
UCLA
UCLA Electronic Theses and Dissertations

Title
Alfv�nic Wave Resonances in the Kronian and Terrestrial Magnetospheres: Modeling and 
Observations

Permalink
https://escholarship.org/uc/item/03r2t2tr

Author
Rusaitis, Liutauras

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03r2t2tr
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Alfvénic Wave Resonances in the

Kronian and Terrestrial Magnetospheres:

Modeling and Observations

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Geophysics and Space Physics

by

Liutauras Rusaitis

2022



© Copyright by

Liutauras Rusaitis

2022



ABSTRACT OF THE DISSERTATION

Alfvénic Wave Resonances in the

Kronian and Terrestrial Magnetospheres:

Modeling and Observations

by

Liutauras Rusaitis

Doctor of Philosophy in Geophysics and Space Physics

University of California, Los Angeles, 2022

Professor Raymond J. Walker, Co-Chair

Professor Margaret G. Kivelson, Co-Chair

Ultra-low frequency (ULF) waves have been commonly detected in inner and outer Solar

System planetary magnetospheres. ULF waves with periods that are of the order of the

Alfvén wave transit time in a planetary magnetosphere are often associated with resonant

field lines that can be excited by either internal or external triggers. In this dissertation, we

present a comparative study of standing Alfvén waves in realistic magnetic field and plasma

density models for the Kronian and Terrestrial magnetospheres.

At Saturn, we carried out the first calculation of standing wave resonances in a realistic model

of the Kronian magnetosphere. The resulting eigenperiods of the 4th harmonic vary little

with radial distance from 5 to 20RS, matching the quasi-periodic 60-minute (QP60) waves

that have been reported in observations at a wide range of local times and radial distances.

We have used 13 years of the Cassini magnetometer data and identified quasi-periodic fluctu-

ations with periodicities of around 30 minutes (QP30), 60 minutes (QP60), and 120 minutes
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(QP120) that reoccur at the period of planetary period oscillations (PPO) of roughly 10.7 h.

We suggest that these correspond to even-mode harmonics of Saturn’s magnetic field lines

that are excited by the periodic vertical flapping of Saturn’s magnetotail.

At Earth, we evaluated the field line resonances for several plasma density models and in-

vestigated the effects of geomagnetic activity on the field line eigenperiods up to L = 10 at

all magnetic local times. We find that the dipole-field and the time-of-flight approximations

used to estimate the fundamental eigenperiods of standing waves lead to significantly differ-

ent eigenperiods, especially during active times. Additionally, the eigenperiods are shown to

be more sensitive to the magnetic field configuration and equatorial plasma densities than

the distribution of the mass density along the field lines.

Saturn’s and Earth’s magnetospheres have large differences in scale, rotational speed, and

plasma distribution. Despite these differences in the parameter regimes, field line resonances

are important at both magnetospheres. The QP30, QP60, and QP120 waves at Saturn

reoccur consistently at a PPO period, with the highest transverse to parallel magnetic per-

turbation power in the post-dusk sector, suggesting mainly an internal driver such as the

vertical flapping of the magnetotail. At Earth, the field line resonances that are associated

with Pc4 to Pc5 waves do not demonstrate similar periodicity in reoccurrence as at Saturn

and are likely to be driven externally by processes such as the solar wind dynamic pressure

variations.
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"The world is full of obvious things which nobody by any chance ever observes."

- Arthur Conan Doyle

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Quasiperiodic 1-hour Alfvén Wave Resonances in Saturn’s Magnetosphere:

Theory for a Realistic Plasma/Field Model . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Long-period Alfvén waves as signatures of field line resonances in Saturn’s

magnetosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Frequencies of ULF waves in realistic models of the terrestrial magneto-

sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



4.2.1 Magnetic Field Model . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Plasma Density Model . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Solar Wind and Interplanetary Magnetic Field Parameters . . . . . . 56

4.2.4 Standing Wave Model . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Summary and Ongoing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



LIST OF FIGURES

2.1 Noon-midnight meridian plasma density and Alfvén velocity visualized along Sat-

urn’s field lines between L = 3 and L = 20. . . . . . . . . . . . . . . . . . . . . . 12

2.2 Wave electric field, magnetic field perturbations, and poloidal field displacements

visualized along field lines for the first four harmonics. . . . . . . . . . . . . . . 14

2.3 Toroidal eigenfrequencies for the first 6 modes for noon and midnight field lines. 16

3.1 Cassini mission orbit plotted against local time and magnetic latitude (a). Cassini

dwell time in conjugate latitude and local time bins (b). . . . . . . . . . . . . . 25

3.2 Cassini dwell time along field lines in the noon and midnight meridians . . . . . 27

3.3 Magnetic field perturbations example in KSM and MFA coordinates . . . . . . . 29

3.4 Magnetic field perturbations in a mean field-aligned coordinate system (a), power

density for the magnetic field (b), and the ratio of the power density in each

component to the background power in the total field (c). . . . . . . . . . . . . 34

3.5 Median power ratios of magnetic field perturbations in mean field-aligned coor-

dinates for midnight, dawn, noon, and dusk local time sectors as defined in the

text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Eigenfrequencies for field line resonances in the noon and midnight meridians. . 36

3.7 Ratio of cumulative event time to orbiter dwell time against magnetic latitude

for midnight, dawn, noon, and dusk local time sectors . . . . . . . . . . . . . . . 38

3.8 Ratio of normalized QP60 cumulative event time to Cassini dwell time in local

time – conjugate latitude bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Normalized probability distribution of wave train separation time for (60±10)min

waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



3.10 Two examples of quasiperiodic oscillations in transverse magnetic components.

Times series plot (a) and cross-correlation between the two perpendicular com-

ponents (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Median values of geomagnetic activity indices from OMNIWeb. . . . . . . . . . 58

4.2 Median values of Kp for ten Dst index bins from OMNIWeb. . . . . . . . . . . . 59

4.3 Median values of solar wind dynamic pressure for ten Dst index bins from OM-

NIWeb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Median values of Bz IMF for ten Dst index bins from OMNIWeb. . . . . . . . . 61

4.5 Medians of magnetospheric and solar wind parameters against Dst index. . . . . 62

4.6 Field line eigenperiods for the first three modes in Olson-Pfizer field model (a)

and difference of eigenperiods to those in a dipole field (b). . . . . . . . . . . . . 64

4.7 Equatorial electron densities in two different density models with increasing geo-

magnetic activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Equatorial average ion masses in two different density models with increasing

geomagnetic activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Noon-midnight meridian plots of electron densities along the field lines for two

density models with increasing geomagnetic activity. . . . . . . . . . . . . . . . 69

4.10 Noon-midnight meridian plots of average ion masses along the field lines for two

density models with increasing geomagnetic activity. . . . . . . . . . . . . . . . 70

4.11 Noon-midnight meridian plots of Alfvén velocities along the field lines for two

density models with increasing geomagnetic activity. . . . . . . . . . . . . . . . 71

4.12 Field line parameters and eigenfrequencies in the midnight magnetotail for Sandhu

et al. (2017) density model and Dst = 0 nT. . . . . . . . . . . . . . . . . . . . . 74

4.13 Field line parameters and eigenfrequencies in the midnight magnetotail for Sandhu

et al. (2017) density model and Dst = −50 nT. . . . . . . . . . . . . . . . . . . 75

ix



4.14 Field line parameters and eigenfrequencies in the midnight magnetotail for Sandhu

et al. (2017) density model and Dst = −100 nT. . . . . . . . . . . . . . . . . . 76

4.15 Field line parameters and eigenfrequencies in the midnight magnetotail for Denton

et al. (2022) density model and Dst = 0 nT. . . . . . . . . . . . . . . . . . . . . 78

4.16 Field line parameters and eigenfrequencies in the midnight magnetotail for Denton

et al. (2022) density model and Dst = −50 nT. . . . . . . . . . . . . . . . . . . 79

4.17 Field line parameters and eigenfrequencies in the midnight magnetotail for Denton

et al. (2022) density model and Dst = −100 nT. . . . . . . . . . . . . . . . . . 80

4.18 Equatorial plots of the m = 1 eigenfrequencies for two density models with in-

creasing levels of geomagnetic activity. . . . . . . . . . . . . . . . . . . . . . . . 81

4.19 Equatorial plots of the m = 1 eigenperiods for two density models with increasing

levels of geomagnetic activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.20 Equatorial plots of the m = 1 eigenperiod deviations between the eigenperiods

calculated for T96 magnetic field model and a dipole field. . . . . . . . . . . . . 84

4.21 Equatorial plots of the deviations between the m = 1 eigenperiods and the esti-

mates of the eigenperiods using the Alfvén transit time. . . . . . . . . . . . . . . 85

4.22 Effects of changing electron density power law index on the field line eigenperiods. 87

4.23 Effects of changing equatorial electron enhancement distribution on the field line

eigenperiods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

x



ACKNOWLEDGMENTS

I first thank my mother, who encouraged my creativity and taught me to be kind. She would

have loved to see me finish this degree.

I thank my dad for teaching me that the greatest obstacles are the ones that we set ourselves.

He nurtured my curiosity in all things, rational or irrational.

I am also grateful for the advice, support, and patience of my sisters. They inspired me to

pursue my studies and provided a tremendous opportunity for growth.

UCLA has now become my academic family and allowed me to continue to grow both

personally and professionally. My advisor, Ray Walker, went out of his way to help me

throughout the program. I thank him for being the best proofreader, administrator, and

advisor that a graduate student can ask for. I am lucky to have enjoyed his excellent taste

for coffee, humor, and interesting tidbits of history.

I am grateful to Margy Kivelson for her penetrating insights, advice, and support. I am

privileged to have been a part of the Wednesday Kivelson et al. group meeting. Margy

inspired me to look at everything with a fresh perspective — I will not see life or science the

same way as I used to.

I thank Krishan Khurana for the scientific discussions and tangential philosophical debates.

Krishan helped me look at science as an open academic playground where ideas can be

tested, sometimes ardently defended, all while being a good sport.

I can also no longer imagine a complete day without an afternoon coffee with the 6th-floor

group. I thank Bob McPherron for showing the power of a masterful art of storytelling and

that things can always go worse. I have gained immeasurable insights into life and science

through these daily discussions.

I am lucky to have Jacob Bortnik and Vassilis Angelopoulos on my committee. Jacob

always made himself available for sincere advice, and he has never allowed himself to be

beaten in squash, lamenting the fact that he’s good at everything. I am grateful to Vassilis

for his guidance and dedication to going above and beyond at the journal clubs and seminars

xi



explaining concepts that might puzzle new students.

I have learned much from many other star people at EPSS. I thank Bob Strangeway for

his keen eye and commentary, Dave Jewitt for his unrivaled heights of academic humor and

insights, Kevin McKeegan for his inspiring passion for teaching and being a fellow CLUSTER

70 cult member, and, of course, Lauri Holbrook, who cares about the graduate students more

than Janeway cares for her crew.

UCLA is a welcoming community, and it is hard not to be touched by a wider scope of its

members. I am thankful to Troy Carter for being so approachable and demonstrating that

one can be fast up Mandeville Canyon and still be good in plasma physics. I also thank Tony

Friscia for helping me cultivate my passion for teaching and inspiring me to be a life-long

learner.

I would not have made it without the support and company of my fellow graduate students at

the EPSS, AOS, and Physics departments. Whether it was supporting each other through

ups and downs, turning trivial societal problems into non-trivial debates, or just sharing

coffee over an Atlantic article or a programming challenge — it all has been an integral part

of the graduate experience.

Last, but not least, I’ll always be grateful to Maha Ashour-Abdalla for returning an invite

to a young aspiring undergraduate and unknowingly changing his career path.

Funding has been partly provided by the NASA grant UCB #SA3650/NASA NAS5-02099.

This support is gratefully acknowledged.

xii



VITA

2013 B.A. (Physics), University of Oxford, St Anne’s College.

2014 M.S. (Physics), City College of New York.

2014-2015 Research Assistant, Experimental Condensed Matter Physics, Science Ed-

ucation Department, Columbia University.

2013-2015 RGDX Developer, Science Education Department, Princeton Plasma

Physics Laboratory.

2016–2021 Teaching Assistant and Teaching Fellow, CLUSTER 70: Evolution of Cos-

mos and Life, Undergraduate Education Initiatives, UCLA.

2020 M.S. (Geophysics and Space Physics), University of California, Los Ange-

les.

PUBLICATIONS

Rusaitis, L., Khurana, K. K., Kivelson, M. G., & Walker, R. J. (2021) Quasiperiodic 1-

hour Alfvén wave resonances in Saturn’s magnetosphere: Theory for a realistic plasma/field

model. Geophysical Research Letters. https://doi.org/10.1029/2020GL090967.

Rusaitis, L., Khurana, K. K., Kivelson, M. G., & Walker, R. J. (2022 – in review) Long-

period Alfvén waves as signatures of field line resonances in Saturn’s magnetosphere. Journal

of Geophysical Research.

xiii



Rusaitis, L., Khurana, K. K., Kivelson, M. G., & Walker, R. J. (2022 – in preparation) Alfvén

wave resonances in Earth’s magnetotail: Eigenfrequency sensitivity to density models and

solar wind parameters. Journal of Geophysical Research.

xiv



CHAPTER 1

Introduction

1.1 Background

Nature is relentless and unchangeable, and it is indifferent as to whether its hidden reasons

and actions are understandable to man or not.

— Galileo Galilei

Planetary magnetospheres can be viewed as natural laboratories for a diverse range of in-

teresting plasma physical processes, including ultralow frequency (ULF) waves, occupying an

approximate frequency range from 1 millihertz to 10 hertz. ULF waves are a common feature

of the magnetospheres of the Earth and the outer planets (Khurana et al., 1992), and they

play a dynamic part in wave transport and energy coupling throughout the magnetospheres

(Liu & Fujimoto, 2011). They can also be a useful diagnostic tool in the magnetosphere

for inferring local plasma properties (Glassmeier et al., 1999; Min et al., 2013). Neverthe-

less, despite the wealth of ULF observations within the last few decades, some fundamental

questions remain regarding the generation, propagation and influences of the waves (Liu &

Fujimoto, 2011).

Many features of common ULF events can be understood in terms of standing Alfvén

waves. The concept and theory of standing Alfvén waves were first explored by Alfvén (1942a,
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1942b) and Dungey (1955) as an application of magnetohydrodynamics (MHD) to waves in

a conducting medium embedded in a uniform magnetic field. Alfvén (1942b) likened the

magnetic lines of force to elastic vibrating strings because of the frozen-in flux condition and

named the resulting waves magnetohydrodynamic (MHD) waves. The coupling between the

MHD wave modes, namely the fast (compressional) mode and the shear (Alfvén) mode, was

subsequently established as a field line resonance (FLR) or, more generally, a resonant mode

coupling phenomenon (Tamao, 1965; Radoski, 1972; Southwood, 1974; Chen & Hasegawa,

1974). In this dissertation, we treat field line resonance as any phenomenon that leads to

resonant Alfvén waves, irrespective of the properties of the driver.

The problem of field line resonance is analytically tractable if evaluated using a magneto-

spheric box model with a uniform magnetic field. Southwood and Kivelson (1986) introduced

and investigated a model with a non-uniform box-function density profile to study the effects

of the Alfvén velocity gradients along the unperturbed field direction. The effects of plasma

inhomogeneity along the field are particularly important for rotationally-driven magneto-

spheres like Saturn’s and Jupiter’s, with dense plasma sheets centrifugally confined near the

equator. Khurana and Kivelson (1989) modeled the Jovian 10 -20 min ULF waves as FLR’s

using such a simplified hydromagnetic box model magnetosphere with a two-density plasma

distribution. More recently, the hydromagnetic box model has been applied to the study of

Saturn’s quasiperiodic 60-minute (QP60) waves (Yates et al., 2016), and Jupiter’s QP 10-60

min waves (Manners & Masters, 2019).

The spectrum of resonant waves, however, depends significantly on the field structure and

the plasma distribution. Resonant frequencies were studied for dipolar fields by (Cummings

et al., 1969) and later for more realistic model magnetospheric fields (Warner & Orr, 1979;

Singer et al., 1981). Singer et al. (1981) derived and solved linearized transverse wave equa-

tions for an arbitrary field geometry, enabling numerical calculations of eigenoscillations for

the toroidal and poloidal modes in arbitrary magnetic fields and plasma density distribu-

tions. Singer et al. (1981) demonstrated that the model field of Olson and Pfitzer (1974)
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significantly modified the mode structure on field lines at high (>70◦) geomagnetic latitude

at Earth, even if they assumed a uniform density along the field. More recent studies of FLRs

in outer planetary magnetospheres also demonstrated the importance of realistic magnetic

field models for calculation of the observed standing mode frequencies (Lysak & Song, 2020;

Rusaitis et al., 2021). In the following section we describe the formalism of Singer et al.

(1981) used in this dissertation for the calculation of field line resonances.

1.2 Theory

We follow the standing wave MHD theory of Singer et al. (1981) for calculations of

the field line resonances in a curvilinear coordinate system, neglecting any effects of the

centrifugal or Coriolis forces. The stationary plasma conditions are justified, as the timescales

of the higher ULF MHD modes are a small fraction of the planetary rotation rate (∼ 10%)

(Glassmeier et al., 1999).

From the linear MHD equations for a cold, collisionless, magnetized plasma, the wave

electric field E must satisfy (ignoring the effects of a background current)

∂2E

∂t2
= vA × (vA × (∇× (∇× E))). (1.1)

where vA = B/(µ0ρ)
1/2 is the Alfvén velocity, ρ is the local plasma mass density, B is

the background field, and all vectors and differential vector operators in the wave equation

depend implicitly on the coordinate along the field line. Using the Alfvén frozen-in flux

condition, the wave electric field can be expressed in terms of the plasma (field) displacement

ξ as

An edited version of the Theory section was published by AGU (Rusaitis et al., 2021). Copyright (2021)
American Geophysical Union.
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E = −∂ξ
∂t

×B. (1.2)

In a uniform field embedded in cold plasma of constant density, (1.1) can be used to

describe two uncoupled MHD wave modes: the shear Alfvén (transverse) mode, with its

Poynting vector directed along B, and the fast (compressional) mode, with a Poynting

vector angled at any direction to B (but parallel to the wave vector k). A plasma or field

aligned inhomogeneity, however, couples the two modes. Assuming the longitudinal variation

is eimϕ, where ϕ is longitude and m is the azimuthal wave number, the modes decouple for

special limits of m (see, Orr (1973), for a dipole field case). Two shear Alfvén modes are then

possible: one for m = 0 (toroidal axisymmetric bϕ oscillations), and the other for m → ∞

(poloidal asymmetric oscillations in the meridian plane). The third uncoupled case is a fast

(compressional) mode with an axisymmetric (m = 0) poloidal disturbance, which represents

symmetric expansions and compressions of the entire magnetosphere (Radoski, 1967b; Orr,

1973).

The field of a realistic magnetosphere is non-uniform. We will therefore, consider a model

field with two adjacent field lines separated by a distance hα along a unit vector α̂ normal

to the background field and by a distance hβ along a unit vector β̂ normal to both B and

α̂. We allow both hα and hβ to vary along the field. We write the normal unit vector α̂ as

∇α = α̂/hα. (1.3)

We can choose any direction α̂ transverse to the field, but we will explicitly define our

coordinate system in section 3. Faraday’s law and the Alfvén frozen-in flux condition imply

that a small displacement in the α̂ direction, ξα, produces a magnetic perturbation

b = ∇× (ξαα̂×B). (1.4)

Substituting (1.4) and Ampères’s law in Cauchy’s momentum equation (ignoring the

4



contributions from the background currents), and assuming b · B = 0 (as in Singer et al.,

1981), we arrive at the wave equation for plasma (field) displacement ξα

µ0ρ
∂2(ξα/hα)

∂t2
=

1

h2α
B · ∇

{
h2α[B · ∇(ξα/hα)]

}
. (1.5)

Assuming a time dependence of the form eiωt, and writing an increment along the local

magnetic field B as ds, we rewrite (1.5) as a second-order partial differential equation for

plasma (field) displacement ξα as a function of s

∂2

∂s2

(
ξα
hα

)
+

∂

∂s

(
ln(h2αB)

)
∂

∂s

(
ξα
hα

)
+
µ0ρω

2

B2

(
ξα
hα

)
= 0. (1.6)

Once ξα is numerically determined using a value of the eigenfrequency, ω, that satisfies the

homogeneous boundary conditions at the ionosphere (ξα = 0), the magnetic perturbation,

bα, electric field perturbation Eβ, and the plasma velocity, uα, can be calculated using (1.4)

and (1.2) as

bα = hαB
∂

∂s

ξα
hα

(1.7)

Eβ = −iωξαB (1.8)

uα = iωξα (1.9)

where β̂ is a unit vector perpendicular to both the unperturbed field B and the chosen

normal vector to the field α̂, i.e.

β̂ =
B

|B|
× α̂. (1.10)

We find orthogonal perturbations ξβ, bβ, and Eα by solving (1.6) for a geometric scale

factor, hβ, orthogonal to hα. Equations analogous to (1.7) to (1.9) apply to the β̂ components

of the perturbations.
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1.3 Synopsis

In Chapter 2, we present the first model of field line resonances in a realistic Saturn’s

magnetosphere (Rusaitis et al., 2021), building on top of the work of Singer et al. (1981)

introduced in the preceding section. We calculate the eigenfrequencies of the first 6 modes

for noon and midnight meridian field lines with equatorial crossing distances up to 20RS. We

show that the frequency of the 4th harmonic matches closely that of the QP60 waves, and the

eigenfrequencies vary little with radial distance between 5 and 20RS as in the observations

of the QP waves.

In Chapter 3, we analyze 13 years of the Cassini magnetometer data from Saturn’s

magnetosphere and identify quasiperiodic fluctuations with periods up to 3 hours (Rusaitis

et al., 2022, in-review). We find signatures of quasiperiodic pulsations corresponding to the

even harmonics in a field line resonance model at around 30 minutes (QP30), 60 minutes

(QP60), and 120 minutes (QP120). These quasi-periodic waves come in wave trains of 4-to-5

hours before decaying in amplitude, but typically reoccur in the magnetic field data at the

planetary period oscillation (PPO), roughly every 10.7 hours. We suggest that these even-

mode harmonics of Saturn’s magnetic field lines are excited by the periodic vertical flapping

of Saturn’s magnetotail.

In Chapter 4, we investigate field line resonances at Earth for an increasing geomagnetic

activity from 0 nT to −100 nT Dst (Rusaitis et al., 2022, in-preparation). We use a realistic

magnetic field and plasma density model that are parameterized by the geomagnetic indices

Dst and Kp, and we calculate eigenfrequencies of the first 4 modes for field lines at all

magnetic local times between 3 and 10RE. Additionally, we evaluate the deviations in

the resulting eigenperiods from those using a dipolar-field and WKB approximations and

investigate the effect of assuming different mass density distributions along the field line.

We compare our calculated eigenfrequencies to some of the ULF observations.

In the last Chapter 5, we summarize the results of the three studies and comment on
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the main differences and similarities between field line resonances in the magnetospheres of

Earth and Saturn. We conclude by discussing the limitations of these studies and possible

directions of further study.
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CHAPTER 2

Quasiperiodic 1-hour Alfvén Wave Resonances in

Saturn’s Magnetosphere: Theory for a Realistic

Plasma/Field Model

2.1 Introduction

If you do not change direction, you may end up where you are heading.

— Lao Tzu

One of the more puzzling features in Saturn’s magnetosphere is the source of persistent

quasi periodic 60-minute (QP60) phenomena, which became particularly apparent during

continuous in-situ investigations by the Cassini spacecraft from 2004 to 2017. The QP60

phenomena are observed in much of the magnetospheric data – from magnetic field fluctua-

tions (Bunce et al., 2014; Mitchell et al., 2016; Yates et al., 2016) and field-aligned electron

beams and ion conics (Schardt et al., 1985; Mitchell, Kurth, et al., 2009) to auroral pulsations

(Mitchell, Krimigis, et al., 2009; Mitchell et al., 2016; Bunce et al., 2014; Bader et al., 2019;

An edited version of this chapter was published by AGU (Rusaitis et al., 2021). Copyright (2021)
American Geophysical Union.
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Menietti et al., 2020) and auroral hiss (Carbary et al., 2016). An extensive global survey of

these events is provided by Roussos et al. (2016) and Palmaerts et al. (2016), focusing both

on their spatial and spectral distribution. We will focus on the transverse quasi-periodic

magnetic field perturbations in this chapter.

The QP60 magnetic field oscillations were found mostly in the outer magnetosphere,

mapping inside Titan’s orbit of roughly 20RS (Carbary et al., 2016) and beyond, with highest

frequency of occurrence in the dusk sector and mid-to-high latitudes (Roussos et al., 2016).

The field perturbations are typically transverse to the magnetic field with amplitudes between

0.1 and 1 nT (Kleindienst et al., 2009; Yates et al., 2016), and come in short wavetrains – i.e.,

they typically last ∼5 hours before decaying. The Alfvénic signature of these perturbations,

as well as the persistence of the 1-hour periodicity over a wide range of local times, distances,

and latitudes is indicative of characteristic time scales of the Kronian magnetosphere. Simple

estimates of the Alfvén inter-hemispheric transit times in the outer Kronian magnetospheres

are found to be close to 1 hour, or roughly within 10% of the planetary rotation period,

consistent with the idea that the observed periodic perturbations are standing Alfvén waves

(Bagenal et al., 2017; Bunce et al., 2005).

In this chapter, we present the first model of the field line resonances in Saturn’s mag-

netosphere using a realistic model of the magnetic field and plasma density. We show it

is important to do so in order to fully understand the peculiar characteristics of the QP60

waves.

2.2 Model

We use a global magnetic field of the Saturn’s field (Khurana et al., 2006), based on the

general deformation technique of Tsyganenko (1998, 2002). Saturn’s internal field uses mag-

netic moments derived from Cassini’s proximal orbits (Cao et al., 2011, 2012). The field

lines calculation use nominal solar wind conditions of dynamic pressure DP = 0.017 nPa,
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Bz = 0.1 nT, By = −0.2 nT, and are traced using a 4th order Runge Kutta method in a

dipole centered coordinate system with x pointing towards the Sun (with Saturn’s magnetic

equivalent dipole being offset 0.04 RS northward of the center of mass of Saturn).

Thanks to many Cassini plasma sheet crossings, models of plasma sheet densities and

scale heights are available (Bagenal & Delamere, 2011). We use the equatorial water-group

ion density profiles within the 3 to 20 RS region and use a local cubic spline to obtain

the density on field lines that extend slightly beyond the modeled density profiles, crossing

the equator within 20 RS, sufficiently far out to represent regions where some of the quasi-

periodic pulsations have been observed. The density variation along the field line uses an

exponential scale height given by Hill and Michel (1976)

n(s) = n0exp(−s/H)2 (2.1)

where s is distance along the field line, with s = 0 the maximum radial distance of the field

line, the center of the plasma sheet, and we use the water-group ion scale height, H, given in

Bagenal and Delamere (2011, Figure 5). We use the same equatorial plasma density profiles

for the day-side and night-side, but allow the field line configuration to change with local

time.

The solution of the second order partial differential equation for displacement, ξα, (Equa-

tion 1.6) uses a shooting method (see Press, 2007, §18) with homogeneous boundary con-

ditions in the ionosphere. We start with ξα = 0 at the northern ionosphere, selecting the

eigenfrequencies, ω, and the initial displacement derivatives, dξ/ds, that satisfy homogeneous

boundary conditions at the other end of the field line.

The local geometric scaling factors, hα, in equation (1.3) are calculated by using flux

conservation along a magnetic field line. Starting from an equatorial position of the field

line, two nearby field lines are mapped, displaced from the original by a finite increment

along unit vectors α̂ and β̂:
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α̂ = b̂∥ × ϕ̂
/ ∣∣∣b̂∥ × ϕ̂

∣∣∣ (2.2)

β̂ = b̂∥ × α̂ (2.3)

where b̂∥ is a unit vector along the field line.

We verify our implementation of the model by calculating properties of the field line

resonances in a purely dipolar field (Cummings et al., 1969) using the wave equation (1.1)

expressed in orthogonal dipole field coordinates. We also test our calculation by reproducing

the known scale factors for a dipole field, i.e., hα = (rB sin θ)−1 and hβ = r sin θ.

A cross-section of a portion of the magnetosphere (field lines at invariant latitudes of 64 to

73 degrees) is visualized in Figure 2.1 for the day and night sides, with (a) the plasma density

and (b) the Alfvén velocity color-coded along the field. The peak of the plasma density

(∼ 70 cm−3) is at 4 RS near the orbit of Enceladus, but the Alfvén velocity (especially close

to the magnetic equator) varies little with x along the equator and the changes along the field

are similar from one field line to the next. This will help us understand the eigenfrequencies

that we discuss later.

2.3 Results

Consider a single field line that crosses the day-side equator at 20 RS (invariant latitude

75.8◦) in the field model. The wave electric field, E⊥ (shown in Figure 2.2a) and magnetic

field perturbation, b⊥ (shown in Figure 2.2b), represent a typical form of an eigenoscillation

in the outer magnetosphere of our model, calculated using the shooting-method procedure

explained in the previous section. The eigenperiods of the third and fourth harmonics, 75

and 52 minutes, match the expected period of a QP60 event, while the eigenperiods of the

second and first harmonics, 121 and 469 minutes, are well outside the typical QP60 range.

The poloidal field displacement, ξ⊥ is shown in yellow in Figure 2c for the fourth harmonic
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Figure 2.1: (a) Color plot of the plasma density (Bagenal & Delamere, 2011) in Saturn’s

magnetic field model (Khurana et al., 2006), visualized along field lines (solid lines, both col-

ored and gray) of equatorial crossing distances of 3 to 24RS. The field is in a dipole-centered

coordinate system, with the x axis pointing towards the Sun. The field reversal position is

marked with a thick gray dashed line. (b) Alfvén speed color plot, based upon the plasma

densities and field lines visualized in Figure 1a.
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of the same field line. Other harmonics are shown in different colors for three sufficiently

separated field lines for visual clarity. As required in our wave equation solutions, the field

displacement vanishes to zero at the ionosphere.

Note the magnetic field perturbation, b⊥, amplitude at high latitudes (> 60 degrees) sur-

passes the amplitude at the equator (Figure 2.2b). This is consistent with the fact that QP60

pulsations are less frequently observed at the equator than at mid-to-high latitudes (Roussos

et al., 2016; Palmaerts et al., 2016), perhaps because they are more readily detectable at

higher latitudes where the perturbation amplitude is greater. This latitude dependence is

also a feature of perturbations in a dipolar field; similar variation with latitude can be ob-

served in the numerical results of Cummings et al. (1969) for the standing waves in Earth’s

dipole field, in which the perturbations at the ionosphere are 10 times larger than those at

the equator. A hydromagnetic box model like the one in Southwood and Kivelson (1986)

and Yates et al. (2016), in contrast, produces relatively small amplitudes of magnetic per-

turbations outside the plasma sheet because of the uniform magnetic field and low plasma

density outside the plasma sheet.

The nodes and the local peaks of field perturbations occur within the denser region of

the plasma sheet (Figure 2.2a). The exception to this is the fundamental mode, which does

not have any nodes beyond the ionosphere, and is less sensitive to the ambient plasma. The

close spacing of the nodes of the higher harmonics near the equator (or equivalently, the

short parallel wavelength of the perturbations) can be understood by evaluating the radius

of curvature, Rc, which for slow changes of the field magnitude, can be approximated (see

Riley et al., 2006) as

n̂

Rc

≈ −(B · ∇)B

B2
(2.4)

Let’s consider a small perpendicular perturbation, b⊥, in the α̂ direction. Since (B̂ ·∇) =

∂/∂s for a field-aligned coordinate system, we can rewrite (2.4) as
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Figure 2.2: (a) The wave electric field, E⊥, and (b) magnetic field perturbations, b⊥, shown

for the first four harmonics of a field line with an equatorial crossing distance of 20 RS.

The Alfvén velocity along the field line is color coded in the background. (c) Poloidal field

displacement, ξ⊥, for the first four harmonics, drawn perpendicularly to four arbitrarily

chosen day-side field lines that are sufficiently separated to display distinct nodal structures

of the first four harmonics. All quantities in (a)-(c) are normalized to an arbitrary amplitude

of one.
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n̂

Rc

≈ − ∂

∂s

(
B+ b

|B+ b|

)
≈ − n̂

Rc,B

− ∂

∂s

(
bαα̂

hαB

)
≈ − ∂

∂s

(
bαα̂

hαB

)
(2.5)

where we neglected the contribution of the perturbation to the total field strength in the

denominator. We substitute the expression for bα (1.7) for the last term in (2.5), assuming the

geometric scale factor, hα, varies negligibly near the equator. Since the radius of curvature

of the background field, Rc,B, is big, and α̂ changes slowly with s, we then get

n̂

Rc

≈ −α̂
∂

∂s

(
bα
hαB

)
= −α̂

∂2

∂s2

(
ξα
hα

)
(2.6)

Noting that the second term in (1.6) scales like variations in the background field and is

small above the fundamental

n̂

Rc

=

(
α̂

hα

)
ω2

v2A
ξα (2.7)

where bα is a field perturbation in the α̂, direction and we assumed the orientation of the

background field to be changing slowly at the equator.

Therefore, a small radius of curvature in a region of low Alfvén velocity implies that

the perturbation reverses sign over a comparatively short range of s, and that the local

wavelength of the perturbation field is small.

This explains the close spacing of the nodes of the perturbation near the equator, but

does not account for the high perturbation amplitudes near the plasma sheet and in the

tenuous high-latitude regions. High amplitudes closer to the ionosphere can be viewed as

an effect of a curvilinear field geometry, where the field strength becomes large close to the

planet. Even small reorientation of a strong field can create a significant perturbation field.

As seen in equation (1.7), the magnetic perturbation amplitude, bα, is proportional to the

magnitude of the unperturbed field, |B|.

Because we use a realistic model of Saturn’s magnetic field, the field lines of the same
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Figure 2.3: (a) Eigenfrequencies for the first 6 toroidal (solid) and poloidal (dashed) modes

for varying invariant latitudes of field lines in the day side of Saturn’s magnetosphere. (b)

Same as (a), but for the night-side meridian. (c) Regions of 45 to 75 minute field line

resonances for the first four modes, shown for the day and night side meridian planes.
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invariant latitude map differently from ionosphere to equator in the day-side and night-

side meridians (see Figure 2.1a and 2.1b). We calculate the resonant periods separately

for the day-side and night-side field lines (Figure 2.3a and 2.3b, respectively) for both the

toroidal and the poloidal modes. Only the fundamental gives values that notably differ

between the two modes, similar to the findings of Orr and Matthew (1971), but in the outer

magnetosphere, those periods greatly exceed 1 hour. Consequently, we will not distinguish

between the toroidal and the poloidal modes.

Field line resonances in substantial regions of the outer magnetosphere (invariant lati-

tudes of 72 to 76 degrees on the day-side, and 72 to 74 degrees on the night-side) have periods

that vary little with equatorial crossing distance for the harmonics above the fundamental.

The third (odd) and the fourth (even) harmonics oscillate at close to a 60-minute period

in this region. The field lines with 60-minute resonances map to equatorial radii of 10 to

20 RS. Notably, the resonant periods on the night-side start to increase sharply past 74

degrees invariant latitude. Since the field is highly stretched on the night side, the field lines

map into a region outside the validity of the plasma sheet models of Bagenal and Delamere

(2011). A model of the plasma sheet density valid at larger distances might reveal a larger

region for the 1-hour eigenoscillations on the night side. The day-side magnetosphere, on

the other hand, is compressed, and the resonant periods remain roughly constant for field

lines of higher invariant latitudes, even close to the magnetopause.

The regions in which field lines resonate with periods of 45 to 75 minutes are indicated

in 2.3c. Only the 3rd and the 4th harmonics resonate at ∼ 1-hour eigenperiods (45 to

75 minutes) in the outer magnetosphere (10 to 20 RS in radial distance from the planet),

with the fundamental and the second harmonic resonating close to this period only in very

narrow ranges close to the planet. If we compare our results to those for a purely dipolar

field embedded in the same plasma distribution, it becomes apparent that a realistic field

model is important for producing these large regions of field lines resonances with 1-hour

periodicities (see Figure S1). The eigenperiods in the dipole model decrease continuously
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with L, and beyond ∼ 15 RS do not fall in the required 45 to 75 minute range. Saturn’s

field becomes decreasingly dipolar beyond ∼10 RS from the planet, and the stretched-out

field geometry produces a roughly constant eigenperiod in the outer magnetosphere (at least

up to 20 RS in our model). Thus, neither a hydromagnetic box model nor a dipole field

provides a valid model of the periodic phenomena observed in Saturn’s magnetosphere.

2.4 Conclusion

Using the approach introduced by Singer et al. (1981), we have calculated the resonant

frequencies of MHD waves in regions within ∼ 20 RS of Saturn using realistic models of the

magnetic field (Khurana et al., 2006) and the plasma density (Bagenal & Delamere, 2011).

We find that field line resonances can produce the quasi-periodic ∼ 60–minute pulsations

reported in particle and field data. As contrasted with the standing wave periods calculated

in a hydromagnetic box model, the eigenperiods matching the observations the closest are

produced by the third (odd) and fourth (even) harmonics, rather than the second (even)

mode (Yates et al., 2016). The period of the fundamental is comparable to the rotational

rate of the planet, prohibiting the development of such long-period Alfvén standing modes

(Glassmeier et al., 2004). Higher harmonics may also be present in Saturn’s magnetosphere

but the wave power at the higher frequencies is probably not observable.

We have established that a realistic magnetic field model is important for obtaining quan-

titative eigenperiods of field line resonances, especially in the outer magnetosphere. Even the

combination of a realistic plasma density distribution and a purely dipolar model produces

model eigenperiods that continue to increase with L beyond roughly 15 RS, inconsistent with

the widespread appearance of fluctuations in the ∼ 60-minute range. Our implementation of

a realistic field model reveals that there are large regions in the outer magnetosphere (10 to

20 RS) in which resonances have eigenperiods in the 45 to 75-minute range, even as the flux

tubes become long compared with the height of the high density region near the equator. We
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would expect to identify fewer pulsations at latitudes of 15 to 60 degrees. At the equator,

the plasma sheet is dense, and the local peaks are confined to a narrow region of roughly ±15

degrees. Many QP60 pulsations have been detected very close to the equator (Palmaerts et

al., 2016), but the closeness of the magnetic field perturbation nodes may make it difficult

to distinguish between the odd and even modes (Figure 2.2b).

We were limited to considering field lines that cross the equator within 20 RS by the

restricted distance range of the plasma density model; it would be informative to extend the

plasma density model to establish if eigenperiods of 1-hour extend into the outer magneto-

sphere beyond 20 RS. Our model assumes wave perturbations transverse to the background

field and a perfectly conducting ionosphere (i.e. E⊥ = 0 at the field line boundaries). These

assumptions can be justified. Most of the QP60 pulsations map to the auroral zone on closed

field lines (Roussos et al., 2016). The highly-conducting auroral regions of the ionosphere

satisfy our E⊥ ∼ 0 condition most closely and should provide sufficiently good reflection for

the development of a standing wave. Nevertheless, the fact that these Alfvén waves come in

4 − 6 hour wave trains implies a dissipation mechanism, and wave damping by a less than

perfectly conducting ionosphere could account for the wave decay. However, a quantitative

model of wave decay also requires knowledge of the time-variation of the driving source,

which is not readily characterized.

Our work also neglected the effects of Saturn’s rotating plasma (similar to Glassmeier

et al., 1989). We believe this approximation is valid for the higher resonance modes, for

which the plasma is quasi-stationary relative to the MHD wave timescales. An analytical

treatment of MHD perturbations in a rotating plasma by Ferrière et al. (1999) shows that

the stability of the Alfvén modes either remains unchanged or increases with the inclusion of

the Coriolis force, albeit for constant background parameters along the field. Furthermore,

the estimates of magnetic Rossby numbers by Glassmeier et al. (1999) show that rotation

has no significant impact on any resonant coupling at Jupiter or Saturn.

Although the classical mechanism of field line resonances seems plausible, it is chal-
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lenging to identify the energy source that excites the oscillations. Any phenomenon that

disturbs a quasi-equilibrium state of the magnetosphere can, in principle, excite field line

resonances. Possible sources include such external disturbances as interplanetary shocks or

pressure fronts, boundary oscillations driven by the Kelvin-Helmholtz instability or mag-

netic reconnection, and internal disturbances such as those arising from reconnection in

the plasma sheet. Because the third and fourth harmonics map to field lines close to the

magnetopause, the possibility of the waves being driven externally by the solar wind buf-

feting (Mathie & Mann, 2000), or alternatively, by the Kelvin Helmholtz instability at the

magnetopause boundary (Fujita et al., 1996) becomes an attractive suggestion. Resonant

mode coupling between fast mode magnetopause surface waves and the local Alfvén waves

has been previously reported in Saturn’s magnetosphere – transverse Alfvén perturbations

have been observed two hours after an observation of Kelvin Helmholtz waves of the same

period, albeit of 23min periodicity, not 1 hour (Lepping et al., 1981; Cramm et al., 1998). A

proposed explanation for the source of these waves, at least on the day side, is magnetodisk

reconnection (Guo et al., 2018). Guo et al. (2018) observed QP60 events for 14 hours during

a reconnection event, and the energy flux has been estimated to be high enough to power

aurorea (∼ 2.6mWm−2). If the QP60 events, including the auroral pulsations, are driven

by magnetodisc or magnetopause reconnection, we could estimate the energy input into the

FLR’s and model their dissipation.

Further data analysis of the distribution, magnitude, and symmetry of the quasi-periodic

waves will show if their properties match those of our modeled third to fifth harmonics.

Particularly, we would expect to see more pulsations at magnetic latitudes of 60 degrees and

higher, where the magnetic field perturbation amplitudes surpass those at the equatorial

plasma sheet. As seen in Figure 2.3, the third to fifth mode with a period in the critical

range can develop through much of the outer magnetosphere.
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CHAPTER 3

Long-period Alfvén waves as signatures of field line

resonances in Saturn’s magnetosphere

The fool doth think he is wise, but the wise man knows himself to be a fool.

— Shakespeare

3.1 Introduction

Ultralow-frequency (ULF) pulsations have been observed at Jupiter and Saturn since the

Pioneer 11 and Voyager missions. Kivelson (1976) reported frequent ULF wave activity in

particle fluxes and magnetic perturbations in the Jovian magnetosphere near current sheet

crossings. Pulsations with 6 to 18min periods were prominent in the middle magnetosphere

and the turbulent layer near the magnetosheath. Voyager observations also revealed strong

transverse magnetic field power in the 10 to 20min band within the plasma sheet, dimin-

ishing rapidly outside of it (Khurana & Kivelson, 1989; Wilson & Dougherty, 2000). Wave

periodicities of 15min (QP15) and 40min (QP40) period were also found in the Ulysses ion

An edited version of this chapter was submitted for publication in Journal of Geophysical Research
(JGR).
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data (MacDowall et al., 1993; McKibben et al., 1993). At Saturn, Cramm et al. (1998)

examined the Voyager 1 spacecraft observations and found Alfvén waves of roughly 20min

period. They linked them to surface mode waves through resonant mode coupling.

More conclusive observations of ULF waves in the Kronian magnetosphere came later

following Cassini’s orbital insertion in 2004. The continuous in-situ investigations by the

Cassini spacecraft revealed consistent quasiperiodic fluctuations in the magnetometer data,

especially in broad band frequencies near 60min (QP60) period (Dougherty et al., 2004;

Bunce et al., 2014; Mitchell et al., 2016; Yates et al., 2016). Kleindienst et al. (2009)

characterized the magnetic field fluctuations as mostly Alfvénic with amplitudes between

0.1 and 3 nT and found that they occur nearly uniformly in local time and radial distance.

The waves were observed to be organized in short packets of 5 to 6 oscillations and modulated

with a periodicity close to Saturn’s rotation period (Kleindienst et al., 2009). Quasiperiodic

oscillations of nearly one-hour period were also reported in field-aligned electron beams and

ion conics (Mitchell, Kurth, et al., 2009; Schardt et al., 1985) and linked to the observations

of auroral pulsations by the Cassini UVIS instrument (ultraviolet imagining spectrograph)

(Bader et al., 2019; Bunce et al., 2014; Menietti et al., 2020; Mitchell, Krimigis, et al.,

2009; Mitchell et al., 2016). An extensive global survey of pulsations in relativistic electron

events by Roussos et al. (2016) and Palmaerts et al. (2016) revealed occurrence preference

for high magnetic latitudes and the dusk sector, with most of the events seen between 20 and

30RS. Carbary et al. (2016) analyzed plasma wave data and found amplitude modulation

at approximately 60min of wave emissions at ∼100Hz frequencies. They last from ∼2 to

∼20 h and map mostly inside of Titan’s orbit at 20RS on closed field lines.

A more recent survey of QP60 waves in the magnetometer data identified a rapid wave

power decrease beyond 25RS both in the morning and afternoon sectors, indicating that the

waves are not related to the magnetosheath or the solar wind (Pan et al., 2021). Unlike the

QP60 events in the energetic electron and plasma data, the events in the magnetic field data

were most frequently seen near noon (Pan et al., 2021). Kleindienst et al. (2009) argued that
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due to the size and rapid rotation of Saturn’s magnetosphere, the ULF waves are unlikely

to be eigenoscillations of the entire magnetosphere. Initial calculations of Alfvén travel

times indeed came close to the planetary rotation period (∼10 h), which would prevent the

development of global standing modes (Cramm et al., 1998; Glassmeier et al., 2004). More

recent estimates of the Alfvén travel times by Bunce et al. (2005) showed that they are closer

to 1 h, which would allow global standing modes to develop.

Previous investigations of quasi-periodic waves in the magnetic field were either closely

focused on the occurrence of disturbances in a narrow band of frequencies near 60-min period

(Pan et al., 2021) or identified general ULF-pulsation characteristics in the data (Kleindienst

et al., 2009). In this study, we have undertaken a comprehensive search for waves in the

Cassini magnetometer data in a wider range of periods (up to 3 hours) for all 13 years that

Cassini was in orbit about Saturn. In section 3.2, we present the methods for our data

analysis. In section 3.3, we present our analysis results and compare them to a model of

standing waves in a realistic magnetic field. In section 3.4, we summarize the observational

results and propose the source of QP wave periodicity. We conclude that the QP30, QP60,

and the QP120 waves are even harmonic modes of field line resonances in Saturn’s outer

magnetosphere, excited by periodic flapping of the magnetotail once a PPO period.

3.2 Methods

We utilized all the fluxgate magnetometer (FGM) data acquired in Saturn’s magnetosphere

during the Cassini mission at 1-min resolution (Dougherty et al., 2006). Focusing on waves

within the magnetosphere, we used the list of magnetopause and bow shock crossings com-

piled by Jackman et al. (2019) to select the intervals when the Cassini spacecraft was in

the solar wind, the magnetosheath and the magnetosphere. The position of the orbiter is

displayed by local time and latitude in Figure 3.1a, each dot representing a one-day-long

data segment. The black crosses represent flagged (rejected) data and color denotes the
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plasma environment of the orbiter: solar wind (red), magnetosheath (orange), or magneto-

sphere (blue). Cassini’s dwell time in different parts of the magnetosphere is non-uniform

– for instance there is less coverage of the magnetosphere between 6 and 10 h local time,

especially at higher magnetic latitudes, than at other local times.

FGM calibration procedures typically required spacecraft rolls at a period that comes

close to the lower end of the period of the waves of our study, and the calibrated data may

contain some unwanted leftover signals. Therefore, we rejected data segments that included

more than one hour of calibration rolls or contained data gaps larger than 30min within a

single 24-hour data interval. Even with these two data constraints (removal of calibration in-

tervals and of intervals with significant data gaps), we had 4278 days of magnetospheric data,

representing nearly 90.7% of the total 4714 recorded days inside Saturn’s magnetopause. Be-

fore analysis, we padded each 24-hour data segment with 6 hours of data before and after

the segment, or roughly half the Saturn’s planetary period oscillation (PPO) period, which

is roughly 10.7 h and appears in many magnetospheric phenomena (Carbary et al., 2016).

This data redundancy allowed for more reliable identification of events at the start and end

of each day.

To understand how the wave activity is distributed through the magnetosphere, we trace

along the magnetic field to the surface of the planet using a global magnetic field model of Sat-

urn’s field (Khurana et al., 2006) based on the general deformation technique of Tsyganenko

(1998). The field line calculations are carried out for a model that adopts nominal solar wind

conditions with dynamic pressure DP = 0.017 nPa, Bz = 0.1 nT, By = −0.2 nT. Field lines

are traced by using a 4th order Runge-Kutta method in a dipole-centered coordinate sys-

tem with x pointing towards the Sun (with Saturn’s magnetic equivalent dipole being offset

0.04RS northward of the center of mass of Saturn). For Saturn’s internal field, the magnetic

field model uses magnetic moments derived from Cassini’s proximal orbits (Dougherty et al.,

2018).

The field line traces grouped by local time and conjugate (sometimes called invariant)
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Figure 3.1: (a) The Cassini orbit plotted against local time and magnetic latitude. The colors

indicate whether Cassini was in the magnetosphere (blue), the magnetosheath (orange) or the

solar wind (red) based on Jackman et al. (2019). Flagged data segments (due to significant

data gaps or during calibration times) are marked by black crosses. (b) The time Cassini

spent in conjugate latitude and local time bins (see text). The green line gives the position

of a shell at 10RS, the dashed yellow line a shell at 20RS and dotted yellow line a shell at

25RS.
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latitude mapped to the surface of the planet, and the cumulative Cassini dwell time (in days)

in each bin are shown by the color of the bins (Figure 3.1b). The bins extend over 0.5 h

in local time and 1◦ in conjugate latitude. The choice of bin size is a compromise between

reasonable resolution and adequate data coverage in each bin. Figure 3.1b clearly displays

the asymmetry in local-time coverage seen in the magnetic latitude traces in Figure 3.1a,

especially for the 6-to-10-h LT region, which shows the orbiter spending less time at 75 to

80◦ and −80 to −75◦ conjugate latitudes in this local time range compared to other local

times. The dashed yellow line separates field lines whose equatorial crossing maps outside

of 20RS from those that map inside. Cassini remains mostly inside the magnetic shell at

25RS on the day side (dotted orange line), which is the nominal distance of the nose of the

magnetopause. On the night side, Cassini remains outside of 20RS most of the time (dashed

yellow line). Furthermore, a plot of the Cassini dwell time on typical field lines near the

midnight and noon meridians (Figure 3.2), makes it apparent that most of the data come

from lower-to-mid-latitudes and that it will be important to normalize cumulative event

times by the orbiter’s dwell time in different local time-conjugate latitude bins.

Having selected the 36-hour-long data segments that meet our data standards, we trans-

form the data from KSM coordinates into mean-field-aligned (MFA) coordinates to reveal

the orientation of the transverse component of the pulsations. Our orthogonal coordinate

system is defined by a parallel unit vector along the averaged background magnetic field,

⟨B⃗⟩, calculated by using a three-hour running average, and a unit vector ϕ̂ in the azimuthal

direction parallel to the kronographic equator (ϕ̂×R̂) and positive in the direction of corota-

tion. Saturn is a rotationally dominated magnetosphere, and it is reasonable to assume there

will be more symmetry in the azimuthal direction than any other. The other perpendicular

unit vector (b⊥2) completes the orthogonal coordinate system. A three-hour-long running

average resolves waves of up to approximately three hours, which is adequate resolution for

the study of waves with a period of 30min to 3 h.

The full set of orthonormal vectors for the MFA coordinate system is then:
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Figure 3.2: Cassini orbiter dwell time, restricted to (0± 2) h and (12± 2) h LT shown with

color in magnetic latitude bins along typical field lines crossing the magnetic equator at

different radial distances past 5RS.
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b̂∥ = ⟨B⃗⟩/|⟨B⃗⟩| (3.1)

b̂⊥1 = ϕ̂× b̂∥/|ϕ̂× b̂∥| (3.2)

b̂⊥2 = b̂∥ × b̂⊥1 (3.3)

An example of a typical quasiperiodic wave in field-aligned coordinates is shown in Figure

3.3. Panel 3.3a presents the original MAG data in KSM coordinates, resampled at 1-minute

intervals with the background magnetic field (⟨B⃗⟩) removed. The Cassini orbiter was on the

day-side magnetosphere near the cusp, at around 20RS from Saturn, and it detected two

intense wave trains of ∼60-minute periodicity during the day – one from 7:00 to 12:00 UT

and another one shortly after, 16:00 to 22:00 UT. All three components in KSM coordinates

– Bx, By, and Bz – show clear signatures of 60-minute waves, with smaller amplitudes in Btot

during the first interval of activity (panel 3.3a). The MFA coordinate transformation (Figure

3.3b) clarifies that these are mostly transverse perturbations of amplitude 0.2 to 0.3 nT in

B⊥1 and B⊥2, with a smaller compressional (Btot) component of amplitude ∼0.05 nT. The

peaks of these wave trains are separated by nearly 11 hours, which is close to Saturn’s

planetary period oscillation (PPO) of ∼10.7 h. We will see below that this is typical of most

of the events in the magnetosphere.

Although the measured amplitudes of the QP60 waves in the magnetic field are small

(often as low as 0.1–0.2 nT), the Fluxgate Magnetometer had the sensitivity to measure such

minuscule perturbations when the sensor was operating in two lowest magnetic field ranges:

±40 nT and ±400 nT, which was true for most of the orbits around Saturn except for those

very close to Saturn (Dougherty et al., 2004). The resolutions for these operational modes

were 4.9 pT and 0.049 pT, respectively, with the less constrained magnetic field resolution

being just sensitive enough to detect 0.1–0.2 nT perturbations.

We quantify the spectral characteristics of the quasiperiodic events by calculating the

power density spectrum for individual 36-hour long data segments using a Fourier trans-
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Figure 3.3: (a) Magnetic field perturbations, in KSM coordinates (see text). (b) The same

magnetic field perturbations, transformed into a mean field-aligned coordinate system. Two

intervals of particularly high amplitude wave signatures are marked as Strong QP60 Activity.

An orange line extends over an ∼11-hour interval. Spacecraft ephemeris data (in KSM) are

given at the bottom of the plot.
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form. With the one-day-long data intervals resampled at one-minute resolution, the Nyquist

(smallest to resolve) period is two minutes, and the highest to resolve period is 24 hours. We

implement Welch’s method of spectral averaging (Welch, 1967) with a data window size of

12 hours and an overlap of 6 hours to decrease the noise, albeit at the expense of diminished

frequency resolution due to the shortening of the data segment lengths. We minimize spec-

tral leakage from the frequencies of interest by applying a Hann window function, reducing

the power of the spectral sidelobes due to a sinusoidal signal at a small cost to the frequency

resolution. The Hann function decays to zero on both sides of the data segment, thereby

rendering the correlation between the overlapping data segments negligible. Our method re-

duces the maximum period resolved to 12 hours, well beyond the range of the wave periods

of interest, i.e., 30min to 3 h, while still preserving good frequency resolution. An example of

a data segment with QP60 power is shown in Figure 3.4b. The background power estimate

is calculated only over frequencies corresponding to periods of 30 minutes to 4 hours. We

used synthetic magnetic field data with sinusoids of varying periodicity between 30 minutes

and 2 hours to determine the optimum averaging window. Then we calculated a ratio of

each component’s power density to the background power density estimate of the total field,

P (⟨BT ⟩f ):

ri =
P (bi)

P (⟨BT ⟩f )
, (3.4)

where ri is the ratio of the power in the ith component (b∥, b⊥1, b⊥2) to the power in

the total field (BT ) at frequency f , ⟨BT ⟩f is the background field estimate of BT , P (bi) is

the power in the ith component of the field and P (⟨BT ⟩f ) is the power in the smoothed

background field estimate ⟨BT ⟩f , for frequencies corresponding to the period range of 30 to

180min.

The motivation for examining ratios is that it is easier to identify the signatures of the

QP60 waves by plotting the ratio of powers, ri, than by plotting the power spectra themselves

(see Figure 3.4 for an example).
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The Fourier spectral analysis technique allows us to identify data intervals with detectable

power at the periods of interest but does not provide optimal time and frequency resolution,

mainly because the quasiperiodic waves are discontinuous (non-stationary), varying in fre-

quency and amplitude, and non-sinusoidal. For these reasons, it is appropriate to implement

a wavelet analysis to characterize the times of intermittent wave activity and improve on

the frequency resolution of the Fourier spectral analysis. Wavelet analysis is advantageous

compared with classical Fourier analysis in that it unfolds a time series not only in fre-

quency but also in time, which is especially useful when the signal is non-stationary, as in

our quasiperiodic events. For our continuous wavelet transform, we choose a Morlet wavelet

(Mallat, 2009; Yates et al., 2016) with a kernel function, ψ(t, ω), expressed as:

ψ(t, ω) = cw exp(−t2/σ2) exp(iωt), (3.5)

where cω is a normalization factor, and σ is the temporal width of the kernel.

The Morlet kernel function is essentially a sine wave tapered by a Gaussian, suitable

for intermittent perturbations in the field. By varying the wavelet’s temporal width (or

stretch), a continuous wavelet transform can show the time scale (and correspondingly, the

frequency) at which an individual pulse most closely matches the wavelet. Furthermore,

it provides very high resolution in the time domain, unlike the Fourier transform. Even a

Short-Time Fourier Transform, designed to mitigate the problem of irregular, non-sinusoidal

pulses, does not provide good resolution in the time domain (Sinha et al., 2005).

In addition to identifying the characteristic time scales of the wave trains that we are

examining, we calculate the cross-correlation between the two transverse components of the

perturbations, b⊥1 and b⊥2. The maximum of the cross-correlation function indicates the

phase shift with which the signals are best aligned. More precisely, the time delay between

the two signals, τdelay, is determined by the argument of the maximum, i.e.
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τdelay = argmaxt∈R((f ⋆ g)(t)) (3.6)

where f and g are continuous functions of the two transverse components, and their cross-

correlation is defined as

(f ⋆ g)(τ) =

∫ ∞

−∞
f ∗(t)g(t+ τ) dt (3.7)

The time delay between the two signals allows us to calculate the polarization of the

quasiperiodic waves.

3.3 Results

We calculated the ratio of the power in each magnetic field component in mean-field-aligned

coordinates to the power in the background field estimate (equation 3.4). Evaluating the

power in components relative to the power in the field magnitude preserves the relative

strengths of the power in the components, allowing a comparison of the compressional and

transverse perturbation power. Figure 3.4 illustrates the approach for a 24-hour-long data

segment on Jan 2, 2007. Panel 3.4a shows the magnetic field perturbations in field-aligned

coordinates, smoothed with a three-minute running average and reevaluated at one-minute

resolution for equal data spacing. The data show three wave trains that last for 4 to 6 h,

centered at 04:00 UT, 15:00 UT, and 23:00 UT, with the most significant perturbations

of ∼0.2 nT being in the transverse B⊥1 and B⊥2 components. Panels 3.4b and 3.4c show

the power densities and the power ratios, ri, respectively, for each component and for the

power in the total field relative to P (⟨BT ⟩f ). A ratio of one means that the power at the

selected frequency is equal to the background power estimate, and anything above it means

the component has more power than ⟨BT ⟩f . It is clear from ratios plotted in Figure 3.4c that

the power in the transverse components is of order 100 times the power in the smoothed
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background, and the peak power near 60min is easier to distinguish than in the original

power density plot (Figure 3.4b).

We group the 24-hour power ratios ri into local time quadrants. The medians of the

power ratios and the upper and lower quartiles are shown in Figure 3.5 for four quadrants:

(a) (0 ± 3) h, (b) (6 ± 3) h, (c) (12 ± 3) h, and (d) (18 ± 3) h (see the movie S2 for power

ratios obtained for other local time ranges). Significant power is present in the transverse

magnetic field components at all local times, but the highest relative transverse power of

QP60 waves is found in the midnight sector (0± 3) h (see Figure 3.5a). The median power

peaks at around 50-minutes, close to the ∼60 minutes previously reported, and the period

at which the power peaks vary little with local time. At midnight, the transverse power

for QP60 waves is nearly 10 times greater than the compressional power, and it is at least

2-to-5 times stronger at other local times. Also, there are significant peaks in power near

30min and near 2 h in all quadrants, indicating that multiple harmonic modes are present

in the transverse magnetic field fluctuations. We will refer to the additional power peaks as

the QP30 and QP120 waves, respectively, in the rest of the paper. Since we used a 3-hour

running average for the transformation to mean field-aligned coordinates, we cannot resolve

the power of waves with periods greater than 3 hours. There is also significant power in

the transverse perturbations at frequencies corresponding to periods below 30min, which

probably relate to higher harmonics (m > 6), but we excluded such low-period waves from

our study because we used data of 1-min resolution.

We next consider whether the three dominant magnetic perturbations – the QP30, QP60,

and QP120 waves – arise as harmonics of standing waves on magnetospheric flux tubes.

Figure 3.6 contains plots of frequency vs. conjugate latitude of harmonic eigenmodes of field

line resonances calculated for a model magnetosphere with a realistic magnetic field and

plasma density (Rusaitis et al., 2021). The solid-colored lines represent the frequencies of

toroidal eigenmodes in the noon-midnight meridian for modes 1 to 6 in the model; the modes

calculated on the dayside are on the left and those for the nightside are on the right. The
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Figure 3.4: (a) Magnetic field perturbations in a mean field-aligned coordinate system and

(b) power density for the magnetic field. The colored dotted lines give the estimate of the

background power density for the components and the magnetic field magnitude (see text)

and (c) gives the ratio of the power density in each component to the background power

in the total field. Periods of interest are overlaid in the bottom two panels with dashed

vertical lines. The colored dashed lines in panel b represent estimates of the background

power density curves in the 30min to 6 h range.
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Figure 3.5: Median power ratios of magnetic field perturbations in mean field-aligned coordi-

nates as defined in the text, with solid color lines plotted versus frequency for different ranges

in local time: a) local time of (0± 3) h, b) local time of (6± 3) h, c) local time of (12± 3) h,

d) local time of (18± 3) h. The lower and upper quartiles for each power ratio are shown as

the bottom and top of the shaded areas. Periods corresponding to selected frequencies are

labeled on the panels. The white dashed lines show the frequency corresponding to 50min

period, the period of the peak in the 0 h LT bin.
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Figure 3.6: Eigenfrequencies for field line resonances in the 12LT (a) and 0LT (b) meridians

(adapted from Rusaitis et al., 2021). The power spectral peaks for the dominant waves in

the Cassini magnetometer data are superposed by using solid-colored bars: QP30 (grey),

QP60 (yellow), and QP120 (magenta).

poloidal modes are shown as dashed lines of corresponding color, and for the harmonics above

the fundamental, the poloidal frequencies do not differ much from the toroidal frequencies

(solid lines). The three dominant frequencies of the observed transverse magnetic power

density are overlaid as semi-transparent color rectangles and correspond closely to the even

modes of FLR eigenmodes: m = 2 for QP120 (magenta), m = 4 for QP60 (yellow), and

m = 6 for QP30 (grey). The comparison with observations is limited to invariant latitudes

between 72 to 76◦ at noon and between 72 to 74◦ at midnight. These field lines cross

the equator between 10 and 20RS where the plasma density model is valid, and there are

significant observational data from the Cassini orbiter.

Since Cassini did not sample Saturn’s magnetosphere uniformly, we normalize the oc-

currence frequencies to the orbiter’s dwell time in discrete regions of the magnetosphere in

order to establish the probability of occurrence in different sectors. We find that the event

occurrence rate typically peaks at latitudes of 40 to 60◦ (Figure 3.7), except in the dawn sec-

tor where the event occurrence rate near the equator (Panel 3.7b) is significant. The plasma
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sheet is expected to be thinner at dawn than at noon and dusk due to a strong stretching of

the field at dawn and subsequent dipolarization of the field at noon (Jia & Kivelson, 2016).

Thus, the higher event rate at equatorial dawn would be surprising if it we did not take into

the account the bias in the orbiter’s residence time in the plasma sheet. By counting the

dwell time in a weak magnetic field of 2 nT less with an orientation of ±30◦ to the magnetic

equator, we estimate the orbiter’s residence in the plasma sheet. We find a dawn bias of

residence time compared to other local times, especially during the southern solstice, which

may partially account for the higher event rate at the dawn equator. There is also a larger

event detection rate in the southern hemisphere compared to the north by a factor of 2 to 3,

except at noon. During the southern summer season, the southern hemisphere is expected to

have a higher Pedersen conductance than the north by a factor of 3 (Jia & Kivelson, 2012).

However, the seasonal changes in the conductivities of the hemispheres and the effects of

such north-south asymmetries on the field line resonances are not yet fully understood.

The bias towards high magnetic latitude occurrences is compatible with the field line

resonance model because in the non-uniform field and plasma conditions of Saturn’s magne-

tosphere, the magnetic amplitudes of the eigenmodes peak at high latitudes (see Figure 3.2b,

Rusaitis et al., 2021, for a model field line crossing the equator at 20RS). This property im-

plies that the waves are more readily detectable at high magnetic latitudes. The amplitudes

of the magnetic field perturbations, indeed, become comparable to or larger than those at

the equatorial plasma sheet above ∼60◦ latitude where the event occurrence is high. At the

magnetic equator, however, the occurrence rate is low, except at dawn, but that may be due

to the nodes of the harmonics being tightly confined within the thin plasma sheet (±10◦

latitude), as in the model. During Cassini’s nominal mission between 2004 and 2008, the

plasma sheet was bent in a bowl shape due to the interaction with the solar wind (Arridge et

al., 2008), leaving most of the equatorial orbits below the plasma sheet. Multiple crossings

of the plasma sheet were recorded in 2006, but the orbiter spent only a small fraction of the

time within the thin current sheet (Arridge et al., 2011). Since individual passes through
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Figure 3.7: Ratio of cumulative event time to orbiter dwell time against magnetic latitude

for four local time sectors: (a) (0± 3) h LT, (b) (6± 3) h LT, (a) (12± 3) h LT, (a) (18± 3) h

LT.
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the sheet frequently last less than 2 h, it is not possible to detect at least four continuous

oscillations of standing Alfvén waves on all passes (see, e.g., Figure 9, Arridge et al., 2011).

As for the occasional times when Cassini was fortuitously within the thin current sheet for

a longer interval, it would have had to present at the right phase of the 10.7-hour cycle to

detect multiple periods of the QP60 events.

Normalizing the cumulative event time in local time–invariant latitude bins by the time

spent in each bin, we find the occurrence rate is highest on the dusk-side by a factor of two,

and lowest in the morning region of 6 to 10 LT (Figure 3.8). This asymmetry in local time has

been reported previously (Roussos et al., 2016; Palmaerts et al., 2016). The asymmetry may

arise because Cassini dwelt on closed field lines for longer intervals on the dusk side than on

the dawn side. To investigate, we used the Khurana field model with nominal IMF and solar

wind conditions to calculate the cumulative time Cassini spent on closed magnetic flux tubes

(see the Methods section 3.2) in different local time–magnetic latitude bins. The fraction of

time that Cassini was on closed field lines was lowest in the morning sector between 6 and 10

LT. At mid-to-high latitudes of 40 deg and above, the spacecraft had the highest residence

time fraction on closed field lines post-dusk. Therefore, we suggest that Cassini would have

fewer QP60 observations in the morning sector because it spent a smaller fraction of its dwell

time on closed field lines.

The quasiperiodic perturbations in the magnetic field typically come in short bursts with

amplitudes of 0.1 to 0.5 nT for 4 to 6 h before decaying and amplifying again, with peaks in

power separated approximately by 11 hours, as seen in the examples in Figure 3.3 and Figure

3.4. We estimated the separation in time between consecutive bursts by finding separations

between times of peak power in the wavelet transform matrix. A histogram of the wave train

separation times shows a distribution skewed towards longer separations with a median of

10.73 h (Figure 3.9). There is a minor peak at ∼21 h. This longer time separation of wave

packets could be explained if an intervening packet was too weak to detect by our method,

or if the orbiter was passing through regions of the magnetosphere that are not favorable for
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Figure 3.8: Ratio of normalized QP60 cumulative event time to Cassini dwell time in local

time – conjugate latitude bins. The cyan lines are averages in local time (top) and conjugate

latitude (right).
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Figure 3.9: Normalized probability distribution of wave train separation time for (60±10)min

waves (thick gray line), and the original histogram used for the calculation of the probability

distribution (gray bars). The median separation of 10.73 h is shown with a vertical dashed

line.

observing the waves, leading to a detection of consecutive events separated by ∼21–22 h.

We calculated the cross-correlation of the transverse components of the perturbation

field (equations 3.7) to determine the polarization of the quasiperiodic waves. Two typical

examples of cross-correlation of QP60 waves are shown in Figure 3.10. Panels 3.9a-b show

two wave trains (seen in the field perturbation plots) with mainly a 90◦ phase shift and

panels 3.9c-d show three wave trains with 90, 180 and 180◦ phase shifts, respectively. Most

of waves we studied have a 90◦ phase shift between the transverse components as in Figure

3.9a, implying the waves are predominantly circularly polarized.
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Figure 3.10: Cross-correlation between the two components perpendicular to the background

field (b⊥1 and b⊥2), shown for two sample data intervals. Panel (a) gives a time series

plot for the first example, with the cross correlation for that interval plotted in (b). The

cross-correlation shows mostly a 90◦ phase difference (circular-polarization, most common).

Panel (c) gives the time series for the second interval. The cross-correlation for the second

interval in (b) has mostly a 180◦ phase difference (linear polarization).
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3.4 Discussion

We have undertaken a comprehensive study of quasiperiodic waves of periods between 30min

and 3 h in the magnetic field data spanning all the Cassini orbits within Saturn’s magne-

tosphere. The highest observed power is found for waves at 60-min period (QP60) with

relatively high power also in 30-min (QP30) and 120-min (QP120) waves. The periods

match the even harmonics in a realistic field line resonance model (Rusaitis et al., 2021).

The highest transverse power relative to the compressional component is found in the pre-

midnight sector, indicating that the post-dusk region is important for the initiation of these

waves. The QP waves are typically observed in 4-to-6-h long wave packets, reoccurring once

a PPO cycle of ∼10.7 hours. The consistent modulation of the waves at this period highlights

the importance of the PPO-generating mechanism for QP waves. We suggest that impulses

that drive the periodic flapping of the magnetotail at the PPO period in the post-dusk sector

are responsible for the excitation of even-mode field line resonance harmonics.

Our study matches some of the previously reported characteristics of the QP60 waves in

several types of magnetospheric data. In the energetic electron injection and plasma data,

the frequency and wave packet duration of the quasiperiodic waves closely match the values

found in our study (Roussos et al., 2016; Palmaerts et al., 2016; Carbary et al., 2016). They

were observed at all local times, and over a wide range of radial distances and latitudes,

mostly on closed field lines. The occurrence rates were highest in the dusk sector and lowest

in the pre-dawn region of (3± 2) h LT. The probability of the events, as well as the growth

and decay rate of amplitudes in the coincident auroral hiss waves were highest at mid-to-

high latitudes, both in the particle and plasma data. Palmaerts et al. (2016) suggested this

may be indicative of a high latitude source for the energetic electron emissions and hiss

waves. Coincident oscillations in the Bϕ component of the magnetic field were also observed

∼20% of the time, especially at mid-to-high latitudes (Palmaerts et al., 2016). Independent

studies of the QP60 waves in the magnetic field showed the waves to be mostly Alfvénic with
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amplitudes of 0.1 to 0.5 nT (Dougherty et al., 2004; Bunce et al., 2014; Mitchell et al., 2016;

Kleindienst et al., 2009; Yates et al., 2016). The occurrence rate was found to be highest near

noon and at high latitudes, though secondary peaks were observed pre-and-post midnight

(Pan et al., 2021). The spectral study by Pan et al. (2021) found the wave power to be rapidly

decreasing beyond 25RS in the dawn and noon sectors, indicating that they are unlikely to

be generated at the magnetosheath or magnetopause boundary. The wide-spread occurrence

of QP60 waves with local time and radial distance in several types of the magnetospheric

data, coupled with a notable dawn-dusk asymmetry, suggests existence of several different

excitation mechanisms, whereas the observed frequencies, decay and reoccurrence rates are

characteristic of the general configuration of Saturn’s field, plasma density, and PPOs that

change slowly with time.

The properties of quasiperiodic oscillations identified in our study differ in some ways from

those found in other magnetospheric data. Notably, the reoccurrence of the wave packets is

more frequent and periodic than that observed in the electron injection and plasma data.

Electron flux oscillations were observed every ∼4 days in the dusk sector and every 40 days

in the dawn sector (Palmaerts et al., 2016). The plasma waves in the 100Hz band together

with QP60 waves were seen even less frequently, averaging ∼1 event per month over an 11-

year period, almost solely at high latitudes (Carbary et al., 2016). As observed by Palmaerts

et al. (2016), coincident QP60 signatures in the plasma and magnetic field data with the

electron injections occurred less than a quarter of the time. These different QP60 signatures

seem to be related, but were not reported to be coincident most of the time. It is likely that

many quasiperiodic magnetic perturbation events of small magnitude (0.1 nT and less) were

missed in the previous studies. Faint signatures of the perturbations are easy to miss by

visual inspection, or even in Fourier transforms due to their intermittent nature. Our wavelet

analysis procedure, which computes the power ratio in each frequency band to that of the

background estimate, allows for identification of much weaker oscillation signatures. In order

to reduce the number of missed events, we also use overlapping data segments (see Methods
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section 3.2) to be able to detect 6-hour-long events at the start or end of each data interval.

We find the QP60 perturbations in the magnetic field are observed frequently, usually every

PPO cycle, including at equatorial latitudes. The modulation of the magnetic perturbations

at the PPO period has been noted previously before for select intervals by Yates et al. (2016),

and our analysis shows this to be true for the duration of Cassini’s residence at Saturn.

The second main difference between our study and other surveys of the QP events is that

we investigated a wider range of selected wave periods than has been previously analyzed

and we report on the occurrence of QP30 and QP120, in addition to QP60 waves. The longer

periods have not been reported in the particle or plasma data, possibly because they have

been outside the focus of most studies. For example, the quasiperiodic electron injection

surveys by Roussos et al. (2016) and Palmaerts et al. (2016) were limited to periods of 40

to 80min. The auroral hiss emission study by Carbary et al. (2016) accepted a wider period

range of 40 to 120min, but the overall event count was low (138) and required a visual

examination of a smoothed 100Hz profile in time that could miss the weaker signatures of

the QP120 waves if present. A more recent statistical survey of magnetic field fluctuations

by Pan et al. (2021) did find significant power ranging from 30-to-60min, with minor peaks

near 30 and 50min, but the survey used a cut-off at a period of 60min. Although we

find that the QP30 waves to have similar power to QP60 waves (Figure 3.5), they tend

to occur simultaneously with the QP60 waves of varying power, and thus may be hard to

resolve, especially by visual inspection. The QP120 waves, in comparison, have much weaker

transverse power than both the QP30 and QP60 waves and are accordingly even harder to

detect.

We argue that the post-dusk region is important for the generation of the quasiperiodic

waves for several reasons. First, MHD simulations of Saturn’s magnetosphere show a larger

region of closed magnetic field lines post dusk than post-midnight (Jia, Hansen, et al., 2012;

Ramer et al., 2017). That Cassini was resident on closed-field lines more frequently post-dusk

than at other local time, potentially explains the higher observed occurrence rate at dusk,
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but not the higher transverse magnetic perturbation power post-dusk. Secondly, we find that

events occur typically once per PPO cycle in the region where the changes in the magnetic

field configuration at a PPO period are particularly large in the simulations (Ramer et al.,

2017). Although the PPO period has been observed to differ slightly between seasons and

northern and southern hemispheres, our median event separation of 10.73 h (Figure 10) is

a close match to the known PPO period range of 10.6 to 10.8 h (Galopeau & Lecacheux,

2000; Gurnett et al., 2005, 2007; Jia & Kivelson, 2012; Provan et al., 2016; Hunt et al., 2014,

2015). The proposed vortical asymmetric flows adopted by Jia, Kivelson, and Gombosi

(2012) generate field-aligned currents and associated pressure pulses that drive many of the

observed PPO signatures in the magnetic field. This leads to global-scale compressions and

expansions (termed breathing by Ramer et al., 2017), as well as north-south motion of the

magnetotail (flapping) at the PPO period of 10.7 h. The flapping motion is most intense

post-dusk and beyond 15RS, a region where most of the QP60 magnetic perturbations are

observed (between ∼10 and ∼30RS. The azimuthal and radial flows end up stretching the

equatorial segments of the flux tubes, but this leads to perpendicular components of the

perturbation field that are antisymmetric about the equator (see Jia, Kivelson, & Gombosi,

2012, Figure 4). We propose that the vertical flapping of the magnetotail once a PPO cycle

excites the even, but not the odd harmonics of the field lines.

Models of field line resonances in realistic field and plasma configurations match many

observed QP wave characteristics (Rusaitis et al., 2021). The even-mode harmonics match

the observed periods of QP30, QP60, and QP120 waves (Figure 3.6), and the eigenfrequencies

vary little with distance and local time in the outer magnetosphere between 10 and 20RS.

Furthermore, the magnetic perturbation amplitude is highest on the portions of flux tube

closer to the ionosphere (magnetic latitude >60◦), compatible with higher observation rates

at mid-to-high latitudes. Nevertheless, events near the equator are observed, though less

frequently. Since the nodes of the harmonics of field line resonances are tightly confined

within the plasma sheet (within ±10◦ magnetic latitude), and the current sheet is expected
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to be flapping and stretching (Ramer et al., 2017), Cassini is unlikely to be resident within

the plasma sheet for long intervals of time (Arridge et al., 2008, 2011). As mentioned before,

the plasma sheet was often bent into a bowl shape, and intermittent encounters with the

plasma sheet at equatorial orbits were rarely longer than 1 or 2 hours (Arridge et al., 2008,

2011). This would make the detection of at least 4 continuous oscillations of ∼1 h waves rare

but could potentially explain the high relative transverse power we observe in the 30min

waves at low latitudes, sometimes higher than the QP60 equivalents. Lastly, the temporal

variability of Saturn’s magnetosphere prevents the observed field line resonances from being

as narrow banded as in the model. The varying density of the equatorial plasma sheet

(Provan et al., 2012) potentially explains why the wave periods observed are not fixed but

vary by ∼20% or more.

Several questions regarding the quasiperiodic fluctuations in the magnetic field remain

unanswered. Although we argue that the stretching and flapping of the magnetotail lead

to kinked field lines with an anti-node just off the equator, suitable for triggering of the

even-mode harmonics, this does not explain why the odd harmonics are not produced by

other triggers. One such trigger could potentially be the periodic global contractions and

expansions of the field by the PPO-generating mechanism. The absence of odd-mode har-

monics in the data lead us to conclude that they are either not excited or are too weak for

our detection algorithm. Secondly, the QP30 and QP120 waves reported in this study were

not found in the previous surveys of magnetospheric data, but as mentioned already, this

may be due to the selection criteria used in previous studies. Therefore, it would be useful

to extend the global QP60 surveys of Roussos et al. (2016) and Palmaerts et al. (2016) to

a wider frequency range. We also observe more frequent observations of the QP60 waves in

the southern hemisphere. The effects of the seasonal variation of the ionospheric Pedersen

conductance, as well as the asymmetry in the conductances between the hemispheres on

the observed field line resonances and the higher southern-hermisphere observational rates,

remain to be studied.
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We found a higher occurrence rate of events in the southern hemisphere over the whole

Cassini mission at Saturn (Figure 3.7) and have not accounted for that difference. A future

study accounting for effects of the north polar shift of the effective dipole (Smith et al., 1980)

and the difference in solar illumination in the two ionospheres on the ionospheric conductance

and field line resonances would be worthwhile. The connection of the QP events to magnetic

reconnection phenomena also remains unclear. It has been noted that the locations of QP60

waves trace to sites where reconnection is expected to take place (Roussos et al., 2016), but

the connection has not been causally established. Delamere et al. (2015) found the highest

rate of magnetodisk reconnection at dusk, but the apparent collocation of QP60 waves may

be coincidental. Of course, recognizing that there are multiple ways to excite resonant waves,

it is also possible that the periodic flapping of the magnetotail is only one of the triggers of

the QP perturbations. Other mechanisms linked, directly or indirectly, to magnetopause or

magnetodisk reconnection, Kelvin-Helmholtz instabilities, or solar-wind induced storms may

be operating, as suggested by Roussos et al. (2016). However, since the power of the QP60

oscillations in the magnetic field diminishes quickly beyond 25RS (Pan et al., 2021), most

of the events are likely to be driven internally rather than externally to the magnetosphere.

The striking periodic modulation of the QP waves in the magnetic field at the PPO

period suggests that one of the leading mechanisms for the generation of the waves is the

flapping motion of the stretched dusk-side magnetotail. We detect three frequency bands in

the magnetic field data of significant power that we label as QP30, QP60, and the QP120

waves, and classify them as even-mode harmonics of field line resonances as in the model of

Rusaitis et al. (2021). QP60 waves, being the most powerful, have been previously linked

with various other signatures in the energetic electron data, ion conics, auroral pulsations,

and plasma waves. It remains to be seen if these signatures are present only in the magnetic

field data or are detectable in other magnetospheric data.
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CHAPTER 4

Frequencies of ULF waves in realistic models of the

terrestrial magnetosphere

4.1 Introduction

The truth is rarely pure and never simple.

— Oscar Wilde

Magnetohydrodynamic (MHD) waves with frequencies ranging from roughly a mHz to

a few Hz are routinely observed in Earth’s magnetosphere by in-situ instrumentation and

ground-based magnetometers. Ultra-low frequency (ULF) waves in this frequency range are

commonly known as Pc1-Pc5 waves, corresponding 0.2 to 600 second period (Jacobs et al.,

1964). Pc3-5 ULF waves have fundamental wavelengths of the order of the magnetospheric

cavity and are important mediators of energy and momentum transport in the magnetosphere

(Ellington et al., 2016).

Following Dungey’s (1955) suggestion that the ULF waves observed by the ground-based

magnetometers are signatures of standing Alfvén waves on closed magnetic field lines, the

field line resonance (FLR) theory was developed to explain the excitation and properties

of the resonant ULF waves (Tamao, 1965; Southwood, 1974; Chen & Hasegawa, 1974).

The groundwork of MHD wave theory was mostly developed in magnetospheric box models,
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where the Earth’s magnetic field is stretched into a uniform field along the z axis with

highly conductive ionospheres at each end (Radoski, 1967a; Southwood, 1974; Southwood &

Kivelson, 1986). The wave equations for field line resonances in dipolar fields were developed

by Cummings et al. (1969) and a generalized theory of standing waves in arbitrary magnetic

field models was formalized by (Singer et al., 1981). However, despite the developments in

the theory of standing Alfvén waves, many approximations continue to be used to estimate

the eigenfrequencies of field line resonances.

One common approximation, especially for field line resonances inside of L (equatorial

field line crossing distance) of 6, is the use of a dipole field to approximate Earth’s magnetic

field (Cummings et al., 1969). The Earth’s magnetic field is known to be close to dipolar at

such close distances to the planet. However, the dipole approximation is sometimes used for

L > 6, where the deviation of the field from dipolar is significant.

The second approximation that is seen in the literature (e.g., Sandhu et al., 2018) is

to estimate the fundamental eigenperiods by using the Wentzel-Kramers-Brillouin (WKB)

method, sometimes referred to as time-of-flight approach (Wentzel, 1926; Kramers, 1926).

The period of the fundamental mode using the WKB approximation is given by 2
∫
ds/vA

(Warner & Orr, 1979), where vA is the Alfvén velocity and the integration is performed along

the field line. Wild et al. (2005) found the time-of-flight technique in a realistic magnetic

field model such as Tsyganenko (1996) a considerable improvement over the time-of-flight

approach in a dipolar approximation. A smaller improvement was seen by using the Singer

et al. (1981) numerical technique instead of the Alfvén transit time (see Figure 1, Wild et

al., 2005). Typical deviations between the time-of-flight and the numerical technique were

found to be within 5 to 30% for field lines with magnetic latitudes of 60 to 75◦.

Finally, there is significant uncertainty in the mass density distribution along the field

lines. Although there are several equatorial plasma density models available covering radial

distances up to L = 10 (e.g., Sandhu et al., 2017; Li et al., 2010; Denton et al., 2022, private

communication), only Sandhu et al. (2017) provide the distribution along the field that is a
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function of geomagnetic activity, MLT, and L. Typically, a simple power law for the mass

density is assumed (Denton et al., 2006). Denton et al. (2006) showed that the power law

index, controlling the gradient of the mass density increasing or decreasing off the equator,

varies with L and MLT. For field lines with L > 6, a significant equatorial enhancement

of the mass density develops (see Figure 8, Denton et al., 2006). Takahashi (2004) also

observed a concentration of heavy ions at the magnetic equator, in agreement with Denton

et al. (2006). Electron density, however, was found to have a minimum at the magnetic

equator in several studies (Goldstein et al., 2001; Denton, 2002; Denton et al., 2002), in

contrast to Sandhu et al. (2017) who found a local maximum.

In this study, we calculate the numerical eigenperiods using the Singer et al. (1981)

approach in the realistic field model of Tsyganenko (1996) (hereafter, referred to as T96)

and two plasma density models by Sandhu et al. (2017, which we will refer to as the S2017

model) and by Denton et al. (2022, which we will refer to as the D2022 model) that cover

the radial distances up to L = 10 at all local times. Both the T96 and the plasma density

models depend on the geomagnetic activity and the solar wind parameters, allowing us

to investigate the field line resonance response to increasingly active geomagnetic times

from quiet time (Dst = 0 nT) to moderate activity (Dst = −100 nT). We evaluate the

fundamental eigenperiods for a dipolar field and Alfvén wave transit time approximations

and compare the eigenperiod deviations between these approximations and the numerical

calculations using the Singer et al. (1981) approach. Additionally, we evaluate the effect on

the fundamental eigenperiods from using different mass distributions along the field lines, as

the power law index is not known accurately.

Understanding the effect of increasing geomagnetic activity and the field line configura-

tion on standing wave resonances is important for understanding many dynamic processes

in the magnetosphere. Field line resonances are also a vital tool for magnetoseismic tech-

niques for estimating the plasma mass density along the field lines from the measured ULF

frequencies by the in-situ spacecraft and ground magnetometers (Takahashi, 2004; Menk &
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Waters, 2013). By understanding the limitations of the field line resonance calculations and

the associated approximations, we can refine the the mass-inversion techniques and better

our understanding of momentum and energy transport throughout the magnetosphere.

Following this introduction in section 4.2, we describe the models used in this study and

the method for calculating the field line resonances. The magnetospheric activity has been

parameterized in the models by using various activity indices (Dst, AE, Kp etc.). In section

4.2.3, we describe the way in which we select values of the indices. Then, in section 4.3,

we present the results of this study in which we calculate the field line resonance periods

for three activity levels and use two different models for electron density and ion mass. In

section 4.4, we discuss how the waves respond to different models and activity levels. Finally,

we summarize our results and compare them to some of the observations of ULF waves.

4.2 Methods

4.2.1 Magnetic Field Model

We use an empirical data-based magnetic field model by Tsyganenko (1995, 1996) (T96). The

T96 model includes contributions from all magnetospheric current systems, has a realistic

shape and size of the magnetopause, and is parameterized by the solar wind dynamic pressure

and the interplanetary magnetic field (IMF). The T96 model is based on a large number of

observations and is considered valid sunward of x=−25RE. Since we limit this study to

x >−10RE in the magnetotail, the field model is sufficient for this study. Our choice of the

magnetic field model is restricted by the density models investigated. The plasma density

model by Sandhu et al. (2017) uses T96 for field line tracing, making T96 most appropriate

for our study.

The T96 user’s manual states that the field model parameters are valid for solar wind

dynamic pressures between 0.5 and 10 nPa, Dst values between −100 and 20 nT, and By

and Bz IMF between −10 and 10 nT. This is suitable for our choice of density models which
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are valid for Dst values between −100 and 0 nT. In our calculations, we ignore the effects of

seasonal dipole tilt and use the time of the spring equinox, 2000 (Mar 19th, 2000, 11:35PM

UT) to give a symmetrical field line configuration.

4.2.2 Plasma Density Model

Most studies of the magnetospheric density distributions use a power law form to describe

the distribution of mass density with radial distance from Earth (Denton et al., 2006), given

by

ne = ne0

( r
L

)−α

(4.1)

where ne0 is the electron density at the equatorial crossing point of a field line, α is a power

law index that can depend on L (the equatorial crossing distance of the field line) MLT ,

and geomagnetic activity.

Both plasma density models use the power law for the general distribution of electron

density and ion mass with radial distance from the Earth, although the model by Sandhu et

al. (2017) also has a term for an equatorial density enhancement/depletion.

4.2.2.1 Denton et al. (2022) Plasma Density Model

We choose the mass and electron density model by Denton et al. (2022, private communi-

cation) for its large radial range of validity (3 ≤ L < 10) and the use of data from multiple

spacecraft.

The mass density, ρm, is inferred from magnetospheric Alfvén frequencies measured by

in-situ spacecraft. For the electron density, ne, the Denton model used the plasma wave data

from CRRES (Combined Release and Radiation Effects Satellite) and RBSP (Radiation Belt

Storm Probes) or the THEMIS (Time History of Events and Macroscale Interactions during

53



Substorms) spacecraft potential.

The mass density at the magnetic equator is given by

log10(ρm) = 1.178 +
6.978

L
− 0.1516L+ 0.003690F10.7

+ 0.1692 cos((MLT − 16.47)π/12)

− 0.8367 tanh(0.1401LKp) + 0.04878Pdyn (4.2)

where L is the equatorial crossing distance of the field line, F10.7 is a 3-day running average

of 10.7 cm solar radio flux, MLT is the magnetic local time, Kp is a 12-h running average

of the Kp index, and Pdyn is a 24-h running average of the solar wind dynamic pressure.

The average ion mass, M , is given by

log10(M) = −0.5938 + 0.08103Kp + 0.002886F10.7 + 0.04025L

+ 0.0005228Ae + 0.06669Kp cos((MLT − 3.48)π/12) (4.3)

where Kp is a 6-h running average of the Kp index and Ae is a 12-h running average of the

auroral electrojet index. We use the power law (4.1) with a power law index (α) of 1 to

model the distribution of the mass and electron densities along the field line.

4.2.2.2 Sandhu et al. (2017) Plasma Density Model

We use a Dst-index dependent model of the electron density and average ion mass by Sandhu

et al. (2017). This model uses Cluster data spanning 2001-2012, particularly the WHISPER

(Waves of High frequency and Sounder for Probing of Electron density by Relaxation) for

electron density and CODIF (Composition and Distribution Function analyzer) for average

ion mass data, The data are binned into six Dst bins between −100 and 10 nT. This plus

the restrictions on the T96 model limits our investigation of the model to relatively weak
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geomagnetic activity. An alternative formulation in terms of Kp dependence is also provided

by Sandhu et al. (2017), but we chose a Dst-index version to use the same geomagnetic index

as the field model.

The electron density model covers all MLT sectors for 4.5 ≤ L < 9.5. A power law

distribution represents the higher-latitude regions of the field lines, and a Gaussian function

describes the equatorial region:

ne = ne0R
−α
norm for Rnorm ≤ 0.8

= a exp

[
−1

2

(
Rnorm − 1

0.1

)2
]
+ ne0 for Rnorm > 0.8 (4.4)

and

Rnorm = r/L (4.5)

ne0 = 101.6+0.00667Dst(1− 0.0952)L+ 3.68 cos(15MLT + 83− 1.18Dst) (4.6)

α = 0.211 + 0.0616 + 0.423 cos(15MLT + 223) (4.7)

a = 100.785+0.00681Dst + 3.47 cos(15MLT + 324) (4.8)

where ne0 is the equatorial electron density, α is the power law index, and a is the maximum

value of the density enhancement at the equator.

The average ion mass, mav, averaged over all measurements in an MLT-L-Dst bin, is

calculated using a modified version of the power law in (4.1):

mav = mav0R
−β
norm (4.9)

where
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mav0 = 19.4 + 0.164Dst − (1.62 + 0.0247Dst)L

+ 2.52 cos(15MLT + 61) (4.10)

and

β = −1.91 + 0.165L+ (0.851 + 0.00559Dst) cos(15MLT + 270) (4.11)

where mav0 is the average ion mass at the magnetic equator and β is the power law index.

The average ion mass model covers all MLT sectors in the region of 5.9 ≤ L < 9.5.

4.2.3 Solar Wind and Interplanetary Magnetic Field Parameters

There exist many indices to parameterize the magnetospheric and geomagnetic activity at

Earth. For example, ring current activity is usually estimated by theDst index obtained from

magnetometer stations near the equator and is a good indication of a storm. The auroral

activity, which correlates with substorm times, is better forecasted with the Ae index derived

from horizontal deviations in the geomagnetic field at observatories in the northern auroral

zone. There are also global magnetic activity indices, most popularly the Kp index, which

has been reliably used for over 70 years as an indicator of geomagnetic variation (Matzka

et al., 2021). Since our chosen field model (T96) already utilizes the Dst index as an input

parameter, we use Dst instead of the Kp index to quantify the strength of the geomagnetic

activity.

We use available OMNIWeb data (https://omniweb.gsfc.nasa.gov/) between 1995

and 2022 for Dst and Kp indices, interplanetary magnetic field, and solar wind dynamic

pressure (see Figure 4.1). We bin the required solar wind and IMF parameters into 10 Dst

bins between −100 and 0 nT and use the median values in each bin for our analysis. We

characterize quiet time as a Dst range of -30 nT < Dst < 0 nT, weak storm periods when
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-30 nT > Dst > -50 nT, and moderate storm activity when -50 nT > Dst > -100 nT, like

Borovsky and Shprits (2017).

We use median values of Kp for each of the Dst bins in the −100 and 0 nT range (Figure

4.2), since one of our chosen density models has a Kp index dependence. The median of Kp

index reaches 5 at -100 nT Dst, which is characterized as a minor disturbance by the NOAA

space weather scale (https://www.swpc.noaa.gov/noaa-scales-explanation). There-

fore, by limiting our density models to Kp < 5 we will remain in the valid range for the

T96 model.

The median of the solar wind dynamic pressure correlates with the geomagnetic activity

index (Dst) from 1.4 nPa at quiet times to 2.7 nPa for Dst of -100 nT (Figure 4.3). The

averages for each Dst bin (grey triangles) and the range of the data (grey whiskers, or 1.5

times the interquartile range) increase significantly more than the medians.

As the Bz component of the IMF decreases below zero, the Dst index generally decreases.

At quiet time (Dst = 0 nT), Bz is nearly zero. A median Bz value of -5 nT roughly

corresponds to a moderate activity of Dst of -100 nT, which is the limit of our investigation

(Figure 4.4). The median of the By component does not correlate with increased geomagnetic

activity, as expected (Figure 4.5). The By component of the IMF can induce a nonuniform

By in the closed magnetosphere, leading to asymmetries in the field line foot points and

azimuthal flow in the ionosphere (Tenfjord et al., 2015), but we ignore such effects to focus

on a symmetrical magnetosphere configuration in this study. The Bx and By components

are not usually significant for geomagnetic storms, and, therefore, we set By and Bx IMF to

zero for all levels of geomagnetic activity.

The 10.7 cm solar radio flux (F10.7) is kept constant at 150 sfu (solar flux units), which

is roughly the average value observed during the spring equinox of 2000 (Tapping, 2013).
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Figure 4.1: OMNIWeb data between 1995 and 2022, shown as grey dots for each data point

for: (a) Dst index, (b) Kp index, (c) solar wind dynamic pressure, (d) Bz IMF, (e) By IMF

(f) auroral electrojet index (AE), and (g) 10.7cm flux. The superimposed box plots show the

lower, second, and upper quartiles. The second quartiles (medians) are plotted with vertical

orange lines and text inserts. The lower and upper whiskers (error bars) outside the box

plots denote the deviations from the lower and upper quartiles by 1.5 interquartile ranges

(difference between the upper and the lower quartile).
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Figure 4.2: Kp index against Dst index from OMNIWeb data between 1995 and 2022, shown

in (a) as a 2d histogram showing counts in each Kp −Dst bin, and (b) as Kp box plots for

each of the ten Dst bins between -100 nT and 0 nT. The box plots show the lower, second,

and upper quartiles. The medians are indicated with horizontal orange lines and text inserts.

The lower and upper whiskers outside the box plots denote the deviations from the lower

and upper quartiles by 1.5 interquartile ranges.
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Figure 4.3: Solar wind dynamic pressure (Pdyn) against Dst index from OMNIWeb data

between 1995 and 2022, shown in (a) as a 2d histogram showing counts in each Pdyn −Dst

bin, and (b) as Pdyn box plots for each of the ten Dst bins between -100 nT and 0 nT.

The box plots show the lower, second, and upper quartiles. The medians are indicated with

horizontal orange lines and text inserts. The lower and upper whiskers outside the box plots

denote the deviations from the lower and upper quartiles by 1.5 interquartile ranges.
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Figure 4.4: Bz of the interplanetary magnetic field (BzIMF) against Dst index from OMNI-

Web data between 1995 and 2022, shown in (a) as a 2d histogram showing counts in each

Bz −Dst bin, and (b) as Bz box plots for each of the ten Dst bins between -100 nT and 0

nT. The box plots show the lower, second, and upper quartiles. The medians are indicated

with horizontal orange lines and text inserts. The lower and upper whiskers outside the box

plots denote the deviations from the lower and upper quartiles by 1.5 interquartile ranges.
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Figure 4.5: Magnetospheric and solar wind parameters inferred from the medians binned by

Dst index bins in OMNIWeb data show in (a) for Kp, By IMF, Bz IMF, and Pdyn and (b)

for AE index and 10.7cm flux (F10.7).

62



4.2.4 Standing Wave Model

The field line eigenfrequencies are calculated in a realistic magnetic field model and the

plasma density models given above using the method of Singer et al. (1981). The same

approach has been used to calculate the field line resonances in Saturn’s magnetosphere in

Rusaitis et al. (2021), and the code (available at https://github.com/rusaitis/AlfvenWaver)

has been adapted in this study for Earth’s magnetosphere.

4.3 Results

Using an adaptation of the Rusaitis et al. (2021) model for Earth’s magnetosphere, we

calculate the eigenperiods using the T96 magnetic field model with the plasma density (1

proton/cm3) used by Singer et al. (1981). A comparison of the m = 1 eigenperiods for

midnight field lines in the T96 magnetic field model to those that Singer et al. (1981) obtained

using the Olson-Pfitzer model (cf. Figure 3 of Singer et al., 1981) is shown in Figure 4.6.

Panel 4.6a shows a close match between the Singer et al. (1981) eigenperiods (dotted yellow

line) and the eigenperiods from the T96 model (solid red line). The match is even closer to

the eigenperiods calculated for dipolar field lines (dashed red line), which is not surprising

since the Olson-Pfitzer field model field lines (e.g., see Figure 15 of Walker, 1976) are more

dipolar than those in the Tsyganenko model. Despite the differences in the two magnetic field

models, the deviations of the eigenperiods from the two models and a dipole field are similar

within 12RE (Panel 4.6b). Close to the planet within 6RE the higher order multipoles of

the internal field contribute little, and the eigenperiods in a realistic field model differ by

only a few percent percent from those in a dipole. Outside of 6RE, the deviation between

the eigenperiods increases significantly to nearly 20% at L = 12. Beyond L = 12, the Olson-

Pfitzer magnetic field model differs greatly from the T96 model, and our calculations diverge

from those reported in Singer et al. (1981).

We calculate the eigenmodes for T96 field lines at all magnetic local times between 3
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Figure 4.6: (a) Field line eigenperiods for the first three modes (shown as red, green, and blue

lines) against equatorial field line crossing distance, L, fundamental eigenperiod estimate by

using the Alfvén transit time (white lines), and the equivalent calculation for the m = 1

mode by Singer et al. (1981) in the Olson-Pfizer field model, shown with a yellow dotted

line. The dashed lines show the corresponding calculations in dipolar field lines starting from

the same equatorial positions as T96 field lines (solid lines). (b) Percent deviation of the

corresponding eigenperiods from eigenperiods of dipolar field lines against L. The deviation

of the fundamental mode in the Olson-Pfizer field model is shown in yellow.
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and 10RE using the data-based plasma density models of Sandhu et al. (2017, Equations

4.4-4.10) and Denton et al. (2022, Equations 4.2-4.3). Since the T96 magnetic field model

and the two plasma density models are parameterized by the Dst or the Kp indices, as well

as the solar wind and the interplanetary magnetic field (IMF), we use the median values of

the input parameters (Kp index, solar wind dynamic pressure, Bz component of the IMF,

and the Ae index) from Figure 4.1 for each Dst bin. For most of the results in this section

(Figures 7-21), we show calculations for three values of the Dst index and the corresponding

parameters: 0 nT for quiet times, -50 nT for weak storm times, and -100 nT for moderate

geomagnetic activity.

The equatorial electron densities for the two plasma density models between 3 and 10RE

at all magnetic local times are shown in Figure 4.7. The left-side panels show electron den-

sities for the S2017 model and the right-side panels are showing the corresponding densities

for the D2022 model. Top-to-bottom, the panels show the electron densities for increasing

geomagnetic activity from 0 to −100 nT. Most notably, the electron densities in the S2017

model decrease significantly from 20 cm−3 at L = 5 for Dst = 0 nT to ∼ 10 cm−3 at L = 5

for Dst = −50 nT and fall below 1 cm−3 at dusk for Dst = −100 nT. With decreasing values

of Dst, the densities become less uniform in azimuth, with the dawn sector becoming denser

than other local times. In comparison, the electron densities in the D2022 model are more

isotropic and show little change with decreasing Dst. The two model densities are closest to

each other near L = 6 for all Dst and most local times, but the S2017 densities are higher

than D2022 for L > 6 and lower for L < 6, except for the severe depletion in the dusk-side

L > 5 sector. It is important to note that the model of S2017 is valid for a narrower radial

range (between 4.5 and 9.5RE) than the D2022 model (3 to 10RE).

The equatorial average ion masses are also significantly different in the two models (Figure

4.8). The average ion masses remain highest in the post-dusk sector at all values of Dst in

the S2017 model (Panels 4.8a,c,e). The average ion masses in S2017 model decrease with

decreasing Dst for L < 5 and increase for L > 5. In contrast, the average ion masses increase
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Figure 4.7: Equatorial electron densities in GSM coordinates between 3 and 10RE, separated

left-to-right by the plasma density model: (a), (c), (e) for Sandhu et al. (2017) and (b), (d),

(f) for Denton et al. (2022). Vertically, the panels are labeled with the corresponding Dst

index: (a), (b) for 0 nT, (c), (d) for -50 nT, and (e), (f) for -100 nT. The sunward direction

is towards the left (positive x), also shown by the illuminated Earth cartoon.
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with decreasing Dst in D2022 model for all MLTs and radial distances but remain highest

in the post-midnight sector at all levels of geomagnetic activity. The starkest difference

between the models is at quiet time (Dst = 0 nT), for which the average ion mass is about

1 amu at all local times and radial distances in the D2022 model but is nearly 8 amu at

L = 5.5 for the S2017 model. The average ion mass in the Denton2022 model increases

rapidly with decreasing Dst, up to oxygen mass (16 amu) and above at Dst = −100 nT in

the post-midnight sector.

The noon-midnight meridian electron densities and average ion masses along the field

lines are shown in Figure 4.9 and Figure 4.10 for field lines traced from the equator between

3 and 10RE. Although both density models use a power law in r (radial distance) (Equation

4.1) from which the variation of density along the field can be extracted, the S2017 model

has an equatorial electron density enhancement that is especially visible in the magnetotail

plasma sheet at Dst = −100 nT (Panel 4.9e). In comparison, the electron densities in

the D2022 model change more gradually along the field for the choice of power law index

α = 1 (Panels 4.9b,d,f). For the D2022 model, we let the equatorial ion masses populate

the whole field lines. In the S2017 model, the mass varies as a power law in r, with heavy

ion population found mostly near the equator at Dst = 0 nT (Panel 4.10a). Interestingly,

despite the differences in the electron densities and the average ion masses between the two

models, the Alfvén velocities along the field show many similarities (Figure 4.11). In both

models, the Alfvén velocity drops to nearly 100 km/s in the midnight plasma sheet for L > 5

within ±1RE from the magnetic equator. At higher magnetic latitudes (λ > 30◦), the Alfvén

velocities reach 1000 km/s or more due to much stronger magnetic field. The noon-meridian

Alfvén velocities in the two models are similar, with faster speeds at lower-latitude (λ < 30◦)

in the D2022 model for L > 5, but slower near the equator for L < 5.

We can see the midnight-meridian field line electron densities and the resulting eigen-

frequencies in more detail in Figures 4.12 to 4.17. The results for the Sandhu et al. (2017)

model for Dst index values of 0 nT, -50 nT, and -100 nT are shown in Figures 4.12, 4.13,
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Figure 4.8: Equatorial average ion masses in GSM coordinates between 3 and 10RE, sepa-

rated left-to-right by the plasma density model: (a), (c), (e) for Sandhu et al. (2017) and (b),

(d), (f) for Denton et al. (2022). Vertically, the panels are labeled with the corresponding

Dst index: (a), (b) for 0 nT, (c), (d) for -50 nT, and (e), (f) for -100 nT. The sunward

direction is towards the left (positive x), also shown by the illuminated Earth cartoon.
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Figure 4.9: Noon-midnight meridian plots of electron densities along the field lines in GSM

coordinates, separated left-to-right by the plasma density model: (a), (c), (e) for Sandhu et

al. (2017) and (b), (d), (f) for Denton et al. (2022). Vertically, the panels are labeled with the

corresponding Dst index: (a), (b) 0 nT, (c), (d) -50 nT, and (e), (f) -100 nT. The sunward

direction is towards the left (positive x), also shown by the illuminated Earth cartoon. The

field lines are traced at noon and midnight from the same equatorial positions between 3

and 10RE in the T96 magnetic field model.
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Figure 4.10: Noon-midnight meridian plots of average ion masses along the field lines in GSM

coordinates, separated left-to-right by the plasma density model: (a), (c), (e) for Sandhu et

al. (2017) and (b), (d), (f) for Denton et al. (2022). Vertically, the panels are labeled with the

corresponding Dst index: (a), (b) 0 nT, (c), (d) -50 nT, and (e), (f) -100 nT. The sunward

direction is towards the left (positive x), also shown by the illuminated Earth cartoon. The

field lines are traced at noon and midnight from the same equatorial positions between 3

and 10RE in the T96 magnetic field model.
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Figure 4.11: Noon-midnight meridian plots of Alfvén velocities along the field lines in GSM

coordinates, separated left-to-right by the plasma density model: (a), (c), (e) for Sandhu et

al. (2017) and (b), (d), (f) for Denton et al. (2022). Vertically, the panels are labeled with the

corresponding Dst index: (a), (b) 0 nT, (c), (d) -50 nT, and (e), (f) -100 nT. The sunward

direction is towards the left (positive x), also shown by the illuminated Earth cartoon. The

field lines are traced at noon and midnight from the same equatorial positions between 3

and 10RE in the T96 magnetic field model.
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and 4.14, and the corresponding results for the Denton et al. (2022) model are shown in

Figures 4.15, 4.16, and 4.17. Panel 4.12a shows quiet-time (Dst = 0 nT ) midnight electron

densities of Sandhu et al. (2017) for field lines between 3 and 10RE in the noon-midnight

meridian plane, with solid lines showing results for T96 field model, and dashed lines showing

field line properties for dipolar field lines traced from the same equatorial positions. The

equatorial enhancements of Sandhu et al. (2017) are clearly evident in Panel 4.12b showing

the electron densities against magnetic latitude for the field lines selected in Panel 4.12a.

The enhancement is confined to 10 to 20◦ off the magnetic equator and is strongest at larger

L.

The eigenfrequencies for the first four modes for midnight magnetotail field lines are

shown in Panel 4.12c with red, green, blue, and magenta lines. The eigenfrequency estimates

based on the WKB approximation are shown with white lines. The calculations in T96 field

model are shown with solid lines, and the equivalent calculations for dipolar field lines (with

the same density model and equatorial crossing points) are shown with dashed lines. The

eigenfrequencies for the dipole field are nearly identical to those in T96 inside of 6RE. This

is expected due to the T96 model differing little from a dipole inside of 6RE. For L > 6, the

eigenperiods calculated in T96 model diverge from those calculated in a dipole field (Panel

4.12d). The panel shows the difference between T96 eigenperiods (TT96) and those from

the dipole (Td) as a percentage of the dipole eigenperiods ((TT96 − Td)/Td × 100%). The

eigenperiod deviation is within 5% inside of L = 6 but gets larger to 15 to 20% at L = 10

for all modes. The deviation is negative for all values of L, meaning that the eigenperiods

in the T96 field model are shorter than those in a dipole field for field lines that cross the

equator at the same radial distance.

For weak geomagnetic activity (Dst = −50 nT), Figure 4.13 shows results for the S2017

density model for field lines traced from the same equatorial positions as in Figure 4.12. The

magnetotail field lines are more stretched tailward as seen in Panel 4.13a, and the equatorial

electron density enhancement is significantly larger and more narrowly confined in magnetic
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latitude than at the quiet time configuration (Panel 4.13b). The electron densities also

decrease by a factor of 2 to 3 at all magnetic latitudes and radial distances, and for L > 8

field lines the densities get lower than 1 cm−3. The eigenfrequencies start to diverge from

those in a dipole field outside of L = 5. At L = 10, the percent deviations in the eigenperiods

for all modes decrease to negative 35%, whereas within L = 5 the T96 eigenperiods match

those of a dipole even more closely than at quiet times.

At moderate geomagnetic activity of −100 nTDst, the trend seen for lowerDst continues:

the field lines get more stretched, the electron densities become lower by a factor of 2 to

4, the enhancement gets confined closer to the equator, and the eigenperiods of all modes

deviate even more from their values in a dipole field, decreasing by 40-45% at L = 10 (Figure

4.14). Inside of L = 5, however, there is a significant positive deviation of up to 20% – the

T96 eigenperiods become larger than those in a dipole.

Similar changes to eigenperiods with increasing geomagnetic activity are observed in the

D2022 density model (Figures 4.15 to 4.17). The electron density model does not have an

equatorial enhancement term like Sandhu et al. (2017); thus, the electron density variations

along the field look more gradual (Panel 4.15a). However, the equatorial electron densities

are generally lower than Sandhu et al. (2017), but higher close to the ionosphere at high

magnetic latitudes. The resulting eigenperiods are lower than the ones calculated in the

S2017 model: the first four modes have eigenperiods between 1 and 10min at L = 10 for

Denton et al. (2022) but are roughly between 5 and 25min for Sandhu et al. (2017) in

the quiet-time magnetosphere. Nevertheless, the deviation of the eigenperiods in T96 from

eigenperiods in a dipole model is like that in the S2017 density model: at L = 10 and Dst = 0

nT, the deviation is nearly negative 20% for the m = 1 mode (Panel 4.15d).

For weak geomagnetic activity (Dst = −50 nT), the midnight electron densities in the

D2022 model decrease by a factor of 2 or less (Panel 4.16b) and eigenperiods decrease by a

few minutes to respective values for dipolar field lines (Panel 4.16c). At L = 10, the deviation

of the eigenperiods in T96 from those calculated in a dipole field increases to negative 30%
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Figure 4.12: Field line parameters and eigenfrequencies in the midnight magnetotail for

Sandhu et al. (2017) plasma density model and T96 magnetic field model for Dst index of 0

nT. Panel (a) shows electron densities along the field lines in the noon-midnight meridian,

panel (b) shows the electron densities along the field against magnetic latitude, panel (c)

shows the eigenfrequencies for the first 4 modes (red, green, blue, and magenta lines) and the

frequency of the fundamental mode calculated from the Alfvén transit time (white lines),

and panel (d) shows the percent deviations between the eigenperiods calculated for T96

magnetic field model and dipole field lines, with a negative deviation representing a slower

eigenperiod for the T96 field lines compared to the dipole field lines that cross the equator

at the same radial distance. The dotted lines in the panels (a), (b), and (c) show the results

for dipolar field lines, and solid lines show results for field lines in T96.
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Figure 4.13: Field line parameters and eigenfrequencies in the midnight magnetotail for

Sandhu et al. (2017) plasma density model and T96 magnetic field model for Dst index of

-50 nT. Panel (a) shows electron densities along the field lines in the noon-midnight meridian,

panel (b) shows the electron densities along the field lines against magnetic latitude, panel

(c) shows the eigenfrequencies for the first 4 modes (red, green, blue, and magenta lines)

and the frequency of the fundamental mode calculated from the Alfvén transit time (white

lines), and panel (d) shows the percent deviations between the eigenperiods calculated for

T96 magnetic field model and dipole field lines, with a negative deviation representing a

shorter eigenperiod for the T96 field lines compared to the dipole field lines that cross the

equator at the same radial distance.. The dotted lines in the panels (a), (b), and (c) show

the results for dipolar field lines, and solid lines show results for field lines in T96.
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Figure 4.14: Field line parameters and eigenfrequencies in the midnight magnetotail for

Sandhu et al. (2017) plasma density model and T96 magnetic field model for Dst index

of -100 nT. Panel (a) shows electron densities along the field lines in the noon-midnight

meridian, panel (b) shows the electron densities along the field against magnetic latitude,

panel (c) shows the eigenfrequencies for the first 4 modes (red, green, blue, and magenta

lines) and the frequency of the fundamental mode calculated from the Alfvén transit time

(white lines), and panel (d) shows the percent deviations between the eigenperiods calculated

for T96 magnetic field model and dipole field lines, with a negative deviation representing a

shorter eigenperiod for the T96 field lines compared to the dipole field lines that cross the

equator at the same radial distance. The dotted lines in the panels (a), (b), and (c) show

the results for dipolar field lines, and solid lines show results for field lines in T96.
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(panel 4.16d), a bit lower, but similar to the deviation calculated with the S2017 model. At

moderate geomagnetic activity (Dst = −100 nT), we find higher eigenperiods than in the

dipole field inside of L = 6, but much lower outside of L = 6 (Panel 4.17d).

Eigenfrequencies for both density models at other local times can be seen in the equatorial

eigenfrequency visualizations in Figure 4.18. Panels 4.18a,c,e show eigenfrequencies for the

S2017 model for increasing geomagnetic activity (Dst = 0 nT, -50 nT, and -100 nT), and

panels 4.18b,d,f show equivalent calculations for D2022 model. The eigenfrequencies are

similar between the two models inside of 5RE, except for Dst = −100 nT, and outside

of 5RE where eigenfrequencies are generally lower by a factor of 2 or three in the D2022

model. An obvious exception is the strong post-dusk increase of eigenfrequencies in the

S2017 model for moderate geomagnetic activity (Dst = −100 nT) (Panel 4.18e). At dusk,

the eigenfrequencies are larger by a factor of 4 or more than at dawn. In comparison, there is

a much smaller increase of eigenfrequencies in the dusk sector in the D2022 model, with the

dusk-side eigenfrequencies larger by 50-100% at most. A similar comparison for eigenperiods

is shown in Figure 4.19. Panels 4.19a-f show the fundamental eigenperiods inside of 5RE are

generally less than 5min. The outer field lines between 5 and 10RE range in eigenperiods

between 5 and 20min. Generally, the eigenperiods for L > 5 are greater by 50 to 100% in

the S2017 model than in D2022, except for lowest value of Dst (-100 nT), for which the

two models produce eigenperiods that agree to within 30% everywhere except the outermost

dusk sector (Panels 4.19e-f).

The deviations in the m = 1 eigenperiods between a dipole field and a realistic field model

(T96) are visualized in an equatorial plane in Figure 4.20. As seen in Figure 4.14 and Figure

4.17, the T96 eigenperiods become larger than those of a dipole inside of L = 6 for moderate

values of Dst. This effect is consistent between the two density models. The positive

deviations inside of L = 6 are largest at post-dawn sector, implying nearly 20% higher

eigenperiods than those for dipolar field lines. Outside of L = 6, the negative deviations

are highest post-dusk for all geomagnetic indices and both density models, reaching 40-50%
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Figure 4.15: Field line parameters and eigenfrequencies in the midnight magnetotail for

Denton et al. (2022) plasma density model and T96 magnetic field model for Dst index of 0

nT. Panel (a) shows electron densities along the field lines in the noon-midnight meridian,

panel (b) shows the electron densities along the field against magnetic latitude, panel (c)

shows the eigenfrequencies for the first 4 modes (red, green, blue, and magenta lines) and the

frequency of the fundamental mode calculated from the Alfvén transit time (white lines),

and panel (d) shows the percent deviations between the eigenperiods calculated for T96

magnetic field model and dipole field lines, with a negative deviation representing a shorter

eigenperiod for the T96 field lines compared to the dipole field lines that cross the equator

at the same radial distance. The dotted lines in the panels (a), (b), and (c) show the results

for dipolar field lines, and solid lines show results for field lines in T96.

78



Figure 4.16: Field line parameters and eigenfrequencies in the midnight magnetotail for

Denton et al. (2022) plasma density model and T96 magnetic field model for Dst index of

-50 nT. Panel (a) shows electron densities along the field lines in the noon-midnight meridian,

panel (b) shows the electron densities along the field against magnetic latitude, panel (c)

shows the eigenfrequencies for the first 4 modes (red, green, blue, and magenta lines) and the

frequency of the fundamental mode calculated from the Alfvén transit time (white lines),

and panel (d) shows the percent deviations between the eigenperiods calculated for T96

magnetic field model and dipole field lines, with a negative deviation representing a shorter

eigenperiod for the T96 field lines compared to the dipole field lines that cross the equator

at the same radial distance. The dotted lines in the panels (a), (b), and (c) show the results

for dipolar field lines, and solid lines show results for field lines in T96.
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Figure 4.17: Field line parameters and eigenfrequencies in the midnight magnetotail for

Denton et al. (2022) plasma density model and T96 magnetic field model for Dst index

of -100 nT. Panel (a) shows electron densities along the field lines in the noon-midnight

meridian, panel (b) shows the electron densities along the field against magnetic latitude,

panel (c) shows the eigenfrequencies for the first 4 modes (red, green, blue, and magenta

lines) and the frequency of the fundamental mode calculated from the Alfvén transit time

(white lines), and panel (d) shows the percent deviations between the eigenperiods calculated

for T96 magnetic field model and dipole field lines, with a negative deviation representing a

shorter eigenperiod for the T96 field lines compared to the dipole field lines that cross the

equator at the same radial distance. The dotted lines in the panels (a), (b), and (c) show

the results for dipolar field lines, and solid lines show results for field lines in T96.
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Figure 4.18: Equatorial plots of the m = 1 eigenfrequencies in GSM coordinates between 3

and 10RE, separated left-to-right by the plasma density model: (a), (c), (e) for Sandhu et

al. (2017) and (b), (d), (f) for Denton et al. (2022). Vertically, the panels are labeled with

the corresponding Dst index: (a), (b) for 0 nT, (c), (d) for -50 nT, and (e), (f) for -100 nT.

The sunward direction is towards the left (positive x), also shown by the illuminated Earth

cartoon.
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Figure 4.19: Equatorial plots of the m = 1 eigenperiods in GSM coordinates between 3 and

10RE, separated left-to-right by the plasma density model: (a), (c), (e) for Sandhu et al.

(2017) and (b), (d), (f) for Denton et al. (2022). Vertically, the panels are labeled with the

corresponding Dst index: (a), (b) for 0 nT, (c), (d) for -50 nT, and (e), (f) for -100 nT.

The sunward direction is towards the left (positive x), also shown by the illuminated Earth

cartoon.
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negative deviation of the eigenperiods at L = 10.

The estimates of the fundamental eigenperiods using WKB approximation deviate sig-

nificantly from the calculated m = 1 eigenperiods found by Singer et al. (1981) (Figure

4.21). The eigenperiods are generally larger than the transit time estimates by 40 to 70

percent inside of 6RE but can increase to 80 to 120 percent for the outermost field lines

near L = 10. The deviations from Sandhu et al. (2017) (Panels 4.21a,c,e) are larger by

∼20% than at equivalent local times and radial distances in the Denton et al. (2022) model

(Panels 4.21b,d,f). The deviations gradually increase from about 65% at 4.5RE to 80-120%

in the Sandhu et al. (2017) model for all Dst. However, the local time with the largest

deviations for L > 6 changes from post-dawn at quiet time (Panel 4.21a) to pre-dawn for

weak geomagnetic activity (Panel 4.21c) to post-midnight at moderate geomagnetic activity.

In contrast, the deviations in the Denton et al. (2022) model are largest at noon and smallest

at midnight for L > 5 for all geomagnetic activity levels, and inside of L = 5 the decrease is

60% at Dst = 0 (Panel 4.21b) and 40% at Dst = −100 nT (Panel 4.21f).

We also investigated the effect of the power law index α (Equation 4.1) on the eigenperiods

in the Denton et al. (2022) density model (Figure 4.22). Panels 4.22a-c show the electron

densities against magnetic latitude (a), resulting eigenfrequencies versus L (b), and the

deviations of the eigenperiods versus local time (c) between the models with α = 1 (solid

lines) and α = 2 (dashed lines). Panels 4.22d-f compare the models with α = 1 and α = 3.

Changing the power law index from 1 to 2 increases the eigenperiods by 5% at all local times

and radial distances (Panel 4.22c), whereas increasing the power law index from 1 to 3 can

lead to a 10% difference (Panel 4.22f).

We investigate the effects of varying the spread of the electron density distribution along

the field line while keeping the total mass content of the field line constant (Figure 4.23).

In the Panels a-c we show the effects of adding an equatorial electron density enhancement

modeled as a Gaussian distribution at the equator with a width parameter σ (standard

deviation of a Gaussian) of 1 and 2. The enhancement is added on top of the quiet-time
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Figure 4.20: Equatorial plots of the m = 1 eigenperiod deviations between the eigenperiods

calculated for T96 magnetic field model and dipole field lines at same equatorial positions in

GSM coordinates between 3 and 10RE, separated left-to-right by the plasma density model:

(a), (c), (e) for Sandhu et al. (2017) and (b), (d), (f) for Denton et al. (2022). Vertically, the

panels are labeled with the corresponding Dst index: (a), (b) for 0 nT, (c), (d) for -50 nT,

and (e), (f) for -100 nT. The sunward direction is towards the left (positive x), also shown

by the illuminated Earth cartoon.

84



Figure 4.21: Equatorial plots of the deviations between the m = 1 eigenperiods and the

estimates of the eigenperiods using the Alfvén transit time in GSM coordinates between 3

and 10RE, separated left-to-right by the plasma density model: (a), (c), (e) for Sandhu et

al. (2017) and (b), (d), (f) for Denton et al. (2022). Vertically, the panels are labeled with

the corresponding Dst index: (a), (b) for 0 nT, (c), (d) for -50 nT, and (e), (f) for -100 nT.

The sunward direction is towards the left (positive x), also shown by the illuminated Earth

cartoon.
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values in the Denton et al. (2022) model. Panel 4.23a shows the electron density against

magnetic latitude for field lines at L = 5, 7, and 9 in a quiet-time magnetotail, with σ = 1

enhancement represented by a solid line and σ = 2 by a dashed line. In this scenario, the

amplitude of the enhancement is relatively strong – we add 20% of the total electron content

along the respective field lines in the unchanged Denton et al. (2022) model with power

law index α = 1. Panel 4.23b shows the eigenfrequencies for the midnight field lines, and

panel 4.23c visualizes the deviation of the eigenperiods between the two models with σ = 1

and σ = 2 in an equatorial plane between 3 and 10RE. Panels 4.23d-f show equivalent

results but for a smaller enhancement amplitude of 10% of the total electron content along

the field lines, and Panels 4.23g-i show the results for the same 10% enhancement but for

enhancement distribution width parameter σ = 2 and σ = 3. The effect of redistributing the

mass content of the enhancement is nearly uniform in local time and radial distance, leading

to a decrease of the eigenperiods by 15% for a strong enhancement with σ changing from 2

to 1 (Panel 4.23c). For smaller equatorial electron density enhancements, the redistribution

of the electron content leads to a decrease of the eigenperiods from 10% (Panel 4.23f) to less

than 5% (Panel 4.23i).

4.4 Discussion

We have used realistic magnetic field and plasma density models to evaluate terrestrial field

line eigenfrequencies for increasing levels of geomagnetic activity. The resulting eigenperiods

in the two chosen density models differ by up to a factor of 2 for most levels of geomagnetic

activity despite substantially different electron density and ion mass equatorial values. This

illustrates the stronger dependence of the eigenperiods on the magnetic field model rather

than the plasma density model.

The two plasma density models used in this study are both data-driven, yet they diverge

significantly from each other. The S2017 model equatorial electron densities drop with
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Figure 4.22: Midnight field lines between L = 3 and L = 10 for electron density power law

index α = 1 (a-c) and α = 2 (d-f). Panels (a) and (b) show the electron density against

magnetic latitude for reference field lines with α = 1 (solid lines) and field lines with α = 2

or 3 (dashed lines). Panels (b) and (e) show the eigenperiods of the first four harmonics

(red, green, blue, and magenta lines) and the eigenperiod of the fundamental estimated

from the Alfvén transit time (white lines). Panels (c) and (f) show deviations between the

eigenperiods for field lines with α = 2 or 3 and the reference eigenperiods with α = 1. A red

(positive) deviation indicates a larger eigenperiod for field lines with α = 2 or 3 compared

to field lines with a lower value of α = 1 or 2.
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Figure 4.23: Midnight field lines between L = 3 and L = 10 for equatorial electron density

enhancement width parameter (standard deviation of a normal distribution) σ = 1 and

a high-amplitude enhancement (20% of the total field line electron content) (a-c), σ = 1

and a moderate-amplitude enhancement (10% of the total field line electron content) (d-f),

and σ = 2 and a moderate-amplitude enhancement (10% of the total field line electron

content) (d-f). Panels (a), (d), and (g) show the electron density against magnetic latitude

for reference field lines with σ = 1 or 2 (solid lines) and field lines with σ = 2 or 3 (dashed

lines). Panels (b), (e), and (h) show the eigenperiods of the first four harmonics (red, green,

blue, and magenta lines) and the eigenperiod estimates using the Alfvén transit time (white

lines). Panels (c), (f), and (i) show deviations between the eigenperiods for field lines with

σ = 2 or 3 and reference eigenperiods with σ = 1 or 2 respectively. A blue (negative)

deviation indicates a lower eigenperiod for field lines with σ = 2 or 3 compared to reference

field lines with a lower value of σ = 1 or 2.
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radial distance less quickly (from 20 cm−3 at L = 5 to 5 cm−3 at L = 10) than do the D2022

equatorial densities (40 cm−3 at L = 5 to 2 cm−3 at L = 10) for quiet-time magnetosphere

(Figure 4.7a-b). As geomagnetic activity increases, the D2022 model remains more uniform

as a function of MLT than does the S2017 model – there is a significant depletion of electron

densities in the dusk region in the S2017 model at Dst = −100 nT, while D2022 shows a

small enhancement in the densities in the pre-dusk region (Figures 4.7e-f). As Dst decreases,

the D2022 electron densities do not show a significant change beyond the shift in the highest

values towards the pre-dusk sector, whereas the S2017 density values drop at least by a factor

of 2 between Dst = −100 nT and Dst = 0 nT. The closest the two models come to each

other is at around equatorial field line crossing distance of L = 6 for most Dst and MLT

values, but for L < 6 the S2017 model generally predicts lower densities than the D2022,

and for L > 6 it predicts higher values.

The general decrease of electron densities with L is expected due to an increase of flux

tube volume and length with higher L, as well as due to depletion of plasma by magnetotail

processes (e.g. reconnection). This agrees with multiple previous observations (Sheeley et

al., 2001; Denton et al., 2006). Sheeley et al. (2001) find no clear dependence of plasma

number density with geomagnetic activity in the CRRES data between L = 3 to 7, however,

there is a significant dependence on Dst in the S2017 model. Sandhu et al. (2017) attributes

the depletion of electron densities at fixed L with decreasing Dst to multiple processes such

as reduced refilling rates of the plasmaspheric electrons with Dst (Denton, 2002; Denton et

al., 2006), earthward motion of the plasmapause, and erosion of the plasmasphere due to

enhanced ring currents. The enhanced ring currents during active geomagnetic times is also

suggested to cause the electrons to move into open drift paths that would lose them to the

magnetopause (Sandhu et al., 2017).

The depletion of the electron densities in the S2017 model at dusk for Dst = −100 nT

is attributed to the “plasmaspheric bulge” moving approximately from dusk to noon with

decreasingDst (Sandhu et al., 2017). However, such strong depletions and MLT asymmetries
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are not present in the D2022 model (Figure 4.7f). In fact, there is an enhancement of the

electron densities in the pre-dusk sector in the D2022 model at almost the same location

whereas there is a depletion in the S2017 model. Such pre-dusk enhancement can also be seen

in the statistical survey of the plasma densities observed by the THEMIS mission reported by

Li et al. (2010). Li et al. (2010) reports the largest plasma densities on the dayside, peaking

in the post-noon region due to the presence of plasmaspheric plumes (see Figure 1a, Li et

al., 2010). Li et al. (2010) also observe an increase of night-side equatorial plasma densities

for L between 6 and 8 compared to the quiet time, though such enhancements, suggested to

be due to injection of plasma sheet electrons, are not seen in either of the models chosen in

this study. Nevertheless, the D2022 density model values are close to the observations of Li

et al. (2010), and therefore, it may be the more reliable estimate of the plasma density (at

least for a quiet-time magnetosphere).

The equatorial ion mass values differ significantly between the S2017 and D2022 models

at all levels of geomagnetic activity (Figure 4.8). The ion mass enhancement peaks in the

post-dusk region in the S2017 model, and in the post-midnight region in the D2022 model.

Except for the moderate geomagnetic activity of Dst = −100 nT, the ion mass increases with

decreasing L in Sandhu et al. (2017). Sandhu et al. (2016) attribute this to mass dispersion

effects that make heavier ions convect to lower L values than the lighter ions. The heavy

ion torus outside the plasmasphere is also suggested to play some role (Sandhu et al., 2016).

This enhancement of ion mass near the plasmasphere reaching 16 amu is not found in the

D2022 model. At quiet times, the average ion mass in the D2022 model is approximately

1 amu at all radial distances (Figure 4.8b), and with decreasing Dst the outer post-midnight

sector has an ion mass enhancement of up to 18 amu.

The electron density and average ion mass distributions are approximated by using a

power law varying with radial distance (Equation 4.1) in both models. A positive power law

index (α) is commonly used for the electron density distribution (Cummings et al., 1969;

Goldstein et al., 2001; Denton et al., 2006). Our implementation of the D2022 model has
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constant power law index (α = 1) for the electron density that is a good first-order approx-

imation to the electron distribution with radial distance (Denton, private communication).

In addition to the power law, Sandhu et al. (2017) use an equatorial Gaussian enhancement

that is most intense at large L in the magnetotail (Equation 4.4). Equatorial mass density

enhancements have been noted before: Denton et al. (2006) found mass density depletion off

the magnetic equator with decreasing Dst index. The equator-peaked distributions for dis-

turbed conditions were due to the depletion of plasmaspheric electron density and enhanced

ring current (Denton et al., 2006). Equatorial enhancements of the average ion mass are also

expected due to centrifugal forces, which affect the heavier ions more than the lighter ones

in stretched regions of magnetic field (Takahashi, 2004; Denton et al., 2006). The equatorial

average ion mass enhancement is particularly visible in the noon-midnight meridian plot of

field lines in the S2017 model (Figure 4.10a). In comparison, electron densities in the D2022

model change gradually along the field with α = 1 (Figure 4.9b,d,f). The average ion mass is

held constant along the field with α = 0 for simplicity, which makes the ion mass dependent

only on the equatorial value at the field line crossing point (panels 4.10b,d,f)

We combined the electron density and the ion mass distributions along the field lines to

calculate the mass density and the resulting Alfvén velocity along the field (Figure 4.11).

Since the Alfvén speed is proportional to B/√ρ, it is more sensitive to the variation in the

magnetic field magnitude (B) than to the mass density (ρ). This explains why the Alfvén

velocities in the noon-midnight meridian do not differ significantly between the two density

models: they both result in a thin plasma sheet region of 1RE thickness at the equator with

Alfvén velocity of ∼100km/s for L > 5 (Figure 4.11). The Alfvén velocities are generally

greater in the Denton et al. (2022) model (panels 4.11b,d,f) than in the Sandhu et al. (2017)

model (panels 4.11a,c,e), which is the one of the main reasons for higher-frequency harmonics

in the Denton et al. (2022) model (compare Figures 4.12 and 4.15, for example). The profiles

of Alfvén velocities along the field lines are otherwise similar for two models, owing to the

significant contribution to Alfvén velocities of the strength of the magnetic field.
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The stronger influence of the magnetic field model over the plasma density models can also

be seen by comparing the fundamental eigenperiods between the models. In the quiet-time

magnetosphere, the difference is insignificant at most MLT, but in the pre-noon sector it is as

high as 20% for all geomagnetic activity levels and for both density models (Figure 4.20). For

moderate geomagnetic activity (Dst = −100 nT), the positive deviation of the fundamental

eigenperiod is present at other local times up to 5RE but is still strongest in the pre-noon

sector (Panels 4.20e-f). A dipole field is a close approximation at geosynchronous orbit

(leading to eigenperiods correct within 5% at L = 6) but can lead to significant eigenperiod

error inside of L = 6, especially in the pre-noon sector, which might be due to more distorted

magnetic field lines at this local time. The eigenperiods calculated in a dipole field are up

to 20% lower than in the T96 model. Outside of L = 6, the magnetic field lines typically

are stretched/lengthened compared to dipolar field lines, resulting in rapid decrease of the

T96 eigenperiods with L. The deviation at L = 10 increases from ∼20% at quiet-time

(Panels 4.20a-b) to nearly 50% in the presence of moderate geomagnetic activity (Panels

4.20e-f). Therefore, we recommend the use of a realistic magnetic field model (such as T96)

for calculations of field line resonances at all radial distances, even inside of L = 6.

As expected from looking at the generally higher Alfvén velocities in the D2022 model

(Figure 4.11), the calculated fundamental eigenperiod is typically lower in the D2022 model

than in the S2017 model, especially at L > 6 (Figure 4.19). In the D2022 model, the

eigenperiods for field lines between L = 5 and L = 10 range between 5 and 15 minutes, but

in the S2017 model the eigenperiods remain close to 15-20 min at L = 10, except near dusk

for Dst = -100 nT where the eigenperiods drop to a few minutes (Figure 4.19e) due to a

depletion of electron densities (see Figure 4.7e). In contrast, the eigenperiods in the D2022

model have a MLT minimum pre-dusk for moderate geomagnetic activity (Figure 4.10f), and

are within 30-50% of the S2017 model eigenperiods at most MLT and L. At quieter time,

when Dst is only slightly negative, the eigenperiods in D2022 model are lower than in the

Sandhu2017 model by a factor of 2 or more (Panels 4.19b,d). Comparing these results to the
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THEMIS observations of Pc5-6 waves by Takahashi et al. (2015) and Zhang et al. (2018), we

find the eigenperiods in the Denton2022 model match the observations more closely. Both

Takahashi et al. (2015) and Zhang et al. (2018) find the typical period of ULF waves at L = 5

to be around 3min, and roughly 6min at L = 10. Except for the moderate geomagnetic

activity, these eigenperiods are very close to those calculated in the D2022 model (see Figure

4.19).

We find that with increasing geomagnetic activity, the eigenperiods generally increase in

the D2022 model for L > 5. This is likely due to a significant increase in the ion mass for

more negative Dst. However, the ULF waves observed by Zhang et al. (2018) closer to storm

time have slightly lower periods than non-storm-time waves by a few minutes or more. The

eigenperiods calculated in the S2017 model generally decrease with geomagnetic activity, but

the resulting periods are still higher than the typical observed periods by Takahashi et al.

(2015) and Zhang et al. (2018). These disagreements between the models and observations

remain a subject for further study.

THEMIS observations of ULF waves at dusk and midnight indicate that for L > 10 the

observed Pc5-6 periods vary little with L (Takahashi et al., 2015; Zhang et al., 2018). We

find a reduced eigenperiod dependency on L calculated in the region of L > 8, especially

at moderate geomagnetic activity when the field is substantially stretched. Since the effect

occurs for both density models (although more pronounced for the S2017 model), we conclude

that the stretched field configuration is the main contributor to this effect. A similar behavior

has been reported at Saturn, where the 60-min-period field line resonances occur at large

regions of the outer magnetosphere (Rusaitis et al., 2021). Once the terrestrial plasma

density models extending beyond L = 10 become available, it would be insightful to test if

the observed ULF periods in the magnetotail can be reproduced.

A common approximation for calculating field line resonance periods is to use the WKB

method (e.g. Sandhu et al., 2018; Takahashi et al., 2016). Comparing the m = 1 eigenperiod

to the estimate of the fundamental using the WKB approach in both plasma density models
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and increasing levels of geomagnetic activity (Figure 4.21), we find that the deviation between

the two eigenperiods is typically between 40% and 100%. The difference is smaller closer to

the planet than further out, but can vary with geomagnetic activity, which can significantly

distort the field lines. Therefore, the WKB approximation should only be used as a rough

estimate of the period.

One of the main uncertainties in our implementation of D2022 model is the choice of the

power law index α for the variation of mass density along the field line. Although α = 1

is expected to be a good approximation (Denton, private communication), we investigated

the effects of varying α from 1 to 2 and 3. Figure 4.22c shows the deviation of fundamental

eigenperiods between field lines with α = 1 and α = 2. The deviation is relatively small,

within 5% for all MLT and radial distances. This deviation increases up to 10-15% when

comparing field lines with α = 1 and α = 3 (Figure 4.22f). Nevertheless, we conclude that

the choice of the power law index is less important to the correct estimation of field line

resonance eigenperiods than the use of a realistic field model or using the wave equation

of Singer et al. (1981) for calculation of eigenperiods. The error in eigenperiods due to the

choice of α is expected to be within 5% to 15%, whereas the error due to a dipole field instead

of a more realistic field model can range from 20% to 50% (Figure 4.20). The relatively small

error due to a varying the power law index is primarily because of the equatorial plasma

density is more important to the eigenperiod than the off-equator plasma. At the magnetic

equator, the weak magnetic field leads to the lowest Alfvén speed along the field lines. We

expect small differences of these errors with other choices of plasma density models and

magnetospheric field models, but the relative size of these errors should remain similar.

Redistributing the equatorial mass density along the field line can also lead to significant

deviations in eigenperiods. We investigated this by introducing a Gaussian equatorial elec-

tron density enhancement on top of the D2022 model with a power law index α = 1, and

varying the width of this enhancement along the field while keeping the total mass content

constant. As expected, when more of the mass content is redistributed to higher latitudes
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where the field is stronger, the eigenperiods decrease by 5% to 15% depending on the ampli-

tude of the equatorial enhancement. For an equatorial electron density enhancement of 20%

of the total electron content along the field line, the electron density distribution against

magnetic latitude (Figure 4.23a) is like the density distributions seen in the S2017 model

(Figure 4.12b). Changing the width of the enhancement σ (standard deviation) from 1 to 2

leads to an eigenperiod decrease by 20% (Panel 4.23c). For a lower equatorial enhancement

(10% of the total electron content along the field line), the eigenperiod deviation is abount

10% smaller (Panel 4.23f). As seen in the Sandhu2017 model, the amplitude and width of

such an equatorial enhancement changes significantly with L, MLT, and geomagnetic activ-

ity (see Figures 4.12-4.14), and such strong variations of mass density along the field can

lead to significant errors in the field line eigenperiods if the distribution along the field is not

chosen correctly. However, we are not certain how common such large deviations of mass

density along the field lines are in a typical magnetosphere, as most plasma density models

are constructed from near-equatorial measurements (e.g., Li et al., 2010). However, as long

as the equatorial electron density and average ion mass are known well, the off-equatorial

distribution of mass density should not lead to errors much greater than 20%, as seen in our

investigation of the power law index in Figure 4.22.

4.5 Summary

To summarize, we have investigated field line resonances at Earth in a realistic field model

up to L = 10 for two data-derived plasma density models and varying levels of geomagnetic

activity. We closely reproduced the eigenperiods reported by in-situ THEMIS observations

using the Denton et al. (2022) density model for quiet-time and weak geomagnetic activity.

Generally, the eigenperiods of the fundamental are found to increase with L from a

few min at L = 5 to between 5 and 15min at L = 10. Between L = 8 and L = 10, the

eigenperiods show reduced dependency on L, especially at moderate geomagnetic activity. As
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for the eigenperiod variation with L for L > 10, we lack a reliable plasma density model and

can only speculate that the eigenperiods would change less with L than closer to the planet.

If the plasma density models we investigated can be extrapolated, then the trend we see in

the eigenperiods between L = 8 and L = 10 might continue, reducing the variation of the

eigenperiod with L. That would be compatible with some of the ULF observations between

L = 10 and L = 30 that detect a reduced dependence of the frequency with equatorial

crossing distance of the field lines (e.g., Takahashi et al., 2015; Zhang et al., 2018). This is

likely due to the stretched magnetic field in the tail together with gradually lower equatorial

plasma densities with L which keeps the Alfvén velocities nearly constant at the equator

with radial distance. A similar lack of eigenperiod variation with L is observed at Saturn

between 10RS and 20RS (Rusaitis et al., 2021).

Additionally, we have evaluated the effects of several common approximations on the

eigenperiods of field line resonances. We found that both dipole-field and WKB approxima-

tions can result in significant errors in the estimates of eigenperiods even inside of L = 6.

WKB and dipole-field approximation should only be used for a rough estimation of the

eigenperiods.

The greatest uncertainty in using the Denton et al. (2022) came from assuming the power

law index (α, equation 4.1) for the distribution of mass density. As suggested by Denton

(private communication), we assumed α = 1, but we found little effect on the eigenperiods

from assuming α = 2. We have not investigated a flat distribution of the mass density along

the field, but we suspect it would not have a significant effect on the eigeneperiods.

A more thorough comparison between the calculated eigenperiods for increasing levels of

geomagnetic activity and the Pc5-6 ULF observations remains to be completed. A following

study will compare the eigenperiods in D2022 model with the recently updated THEMIS

ULF database (Hartinger, private communication).
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CHAPTER 5

Summary and Ongoing Work

It is the mark of an educated mind to be able to entertain a thought without accepting it.

— Aristotle

Despite the differences in size, rotational velocities, and plasma distribution, the magne-

tospheres of Saturn and Earth exhibit multi-harmonic resonances along field lines in a wide

range of local times and radial distances. We have modeled field line resonances in both

magnetospheres and have reproduced many of their observed properties.

In chapter 2, we modeled the quasiperiodic 60-min waves observed in Saturn’s outer

magnetosphere by using Alfvén wave resonance theory in a realistic magnetic field model

and data-driven plasma density distribution. The modeled eigenfrequencies for the second

and higher modes were found to be independent of invariant latitude, map to large regions

of the magnetosphere (least to 20RS), with the fourth harmonic modes having close to 1-

hour eigenperiods. The model predicted that the normalized amplitudes for these modes in

the magnetic field at high latitudes would exceed their amplitudes in the plasma sheet, in

agreement with the observations of more frequent occurrences at mid-to-high latitudes.

Using 13 years of the Cassini magnetometer data from Saturn’s magnetosphere, we de-

tected signatures of quasiperiodic pulsations corresponding with periodicities around 30 min-

utes (QP30), 60 minutes (QP60), and 120 minutes (QP120), which closely match to the
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lowest even harmonics of the field line resonance model in a realistic magnetic field/plasma

density configuration. Chapter 3 describes the details and findings of this study. We found

the quasi-periodic waves come in wave trains of 4-to-5 hours before decaying in amplitude,

and reoccur in the magnetic field data at the rate of planetary period ocillations ( 10.7 h).

Judging by the highest relative power of the quasi-periodic waves in the post-dusk sector

and inside of 25RS, we suggest that these even-mode harmonics of Saturn’s magnetic field

lines are excited by the periodic vertical flapping of Saturn’s magnetotail.

In chapter 4, we adapted our field line resonance model to Earth’s magnetosphere us-

ing the Tsyganenko (1996) magnetic field model and several plasma density models. We

examined the wave modes for increasing levels of geomagnetic activity and compared the

eigenperiods to the ULF wave periods observed by the THEMIS mission. We found a close

match between the eigenperiods calculated in the Denton et al. (2022) model and the Pc5-6

waves reported by Takahashi et al. (2015) and Zhang et al. (2018), agreeing within roughly

20-30% for quiet-time and weak geomagnetic activity. A more thorough comparison of

the eigenperiods with an updated THEMIS ULF wave database for different levels of Dst

(Hartinger, private communication) will be completed in a follow up study. It will help us

understand if the eigenperiods of field line resonances should decrease or increase with higher

levels of geomagnetic activity since in our study, the eigenperiods increased with lower Dst in

the D2022 model, but generally decreased in the S2017 model. There is some observational

evidence that storm-time ULF waves have lower eigenperiods than non-storm-time (Zhang

et al., 2018), perhaps due to plasma mass depletion and dipolarization of the field lines. Our

follow up study will address this question in more detail.

The distribution of mass density along the field was found to be less important in the

eigenperiod calculations than the equatorial plasma mass or the field line geometry. Since

the detected ultralow frequency (ULF) waves in the Pc4 and Pc5 bands can be used for

inferring the mass content of the field lines, the results quantify the main uncertainties in

using that technique.
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The field line resonances at Earth in this dissertation have been modeled up to L = 10,

constrained by the radial validity of the plasma density models, but there is a growing

number of observations of standing-wave like structures in the magnetotail region up to 30RE

(Takahashi et al., 2015; Zhang et al., 2018). The observed ULF waves in the magnetotail have

reduced dependence on the invariant latitude (or the equatorial crossing point of the field

line), similar to the observed and modeled eigenfrequencies in Saturn’s outer magnetosphere

from 10 to 20RS (Rusaitis et al., 2021). Our results show mostly decreasing eigenfrequencies

with increasing L between L = 3 and L = 8, but between L = 8 and L = 10 the eigenperiods

show a reduced dependence on L, especially at moderate geomagnetic activity. We do not

have a reliable plasma density model past L = 10 to verify if this behavior is reproducible

for field lines deeper in the magnetotail. It would be worthwhile to investigate the resulting

eigenperiods once a reliable plasma density model for L > 10 becomes available. We suspect

this lack of eigenperiod dependence on L further down the tail comes primarily from the

effects of a stretched magnetic field, as well as gradually decreasing equatorial plasma density

with radial distance. As a result, the Alfvén velocity near the equator is roughly constant

with radial distance. This is like the the case at Saturn where the QP60 waves are found

over a large region of outer magnetosphere.

It is important to note some key differences between the two magnetospheres. The com-

bined effects of rapid rotation and shear size of the gas giants lead to important centrifugal

forces that vastly exceed those of Earth. In the Kronian magnetosphere, there are significant

sources of plasma and dust from the moon Enceladus. The mass loading from Enceladus

and the centrifugal forces lead to the mass density distribution along the field being con-

siderably different than that at Earth. This tightly confines the nodes of the harmonics of

field line resonances within the plasma sheet (within ±10◦ magnetic latitude, see Rusaitis

et al., 2021). The IMF at Saturn is probably not as effective in coupling the solar-wind

momentum and energy to the magnetosphere as at Earth, because the magnetic pressure

provides a weaker contribution to the total pressure in the magnetosheath (Russell et al.,
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2016). Therefore, we are convinced by the regular modulation of the QP waves at Saturn at

the PPO period that the associated field line resonances are driven internally. At Earth, due

to the stronger influence of the solar wind, it is likely that most of the field line resonances

are driven externally by processes such as perturbations in the solar wind dynamic pressure

(Claudepierre et al., 2010; Ellington et al., 2016).

Our study is not without limitations – our work was limited to many of the approxima-

tions used by Singer et al. (1981). We have assumed a perfectly conducted ionosphere, ignor-

ing the development and decay of the standing Alfvén waves. Our solutions for the toroidal

and poloidal modes were also uncoupled, simplifying the numerical calculation. Neverthe-

less, we believe these approximations are justified for understanding the basic properties of

field line resonances at Earth and Saturn.

Recently, there have been significant developments in the 3D field line resonance theory

that cannot be ignored. Claudepierre et al. (2010) were the first to show that solar-wind

driven toroidal mode field line resonances can develop in a self-consistent, global MHD.

However, coupled MHD waves in a realistic magnetic geometry have many difficulties, and

treatment of the ionosphere in the MHD model is non-trivial, since the ionosphere plays an

important role in the structure and evolution of FLRs (Ellington et al., 2016). Wright and

Elsden (2020) investigated the propagation and coupling of MHD waves in a modified dipole

coordinate system, showing that FLRs can cross L shells with a polarization that is neither

toroidal or poloidal. More recently, a comprehensive study of global MHD simulations of

resonant waves excited by solar wind pulses has been published by Archer et al. (2022).

They found many aspects of the standing Alfvén modes agreeing with the box and axially

symmetric dipole models. However, additional nodes along field lines were found in the

perpendicular and compressional components of the magnetic field that are not present in

the displacement/velocity. It would be worthwhile to use the self-consistent fields and plasma

densities of these MHD models and investigate the similarities and differences of the resulting

eigenmodes with the approach used in this dissertation.
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