ∗
0 –see Fig. 3.16, and Fig. 3.17. The behavior of the multifractal

exponents at this critical point indicate a weakly multifractal behavior (sometimes dubbed

“quasimetallic”) with τ(q)’s leading nonlinear dependence (found using a least squares fitting

method) ≈ −0.115q(q − 1) in the region 0 < q < 3. Furthermore, we find that on either
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Figure 3.14: Energy versus d-density wave strength calculated at Φ/Φ0 = 1/4 for a 28× 28

lattice.

side of the critical point τ(q) ≈ 2(q− 1) which is a signature of delocalized metallic states in

two spatial dimensions. Due to both the level crossing and the real space multifractality of

the wavefunctions near the central peak shown in Fig. 3.15, we find that the d-density wave

strength controls a metal-metal transition at Φ/Φ0 = 1/4 + ∆ at charge neutrality.

Physically this critical point, which is generally given by W ∗
0 = 4tTan

(
π Φ

2Φ0

)
for arbitrary

Φ/Φ0, marks the point at which the local effective magnetic fields penetrating neighboring

plaquettes flip from aligned to anti-aligned (see Fig. 3.18). This can be seen directly by

calculating the total effective dimensionless flux 2πΦT/Φ0 per plaquette utilizing the phase

factor in Eq. 3.2

2πΦT/Φ0 = 2πΦ/Φ0 ± 4α. (3.18)

For W0 < W ∗
0 the flux per plaquette is alternaing but always positive. At W0 = W ∗

0 the

flux alternates between 4πΦ/Φ0 and 0. For W0 > W ∗
0 the total effective flux per plaquette

is alternaing in magnitude and sign (see Fig. 3.18).
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Figure 3.15: Numerically calculated IPR (q=2) as a function of W0 of one of the zero energy

wave functions for a 28× 28 lattice at Φ/Φ0 = 1/4 + ∆.

For the case of p + ip-density wave condensation wavefunctions tend to behave in a

localized fashion at W0=2 for all Φ > 0 due to the dimerization that occurs in the lattice

along the y direction. We calculate the wavefunctions’ multifractal exponents at charge

neutrality as we did in the d-density wave case and plot the spectrum and IPR with Φ fixed

in Fig.s 3.19 and 3.20. The wavefunctions in this case display strong multifractality at W0=2

(see Fig. 3.21) where the electrons are strongly localized to a strip of the lattice and there

is another level crossing similar to that observed in the d-density wave case. For W0=2 we

find the nonlinear dependance of τ(q) ≈ 0.503q2 + 2.60
√
q for 0 < q < 1 using the fitting

method mentioned above.
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Figure 3.16: Values of -ln(Pq)/ln(L) = τ̃(q) calculated for a 28×28 lattice at Φ/Φ0 = 1/4+∆

for three characteristic values of W0.

Figure 3.17: The probability density of a zero energy critical wavefunction calculated on a

28×28 lattice at Φ/Φ0 = 1/4 + ∆.
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Figure 3.18: Pictorial representation of the local magnetic field (perpendicular to the lattice)

per plaquette for different values of W0 for the d-density wave case. The size of the arrow

indicates the strength of the field.

Figure 3.19: Energy versus p + ip-density wave strength calculated at Φ/Φ0 = 1/4 for a

28× 28 lattice.
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Figure 3.20: Numerically calculated IPR (q=2) as a function of W0 of one of the zero energy

wave functions for a 28× 28 lattice at Φ/Φ0 = 1/4 + ∆.

Figure 3.21: Values of -ln(Pq)/ln(L) = τ̃(q) calculated for a 28×28 lattice at Φ/Φ0 = 1/4+∆

for three characteristic values of W0.
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3.5 Discussion

In this work we have studied and characterized the topologically different forms of the Hofs-

tadter butterflies generated in the presence of density wave condensations in the dx2−y2 , and

px ± ipy angular momentum channels and investigated the quantum phase transitions that

occur at charge neutrality as density wave strength increases. Directly from the skeleton

diagrams obtained for the dx2−y2-density wave problem we see a doubling in the odd-Hall

conductance lines which implies that the density wave strength controls a relativistic quan-

tum Hall effect with σxy=± e2

h
2(2N + 1). Furthermore, we find that the p+ ip-density wave

both causes band gap collapses in the butterfly, and causes the opening of 0 Hall conductiv-

ity bubbles. The effects of density wave states in the presence of an external magnetic field

can be detected both at modest magnetic field strengths in 2D square crystal lattices (via a

measurement of an unusual quantum Hall effect for the d-wave, or via a measurement of the

system which shows both a lack of Landau levels and the opening of σxy=0 gaps near charge

neutrality), and in optical lattice systems with the appropriate staggered fluxes present.

Our results have shown that different types of metal-metal transitions, controlled by den-

sity wave strength and separated in phase space by single particle wavefunctions exhibiting

multifractality, would be detectable in systems emulating density wave states at non-zero

flux at half filling. These quantum phase transitions occur generically for both density wave

condensations due to the nonanalyticity introduced when the energy levels cross in the spec-

trum at strip dimerization for p+ ip-density waves, or at the critical value of the staggered

flux at W ∗
0 = 4t tan

(
πΦ
2Φ0

)
for d-density waves. We note that in the presence of moderate

disorder the energy levels would be broadened but the physics outlined in our work would

be effectively the same–the effects of strong disorder on the other hand should be considered

in future work. Furthermore, future work might also investigate how mutual Coulomb in-

teractions would affect the multifractal wavefunctions and quantum phase transitions that

occur as a function of density wave strength.
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3.6 Appendix: Landau Levels

To see how the relativistic Landau Levels emerge in the spectrum we follow the standard

analysis[McC56] and expand the tight binding Hamiltonian in the even-odd basis

H0(~k) = −2t̃

 0 e−2iαcos(kx) + cos(ky)

e2iαcos(kx) + cos(ky) 0

 (3.19)

about one of the charge neutrality points ~k=(π/2, π/2)

H0(~k) ≈ 2t̃

 0 e−2iαkx + ky

e2iαkx + ky 0

 . (3.20)

When introducing a magnetic field one makes the substitution

kx → kx +
eBy

c
= k̃x, (3.21)

where e is the electron’s charge and c is the speed of light. Because k̂y and ŷ do not

commute with one another we place hats on all crystal momentum and position variables in

the Hamiltonian with the understanding that we will work in the real space ( k̂y = −i∂y)

representation of these operators henceforth. Rearranging the Schrödinger equation

2t̃

 0 e−2iαˆ̃kx + k̂y

e2iαˆ̃kx + k̂y 0

ψn
φn

 = εn

ψn
φn

 (3.22)

yields two decoupled wave equations

ε2nψn = 4t̃2(e−2iαˆ̃kx + k̂y)(e
2iαˆ̃kx + k̂y)ψn, (3.23)

ε2nφn = 4t̃2(e2iαˆ̃kx + k̂y)(e
−2iαˆ̃kx + k̂y)φn. (3.24)

For the time being we solve Eq. 3.23. Foiling out this wave equation we yield

ε2n
4t̃2

ψn(y, kx) =
((
k̂x +

eBŷ

c

)2
+ k̂y

2
+

cos(2α){k̂x +
eBŷ

c
, k̂y} − isin(2α)

eB

c
[ŷ, ky]

)
ψn(y, kx),

(3.25)
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Figure 3.22: Plot of the butterfly and the associated first few nonzero Landau levels for

α=π/8.

where we have used the fact that [k̂x, k̂y] = 0.

We define

y0 = kx
c

e0B
, ω =

e0B

mc
, (3.26)

where e0 is the absolute value of the electron charge e. Notice that because the Hamiltonian

is independent of x̂ we can replace k̂x with it’s eigenvalue kx. With these definitions in mind

we rearrange Eq. 3.25

ε2n
8mt̃2

ψn(y) =
(1

2
mω2(y − y0)2 +

1

2m
k̂y

2
− ω

2
sin(2α)−

ω

2
cos(2α){y − y0, k̂y}

)
ψn(y).

(3.27)
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The solutions to this differential equation are of the form

ψn(y) = eimω
(
y2

2
−yy0

)
e2iα
(
C1Hn(

√
mω|sin(2α)|(y − y0))+

C2 1F1(−n
2

; 1/2; (mω|sin(2α)|(y − y0)2))
)
,

(3.28)

where Hn(y) is the Hermite Polynomial of degree n and 1F1(−n
2
; 1/2; y2) is the Kummer

confluent hypergeometric function. We find the energy eigenvalues of this system by requiring

the index of the Hermite polynomials to be of integer value. Using this prescription we find

εn = ±t̃
√

8|sin(2α)|mωn, (3.29)

or, in terms of the density wave condensation strength,

εn = ±2

√
e0B|W0|t

c
n. (3.30)

Solving Eq. 3.24 in the same fashion yields shifted levels

εn = ±2

√
e0B|W0|t

c
(n+ 1), (3.31)

where n = 0, 1, 2, 3, ... for both expressions. Due to the lack of the zero energy Landau level

in Eq. 3.31 we see that the single particle wave functions will be nonzero only on the even

sublattice for index n = 0, whereas wave functions will have nonzero amplitude on both even

and odd sublattices for all n > 0.

Solving for the low energy behavior near the (kx, ky) = (−π/2,−π/2) Dirac point yields

the same eigenenergy expressions obtained for the (π/2, π/2) case whereas we find the inverse

of this even-odd behavior for the (kx, ky) = (π/2,−π/2), (−π/2, π/2) points. The Landau

level expressions near these points can be obtained by flipping the signs in front of both of the

cos(2α), sin(2α) terms in Eq. 3.27. In this case we find opposite wave function behavior–the

single particle wave functions will be nonzero only on the odd sublattice for index n = 0, and

wave functions will have nonzero amplitude on both odd and even sublattices for all n > 0.

From this analysis we see that for W0 6= 0 levels emerge from charge neutrality, regardless

of the magnitude of W0; this is due to the d-density wave’s symmetry breaking nature. We

plot characteristic Butterflies and the first few nonzero Landau levels according to Eq.s 3.30

and 3.31 in Fig.s 3.22 and 3.23.
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Figure 3.23: Plot of the butterfly and the associated first few nonzero Landau levels for

α=π/4.
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CHAPTER 4

Density wave mediated Dzyaloshinskii-Moriya

Interactions

This chapter is adapted from the publication:

Powell, I. E., Durr, S., Rombes, N. and Chakravarty, S. Density Wave Mediated Dzyaloshin-

skii Moriya Interactions., Phys. Rev. B. 103(2):024433, January 2021

4.1 Introduction

Despite concerted efforts to illuminate the precise nature of the pseudogap phase of the

cuprate high-temperature superconductors[Var99, Var06, YRZ06, NPK07], it remains un-

clear which of a host of competing order parameters is responsible for the interesting behavior

of this phase. One promising candidate[CLM01] is the ` = 2 spin-singlet order, the d-density

wave (DDW), which gives rise to a dx2−y2 gap and currents that alternate between adjacent

plaquettes on a square lattice. The relevance of this state is certainly believable given the

proximity of the pseudogap phase to the antiferromagnetic Mott insulator at low doping,

which doubles the Brillouin zone in the same way and is susceptible to singlet pairing.

This density wave state of nonzero angular momentum belongs to a larger class of such

states[Nay00b], and it is worth exploring other, more exotic members of this class related to

the singlet DDW which maintain the key characteristics necessary for relevance to the pseu-

dogap phase. Such states are also of some interest due to their topological properties.[HRC11]
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We focus on a mixed triplet-singlet DDW order, which has generated interest recently due to

promising transport calculations consistent with surprising physics found in the pseudogap

phase of the cuprate superconductor La2−xSrxCuO4 and related compounds.[GLB19, LL19]

Namely, for nonzero hole doping, the mixed triplet-singlet DDW state generates a nonvan-

ishing thermal Hall conductivity κxy, and hosts hole pockets on the reduced Brillouin zone

boundaries consistent with Hall coefficient measurements.[CK08, DCL10]

At the mean-field level a general density wave state may be described by the Hamiltonian

HDW =
∑
k,Q

c†k+Q[Φµ
Q(k)τµ]ck + h.c., (4.1)

where c†k, and ck are the electron creation and annihilation operators at wave vector k, Q is

the wave vector at which the density wave condensation occurs, Φµ
Q(k) is proportional to an

element of some representation of the space group of Q on the lattice, τ 1, τ 2, and τ 3 are the

Pauli matrices, and τ 0= 1. This Hamiltonian can be thought of as arising from a mean-field

decomposition of nearest neighbor electron-electron interaction terms in the most general

problem[Lau14, NJK99, Sch89, KK03] in which the order parameter

〈c†k+Q,αck,β〉 = [Φµ
Q(k)τµ]αβ (4.2)

acquires a nonzero value for some nonzero Q. In our work we assume that all terms which

transform nontrivially under rotations and translations are captured by this mean-field de-

composition.

Here we consider a specific example of Eq. (4.1), namely the the triplet-singlet DDW

wave[HRC11] (denoted iσdx2−y2 + dxy)

Φi
Q(k) ∝ iW0Ni(cos kx − cos ky)

Φ0
Q(k) ∝ ∆0 sin kx sin ky,

(4.3)

where Ni is a unit vector pointing along the spin quantization direction, i = 1, 2, 3, and

Q = (π/a, π/a). In real space the Hamiltonian is written as

HDDW = Ht +Hs (4.4)
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with

Ht =
iW0

4

∑
i,α,β

(−1)m+n(N · σ)αβ

× [c†i+ax̂,αci,β − c
†
i+aŷ,αci,β] + h.c.

(4.5)

and

Hs =
∆0

4

∑
i,α,β

δα,β(−1)m+n

×
[
c†i+ax̂+aŷ,αci,β − c

†
i+ax̂−aŷ,αci,β

]
+ h.c..

(4.6)

The Hamiltonian H0 +HDDW, describes a topological Mott insulator[Nay00b, HRC11] with

a quantized spin Hall conductance; it is a variant of the singlet d-density wave model

hypothesized[CLM01] to explain the pseudogap phase of the cuprates. Unlike the singlet

d-density wave state, however, the mixed triplet-singlet iσdx2−y2 + dxy-density wave state

does not inherently break time reversal symmetry, yet it retains most of the signatures

of the singlet d-density wave state. For example, the iσdx2−y2 + dxy-density wave wave

state possesses hole pockets centered along the Brillouin zone diagonals which are consistent

with both the measured Hall coefficient[GLB19] and some aspects of quantum oscillation

experiments[DPL07, SHP08, WC16]. Recently, second-harmonic generation experiments

have suggested that an inversion symmetry breaking is responsible for large second har-

monic generation signatures in YBa2Cu3Oy[ZBL16] but we note that this could be due to,

in principle, the quadrupole moment induced via a triplet d-density wave[Nay00b].

This model was shown by Z-X. Li & D-H. Lee to produce a nonzero thermal Hall effect

away from half filling–however, despite considerable effort, we have not managed to exactly

reproduce their plots using their parameter values and instead find a thermal Hall effect

which is an order of magnitude smaller for nonzero temperatures shown here in Fig. 4.1.

Details of the calculation are highlighted in the Appendix.

We now ask ourselves, what effect does this density wave state have on the pertinent

magnetic physics near half filling? In our work we assume that at nonzero doping the

density wave will survive in the presence of long range magnetic order[LL19]. The triplet
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Figure 4.1: Thermal Hall conductivity κxy/T as a function of temperature T produced

by the triplet-singlet DDW state defined by Equation (4.3) with ∆0 = 0.3t, magnetic field

B = 0.0075t/µB, t′ = −0.1t, W0 = 2t at a doping of p = 0.06. κxy is listed here in units of

k2
B/~.

part of the density wave order parameter induces a staggered spin current[NJK99] on the

bonds of the lattice, and hence, for neighboring lattice points A and B, this intrinsic spin

current implies that there exists no center of inversion at any point C on the bond connecting

A and B, thereby allowing an antisymmetric exchange among the localized spins.[KKA16,

Tat19] These types of (staggered) antisymmetric exchanges have been considered in the

literature[KH19], but to our knowledge have never been considered in the context of being

generated via the spin currents associated with density wave states. The spin currents

intrinsic to the triplet flavored density wave states induce a Dzyaloshinskii-Moriya (DM)

interaction between the underlying neighboring spins[KKA16], and we investigate the effect

that this DM interaction has on antiferromagnetic and ferromagnetic spin textures, using a

Holstein-Primakoff transformation expanded about the ground state. It has been previously

demonstrated[SCS19, HPL19, KH19] that certain DM interactions can lead to a thermal Hall

effect. We find that the particular DM interaction induced by triplet-singlet DDW states

can not contribute to κxy, which is consistent with speculations on the nature of the neutral

52



excitation responsible for the sizable thermal Hall conductivity seen in the cuprates.[GLB19]

There are strong constraints and unique properties associated with the DM vectors that

are generated by triplet density waves. Because triplet density wave states break spin-

rotational invariance the associated Goldstone boson excitations will destroy the two di-

mensional triplet density wave order at finite temperatures unless there is some external

mechanism which stabilizes the triplet density wave order parameter like interlayer coupling.

However, we find that when the underlying band structure is sufficiently topologically non-

trivial insofar as it hosts a nonzero spin Hall conductance, and an external magnetic field

is turned on, the triplet density wave induced DM vectors are energetically stable in the

absence of interlayer coupling. Furthermore, these DM vectors are pinned to be collinear

with the magnetic field, regardless of its direction, and the DM interaction will have the

same symmetry as the form factor of the triplet density wave.

In the following we derive the DM coefficients induced by triplet density waves and investi-

gate the effects they have on the physics of the underlying spin textures of the lattice. We find

that for a ferromagnetic background, the ground state remains perfectly collinear below some

critical strength of the density wave; above the critical strength, the ground state acquires

a nonzero canting angle, and we show that linear boson terms shift the classically-predicted

threshold for nonzero canting angle. Assuming a small DM interaction the dispersion of the

magnons in this case develop a characteristic dx2−y2 gap. For an antiferromagnetic back-

ground we find that the density wave-induced DM interaction has a small effect unless there

is some weak ferromagnetism present. We compute the spin-wave spectrum approptiate to

LSCO and find that for modest density wave strengths there exists a small dx2−y2 anisotropy.

4.2 The Effective Magnetic Hamiltonian

For any type of mixed triplet-singlet density wave condensation the mean-field Hamiltonian

in the absence of on-site repulsion or ferromagnetic coupling can be written in the suggestive
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manner

H =
∑
ij

c†iα(tijδα,β + iλij · σ)cjβ (4.7)

where all singlet density wave terms are absorbed into the definition of tij, and λij are

the triplet density wave terms which couple to σ. It can be shown[KKM10, KKA16] that

this λij induces a DM interaction in the underlying spin structure (antiferromagnetic or

ferromagnetic) whose coefficients are given by

Dij = λijTr σNji, (4.8)

where Nji ≡ 〈c†icj〉 = − 1
π

∫ EF
−∞ ImGji(E)dE, Gji(E) is the Green function defined by H, and

EF is the Fermi energy. Tracing the spin index over an expansion of Gji(E) = f(E)tji/t +

g(E)λji ·σ/t+O(λ2/t) reveals that to leading order Gji(E) should have the same symmetry

as tji under translations and rotations. In this work we consider a specific example of Eq.

(4.1), written in real space as

HDDW = H0 +Ht +Hs (4.9)

where H0 is the tight binding Hamiltonian of the underlying crystal lattice which is some

union of all square planar lattices which host the triplet-singlet-DDW. For this particular

triplet-DDW case, because λij only connects nearest neighbors, tji is simply the tight-binding

kinetic energy coefficient which we will assume to transform trivially under rotation–thus we

write

Dij = αλij (4.10)

for some constant α. Because we will allow the density wave strength to be a tunable

parameter we will henceforth absorb α, and all other constant numerical prefactors into the

definition of W0. The DM coefficients for the triplet dx2−y2-density wave therefore become

DN
i,i±ax̂ = (−1)ix+iyW0

DN
i,i±aŷ = −(−1)ix+iyW0,

(4.11)

where i = ix + iy, and the superscript N denotes that the DM vector points along the

N direction. We stress that the method implemented here can be applied, in general, to
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triplet density waves in any angular momentum channel. The direction of the DM vector is

along the triplet quantization axis, and the form factor associated with the triplet density

wave dictates the symmetry of the DM vector on the lattice. To understand the order of

magnitude of the DM interaction induced by density waves one can directly use Moriya’s

perturbation theory result (including the on-site repulsion U)[Mor60]

D ≈ 2tW0

U
, (4.12)

which implies that a density wave-mediated DM interaction is roughly on the scale of 10-100

meV for LSCO at low doping for density wave stengths W0 ∼ t.

For a density wave-induced DM interaction to not be disordered by Goldstone modes

at finite temperatures there must be some mechanism which externally stabilizes the triplet

density wave’s quantization axis, i.e. the direction of N. Previously it was suggested that

interlayer coupling was needed to stabilize the direction of N[HRC11], however it was recently

shown[LL19] that the direction of N for the triplet-singlet DDW in two dimensions can be

stabilized by the bulk orbital magnetization’s coupling to the magnetic field. Explicitly, a

magnetic field induces a bulk orbital magnetization, M , which is given by[CTV06]

M = −
∑

α=N·σ=±1

e

hc
Cα∆EZ,α, (4.13)

where Cα is the Chern number of the band of spin α, e is the electron charge h is Planck’s

constant, c is the speed of light, and ∆EZ,α is the Zeeman splitting

∆EZ,α = −αµBsgn(W0)N ·B, (4.14)

where µB is the Bohr magneton. For the case of the triplet-singlet DDW the resulting energy

density due to the orbital magnetization-magnetic field is[LL19]

∆EZeeman = −µBB
2

πc
sgn(W0∆0)(N · B̂), (4.15)

which implies that it is energetically most favorable for W0∆0N ‖ B. Thus, for ∆0 > 0,

B 6= 0, Eq. 4.11 necessarily becomes

DB
i,i±ax̂ = (−1)ix+iy |W0|

DB
i,i±aŷ = −(−1)ix+iy |W0|.

(4.16)
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From this argument alone we see that stable density wave-induced DM interactions in

two dimensions can only arise from topological density waves with nonvanishing spin Hall

conductance–that is, given ∆EZ,+1 = −∆EZ,−1, stability is only guarenteed if C+1 = −C−1.

Furthermore, because density wave-induced DM vectors must be collinear with the magnetic

field, they will transform like the magnetic field under rotations and time-reversal. This

immediately implies that the corresponding magnons in the problem will have no contri-

bution to any thermal Hall effect because of the spin rotation and time-reversal symmetry

considerations outlined by R. Samajdar et. al.[SCS19]

κxy[J,Dij,B] = κxy[J,RφB̂Dij, RφB]

κxy[J,Dij,B] = −κxy[J,−B̂Dij,−B],
(4.17)

where Rφ is the vector representation of spin rotation by some angle φ about the axis defined

by φ̂. Rotating the system about an angle π about an axis perpendicular to B̂ maps RφB̂

to −B̂ and hence κxy = −κxy = 0. The bulk magnetization (Eq. 4.13) would, in principle,

produce a small ferromagnetic-like signal detectable in polar Kerr measurements so long as

the external magnetic field is not exactly zero for weak disorder at small enough temper-

atures. More detailed calculations involving interlayer coupling, the inclusion of magnetic

impurities, and nonzero temperatures should be considered in future work to quantitatively

compare this triplet-singlet DDW bulk magnetization signal to the polar Kerr rotation data

previously gathered[XSD08]. Interesting questions to ask are how the Goldstone modes

would disorder the DM vectors in the absence of an external magnetic field, and how the

DM vectors behave for density wave states with vanishing spin Hall conductances.

We now study the effect of this dynamically generated DM interaction on the isotropic

two dimensional Heisenberg ferromagnet and antiferromagnet. Namely, we consider

H = ±J
∑
i,j

Si · Sj +
∑
i,j

Dij · (Si × Sj)−B ·
∑
i

Si, (4.18)

where J is the absolute value of the spin exchange, the± corresponds to the antiferromagnetic

or ferromagnetic cases respectively, and the DM interaction includes the contribution from

the density wave.
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4.3 The Antiferromagnetic Background

The triplet-singlet density wave induced DM interaction will typically have little effect on

perfectly antiferromagnetic backgrounds in the linear spin wave approximation. This is

because, upon turning on a magnetic field to stabilize the DM interaction, the localized

spins will flop perpendicular to the magnetic field direction. Terms which couple to W0

in this case are proportional to higher order terms in the HP bosons. When this happens

only very large density wave strengths will cause distortions in the magnetic ordering. On

the other hand, if there exists some small ferromagnetic component associated with the

otherwise antiferromagnetic ordering, the density wave-induced DM interaction appears in

terms quadratic in the HP bosons and thus will affect the magnon dispersion. This is the

case for LSCO which we will consider in the following.

Taking B = Bẑ the DM matrix for LSCO can be written [CTF89, CRZ91, TA94] as

Dij = (−1)ix+iyD, where

D =


√

2D cos θd
√

2D sin θd W0

−
√

2D sin θd −
√

2D cos θd −W0

0 0 0

 . (4.19)

The x and y spin direction entries are due to the buckling of the oxygen atoms out of the

copper oxide plane and induce a weak net ferromagnetic moment out of the copper oxide

plane. The z spin direction entries come from Eq. (4.16) where we have assumed a nonzero

density wave strength ∝ W0. We find the mean-field ground state by summing the classical

energy over the two sublattices and then numerically minimizing this energy with respect

to the two sets of spherical angles which characterize the classical spin directions. Here we

parameterize the spins as

〈ni〉 = (cosφi, sinφi, nz) (4.20)

where nz is the weak ferromagnetic canting due to D. For density wave strengths on the

order of t the ground state is unchanged–characterized by antiferromagnetic spin flopping

in the plane perpendicular to the magnetic field with a weakly ferromagnetic component
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pointing along B induced by D. Closely following the work of Han, Park, and Lee[HPL19],

we choose the form of the classical ground state as

〈n̄i〉 = −(−1)ix+iy

√
2

cos θc(x̂+ ŷ) + sinθcẑ. (4.21)

We expand our spin operators about this mean-field ground state[HF09]

Si = ai〈ni〉+ ti (4.22)

so that we can perform the appropriate Holstein-Primakoff (HP) substitution. The ampli-

tudinal reduction along the mean-field state is given as

ai = S − b†ibi, (4.23)

and, to leading order in boson density operators, the transverse fluctuation operator ti is

given by

ti = tx
′

i x̂
′
i + ty

′

i ŷ
′
i, (4.24)

with

tx
′

i =

√
S

2
(b†i + bi)

ty
′

i = i

√
S

2
(b†i − bi)

(4.25)

where the primed coordinates are defined such that x̂′i × ŷ′i = 〈ni〉. Upon substitution

of these operators into the antiferromagnetic version of Eq. (4.18) the terms quadratic in

Boson creation and annihilation operators in the Hamiltonian can be written in real space

as (redefining the couplings to absorb S)

H = (4J ′ +Bsin(θc))
∑
i

b†ibi −
∑
〈i,j〉

Jtx
′

i t
x′

j + J ′ty
′

i t
y′

j

+
∑
i

D′[tx
′

i t
y′

i+x + ty
′

i t
x′

i+x − tx
′

i t
y′

i+y + ty
′

i t
x′

i+y]

+ i
∑

iW0(−1)ix+iy [bib
†
j − b

†
ibj],

(4.26)

where J ′ = J/cos(2θc) and D′ = cos(θc)D(cos θd+sin θd). We take the Fourier transformation

and write our Hamiltonian in Nambu form as

H =
∑
k

1

2
ψ†kHkψk (4.27)
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where ψ†k = (b†k, b
†
k+Q, b−k, b−k+Q) and

Hk =


Ak 2iWksinθc Bk 0

0 −Ak 0 −Bk

0 0 Ak −2iWksinθc

0 0 0 −Ak

+ h.c., (4.28)

where

Ak = 2J ′ +
B

2
sinθc +

1

2
(J ′ − J)(coskx + cosky)

Bk = −2iD′(cos kx − cos ky),

− (J ′ + J)(coskx + cosky),

Wk = W0(cos kx − cos ky).

(4.29)

The spectrum is given by the absolute value of the eigenvalues of the dynamic matrix[Col78]

K = (σ3⊗I2)Hk– these eigenvalues correspond to what are called particle and hole bands for

the positive and negative eigenvalues respectively. We plot the dispersion in Fig. 4.2 for a

set of parameter values. Taking into account both the particle and hole bands the dispersion

consists of one four-fold degenerate magnon branch very similar to that which is obtained

when W0 = 0; because W0 couples to the weak ferromagnetic moment its effects on the

spectrum are small if the density wave strength is not very large. Namely, tuning W0 from

zero induces a weak anisotropy in the the magnon dispersion along the kx and ky directions.

The dispersion along kd = kx = ky is unchanged by increasing W0 whereas the energy is

increased along the k = (kx, 0), k = (0, ky) directions. This anisotropy is demonstrated in

Fig. 4.3, where the largest deviation from the unperturbed magnon dispersion is roughly 0.4

meV when k = (0, π) and k = (π, 0). The thermal Hall conductivity is given by [MSM14]

κxy
T

= −
∑
n

k2
B

~

∫
1

(2π)2

[
c2(nB(ωn,k))− π2

3

]
Ωz
n(k) (4.30)

where

c2(x) =

∫ x

0

ds

(
ln

[
1 + s

s

])2

, (4.31)

nB is the Bose distribution function, Ωz
n is the Berry curvature of the nth band, and the

sum is taken over the particle bands. Because the particle band in this model is twofold
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Figure 4.2: Magnon dispersion ωk for ky = 0 in units of J for W0 = 0.3J , D = 0.1J , θd =

0.05, B = 0.05J . The spectrum remains antiferromagnetic with small corrections increasing

with the value of kx.

degenerate we calculate its non-abelian Berry curvature using the discretized link method

[FHS05] We define the Berry curvature as

Ωz(k) = −iln[Ũ1(k)Ũ2(k + e1)Ũ1(k + e2)−1Ũ2(k)−1] (4.32)

where the vectors e1 = 2π(1, 0)/N , e2 = 2π(0, 1)/N , and N2 is the total number of lattice

sites. The link variables are defined as

Ũγ(k) =
detUγ(k)

|detUγ(k)|
(4.33)

where the matrix entries of Uγ(k) are the eigenstate overlap elements in the degenerate

subspace, which for the magnon case take the form [SMM13]

Uγ(k) =

〈ψ1(k)|ψ̃1(k + eγ)〉 〈ψ1(k)|ψ̃2(k + eγ)〉

〈ψ2(k)|ψ̃1(k + eγ)〉 〈ψ2(k)|ψ̃2(k + eγ)〉

 . (4.34)

Here the magnon eigenstates |ψi(k)〉 are the normalized eigenvectors of K that correspond

to the positive energy eigenvalues–i.e. the particle bands, and |ψ̃i〉 = (σ3 ⊗ I2)|ψi〉. We
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Figure 4.3: The difference in the magnon dispersions listed in meV with ky = 0, D = 12

meV, θd = 0.05, and B = 6 meV. The orange, and blue curves correspond to the difference

between the W0 = 100 meV and W0 = 0 dispersions and the difference between the W0 =

50 meV and W0 = 0 dispersions respectively.

Figure 4.4: Non-abelian Berry curvature calculated on a 200×200 lattice with W0 = 0.3J ,

D = 0.1J , θd = 0.05, B = 0.05J .
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plot the non-abelian Berry curvature calculated on an 200 × 200 lattice in Fig. 4.4 for a

characteristic set of parameter values. Assuming that Eq. (4.30) can be generalized trivially

for the case of non-abelian Berry curvature for a twofold degenerate magnon branch it can be

seen immediately that κxy = 0 because our numerically calculated Ωz(k) obeys Ωz(kx, ky) =

-Ωz(−kx, ky) = -Ωz(kx,−ky) whereas ω(kx, ky) = ω(−kx, ky) = ω(kx,−ky)–thereby causing

the integral to vanish.

4.4 The Ferromagnetic Background

It has previously been shown[KK03] via a one-loop renormalization group analysis of the

extended U -V -J model that triplet dx2−y2-density wave condensation is energetically favor-

able for a range of interaction strengths given J/U < 0. Furthermore, it was theoretically

predicted[KGC07] and recently experimentally confirmed[SWZ20] that the highly overdoped

cuprates show ferromagnetic ordering in the CuO2 planes. Due to these reasons we inves-

tigate the mixed triplet-singlet density wave DM interaction effects on a two-dimensional

Heisenberg ferromagnet. Taking B = Bẑ the symmetric exchange term favors mean-field

states of the form

〈S̄i〉 = nz ẑ, (4.35)

and the antisymmetric exchange favors mean-field states of the form

〈S̃i〉 = ξx(rix,iy)x̂+ ξy(rix,iy)ŷ,

ξx(ri) = ξ0
[(−1)ix + (−1)iy ]

2

ξy(ri) = ξ0
[(−1)ix − (−1)iy ]

2
.

(4.36)

Thus, the mean-field state which occurs in the presence of both types of exchange is

〈ni〉 = 〈S̄ix,iy〉+ 〈S̃ix,iy〉. (4.37)

We have checked that this is the true mean-field ground state by summing the classical

energy over the four sublattices and then numerically minimizing the energy with respect
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to the four sets of spherical angles which characterize the classical spin directions. The

mean-field energy per site in this case is (restoring S)

E0

N
= −|J |zS2cos2(θ)/2− 2S2|W0|sin2(θ)

−BScos(θ),

(4.38)

where N is the number of lattice sites, z = 4 (6) in two (three) dimensions, and θ is defined

as the angle between 〈S̄ix,iy〉 and 〈ni〉. For the square lattice case the ground state is

minimized about θ = 0 for all 2W0 < z|J |/2 + B/S, whereas the ground state is minimized

at θ = cos−1[B/(4S(W0 − J))] for 2W0 > z|J |/2 +B/S.

Following the procedure highlighted in the previous section we expand the operators

about the mean-field ground state, Eq. (4.37), and substitute them into the ferromagnetic

version of Eq. (4.18) to yield the real space Hamiltonian

H = E0 +H0 +H ′, (4.39)

where the classical mean field energy E0 is defined in Eq. (4.38), H0 is

H0 =
∑
i

µb†ibi +
∑
〈i,j〉

[Z̄θg(j)b†ibj + Z̃θg(j)b†ib
†
j

+ iJScos(θ)(−1)ix+iybib
†
j + h.c.],

(4.40)

with g(j) = +1 for j = i+ x̂, and g(j) = −1 for j = i+ ŷ, and the coefficients are defined as

Z̄θ ≡
JS

2
sin2(θ) +

W0S

2
(cos2(θ) + 1)

Z̃θ ≡
JS

2
sin2(θ) +

W0S

2
(cos2(θ)− 1)

µ ≡ 4JScos2(θ) + 4W0Ssin2(θ) +Bcos(θ),

(4.41)

and H ′ is

H ′ =
∑
i

(−1)ixAθ(b
†
i + bi), (4.42)

where

Aθ = sin(θ)

[√
S

2
B +

(
J(2S)3/2 −W0(2S)3/2

)
cos(θ)

]
. (4.43)
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Terms linear in boson creation and annihilation operators imply spin-wave creation and

annihilation from the ground state. Thus, assuming that the system is in its ground state,

it is typically argued in the literature that this coefficient Aθ must vanish at each point i on

the lattice; in the following we show that allowing small Aθ has a nontrivial effect on the

critical behavior of the system.

There exist two unique solutions for vanishing Aθ: the perfectly ferromagnetic case of

θ = 0, and

|θ| = cos−1

[
B

4S(W0 − J)

]
(4.44)

which is the aforementioned magnetic ground state canting angle that occurs at the classical

mean-field level when 2W0 > 2J + B/S. Anticipating quantum corrections to the ground

state canting angle we opt to include the effects of Aθ 6= 0–however, to maintain consistency

with the Holstein-Primakoff substitution about the mean-field ground state it is understood

that Aθ is necessarily either small or exactly zero, i.e. we are expanding sufficiently close

to the classical mean-field theory’s predicted relationship between the parameters. Thus,

instead of taking Aθ = 0, we eliminate terms linear in bosonic creation and annihilation

operators by performing the canonical transformation

bi = b̃i − (−1)ixx

b†i = b̃†i − (−1)ixx,
(4.45)

where x is the C-number

x =
−Aθ

4Z̄θ + 4Z̃θ − µ
. (4.46)

Note that this transformation is well defined when the denominator 4Z̄θ + 4Z̃θ − µ 6= 0–

this is indeed the case when we investigate the physics in close proximity to the mean-field

behavior. The Hamiltonian then becomes

H = E0 −NxAθ +H ′0 = E ′0 +H ′0, (4.47)

whereH ′0 is identical to the Hamiltonian written in Eq. (4.40) but in terms of the transformed

bosonic operators b̃i. Upon Fourier transformation the total Hamiltonian can be written in
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terms of the Nambu basis as

H = E ′′0 −NxAθ +
∑
k

1

2
ψ†kHkψk (4.48)

where ψ†k = (b̃†k, b̃
†
k+Q, b̃−k, b̃−k+Q),

Hk =


Z̄θ,k + µ/2 iJkcos(θ) 2Z̃θ,k 0

0 −Z̄θ,k + µ/2 0 −2Z̃θ,k

0 0 Z̄θ,k + µ/2 −iJkcos(θ)

0 0 0 −Z̄θ,k + µ/2

+ h.c., (4.49)

E ′′0
N

= −2S(S + 1)[Jcos2(θ) + |W0|sin2(θ)]

−B(S + 1/2)cos(θ),

(4.50)

and Z̄θ,k = Z̄θ[coskx − cosky]/2, Z̃θ,k = Z̃θ[coskx − cosky], Jk = JS[coskx + cosky].

The spectrum is given by the absolute value of the eigenvalues of the dynamic matrix[Col78]

K = (σ3⊗I2)Hk. The Hamiltonian, written in terms of the appropriate Bogoliubov operators

γk, is then

H = Eg +
∑
k,n

ωk,nγ
†
k,nγk,n, (4.51)

where n is the band index and the ground state energy Eg is

Eg = E ′′0 −NxAθ +
∑
k,n

ωk,n
2
. (4.52)

The canting angle is now determined by minimizing Eg with respect to θ. The effects of the

linear boson terms can be seen by comparing the critical value of W ∗
0 obtained by E ′′0 and

by E ′′0 −NxAθ in the absence of quantum corrections. Upon expanding E ′′0 to leading order

in θ we yield (setting S = 1/2)

E ′′0 (θ)/N ≈ −3J

2
−B +

[
B

2
+

3J

2
− 3W0

2

]
θ2, (4.53)

whereas the expansion of E ′′0/N − xAθ is

E ′′0 (θ)/N − xAθ ≈ −
3J

2
−B +

[
B

4
+ J −W0

]
θ2. (4.54)
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The critical value of W ∗
0 can be obtained by finding its value when the θ2 coefficient changes

sign. Hence, without linear boson effects W ∗
0 = J +B/3, whereas including the linear boson

effects reduces the critical value to W ∗
0 = J +B/4. This technique can be applied to general

noncollinear spin systems to identify shifts in critical values of the parameters in the theory.

The dispersion for modest values of W0 consists of two two-fold degenerate branches with

a characteristic dx2−y2 gap–this is due to the translation symmetry breaking nature of the

DM interaction. For higher period incommensurate triplet density wave states the number

of magnon branches will be equal to the period of incommensurability because it is precicely

that period which determines the number of sites contained per unit cell. For θ = 0 and S

= 1/2 the magnon dispersion is

ωk,n =
1

2
B + J±

1

2

√
J2(coskx + cosky)2 +W 2

0 (coskx − cosky)2

(4.55)

where the ± corresponds to the upper and lower band respectively. The dispersion is plotted

along the high symmetry directions for some representative values of B, W0, θ in Figs. 5-8.

As W0 is tuned from zero the low energy physics is govened by the k = (0, 0) point and gaps

develop at k = (π, 0), k = (0, π) with an energy difference of 2W0. As W0 approaches its

critical value the lowest energy excitations are goverend by k = (0, 0), k = (π, 0), k = (0, π).

Tuning W0 beyond the critical value of density wave strength the low energy excitations are

described entirely by the points k = (π, 0), k = (0, π), and the spectrum is shifted upwards

in energy due to the canting of the localized moments.

4.5 Discussion

Through the effect that density waves have on the localized spins of a square lattice in

a magnetically ordered phase, we find that the mixed triplet-singlet d-density wave state

induces stable Dzyaloshinskii-Moriya (DM) interactions among the localized spins in the

presence of an external magnetic field. The density wave-mediated DM vector is stabilized

in topological systems by the direction of the magnetic field, and the symmetry such a
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Figure 4.5: Magnon dispersion ωk with ky = 0 in units of J for various values of density wave

strength with B = 0.05J . The blue, orange, green, and red curves correspond to W0 → 0,

W0 = 0.25J , and W0 = 0.5J , W0 = J respectively, all below W ∗
0 . As W0 is increased the

gap at k = (π, 0) increases as 2W0.

DMI is governed entirely by the angular momentum channel of the triplet density wave.

Although it has been shown that the triplet-singlet density wave state produces a nonzero

thermal Hall effect[LL19], the magnitude of the experimentally-measured thermal Hall effect

exceeds the maximum possible contribution from the density wave state alone by an order

of magnitude. The excitations of a spin system including DM interactions can, in principle,

contribute to the thermal Hall conductivity[SCS19, HPL19, KH19]; however, we have shown

the particular form of DM interaction generated by the triplet density wave does not seem

to produce a nonzero κxy, and thus no additional contribution can be found through the

influence of the density wave state on the underlying spin system. Triplet-singlet density

wave order is notoriously difficult to detect directly[HRC11], and so it is important to explore

possible influences that the state might have on its host system. Experimental detection of

such features could, for example, help to assess the importance of the triplet-singlet DDW

state in the description of the pseudogap phase of the cuprates. The magnetic structure of
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Figure 4.6: Magnon dispersion ωk along the line kx = ky = kd in units of J for various

values of density wave strength with B = 0.05J . Tuning W0 does not alter the dispersion in

this direction.

LSCO at low doping is Neel order with a small ferromagnetic moment. We have shown that

in such a system, the presence of the DDW induces anisotropy in the spin-wave dispersion,

reflecting the anisotropy of the DDW. Furthermore, the magnon branch for such a system

has a non-abelian berry curvature that vanishes upon integration in such a way that κxy =

0.

Additionally, a two patch RG analysis of the U -V -J model indicates that triplet dx2−y2-

density wave order is can be energetically favorable in a finite region of coupling space given

J/U < 0.[KK03] Ferromagnetic ordering was also predicted[KGC07] to emerge in the highly

overdoped cuprates and experimentally confirmed[SWZ20] to exist in the CuO2 planes of

the cuprates. We find that the iσdx2−y2 + dxy-density wave-induced DM interaction in a

2D ferromagnetic system generically produces a magnon spectrum with two branches with

a characteristic dx2−y2 gap. For higher period incommensurate triplet density wave states in

such a spin system the number of magnon branches is equal to the density wave’s period of

incommensurability.
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Figure 4.7: Magnon dispersion ωk with ky = 0 in units of J for various values of density wave

strength with B = 0.1J with the appropriate canting angles determined by minimization of

Eq. (4.52) The blue, orange, and green curves correspond to W0 → 1.25J , W0 = 1.35J , and

W0 = 1.45J respectively, all above W ∗
0 . As W0 is increased the gap at k = (π, 0) increases

as 2W0. The low energy excitations are now governed solely by the points k = (0, π) and

(π, 0).

We have also found that the inclusion of terms in the Hamiltonian linear in Holstein-

Primakoff boson operators has a nontrivial effect on the critical behavior of the Hamiltonian.

These terms are typically ignored in the literature, which is justified when considering models

that are far from the critical regime; however, we have shown that they induce shifts in the

critical parameter values which control collinear to noncollinear phase transitions.
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Figure 4.8: Magnon dispersion ωk along the line kx = ky = kd in units of J with B = 0.1J

with the appropriate canting angles determined by minimization of Eq. (4.52). The blue, or-

ange, and green curves correspond to W0 → 1.25J , W0 = 1.35J , and W0 = 1.45J respectively,

all above W ∗
0 . Nonzero canting shifts the spectrum upwards in energy.
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4.6 Appendix: Calculating the thermal Hall coefficient

In our calculation we compute κxy using the Mott-like formula [WZ09, QNS11, QZS12,

MM11, MSM14]
κxy
T

=
1

T 2

∫
(ε− µ)2

cosh2
(
ε−µ
2T

)σxy(ε)dε (4.56)

where µ is the chemical potential and σxy(ε) is the Hall coefficient for the system at zero

temperature with chemical potential ε. We implement the linear-in-field approximation

where calculation of κxy is greatly simplified at low magnetic field strengths[YZZ20], i.e. we

write

σxy(ε) ≈ B∂Bσxy(ε)|B=0 = −BB̃(ε) (4.57)

where B is magnitude of the magnetic field, and B̃(ε) is the effective Berry curvature density

given by

B̃(ε) =
∑
nks

Bnskδ(ε− εnsk). (4.58)

Here n = ±1 for the lower and upper bands, and the spin index s = ±1. The Berry curvature

and dispersion for the mixed triplet-singlet DDW are given by [HRC11]

Bnsk = ns
tW0∆0

E3
k

(sin2 ky + sin2 kx cos2 ky), (4.59)

εnsk = ε2k − nEk, (4.60)

with Ek is defined as

Ek =
√

4t2(cos kx + cos ky)2 +W 2
k + ∆2

k. (4.61)

where

Wk =
W0

2
(cos kx − cos ky)

∆k = ∆0 sin kx sin ky,

(4.62)

and

ε2k = 4t′ cos kx cos ky. (4.63)

Upon integration over ε, Eq. (4.56) simplifies to

κxy
T

=
B

2T 3

∑
k∈RBZ
α=±

B++k

[
−α(εααk − µ)2

cosh2(β(εααk − µ)/2)

]
(4.64)
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which may be evaluated with ease. We numerically integrate this quantity and plot it in

Fig. 4.1
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iberté, A Gourgout, J S Zhou, S Pyon, T Takayama, H Takagi, S Ono, N Doiron-
Leyraud, and L Taillefer. “Giant thermal Hall conductivity in the pseudogap
phase of cuprate superconductors.” Nature, 571(7765):376–380, 2019.

[HF09] J T Haraldsen and R S Fishman. “Spin rotation technique for non-collinear mag-
netic systems: application to the generalized Villain model.” Journal of Physics:
Condensed Matter, 21(21):216001–12, April 2009.

[HHK90] Y. Hasegawa, Y. Hatsugai, M. Kohmoto, and G. Montambaux. “Stabilization of
flux states on two-dimensional lattices.” Phys. Rev. B, 41:9174–9182, May 1990.

[Hof76] Douglas R. Hofstadter. “Energy levels and wave functions of Bloch electrons in
rational and irrational magnetic fields.” Phys. Rev. B, 14:2239–2249, Sep 1976.

[HPL19] Jung Hoon Han, Jin-Hong Park, and Patrick A Lee. “Consideration of thermal
Hall effect in undoped cuprates.” Physical Review B, 99(20):1–10, May 2019.

[HRC11] Chen-Hsuan Hsu, S Raghu, and Sudip Chakravarty. “Topological density wave
states of nonzero angular momentum.” Physical Review B, 84(15):155111–6, Oc-
tober 2011.

[JGC09] Xun Jia, Pallab Goswami, and Sudip Chakravarty. “Resolution of two apparent
paradoxes concerning quantum oscillations in underdoped high-Tc superconduc-
tors.” Phys. Rev. B, 80:134503, Oct 2009.

[KGC07] Angela Kopp, Amit Ghosal, and Sudip Chakravarty. “Competing ferromagnetism
in high-temperature copper oxide superconductors.” Proceedings of the National
Academy of Sciences, 104(15):6123–6127, April 2007.

[KH19] Masataka Kawano and Chisa Hotta. “Thermal Hall effect and topological edge
states in a square lattice antiferromagnet.” Physical Review B, 99(5):4422–1–
4422–16, February 2019.

[KK03] A P Kampf and A A Katanin. “Competing phases in the extended U-V-J Hubbard
model near the Van Hove fillings.” Physical Review B, 67(12):4126–14, March
2003.

74



[KKA16] Toru Kikuchi, Takashi Koretsune, Ryotaro Arita, and Gen Tatara.
“Dzyaloshinskii-Moriya Interaction as a Consequence of a Doppler Shift due
to Spin-Orbit-Induced Intrinsic Spin Current.” Physical Review Letters,
116(24):247201–6, June 2016.

[KKM10] M I Katsnelson, Y O Kvashnin, V V Mazurenko, and A I Lichtenstein. “Cor-
related band theory of spin and orbital contributions to Dzyaloshinskii-Moriya
interactions.” Physical Review B, 82(10):100403–4, September 2010.

[Lau14] R B Laughlin. “Hartree-Fock computation of the high-Tc cuprate phase diagram.”
Physical Review B, 89(3):035134–19, January 2014.

[LC15] Wenchen Luo and Tapash Chakraborty. “Excitation gap of fractal quantum hall
states in graphene.” Journal of Physics: Condensed Matter, 28(1):015801, dec
2015.

[LL19] Zi-Xiang Li and Dung-Hai Lee. “The thermal Hall conductance of two doped
symmetry-breaking topological insulators.” arXiv.org, May 2019.

[MBZ04] S. Melinte, Mona Berciu, Chenggang Zhou, E. Tutuc, S. J. Papadakis, C. Harrison,
E. P. De Poortere, Mingshaw Wu, P. M. Chaikin, M. Shayegan, R. N. Bhatt,
and R. A. Register. “Laterally Modulated 2D Electron System in the Extreme
Quantum Limit.” Phys. Rev. Lett., 92:036802, Jan 2004.

[McC56] J.W. McClure. Phys. Rev., 104:666, 1956.

[MM11] Ryo Matsumoto and Shuichi Murakami. “Theoretical Prediction of a Rotating
Magnon Wave Packet in Ferromagnets.” Physical Review Letters, 106(19):197202–
4, May 2011.

[Mor60] Toru Moriya. “Anisotropic Superexchange Interaction and Weak Ferromag-
netism.” Phys. Rev., 120(1):91–98, October 1960.

[MSM14] Ryo Matsumoto, Ryuichi Shindou, and Shuichi Murakami. “Thermal Hall effect of
magnons in magnets with dipolar interaction.” Physical Review B, 89(5):054420–
12, February 2014.

[Nau16] Gerardo G. Naumis. “Topological map of the Hofstadter butterfly: Fine structure
of Chern numbers and Van Hove singularities.” Physics Letters A, 380(20):1772–
1780, 2016.

[Nay00a] Chetan Nayak. “Density-wave states of nonzero angular momentum.” Phys. Rev.
B, 62:4880–4889, Aug 2000.

[Nay00b] Chetan Nayak. “Density-wave states of nonzero angular momentum.” Physical
Review B, 62(8):4880–4889, August 2000.

75



[NJK99] A A Nersesyan, G I Japaridze, and I G Kimeridze. “Low-temperature magnetic
properties of a two-dimensional spin nematic state.” Journal of Physics: Con-
densed Matter, 3(19):3353–3366, January 1999.

[NPK07] M R Norman, D Pines, and C Kallin. “The pseudogap: friend or foe of high Tc?”
Advances in Physics, 54(8):715–733, February 2007.

[Pei33] R. Peierls. “On the theory of diamagnetism of conduction electrons.” Z. Phys.,
80:763–791, 1933.

[PG92] Daniela Pfannkuche and Rolf R. Gerhardts. “Theory of magnetotransport in
two-dimensional electron systems subjected to weak two-dimensional superlattice
potentials.” Phys. Rev. B, 46:12606–12626, Nov 1992.

[QNS11] Tao Qin, Qian Niu, and Junren Shi. “Energy Magnetization and the Thermal
Hall Effect.” Physical Review Letters, 107(23):236601–5, November 2011.

[QZS12] Tao Qin, Jianhui Zhou, and Junren Shi. “Berry curvature and the phonon Hall
effect.” Physical Review B, 86(10):1913–9, September 2012.

[Ram85] R. Rammal. “On the theory of diamagnetism of conduction electrons.” J. Phys.
(Paris), 46, 1985.

[Sac11] Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edi-
tion, 2011.

[Sch89] H J Schulz. “Fermi-surface instabilities of a generalized two-dimensional Hubbard
model.” Physical Review B, 39(4):2940–2943, February 1989.

[SCS19] Rhine Samajdar, Shubhayu Chatterjee, Subir Sachdev, and Mathias S Scheurer.
“Thermal Hall effect in square-lattice spin liquids: A Schwinger boson mean-field
study.” Physical Review B, 99(16):165126, April 2019.

[SHP08] Suchitra E Sebastian, N Harrison, E Palm, T P Murphy, C H Mielke, Ruixing
Liang, D A Bonn, W N Hardy, and G G Lonzarich. “A multi-component Fermi
surface in the vortex state of an underdoped high-Tc superconductor.” Nature,
454(7201):200–203, July 2008.

[SMM13] Ryuichi Shindou, Ryo Matsumoto, Shuichi Murakami, and Jun-ichiro Ohe. “Topo-
logical chiral magnonic edge mode in a magnonic crystal.” Physical Review B,
87(17):174427–11, May 2013.

[SWZ20] Tarapada Sarkar, D S Wei, J Zhang, N R Poniatowski, P R Mandal, A Kapitulnik,
and Richard L Greene. “Ferromagnetic order beyond the superconducting dome
in a cuprate superconductor.” Science, 368(6490):532–534, May 2020.

[TA94] Tineke Thio and Amnon Aharony. “Weak Ferromagnetism and Tricriticality in
Pure La2CuO4.” Physical Review Letters, 73(6):894–897, August 1994.

76



[Tat19] Gen Tatara. “Effective gauge field theory of spintronics.” Physica E: Low-
dimensional Systems and Nanostructures, 106:208–238, February 2019.

[TKN82] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. “Quantized
Hall Conductance in a Two-Dimensional Periodic Potential.” Phys. Rev. Lett.,
49:405–408, Aug 1982.

[Var99] C M Varma. “Pseudogap Phase and the Quantum-Critical Point in Copper-Oxide
Metals.” Physical Review Letters, 83(17):3538–3541, October 1999.

[Var06] C M Varma. “Theory of the pseudogap state of the cuprates.” Physical Review
B, 73(15):53–17, April 2006.

[Wan78] G. H. Wannier. “A Result Not Dependent on Rationality for Bloch Electrons in a
Magnetic Field.” Physica Status Solidi B Basic Research, 88(2):757–765, August
1978.

[WC16] Zhiqiang Wang and Sudip Chakravarty. “Onsager rule, quantum oscillation fre-
quencies, and the density of states in the mixed-vortex state of cuprates.” Physical
Review B, 93(18):184505, May 2016.

[WZ09] Jian-Sheng Wang and Lifa Zhang. “Phonon Hall thermal conductivity from the
Green-Kubo formula.” Physical Review B, 80(1):012301–4, July 2009.

[XSD08] Jing Xia, Elizabeth Schemm, G Deutscher, S A Kivelson, D A Bonn, W N Hardy,
R Liang, W Siemons, G Koster, M M Fejer, and A Kapitulnik. “Polar Kerr-Effect
Measurements of the High-Temperature YBa2Cu3O6+x Superconductor: Evidence
for Broken Symmetry near the Pseudogap Temperature.” Physical Review Letters,
100(12):127002–4, March 2008.

[Y 05] H. L. Stormer P. Kim Y. Zhang, Yan-Wen Tan. Nature, 438:201–204, 2005.

[YJ18] S. Fang K. Watanabe T. Taniguchi E. Kaxiras Y. Cao, V. Fatemi and P. Jarillo-
Herrero. “Hofstadter’s butterfly and the fractal quantum Hall effect in moire
superlattices.” Nature (London), 556, 2018.

[YRZ06] Kai-Yu Yang, T M Rice, and Fu-Chun Zhang. “Phenomenological theory of the
pseudogap state.” Physical Review B, 73(17):R755–10, May 2006.

[YZZ20] Yi-feng Yang, Guang-Ming Zhang, and Fu-Chun Zhang. “Universal Behavior of
the Thermal Hall Conductivity.” Physical Review Letters, 124(18):186602, May
2020.

[ZBL16] L Zhao, C A Belvin, R Liang, D A Bonn, W N Hardy, N P Armitage, and
D Hsieh. “A global inversion-symmetry-broken phase inside the pseudogap region
of YBa2Cu3Oy.” Nature Physics, 13(3):250–254, November 2016.

77


	Title Page
	Abstract
	Committee
	Dedication
	TABLE OF CONTENTS
	List of Figures
	Vita
	Introduction
	Characterizing the Quantum Critical Fan of a 4 Theory
	Introduction
	The mass RG Equation
	The 4 coupling RG Equation
	The dimensionless temperature RG equation
	RG Flows
	The Quantum Critical Fan

	Density Wave States in the Presence of an External Magnetic Field
	Preliminaries
	Butterflies
	Nearest Neighbors
	Topological Maps of the dx2-y2-density wave Butterfly

	p+ip Density Wave Order
	Multifractal Analysis
	Discussion
	Appendix: Landau Levels

	Density wave mediated Dzyaloshinskii-Moriya Interactions
	Introduction
	The Effective Magnetic Hamiltonian
	The Antiferromagnetic Background
	The Ferromagnetic Background
	Discussion
	Appendix: Calculating the thermal Hall coefficient

	References



