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Abstract 

Widely recognized as one of the worst natural disaster in Puerto Rico’s history, hurricane María 

made landfall on September 20, 2017 in southeast Puerto Rico as a high-end category 4 

hurricane on the Saffir-Simpson scale causing widespread destruction, fatalities and forest 

disturbance. This study focused on hurricane María’s effect on Puerto Rico’s forests as well as 

the effect of landform and forest characteristics on observed disturbance patterns. We used 

Google Earth Engine (GEE) to assess the severity of forest disturbance using a disturbance 

metric based on Landsat 8 satellite data composites with pre and post-hurricane María. Forest 

structure, tree phenology characteristics, and landforms were obtained from satellite data 

products, including digital elevation model and global forest canopy height. Our analyses 

showed that forest structure, and characteristics such as forest age and forest type affected 

patterns of forest disturbance. Among forest types, highest disturbance values were found in 

sierra palm, transitional, and tall cloud forests; seasonal evergreen forests with coconut palm; 

and mangrove forests. For landforms, greatest disturbance metrics was found at high elevations, 

steeper slopes, and windward surfaces. As expected, high levels of disturbance were also found 

close to the hurricane track, with disturbance less severe as hurricane María moved inland. 

Results demonstrated that forest and landform characteristics accounted for 34% of the variation 

in spatial forest spectral disturbance patterns. This study demonstrated an informative regional 

approach, combining remote sensing with statistical analyses to investigate factors that result in 

variability in hurricane effects on forest ecosystems. 
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1 Introduction 

Hurricanes are major natural disturbances of temperate and tropical forests in the coastal regions 

of North and Central America, and the Caribbean Islands (Boose et al. 1994, Everham and 

Brokaw 1996, Mabry, et al. 1998, McNab et al. 2004). The island of Puerto Rico has frequent 

encounters with hurricanes. Since 1700, Puerto Rico has experienced over 80 hurricanes (Boose, 

Foster, and Fluet 1994). Among those hurricanes, hurricane Hugo (1989) and hurricane Georges 

(1998) stimulated significant research on the effects of hurricane disturbance on tropical forests 

(e.g., Walker 1991a, Brokaw and Grear 1991, Uriarte et al. 2005). Depending on hurricane 

intensity and landfall duration, forest impacts vary greatly, including defoliation, small and large 

branches loss, and the snapping and uprooting of stems (Lugo 2008).  

 

At the local scale, wind disturbance is influenced by forest type, stand characteristics, and tree 

species (Boose, Foster, and Fluet 1994: Negrón Juárez et al. 2010), and related to species 

adaptability, stem density, and collateral effects (Negrón Juárez et al. 2014). Different tree 

species vary in their vulnerability to hurricane disturbances (Zimmerman et al. 1994, Canham et 

al. 2010) and in their recovery pathways following wind disturbance (e.g., Walker 1991a, 

Zimmerman et al. 1994, Uriarte et al. 2009, Canham et al. 2010). Tree mortality is mainly due to 

uprooting and broken stems. Older forest stands often experience greater structural loss and basal 

area losses than younger stands (Everham and Brokaw 1996, Foster et al. 1999, Flynn et al. 

2010). 

  

At the landscape scale, forest change and structural loss from tropical cyclones is influenced by 

topography (Boose et al. 1994, Foster et al. 1999, Flynn et al. 2010). Previous studies have 
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shown that forests growing at high elevations and on windward slopes and ridges are more 

susceptible to wind disturbance (Everham and Brokaw 1996, Arriaga 2000, Bellingham and 

Tanner 2000, Boose et al. 2004). Valleys provide protection to forests from strong wind, which 

tends to result in lower levels of disturbance (Negrón Juárez et al., 2014). However, valleys may 

also amplify disturbances, as the wind can be constricted and accelerated (Everham and Brokaw 

1996).  

 

At the regional scale, significant correlations have been found between wind speed and forest 

structural losses (Chambers et al. 2007, Zeng et al. 2009, Negrón Juárez et al. 2014a, Schwartz et 

al. 2017). Wind speed decreases as a hurricane moves inland, and it decreases at larger radii from 

the eyewall of the storm (Boose, Serrano, and Foster 2004, Negrón Juárez et al. 2014). Wind 

speed is further modified by topography (Philippopoulos and Deligiorgi, 2012). Negrón Juárez et 

al. (2014) showed that wind speed explains 20% of the observed variation in disturbance 

intensity and could be used as a predictor to assess forest disturbance. Boose et al. (1994) 

developed a simple meteorological model, HURRECON, which combines information on the 

track, size, and intensity of a hurricane and the corresponding land cover to estimate wind speed. 

The estimated wind maps from the model supplement limited wind observations and provide 

high accuracy in reconstructing historical wind maps (see details in Feng et al. 2019). 

 

Most previous studies on forest disturbance intensity were based on repeated field surveys and 

ground-based measurements. While these traditional approaches provide more detailed and 

precise local data, they are time-consuming and expensive for investigating the full extent and 

the magnitude of disturbance at larger scales. Due to the lack of landscape scale forest 



 5 

disturbance maps, most forest disturbance studies can only explain the local disturbance variance 

using several factors collected from ground data. Few studies have addressed the potential for a 

number of mapped predictor variable layers and associated statistical analyses on forest impact 

variability at the landscape scale (Negrón Juárez et al. 2014). Currently, remote sensing and 

spatial analysis tools have rapidly developed and emerged as effective methods to investigate 

large-scale forest disturbance metrics after hurricanes, enabling greater insight into factors that 

influence spatial and temporal variation in forest disturbance and recovery processes. 

 

Satellite remote sensing approaches can be employed to quantify the effects of forest disturbance 

from local to global scales and at different temporal resolutions (Frolking et al. 2009, Chambers 

et al. 2007, Zhu, Woodcock, and Olofsson 2012, Negrón Juárez et al. 2014, Baumann et al. 

2014). Landsat imagery with high spatial resolution (30 meters) has been successfully applied to 

detect forest disturbances in a number of studies, and Moderate Resolution Imaging 

Spectroradiometer (MODIS) data with high temporal resolution (daily) enable time series 

analyses of hurricane disturbances (Chambers et al. 2007; Negrón Juárez et al. 2014; Helmer et 

al., 2010; Kennedy, Yang, and Cohen, 2010). Landsat–MODIS data fusion has become a useful 

method, which combines moderate spatial and high temporal resolution, to quantify and explain 

some of forest disturbance patterns (Chambers et al., 2007; Hilker et al., 2009; Xin et al., 2013; 

Negrón Juárez et al., 2014). However, few researchers have carried out landscape-scale studies 

on the factors which affect the spatial distribution of these disturbance patterns. Moreover, 

traditional ground-based field validations are time-consuming and costly. High spatial resolution 

data, such as Panchromatic IKONOS with 1-meter resolution and QuickBird satellite data with 

0.7-m resolution, has been used to quantify local tropical forest mortality (Frolking et al., 2009; 
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Clark et al., 2004). In this study, we used high spatial resolution airborne images to assist in 

validating larger-scale forest disturbance patterns. 

 

Hurricane María made landfall in Puerto Rico on September 20, 2017, as Category 4 hurricane 

on the Saffir–Simpson scale (Pasch et al. 2018), producing unprecedented forest disturbance in 

Puerto Rico (Uriarte et al. 2019). In this study, we use satellite imagery to quantify the effects of 

hurricane María on forests in Puerto Rico, and analyze a large number of landscape-scale factors 

that affect the spatial variance in forest disturbance. The use of Google Earth Engine (GEE) 

(Gorelick et al, 2017) allowed us to combine data from different sources, including observations 

from satellite and aerial imaging systems, topographic, land cover, and GIS datasets, for a 

comprehensive understanding on the effects of Hurricane María on Puerto Rico forests. The 

objectives of this study were to: 

1) Develop a GEE remote sensing data analysis tool for rapidly quantifying spatial variability in 

forest disturbance following a hurricane landfall;  

2) Study the landscape factors that affect the patterns and severity of forest disturbance intensity;  

  

We also developed a number of user interfaces tools to share our results, which allow a larger 

community with access to maps and analysis tools for the hurricane affected area.  

2 Study area 

The island of Puerto Rico is located in the Caribbean (centered at 18.2°N, 66.4°W). Forests 

cover about 60% of Puerto Rico, and all the forests fall within the subtropical belt of Holdridge 

Life Zone System (Holdriodge 1967, Harris et al. 2012). The forest types vary widely, including 

drought deciduous forests, semi-deciduous forests, seasonal evergreen forests, and evergreen 
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forests. The wettest forest types are found at higher elevations, while the driest forest types are in 

southern and southwestern Puerto Rico. Hurricanes are the primary natural disturbance causing 

widespread impacts to ecosystems and human livelihoods (Miller and Lugo 2009). 

3 Hurricanes 

In the past 50 years, two major hurricanes hit Puerto Rico, reaching up to 175 km h-1 maximum 

wind speed. Past hurricanes and minor storms affected ecosystems, human populations, and 

infrastructure (see summary of effects in Tanner et al. 1991). Following Hurricane Irma, 

Hurricane María made landfall near Yabucoa Harbor, Puerto Rico with the maximum sustained 

wind speed around 250 km h-1. This research focused on the combined effects of these two 

hurricanes in extreme active 2017 hurricane season, with an emphasis on Hurricane María.  

4 Data and Methods 

4.1 Multi-spectral Remote Sensing Data 

Landsat 8 Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS) surface reflectance 

data were used in this study. To represent the pre-disturbance period images from June 1, 2016 to 

September 30, 2016 were used, and the for the post-disturbance period images from October 1, 

2017 to January 30, 2018. Only images with less than 40% cloud cover were used. The two 

slightly different time periods were chosen to generate cloud-free pre and post hurricane images 

that cover most of the island and try to minimize the bias associated with seasonal phenology. 

All the remote sensing images were identified, processed, and analyzed using Google Earth 

Engine (Gorelick et al. 2017).  
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Images from Landsat 8 Surface Reflectance have been atmospherically corrected using Landsat 8 

Surface Reflectance Code (LaSRC) to meet geometric and radiometric quality requirements. 

Cloud and shadow mask were created using the data quality assessment band (BQA) in Landsat 

8 and applied to the images. Post-hurricane images were radiometrically calibrated and 

topographic illumination corrected (see Feng et al. 2018 for details). The overlapping images 

were composited according to their cloud cover with the least cloudy images on the top. Two 

false color remote sensing images for the pre-hurricane (Figure 3a) and post-hurricane periods 

(Figure 3b) were generated. 

 

4.2 Landform characteristics 

Hurricane wind speed is the main driver of affecting the severity of forest disturbance. However, 

on land hurricanes wind speeds are affected by (1) elevation (Luo et al., 2008; Boose, Foster, and 

Fluet, 1994), (2) slope, (3) distance from the landfall of the storm (Irish et al., 2008; Powell, 

1982; Luo et al., 2008), (4) distance from the hurricane track (Boose, Foster, and Fluet, 1994; 

Irish et al., 2008; Gannon and Martin, 2014; Xi et al., 2008), and (5) windwardness as a proxy 

for aspect exposure (Pouteau and Stoll, 2012; Boose, Foster, and Fluet, 1994). We explored how 

these landform affected forest disturbance.  

The Shuttle Radar Topography Mission (SRTM) digital elevation dataset (Jarvis, Reuter, Nelson, 

and Guevara, 2008) was used to characterize landforms affected by hurricanes in Puerto Rico. 

The slope and aspect data were generated on the basis of the elevation data. The track of 

hurricane María was acquired from the National Tropical Center, NOAA. We assumed that 

hurricane María’s landfall line was perpendicular to its track, so each point on the parallel line to 

the landfall line had the same distance. The data regarding the distance from the hurricane 
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landfall (LFproximity) and the distance from the hurricane track (HTproximity) were then 

generated using the ArcGIS 10.6 Euclidean distance function in the spatial analysis tool 

(Environmental Systems Resource Institute, ESRI, Redlands, California).  

Aspect and hurricane track direction, were transformed into a windwardness index (Fig. 1). We 

assumed that the wind along the hurricane track had the maximum wind speed, so the area with a 

southeastern aspect facing the strongest wind was assigned the highest windwardness index of 

180. Inversely, the windwardness of the leeward side was 0.  

 

Fig. 1 Transformation of the windwardness indexes from aspects. Darker blue represents higher wind speed. 

 

4.3 Forest Structure Data 

The forest canopy dataset was based on a fusion of spaceborne lidar data (2005) from the 

Geoscience Laser Altimeter System (GLAS) and ancillary geospatial data (Simard et al., 2011). 

The Puerto Rican forest types and forest age class data were produced based on Landsat imagery 
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classification, aerial photo interpretation, and time series map analysis (Helmer et al., 2002; 

Helmer and Kennaway., 2007; Helmer et al., 2008).  

 

4.4 Spectral Mixture Analysis  

To map forest disturbance severity produced by Hurricane María, we conducted spectral mixture 

analysis (SMA) (Adams et al. 1995; Shimabukuro and Smith 1991) on Landsat composites. 

SMA quantifies per pixel fraction of each endmember (Adams et al. 1995), including green 

vegetation (GV), non-photosynthetic vegetation (NPV), and shade (see Feng et al. 2018 for 

details). Our focus was only on the forested areas, and hardly any bare ground was observed in 

the forests through the remote sensing images, so no soil endmember was included. The GV 

endmember was selected using the pre-cyclone images. The NPV endmember was easily 

recognized and obtained in the post-cyclone images, because exposed wood and surface litter 

showed high values in middle infrared reflectance band. The shade endmember was obtained 

using the spectra of water (Adams and Gillespie, 2006) to account for the effects that related to 

the view angle, topography, shading, and shadows (Adams and Gillespie, 2006; Roberts, Adams, 

Smith, 1993). The shade proportion was removed by re-summing GV and NPV to 1 (Adams and 

Gillespie, 2006). After this normalization, the changes in NPV (ΔNPV) were calculated as NPV 

post-hurricane María minus NPV pre-hurricane María (Fig. 4b), which provides a quantitative 

measure of the changes in the dead vegetation, woody biomass, and surface litter associated with 

the hurricane disturbance (Chambers et al. 2007, Negrón Juárez et al. 2011, Feng et al. 2018). 
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4.5 Time series of the enhanced vegetation index (EVI) 

We used the time series of the EVI across the island for the temporal analysis of hurricane 

María’s effects on the forested ecosystem . EVI is a vegetation index with increased sensitivity in 

heavily vegetated areas. Therefore, the forested areas affected by hurricane María were expected 

to show low values of EVI. We determined if these values were in the range of the interannual 

variability of EVI in Puerto Rico. The MODIS EVI product was calculated as EVI=G*(NIR-

RED) / (NIR+ a*RED-b*BLUE+L) (Justice et al. 1998; Huete et al., 2002). EVI is appropriate 

for tracking tropical forest disturbances (e.g., Huete et al. 2002, Huete et al. 2006). We generated 

a time series of MODIS EVI to determine the temporal severity of the forest disturbance caused 

by hurricane María compared with other events during the study period in Puerto Rico.  

 

4.6 Google Earth Engine Platform 

Google Earth Engine (GEE) (Gorelick et al. 2017) has enabled high-performance, parallel 

remote sensing analyses. Large numbers of geospatial datasets can be found on its cloud-based 

platform, and associated remote sensing tools can be accessed using JavaScript API. GEE makes 

it easy to access powerful computing resources for processing very large datasets without 

shouldering the IT burden. Its web-based interactive development environment is suitable for 

demonstrating and sharing the visualization of results (Gorelick et al., 2017). GEE has been used 

in a wide variety of disciplines. It can provide sufficient computing power in global land use and 

land cover change studies (Hansen et al., 2013; Pekel et al., 2016). GEE can also be used for 

regional studies, including quick assessments of natural disaster mapping (Coltin et al., 2016) 

and disease risk mapping (Sturrock et al., 2014).  
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4.7 Regression Analysis 

Statistical analyses were conducted in R v. 3.4.4 (R core team, 2013). A series of full and 

reduced linear regression models were developed to analyze the effects of the forest structure and 

the landform characteristics on the hurricane disturbance. First, a series of simple linear 

regression models were built by analyzing the disturbance and the factors of elevation, slope, 

aspect, windwardness, distance from the hurricane track, distance from the landfall, forest age, 

forest types, and the pre-hurricane GV ratio, individually. Then, a multiple linear regression 

model was constructed by entering the forest disturbance (represented by ΔNPV) as the 

dependent continuous variable, and all the factors were entered as independent variables. The 

forest age variable was converted into interval scales by extracting the median from each forest 

age category. While all the other variables were continuous, the forest type was calculated as a 

categorical variable in the regression. A sample of 50,000 pixels (1.44 % of the total 3,480,048 

pixels) was used in the analysis.  A total of 1446 pixels (2.89% of the total sample) were 

identified as outliers and removed based on their extremely large Cook’s distances, which 

indicated pixels overly influential to the regression results. These outliers can result from 

misclassification of forested pixels, atmospheric scattering, and topographic illumination. The 

Student’s t-test was performed to test the null hypothesis H0 that there is no difference between 

the forest disturbance for each of the factors. The P value was calculated to test the significance 

level of the factors. The significance level was set at a = 0.05. Relative importance was 

computed to calculate the proportionate contribution each independent variable makes to R2. 
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4.8 G-LiHT derived disturbance 

High-resolution (3-4 cm ground resolution) images were captured using Goddard's LiDAR, 

Hyperspectral & Thermal Imager (G-LiHT) by NASA (Cook et al. 2013) before (March 2017) 

and after hurricane Irma and hurricane María hit Puerto Rico (March 2018). High resolution 

RGB images from the G-LiHT aerial photography platform were used to derive comparable 

DNPVs as ground validation data for Landsat-derived DNPV forest disturbance map. First, we 

chose 4 regions where G-LiHT RGB images were georeferenced with minimal shade across the 

island. Then 4 Landsat pixel size samples -- 30 by 30 meters -- were selected for each region, 

with 16 squares in total chosen. Next, pre- and post-hurricane G-LiHT images were clipped to 

these squares, so we had 32 high-resolution images at four total sites (Figure S1). We manually 

chose training samples of vegetation, non-photosynthetic vegetation, and shade from each RGB 

image. We then carried out a supervised classification using a maximum likelihood method. 

After classification, normalized DNPV from G-LiHT RGB images were calculated and compared 

with Landsat-derived normalized DNPV at for the same locations (Fig. 13).  

 

5 Results 

5.1 Effects of María on Puerto Rico 

An analysis of the MODIS-EVI (Fig. 2) quantified the temporal effects of hurricane María on the 

forests of Puerto Rico. Comparing to mean EVI since 2000 (black lines in Fig. 2), EVI for Puerto 

Rico during the hurricane season of 2017 showed a sharp decline in vegetation greenness (orange 

line in Fig. 2). A rapid decline on September 13 and a much steeper decline in the subsequent 

interval up to September 29 in the EVI of 2017 (green line in Fig. 2) shows the effect of 
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hurricane Irma and hurricane María’s landfall and traversing of the island (Feng et al. 2018). 

Even though EVI recovers from the deep decline caused by the hurricanes, the average EVI of 

the wet season (from May to October) in 2018 is still 6.5% lower than mean EVI for the past 20 

years and 5.0% lower than that of 2017 before the hurricanes, indicating the existence of severe 

tree disturbance that required more than one year to recover. 

 

 

Fig 2 -- Average time series of MODIS-EVI from the forested pixels across Puerto Rico during 

2000–2018, showing an immediate spectral shift following hurricane María’s landfall and the 

subsequent recovery as the surviving trees flushed out new leaves.  

 

The pre- and post-hurricane María images clearly illustrate a major shift in color from green 

(NIR) to reddish (SWIR) (Fig. 3a and 3b, respectively), representing the widespread forest 

disturbance (see detailed explanations in Feng et al. 2018). The images were visualized as band 6 
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(SWIR) shown in red, band 5 (NIR) shown in green, and band 4 (red) shown in blue. In this way, 

forest impacts can be readily identified compared with the true-color images.  

 
 

Fig 3 –a) Pre and b) post hurricane María Landsat 8 false-color image of Puerto Rico, centered at  

18.20°N, 66.48°W, with the following display colors: red: SWIR band, green: NIR band, and 

blue: red band. SWIR: short-wave infrared; and NIR: near-infrared.  

 

b 

0 20 4010 Kilometers

a 

0 20 4010 Kilometers
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The sensitivity of the multispectral data associated with the forest disturbance was quantified and 

demonstrated in color ΔNPV maps (Fig. 4). A decreasing trend of forest disturbance can be 

observed from ΔNPV maps generated one month (Fig. 4a), four months (Fig. 4b), and one year 

(Fig. 4c) after hurricane María. Fig. 4a shows that most of the forested area is covered in red, 

which represents very high disturbance intensity across the island. Fig. 4b clearly shows the 

heavily affected forests while other forested areas were recovering. Fig. 4c shows that most of 

the forested area have negative ΔNPV, indicating new leaves coming out. We chose the ΔNPV 

map four months after hurricane María (Fig. 4b) which best represent the major hurricane impact 

on forest for the following analysis and calculating mortality rate in the future. High ΔNPV in 

red colors (black, brown, and red) indicates high levels of tree mortality and tree structural loss, 

including defoliation, loss of branches, and snapping and uprooting. Highest forest disturbances 

occurred in Luquillo Mountains, the mid-west forested area, the southeastern area, and the 

northeastern coastal area.  

 

 

 

c.  One year after landfall 

0 20 4010 Kilometers

0 20 4010 Kilometers

0 20 4010 Kilometers

a 

0 20 4010 Kilometers
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Fig 4 -- ΔNPV map of Puerto Rico forested pixels a) one-month b) four months c) a year after Hurricane 

María. Hurricane Irma had residual effects on the north-east region.  

 The highest forest disturbance intensity is colored in darker tones of red, indicating defoliation, snapped 

and wind-thrown trees. The grey areas represent non-forested areas or cloudy areas. The datasets for all 

the images are available here: http://dx.doi.org/10.15486/ngt/1419953. 

b 

0 20 4010 Kilometers

c 

0 20 4010 Kilometers
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Significant variation in the ΔNPV disturbance signal indicates a number of factors driving the 

spatial variation of the forest effects of hurricane María. In the following sessions, we conducted 

a regression analysis to find the factors that control the variability in the forest vulnerability.  

 

5.2 User Interface tools 

We also used GEE packages to build two client-side user interfaces (UI). The user can choose an 

image from among the pre-María, post-María, and forest disturbance intensity images to 

visualize in the first UI (Fig. 5a, see detailed description in Feng et al. 2018). The second UI (Fig. 

5b) has split panel so that users can compare before/after hurricane imagery and forest 

disturbance intensity with a variety of time periods. 

 

       

 

Fig 5. Google Earth Engine published apps publicly available at (a) 

https://ylfeng.users.earthengine.app/view/forestdisturbancemapinpr and (b) 

https://ylfeng.users.earthengine.app/view/forestdisturbanceafterhurricaneMaría. 

 

a b 



 19 

5.3 Effects of landforms on forest disturbance 

The effect of the intensity of the storm on the Landsat-derived disturbance values associated with 

hurricane María was investigated. Fig. 6 shows the association between the forest disturbance 

and the terrain features, including slope, elevation, and windwardness. Forest disturbance was 

highly correlated with elevation (p <0.001) but did not vary significantly with slope. Disturbance 

increased with the increasing elevation. Less than 5% of the forests were on land with an 

elevation above 800 m and had an average ΔNPV of 0.43. Elevation alone explained 6.2% of the 

forest disturbance variance. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. The variation of the disturbance DNPV with respect to terrain (a) elevation, (b) slope, (c) 

windwardness in box plots. 

a b 

(m) (°) 

c 
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The track of hurricane María was from southeast to northwest, around 300° (WNW). Surfaces 

with aspects (90–150°) varying at ±30° perpendicular to the direction of the storm motion were 

on the windward side and highly susceptible to topographic accelerations. The lowest 

disturbance was observed on the surface with aspects around 300–340°, which was on the 

leeward (topographic sheltered) side with respect to the direction of the hurricane track. 

Therefore, we introduced a windwardness index as a proxy for the southeastern wind exposure. 

DNPV was positively correlated with windwardness (Fig. 6c), and forests on the eastern side of 

the hurricane track showed a stronger relationship than those on the western side.  

 

On the west side of the storm, a continuous high disturbance occurred within approximately 

40km of the hurricane track (Fig. 7a). Then, the forest disturbance decreased as the distance from 

the center of hurricane (HTproximity) increased. On the east side of the hurricane, high forest 

disturbance was found in forests of the Luquillo Mountains (showing in orange colors in Fig. 7b). 

Other forested pixels on the west side of the track showed similar decreasing disturbances as the 

distance from the hurricane track increased. Therefore, we created an interactive variable 

HTproximity * WestEast. The WestEast variable has 0 on the west side of the hurricane track 

and has 1 on the east side. We also added HTproximity*windwardness in the regression. All of 

these variables were significant in the regression analysis (p <0.001) and explained 5.3% of the 

forest disturbance variance.  
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Fig 7. The variation of the disturbance (ΔNPV) with respect to the distance to the track of 

hurricane María on the (a) west side and (b) east side. In figure b, orange points are located in 

Luquillo Mountains, while cyan points are not. 

 

          

Fig 8. The variation of the disturbance (ΔNPV) with respect to the distance from the landfall of 

hurricane María on (a) the west side and (b) the east side. The distance is calculated as the 

Euclidean distance from the point to the landfall line which is perpendicular to the hurricane 

track. 

 

María produced the maximum forest disturbance in the southeastern coast, where the hurricane 

made landfall, and the Luquillo Mountains. The forest disturbance decreased as the storm moved 

onshore on the east side of the track (Fig. 8). On the west side, the forest disturbance intensity 

has a decreasing trend as the hurricane move inland. The maximum ΔNPV was closest to the 

a b 

a b 
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place where hurricane María made landfall. ΔNPV was found relatively high at 75km from the 

landfall, which might be due to the combination factors of high elevation and steep slope. 

 

5.4 Effects of forest type on disturbance 

The Landsat-derived forest disturbance varied across the different forest types. The elfin and 

sierra palm cloud forests (29); sierra palm, transitional, and tall cloud forests (18); mangrove 

forests (21); and seasonal evergreen forests with coconut palm (15) emerged as the most affected 

forest types, with average ΔNPV values larger than 0.4 (Fig. 9). All these forest types were 

positively correlated with forest disturbance. These forest types were mainly located in the center 

of Luquillo Experimental Forest (LEF), Toro Negro Commonwealth Forest, Carite 

Commonwealth Forest, and the northeastern and southern coasts. Semi-deciduous and drought 

deciduous forests on alluvium and non-carbonate substrates (10), semi-deciduous and drought 

deciduous forests on karst/limestone (including semi-evergreen forest) (11), and drought 

deciduous, semi-deciduous, and seasonal evergreen forests on serpentine (12) emerged as the 

most resistant forests, which had an average ΔNPV of less than 0.2. Seasonal evergreen and 

evergreen forests (14), the main forest type (64%, Kennaway and Helmer, 2007) in Puerto Rico, 

varied the most with respect to the forest disturbance, with an average ΔNPV of 0.265. The 

forest type variable explained 9.5% of the variance in the forest disturbance. 
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Fig 9. The variation of the forest disturbance (ΔNPV) with respect to different forest types. The 

forest types are listed below: 

7  Drought Deciduous Open Woodland 

8  Drought Deciduous Dense Woodland 

9  Deciduous, Evergreen Coastal and Mixed Forest or Shrubland, with or without Succulents 

10  Semi-Deciduous and Drought Deciduous Forest on Alluvium and Non-Carbonate Substrates 

11  Semi-Deciduous and Drought Deciduous Forest on Karst/limestone (includes semi-evergreen forest) 

12  Drought Deciduous, Semi-deciduous and Seasonal Evergreen Forest on Serpentine 

13  Seasonal Evergreen and Semi-Deciduous Forest on Karst 

14  Seasonal Evergreen and Evergreen Forest 

15  Seasonal Evergreen Forest with Coconut Palm 

16  Seasonal Evergreen and Evergreen Forest on Karst 

17  Evergreen Forest on Serpentine 

18  Sierra Palm, Transitional and Tall Cloud Forest 

19  Emergent Wetlands Including Seasonally Flooded Pasture 

20  Salt or Mud Flats 

21  Mangrove 

22  Seaonally Flooded Savannahs and Woodlands 

23  Pterocarpus Swamp 

29  Elfin and Sierra Palm Cloud Forest 
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 Fig 10. The variation of the forest disturbance (ΔNPV) with respect to (a) forest canopy height 

and (b) forest age. 

 

Fig. 10a shows the association between the forest disturbance and the forest canopy height 

(standard coefficient (SC) = 0.055, p <0.001). Taller trees were more vulnerable to hurricane 

María. Fig. 10b shows that the age class had a significant effect on the forest disturbance (p 

<0.001), and the oldest forests (50–64+ years) showed the greatest effect. Trees aged 50–64+ had 

the highest average ΔNPV of 0.306, while young sites had the lowest average ΔNPV of 0.258. 

The age class variable predicted 2.5% percent of the variance in the forest disturbance. 

 

5.5 Landsat-derived disturbance and green vegetation ratio in the preceding year 

 

Fig. 11. The variation of the forest disturbance (ΔNPV) with respect to the green vegetation ratio 

of forested area in 2017. 

a b 
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The green vegetation ratio of Puerto Rico’s forested area in 2016 represents the fraction of the 

vegetation cover in each pixel. It showed a strong positive correlation with the forest disturbance 

(Fig. 11). The majority of the forested pixels had over 70% forest cover. This independent 

variable contributed to 7.4% of the explained variance. 

 

5.6 Full regression model and Relative importance 

A multiple linear regression analysis was performed, and the results from the model showed that 

all the factors in Table 1 were highly significant in explaining variation in forest disturbance 

caused by hurricane María (P <0.001, respectively). In the standard coefficient test, the 

interactive variable of the distance to the hurricane track and the side of the track (Standard 

Coefficient = 0.38), forest type (seasonal evergreen and semi-deciduous forest on karst (SC = -

0.321)), elevation (SC = 0.274), green vegetation ratio in 2016 (SC = 0.275), distance to the 

landfall (SC = 0.240), and distance to the hurricane track (SC = -0.211) had the highest 

standardized beta coefficients. Annual precipitation was also tested as a factor in the model and it 

was not significant, so it was removed. The P value for the multivariable regression also showed 

significance (P <0.001***). Forest type, green vegetation in 2016, and elevation had the highest 

contribution to R2, which explained most of the disturbance variance. Overall, 34.5% of forest 

disturbance variance was explained by these factors. The residuals from the final fitted models 

were normally distributed. No extreme multicollinearity was present between the independent 

factors in this model (general variance inflation factor (GVIF) £7, respectively) (James et al., 

2013; Fox and Monette 1992).  
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Table 1 The multivariable regression examining the correlation between the forest disturbance 

(ΔNPV) and all the variables in Puerto Rico.a  

Independent Variable SC SE T P R 

Elevation 0.274 4.544e-06 45.256 <0.001*** 0.062 

Slope -0.041 9.625e-05 -9.898 <0.001*** 0.002 

Windwardness 0.095 2.237e-05 14.354 <0.001*** 0.005 

ForestCanopyHeight 0.054 1.329e-04 11.661 <0.001*** 0.013 

HTproximity -0.211 2.152e-04 -22.160 <0.001*** 0.010 

LFproximity 0.240 6.904e-05 24.574 <0.001*** 0.016 

Forest Type* - - - - 0.095 

GV2016 0.275 8.445e-03 73.215 <0.001*** 0.074 

Age 0.147 3.661e-05 34.038 <0.001*** 0.025 

HTproximity:WestEast 0.382 2.389e-04 44.634 <0.001*** 0.038 

HTproximity:windwardness -0.108 1.410e-06 -11.991 <0.001*** 0.005 

 aN = 50000, HTproximity = Distance to hurricane track, LFproximity = Distance to hurricane landfall, SC = 

standard coefficient, SE = standard error, t = t value. P = significance, R = R2 statistic (relative importance metrics). 

Multiple R2 = 0.34, Adjusted R2 = 0.34 

*Table S1 
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5.7 Validation 

Normalized G-LiHT RGB DNPV was used to validate Landsat-derived DNPV produced from the 

same time periods as G-LiHT images were taken.  

 

 

Fig. 13  Relationship between G-LiHT DNPV and Landsat DNPV at sixteen locations in Puerto 

Rico.   

 
The figure shows a positive relationship between G-LiHT DNPV and Landsat DNPV. A linear 

function was used to fit the relationship. A high R square (0.77) indicates a strong relationhips 

between Landsat DNPV and high-resolution G-LiHT RGB DNPV representing useful ground 

validation approach when lacking suitable field-based data.  23% of Landsat DNPV was not 

explained by the G-LiHT DNPV, and a factors might explain that unexplained variability include 

underestimation of vegetation area due to different sizes of shade area within forests, and 

classification errors caused by manually selecting training samples. 
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6 Discussion 

6.1 Tree mortality and recovery 

Previous studies have shown that an increase in the Landsat-derived DNPV of the same area after 

tropical cyclones is positively and linearly correlated with field-measured tree mortality and 

extensive crown effects (Chambers et al., 2007; Negrón Juárez et al., 2014a). This strong 

correlation between the shift in the spectral reflectance and tree mortality and canopy disturbance 

has enabled quantitative measurements of tree mortality using remote sensing images. Chambers 

et al. (2007) developed a Monte Carlo model to estimate the tree mortality caused by hurricane 

Katrina based on this correlation. Similar approaches to calculating tree mortality, stem density, 

and biomass distribution have been applied to other landfalling hurricanes in the US (Negrón 

Juárez et al. 2014a) and Australia (Negrón Juárez et al. 2014b) and strong convective storms 

affecting Amazon forests (Negrón Juárez et al. 2010). Based on remote sensing and the 

fieldwork carried out regarding landfalling hurricanes in US forests,tree mortality may be 

related to the stem density (Negrón Juárez et al. 2014a). Using Forest Inventory and Analysis 

(FIA) data over Puerto Rico we estimated that the initial order-of-magnitude effects of hurricane 

María on the trees, including tree structural effects and mortality, was around 23–31 million trees 

(Feng et al., 2018). However, it is challenging to determine what fraction of trees are dead in 

satellite images at 30-meter resolution. Moreover, even trees that have lost their crowns and a 

portion of their height can regrow canopies and live productively (Lugo 2018). Improved tree 

mortality maps and numbers will require on fine resolution airborne images, field-measured 

mortality rates, and stem density. 
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Rapid forest recovery after hurricane María was shown in the time series of the EVI. After a 

sudden and deep decline in the EVI of the forested area in Puerto Rico in September, it took two 

months for the EVI to partially bounce back. Similar patterns have been observed in previous 

studies. New leaves were observed within a few weeks to a few months (Everham and Brokaw 

1996, Walker et al. 1992). A rapid rate of forest recovery after hurricanes was observed in the 

Luquillo Mountains (Lugo 2018, Lugo et al. 2015). The observed tree mortality was 4% of all 

the upright trees despite high levels of snapped (85%) and uprooted (77%) trees in Walker’s 

study of the effects of hurricane Hugo in LEF in Puerto Rico (Walker 1991a). In the Luquillo 

Mountains, frequent disruption from hurricanes results in a number of strategies for trees in 

response to these disturbances, and these varied responses enable forests to resist or recover 

when confronted the recurrent hurricanes (Lugo et al. 2015). EVI of Puerto Rico forests in 2019 

shows that spectral recovery continues. Several studies have suggested a 5 to 10-year 

reorganization period before the recovery mechanics are fully operational, which may include 

delayed mortality (Everham and Brokaw 1996). Estimates of tree recovery time varies 

tremendously by different quantification of recovery, frequencies of disturbance, and tree species 

(Everham and Brokaw 1996; Walker 1991a). Future more continuous field measurements are 

needed to provide more accurate estimates of tree mortality and tree damage in synergy with 

remote sensing and geospatial analysis. 

 

6.2 Landforms and forest disturbance 

Our results showed that Landsat-derived forest disturbance was positively correlated with 

elevation, slope, and windwardness (calculated from aspect and the hurricane direction), and was 

negatively correlated with the distance from the hurricane track and landfall. The Landsat-
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derived disturbance showed high disturbance in the windward areas and low disturbance in the 

leeward areas. This correlation has been described in previous studies (Lugo and Frangi, 2016; 

Negrón Juárez et al., 2014; Xi et al., 2008; Boose, Serrano, and Foster, 2004). While windward 

slopes are subjected to more intense winds, they are also preconditioned by chronic winds from 

the same direction in some cases. Therefore, hurricane effects to the structure of cloud forests at 

high elevations in Puerto Rico did not vary between windward and leeward sites (Brokaw and 

Grear 1991; Boose et al. 1994), and the overall positive correlation between windwardness and 

disturbance intensity is weak. The forests on the east (lee) side of hurricane had more disturbance 

than that on the west side. Due to the motion of the hurricane contributing to its rotation, 

hurricane María, as a counter-clockwise rotated hurricane in the northern hemisphere, should 

have had higher wind speeds on the right side than on the left side (Negrón Juárez et al., 2014; 

Boose, Serrano, and Foster, 2004), which may explain the differences in the forest disturbances 

on the two sides of the hurricane. In addition, hurricane María made landfall near the 

southeastern coast, meaning that the forests in the surrounding areas suffered more due to strong 

wind. Forests on the lee side of the hurricane (south coast) tend to be of lower stature, exhibiting 

more resistance to winds. All these reasons resulted in higher DNPV on the eastern side. 

 

With a pinhole eye, hurricane María was more powerful, because the storm around the eye spun 

more quickly (Shen 2006). As hurricane María moved towards Puerto Rico, it underwent an 

eyewall replacement. The outer eyewall become dominant when hurricane María made landfall 

(Pasch, Penny, and Berg, 2018). The strongest wind and intense rainfall are usually found in the 

eyewall and to the right of the storm path on the northern hemisphere (Stanturf, Goodrick, 

Outcalt, 2007; Negrón Juárez et al., 2014). Negrón Juárez et al. (2014) suggested a possible 
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association between disturbance severity and wind speed. In this study, we hypothesized that 

high wind speeds over a certain threshold caused massive forest disturbance, and the forest 

disturbance lessened as the wind speed decreased along the storm track (Ayala-Silva and 

Twumasi, 2004; Oswalt and Oswalt, 2008; Boose, Serrano, and Foster, 2004). 

 

Most of the highly affected forests were within 40 km of the landfall of hurricane María. The 

same trend was previously observed during hurricane Katrina, and approximately 90% of its 

effect was within 100 km of the coast (Stanturf, Goodrick, Outcalt, 2007).  

 

6.3 Forest Structure and wind disturbance 

Past studies have shown that forest disturbances from hurricanes vary by forest types (Negrón 

Juárez et al., 2014; Boose, Foster, and Fluet, 1994; Urquiza-Haas, Dolman, and Peres, 2007). 

Our results also verified that the Landsat-derived forest disturbance was sensitive to forest types 

in Puerto Rico. The least-resistant forest types analyzed in this study —Elfin and Sierra Palm 

cloud forests; Sierra Palm, transitional, and tall cloud forests (Fig. 12); mangrove forests; and 

seasonal evergreen forests with coconut palm—were in an agreement with previous research 

(Zimmerman et al., 1994; Brokaw and Grear, 1991; Lugo and Frangi, 2016; Lugo, 2008;). 

Mangrove trees with large diameters at breast height (d.b.h) experienced greater mortality than 

smaller trees (Lugo, 2008). Stem density, forest adaptation, the depth of the root system, and 

species shade tolerance resulted in the variance of the disturbance (Negrón Juárez et al., 2014; 

Zimmerman et al., 1994).  
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Fig. 12 The spatial distribution of the Elfin and Sierra Palm cloud forest and the Sierra Palm in 

transitional and tall cloud forest displayed in forest map (a) is similar to the pattern of (b) high 

forest disturbance (shown in red, brown, and black colors) in Toro Negro Commonwealth Forest, 

centered at 18.16°N, 66.65°W. Forest type map (a) provided by Kennaway et al. 2007 and 

Helmer et al. 2008.  

 

Large older falling tree can cause successive uprooting and breaking of neighboring trees, 

causing such a domino effect (Maser et al. 1988), which might explain their higher ΔNPV. 

Protected forest types, including forests on serpentine substrate, mangroves, cloud forests, and 

Pterocarpus swamp, were mostly old (Kennaway and Helmer, 2007). Approximately 62–100% 
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of these forests were in the oldest age class (55–64+) in 2000. The mangroves in Puerto Rico 

were in the oldest age class (Kennaway and Helmer, 2007). Forests on more accessible and 

arable land at low to intermediate elevation tended to be younger (Kennaway and Helmer, 2007; 

Helmer, 2000), which may explain the large variance in the disturbance. 

 

6.4 Forest Effect Tool 

Our results showed that remote sensing images successfully captured the hurricane disturbance 

pattern in Puerto Rico. Google Earth Engine provided a highly functional platform to identify 

and process Landsat 8 images easily and conduct the full-spectral analysis quickly to analyze the 

effects of extreme weather events on land. Through GEE, we can disseminate our results to 

colleagues who share the same interests, policymakers, field workers, and NGOs (Gorelick et al., 

2017). We also built user-interactive webpages through GEE, so that the general public can also 

access the data and maps.  

 

The tool we developed combines data capability, image processing, and remote sensing process 

together, which enabled the further applications in rapid assessment of effects of hurricanes on 

• Forest disturbance 

• Road accessibility 

• Identification of most affected residential area 

• Ecosystem effects 

• Forest recovery 
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This tool builds a workflow can be easily modified to update the analysis when more cloud free 

images become available. The same imagery processing steps and remote sensing methodology 

will allow us to assess forest vulnerability to repeated hurricanes.  

7 Conclusion 

This research showed a remote sensing and statistical analysis of the hurricane disturbance in 

Puerto Rico, and its association with the landform characteristics and forest structures. It shows 

the power of remote sensing for large-scale post-hurricane analysis and provides insights 

impossible to achieve from isolated ground efforts. Large portions of the disturbed forests were 

clustered in Luquillo Mountains, the lower mid-west forested area of the main island, and 

Piñones Mangroves in northeast of the main island. The factors of elevation, slope, 

windwardness, forest canopy height, distance to the hurricane track, distance to the hurricane 

landfall, forest type, forest age, and green vegetation ratio had significant effects on the spatial 

pattern and severity of the forest disturbance. Future projections indicate more frequent and 

intense extreme weather events (Knutson et al. 2010, Patricola and Wehner 2018). Therefore, the 

assessment of tree impacts and forest recovery are important areas of continued research. This 

study establishes a baseline for the rapid assessment of forest disturbances and spatial patterns in 

extreme weather. Improvements to the assessment of tree mortality from hurricanes can be 

obtained by including the observed field data. 
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