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ABSTRACT OF THE DISSERTATION

Blind Separation and Tracking of Sources with Spatial, Temporal and Spectral

Dynamics

by

Alireza Masnadi-Shirazi

Doctor of Philosophy in Electrical Engineering

(Signal and Image Processing)

University of California, San Diego, 2012

Professor Bhaskar D. Rao, Chair

The problem of separating mixed signals using multiple sensors, commonly

known as blind source separation (BSS), has received much attention in recent

years. For many real world sources such as acoustical signals, the signals undergo

a convoluted mixing due to reverberation caused by the environment. In this thesis

we intend to develop algorithms that are able to separate and track convolutedly

mixed acoustical sources when dealing with the following adverse scenarios: 1)

the number of sources exceeds the number of sensors (overcomplete case), 2) the

number of sources is known but their temporal profile is unknown as each source

can experience silence periods intermittently, 3) the number of sources is unknown

and time-varying as new sources can appear and existing sources can vanish, 4)

the sources are moving in space. Overall, these scenarios reflect the spatial and

temporal dynamics that acoustical sources can potentially undertake, complicating

the BSS problem. In addition, acoustical sources like speech can exhibit spectral

dynamics, where the short time Fourier transform (STFT) of the sources experi-

ence a certain sparse pattern due to the pitch frequency and formants of speech

phonemes that can differ from source to source and from time interval to time

interval. In this thesis we will show that spectral dynamics, unlike the other forms

xvii



of dynamics, does not complicate the BSS problem and in fact by exploiting it

one can simplify the BSS problem when dealing with the adverse aforementioned

scenarios. The contributions of this thesis are three algorithms where each algo-

rithm compared to the previous one deals with a more intricate combination of

aforementioned scenarios. The first is a batch algorithm that deals with scenarios

1 and 2 by incorporating a glimpsing strategy which ”listens in” the silence gaps

to compensate for the global degeneracy (of having more sources than sensors)

by making use of segments where it is locally less degenerate. The second is an

online algorithm that deals with scenarios 1, 2 and 4 by using a glimpsing multiple

model particle filter (MMPF) to switch between the different combinations of si-

lence gaps. The third one is a quasi-online algorithm that deals with scenarios 1, 3

and 4 which contain the most uncertainties when compared to the other combina-

tions. In order to deal with this challenging problem, we synergistically combine

two key ideas, one in the front end and the other at the back end. In the front end

we employ independent component analysis (ICA) to demix the mixtures and the

state coherence transform (SCT) to represent the signals in a direction of arrival

(DOA) detection framework. By exploiting the spectral sparsity of the sources,

ICA/SCT is even effective when the number of simultaneous sources is greater than

the number of sensors therefore allowing for minimal number of sensors to be used.

At the back end, the probability hypothesis density (PHD) filter is incorporated

in order to track the multiple DOAs and determine the number of sources. The

PHD filter is based on random finite sets (RFS) where the multi-target states and

the number of targets are integrated to form a set-valued variable with uncertainty

in the number of sources. A Gaussian mixture implementation of the PHD filter

(GM-PHD) is utilized that solves the data association problem intrinsically, hence

providing distinct DOA tracks. The distinct tracks also make the separation task

possible by going back and rearranging the outputs of the ICA stage.

xviii



Chapter I

Introduction

1



2

I.A Spatial, Temporal and Spectral Dynamics in Blind

Source Separation and Tracking

The problem of separating mixed signals using multiple sensors, commonly

known as blind source separation (BSS), has received much attention in recent

years. The earliest and most basic form of BSS problems started with a model of

linear and instantaneous mixing of the sources. Independent component analysis

(ICA) became a popular and promising method to deal with this issue [34]. ICA

separates the mixed signals by assuming the sources are statistically independent

and the sources are non-Gaussian distributed. For many real world sources such

as acoustical signals, the signals undergo a convoluted mixing due to reverberation

introduced by the environment. By transforming the mixture to the frequency

domain by applying the short-time Fourier transform (STFT), convolution in the

time domain translates to linear mixing in the frequency domain. Subsequently,

ICA can be performed on every single frequency bin resulting in an estimated

mixing matrix for each bin. Since ICA is indeterminate of source permutation,

further post processing methods are necessary to correct for possible permutations

of the separated sources in each frequency bin [78, 75]. In summary, the process

of performing ICA in the frequency bins is commonly known as frequency domain

ICA (FD-ICA).

In the context of FD-ICA, in order to simplify the problem in practice, the

following assumptions are usually made (in addition to the theoretical assump-

tions of ICA that sources should be statistically independent and non-Gaussian

distributed):

• The number of sources is less than or equal to the number of sensors.

• The sources are either always active or their temporal activity profile is known

• Sources are spatially static.

In this thesis we intend to progressively relax the aforementioned assump-
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tions in order to develop algorithms that are able to separate convolutedly mixed

acoustical sources when dealing with the following adverse scenarios:

1. The number of sources exceeds the number of sensors (overcomplete case).

2. The number of sources is known but their temporal profile is unknown as

each source can experience silence periods intermittently.

3. The number of sources is unknown and time-varying as new sources can

appear (birth) and existing sources can vanish (death).

4. The sources are moving in space.

Overall, the above scenarios reflect the spatial and temporal dynamics that acousti-

cal sources can potentially undertake, complicating the BSS problem. In addition,

acoustical sources like speech can exhibit spectral dynamics, where the STFT of

the sources experience a certain sparse pattern due to the pitch frequency and

formants of speech phonemes that can differ from source to source and from time

interval to time interval. In this thesis we will show that spectral dynamics, unlike

the other forms of dynamics, does not complicate the BSS problem and in fact

by exploiting it one can simplify the BSS problem when dealing with the adverse

aforementioned scenarios.

Later on we will show that as the development for the separation task is

carried out for when the sources exhibit spatial dynamics, new doors are opened

allowing for the localization/tracking task of the sources to be accomplished as

well.

I.B Contributions of the Thesis

The contributions of this thesis has three main components summarized in

three major sections where each section compared to the previous one deals with

a harder combination of aforementioned scenarios. The first section deals with

scenarios 1 and 2, the second one deals with scenarios 1, 2 and 4, and the third
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one deals with scenarios 1, 3 and 4 which contain the most uncertainties when

compared to the other combinations.

I.B.1 Glimpsing Independent Vector Analysis

Independent vector analysis (IVA) is a frequency based method for convo-

lutive blind source separation that normally requires no bin-wise permutation cor-

rection post-processing [36, 32]. It extends the ICA concept by treating the data in

the frequency bins as one multivariate vector and utilizing the inner dependencies

between the frequency bins, therefore, significantly reducing the occurrence of bin-

wise permutations. IVA models each individual source as a dependent multivariate

symmetric super-Gaussian distribution while still maintaining the fundamental as-

sumption of BSS that each source is independent from the other.

We first investigate the role that the temporal dynamics of the signals play

in frequency domain BSS and show that in order for the sources to be separable,

they must have a dynamic temporal structure. Fortunately, most signals of interest

in BSS like speech, music and EEG/MEG follow such structure. We then clarify

how such dynamic structure results in a Gaussian scale mixture (GSM) (super-

Gaussian shaped) distribution in the frequency domain, therefore, justifying the

selection of such distributions that are used in IVA and other ICA-based frequency

domain approaches [36, 32, 78].

We take our investigation of the dynamic temporal structure a step fur-

ther enabling us to build a general IVA-based framework that can facilitate over-

complete convolutive BSS as an extension to the more trouble-free undercom-

plete/complete BSS. One common type of temporal dynamics, especially present

in speech, is that the signals can have intermittent silence periods, hence varying

the set of active sources with time. This feature can be used to improve separation

in well-determined undercomplete (L > M)/complete (L =M) cases, and to deal

with the ill-determined overcomplete (L < M) case. As the set of active sources

for each time period decreases, the degree of overcompleteness (M − L) decreases
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locally. Hence, by exploiting silence gaps, one is actually compensating for the

global degeneracy by making use of segments where it is locally less degenerate.

We construct a unifying IVA-based framework that can deal with the challenging

overcomplete case as well as the straight-forward complete/undercomplete case

for convolutive mixing BSS. Various psycho-acoustic studies have confirmed that

human listeners use similar strategies of exploiting silence gaps by ”glimpsing” or

listening in the gaps to identify target speech in adverse conditions of multiple

competing speakers [45, §4.3.2], [21, 22]. Consequently, we name this algorithm

”glimpsing independent vector analysis (G-IVA)”.

I.B.2 Online Separation and Tracking of Sources with Silence Periods

When the sources are allowed to move/maneuver is space, batch algorithms

like regular ICA/IVA are no longer effective. Instead one has to resort to an online

or quasi-online method to perform the separation and tracking tasks. In the online

method, the mixing matrices are updated with every new STFT frame. In a quasi-

online method a sequence of STFT frames are accumulated to form a block and the

mixing matrices are updated for each block. By assuming that the overall number

of sources is known but their activity profile is unknown as they can undergo

silence periods intermittently (similar to the glimpsing model discussed earlier),

we intend to both fully separate and track the multiple speakers using an online

algorithm. Our assertion is that for moving/maneuvering sources, if one is able

to track the mixing matrices accurately in the frequency domain to ensure full

separation, the accurate localization of the sources based on directions of arrivals

(DOA) can be a straightforward consequence as the DOA information is embedded

in the mixing matrices. We note that utilizing a glimpsing strategy is essential in

an online algorithm because if a source becomes silent but assumed active by the

model, the update to the column of the mixing matrix corresponding to that source

can diverge or fluctuate unstably [35]. We track the mixing matrices at each bin

in the frequency domain by employing a multiple model particle filter (MMPF)
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method that is able to switch between the different combinations of silence gaps

present in the sources. The proposed algorithm can also maintain track in the

more challenging situation where the sources are silent but move around, under

the condition that the silence period does not exceed a certain length. We denote

these periods as silence blind zones (SBZ). This method can potentially work for

the overcomplete case as it uses the same glimpsing strategy discussed earlier.

I.B.3 Quasi-online Tracking and Separation of Unknown Time-Varying

Number of Sources

In this section we are particularly interested in estimating the bearing in-

formation of multiple sources or their direction of arrival (DOA) by means of the

time difference of arrival (TDOA). TDOA estimation is the first stage for many

speaker localization algorithms involving one or more microphone pairs. In the case

of a single speaker, TDOA can be reliably estimated using the generalized cross-

correlation phase transform (GCC-PHAT) using one microphone pair [38, 65].

GCC-PHAT is a scanning method that computes the correlation of the micro-

phone pair inputs for a range of TDOAs with an arbitrary resolution, resulting in

peaks where the correlation is high. In case of multiple speakers, GCC-PHAT does

not always provide reliable TDOA for all the sources since one of the sources can

dominate over the others [11]. This means that as the concurrent sources increase

in number, multiple TDOA estimation using GCC-PHAT becomes less reliable.

Also, multipath propagation due to reverberation can cause additional peaks in

the GCC-PHAT that correspond to multi-path propagations. This results in the

situation where for example in the case of two sources, the first and second peak

do not always correspond to the first and second source and sometimes the third

or subsequent peaks need to be considered [46].

Multiple TDOA estimation using FD-ICA was first proposed in [79]. In

[79], similar to the previous section, multiple TDOAs are calculated directly from

the columns of the estimated mixing matrix. However, this method works well
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only if the possible source permutations in the frequency bins have been corrected

and there are no frequency bins affected by spatial aliasing (hence a minimal

microphone spacing). Recently an extension to [79] has been proposed under

the name of state coherence transform (SCT) that does not require permutation

correction and is insensitive to spatial aliasing [57, 59]. Similar to GCC-PHAT,

SCT is a scanning method. However, instead of finding the correlation between

the two microphone input signals for TDOA points in the scan, it forms a pseudo-

likelihood between a propagation model for the different TDOA scan points and

the TDOA observations pertaining to the columns of the mixing matrices, resulting

in peaks where the scan points in the model and observations best match. One

attractive feature of SCT is that by exploiting the frequency sparsity of the sources,

it is effective even when the number of simultaneous sources is larger than the

number of sensors. Also, since SCT uses ICA outputs which attempt to separate

the sources, it is more suitable for TDOA estimation for multiple sources compared

to GCC-PHAT [59].

Assuming that the number of sources is known and fixed in time, some

methods exist that track the location information for each source by incorporating

a separate tracker for each source [18]. However, in many real world problems,

not only do the states of the sources change with time, the number of concur-

rent sources is unknown and varies with time as new speakers can appear and

existing speakers can disappear or undergo long silence periods. Moreover, the

measurements can receive a set of spurious peaks (clutter) due to the multi-path

propagation caused by reverberation and spatial aliasing, resulting in false alarms.

In addition, not all of the sources are detected giving rise to missed detections

as well. Therefore, the passive scanning methods discussed earlier result in an

assortment of indistinguishable observations where only a subset of them are gen-

erated by the sources. Recently, methods based on random finite sets (RFS) have

presented promising and mathematically elegant solutions to the problem of multi-

target tracking (MTT) for time-varying number of targets [48, 47]. Using RFSs,
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the collection of indistinguishable observations in the presence of clutter is treated

as a set-valued observation while the multi-target states and the number of targets

are integrated to form a set-valued state. The goal becomes to estimate the target

states and the target number while rejecting clutter and accounting for missed

detections. The RFS formulation allows the problem to be posed in an optimal

multi-target Bayesian filtering framework, and is an extension of the well known

single target Bayes filter. However, the optimal RFS Bayes filter is computation-

ally intractable as it becomes a combinatorial problem on the number of targets

involving high dimensional integrals. The probability hypothesis density (PHD)

filter is a suboptimal approximation to the RFS Bayes filter which propagates the

first moment of multi-target posterior density rather than the full posterior density

[48]. This said, the PHD filter still involves multiple integrals with no closed form

solution in general. Also, the PHD filter in itself, does not solve the data associ-

ation problem indicating which estimate belongs to which target. The Gaussian

mixture implementation of the PHD filter (GM-PHD) alleviates these two difficul-

ties: It provides a closed form solution of the PHD filter when the target states

and observations follow a linear/Gaussian dynamic model (which is a reasonable

model for the problem of interest in this paper) [85]. It also solves the data asso-

ciation problem intrinsically and provides track labels which are imperative to the

separation task of interest [67].

The problem of extracting location information of unknown time-varying

number of speakers using RFSs and PHD filtering has been proposed before. These

methods, however, use GCC-PHAT in the front-end to obtain the measurements

and bear the inherent limitations of GCC-PHAT for multiple sources including

being inherently incapable of source separation [46, 9]. For the same problem, a

method exists that uses ICA/SCT in the front-end and uses a naive thresholding

approach to estimate the number of targets [44, 43]. This method, however, is

sensitive to the selected thresholds and relies solely on the thresholds to reject

clutter. As we discussed in the previous section, we proposed an ICA-based ap-
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proach to separate and track multiple sources for when the sources can experience

short silence periods [51]. This method, while being able to separate the sources,

only estimates the activity patterns and cannot handle new sources being born or

completely dying out. In this section we propose a quasi-online algorithm that

uses the GM-PHD to filter the measurements obtained from short time blocks us-

ing ICA/SCT. By doing so we are able to track the DOA of multiple time-varying

number of sources and from the track labels we are able to go back to the ICA out-

puts and perform the separation task by associating each separated time-frequency

block with its estimated corresponding track. The separation scheme exploits the

frequency sparsity (i.e. spectral dynamics) of the sources and enables the separa-

tion of more concurrent sources than sensors. In contrast to the previous section,

this section does not model the short silence periods explicitly but rather focuses

on the birth and deaths of the sources. However, since this section incorporates a

quasi-online method that considers missed detections, short pauses in the sources

are implicitly taken care of. If the pause/silence period exceeds a certain length in

time the source will be assigned a new track once it becomes active again.

Overall, this section demonstrates how a mixture/superposition model in

the framework of BSS can be easily represented as a standard detection model in

the framework of multi-target tracking, assuming that the sources have frequency

sparsity. Such an idea of transforming a mixture/superposition model to a de-

tection model, was first presented in [10], where the sources were assumed to be

narrowband audio tones and the STFT representation was enough to execute such

transformation. As it turns out, the approach in [10] is a special case of the pro-

posed method for when the sources have a super-sparse representation to a degree

where they will be non-overlapping and occupy a single frequency bin, making the

ICA separation scheme unnecessary. The proposed method offers a solution for

executing the transformation from the mixture model to the detection model for

broadband signals that have some sort of frequency sparsity, such as speech and

communication signals.
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I.C Organization of the thesis

The rest of the thesis is organized as follows. In Chapter II, we present

some background on basic Maximum likelihood ICA as well as some background

on sequential Bayesian state estimation and filtering. In Chapter III we develop

a BSS batch algorithm that deals with the ill-determined overcomplete case of

having more sensors than sources by glimpsing or ”‘listening in” the silence gaps

in both time and frequency. In Chapter IV we make the problem more challenging

by allowing the sources to move/maneuver is space while they can still experience

silence periods and use the same combinatorial glimpsing strategy in both time

and frequency. In Chapter V we take the previous challenge one step further by

allowing the number of sources to be unknown and time-varying where new sources

can appear and existing sources can disappear. Finally, in Chapter VI conclusions

of the thesis are presented.
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II.A Independent Component Analysis

ICA is a method for finding underlying factors or components from mul-

tivariate statistical data and is used frequently in the BSS problem often known

as the ”cocktail party” problem. Suppose there are n speakers in a cocktail party

with n microphones located at different places in the room. Denote each speaker

with si, i = 1, ..., n and each microphone input by xi, i = 1, ..., n. If we assume

there is a linear instantaneous mixing of the sources (assuming no reverberation

and delays) caused by the distance from each speaker to each microphone, we have:

x1(t) = a11s1(t) + a12s2(t) + ...+ a1nsn(t) (II.1)

x2(t) = a21s1(t) + a22s2(t) + ...+ a2nsn(t) (II.2)

...

xn(t) = an1s1(t) + an2s2(T ) + ...+ annsn(t) (II.3)

the above equations can be written in matrix form as follows:

X = AS (II.4)

where,

X = [x1(t)x2(t)...xn(t)]
T (II.5)

S = [s1(t)s2(t)...sn(t)]
T (II.6)

A =

















a11 a12 ... a1n

a21 a22 ... a2n
...

... ...
...

an1 an2 ... ann

















. (II.7)

We do not observe the sources S and neither do we observe the mixing matrix A.

Our goal is to estimate the sources S when just observing X. Because of the lack

of information to solve this inverse problem we need to make further assumptions.

ICA , in its basic form, only requires two assumptions. The first assumption is that
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Figure II.1 Joint distribution of the mixture of two Gaussian distributed signals

our sources are statistically independent of each other. This makes sense because

the human brain separates signals based on this assumption as well. Before we go to

the second assumption which requires some more reasoning we lay the framework

for the pre-processing step. This will also serve as a tool to justify the second

assumption.

Independence is a much stronger case than uncorrelatedness. This means

that two random variables can be uncorrelated but still dependent. In other words,

this means that we can make the data uncorrelated without disturbing any under-

lying factor that controls their independence. As a preprocessing step we choose

to center the data (subtract its mean from the data) and then whiten it (make the

data uncorrelated or spherical). We keep in mind that these preprocessing steps

do not disturb our assumption of having the source signals independent of each

other.

The second assumption is that the source densities should be non-Gaussian

distributed (more precisely, not more than one of the source densities can be Gaus-

sian). To understand why this should be the case we set the following example.

Assume we have two Gaussian distributed signals that are mixed together by a
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Figure II.2 Joint distribution of the mixture of two Gaussian distributed signals

after it has been whitened

2× 2 matrix A. Figure II.1 shows the joint distribution after they have been lin-

early mixed. If we whiten this data as a pre-processing step we will make the data

uncorrelated (spherical). Figure II.2 shows the uncorrelated data. The goal of

ICA is to iteratively converge towards the directions that yield maximum indepen-

dence. Because in this case the whitened data is symmetrical from all directions,

therefore there are countless directions (some are shown by the arrows in Fig-

ure II.2) that yield maximum independence. This is the reason why not more than

one of the sources can be Gaussian distributed for ICA to separate the sources. In

other words, non-Gaussianity of the sources ensures a non-spherical structure that

stores information about the vector direction of each column of the mixing matrix.

To demonstrate how ICA can be performed on sources that are distributed

other than Gaussian we refer to Figure II.3 which shows the steps towards finding

the independent sources. On the left is the figure of 2 uniformly distributed mixed

signals. The middle figure shows the pre-processing step of whitening the data.

After pre-processing has been done all we need to do is to find an orthogonal matrix

that when multiplied by the whitened data, yields maximum independence. The

columns of this orthogonal matrix is shown by the arrows in the middle figure.
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Figure II.3 Left: Joint distribution of the mixture of two uniform distributed

signals. Middle: Whitened. Right: Recovered source signals after the whitened

data is rotated by an orthogonal matrix that yields maximum independence

The figure on the right shows the independent source distribution as a result of

being multiplied by the inverse of the orthogonal matrix, i.e. an estimate of Â−1,

where Â is the mixing matrix in the ”whitened space”.

II.A.1 Maximum Likelihood approach to ICA

The first step is to derive the likelihood. We assume that we have whitened

our data as a pre-processing step. According to X = AS and assuming the in-

dependency of the sources(i.e. p(S) = p(s1)p(s2)...p(s2) ) the density of p(X)

is

p(X) = |detB|p(S) = |detB|
n
∏

i=1

p(si) (II.8)

where B = A−1, and p(si) denotes the densities of the i
th independent component.

This can be expressed as a function of B = [b1, ..., bn]
T and X, giving

p(X) = |detB|
n
∏

i=1

p(bTi X) (II.9)

Assuming that we have T i.i.d. observations of X in time, denoted by {X(t)}Tt=1,

then the likelihood can be obtained as the product of the density at the T points in
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time. The likelihood is denoted by L and considered as a function of the parameter

B:

L(B) =
T
∏

t=1

n
∏

i=1

p(bTi X(t))|detB| (II.10)

the Log-Likelihood becomes:

logL(B) =
T
∑

t=1

n
∑

i=1

log p(bTi X(t)) + T log|detB| (II.11)

logL(B) =
T
∑

t=1

n
∑

i=1

log p(eTi BX(t)) + T log|detB| (II.12)

where ei is a vector of all zeros except for the ith position where it is one.

Our goal is find the B that maximizes the likelihood. To do so we move in

direction of the gradient of the log-likelihood with respect to B.

∂logL(B)

∂B
=

T
∑

t=1

n
∑

i=1

gi(e
T
i BX(t))eiX(t)T + TB−T (II.13)

where gi = (log p(si))
′ = p(si)′

p(si)
thus we have:

∂logL(B)

∂B
=

T
∑

t=1

g(BX(t))X(t)T + TB−T (II.14)

Thus our adaptive algorithm that goes in the direction of the gradient accent looks

like:

Bk+1 = Bk +∆B (II.15)

where ∆B is the gradient in Eq. II.14.

However there is some ambiguity here. Because we do not know the sources

yet, we do not have the source densities to use in the gradient equation above. The

most basic ICA algorithms pick one standard density function for the case when

our source densities are super-Gaussian and pick another density function when

our sources are sub-Gaussian. Other adaptive methods exist that learn parameters

controlling the shape of the source densities, but will not be discussed here. An
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example of a super-Gaussian density is a Laplacian where it has heavier tails and

a peakier center compared to the Gaussian. An example of a sub-Gaussian density

is a uniform density. Also, One can use the following functions for the super/sub-

Gaussian cases

log p+i (s) =α1 − 2 log cosh(s) (II.16)

log p−i (s) =α2 − [s2/2− log cosh(s)] (II.17)

where the + simulates a super-Gaussian density and the − simulates a sub-

Gaussian density. α1 and α2 are constants to make the densities identifiable. This

results in the following:

g+(y) =− 2tanh(y) (II.18)

g−(y) =tanh(y)− y. (II.19)

Once we have found the converged B, we can find the estimate of the source signals

by computing Ŝ = BX. For a more complete understanding of ICA, we refer the

reader to the book in [34].

II.B Sequential Bayesian Filtering

In sequential Bayesian filtering the goal is to iteratively and optimally solve

the inverse problem of estimating the state vector xk from measurements zk, where

k is the discrete time index. The target state evolves according to the following

discrete-time stochastic model

xk = ak−1(xk−1) + vk−1 (II.20)

where ak−1 is a known, possibly nonlinear function of the state xk−1 and vk−1 is the

process noise sequence. On the other hand, the measurements are related to the

target state via another discrete-time stochastic model known as the measurement

equation:

zk = bk(xk) + wk (II.21)
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where bk is a known, possibly nonlinear function and wk the measurement noise

sequence. The noise sequences vk−1 and wk are assumed to be white and inde-

pendent of each other. The initial target state is assumed to have a known pdf

p(x0).

From a Bayesian perspective, the problem is to recursively update the state

xk based on some quantification on degree of belief using the measurements up to

time k, i.e. Zk = {zi}
k
i=1. Thus, what Bayesian filtering seeks to do is to construct

the posterior pdf p(xk|Zk). This is usually done by breaking down the recursive

pattern of going from time k − 1 to k in two steps of prediction and update .

Suppose that the density p(xk−1|Zk−1) at time k − 1 is available. The

prediction step is to find the prediction posterior via:

p(xk|Zk−1) =

∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (II.22)

At time step k when measurement zk becomes available the updated posterior

density can be found via the optimal Bayes rule:

p(xk|Zk) =p(xk|zk, Zk−1) (II.23)

=
p(zk|xk, Zk−1)p(xk|Zk−1)

p(zk|Zk−1)
(II.24)

=
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
(II.25)

where the normalizing constant is

p(zk|Zk−1) =

∫

p(zk|xk)p(xk|Zk−1)dxk. (II.26)

Once the posterior density is found, one can compute the optimal state by finding

the mean of the posterior, leading to the minimum mean square error (MMSE)

estimate

x̂k
MMSE = E[xk|Zk], (II.27)

or by finding the maximum of the posterior pdf which leads to the maximum

a-posteriori (MAP) estimate

x̂k
MAP = argmax

xk

p(xk|Zk). (II.28)
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Due to the presence of integrals in Eqs. II.22 and II.26, a closed form

solution cannot be analytically determined, in general. However, for the case where

the functions ak−1 and bk are linear and the noises vk−1 and wk are Gaussian, a

closed form solution can be achieved analytically which coincidently turns out

to be the optimal Kalman filter prediction and update equations. For all the

other cases a sub-optimal solution needs to be undertaken in order to approximate

the integrals. One common method is particle filtering which approximates the

integrals using Monte Carlo simulations. For a better understanding on particle

filters we refer the reader to the book in [74]. In this thesis we intend to both

separate and track multiple speakers in a reverberant environment when dealing

with adverse scenarios. We use the main idea of ICA discussed earlier for the

separation task and the main idea of sequential Bayesian filtering for the tracking

task.
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III.A Introduction

Independent vector analysis (IVA) is a frequency based method for con-

volutive blind source separation that normally requires no bin-wise permutation

correction post-processing[36, 32]. It extends the ICA concept by treating the data

in the frequency bins as one multivariate vector and utilizing the inner dependen-

cies between the frequency bins, therefore, significantly reducing the occurrence of

bin-wise permutations. IVA models each individual source as a dependent multi-

variate symmetric super-Gaussian distribution while still maintaining the funda-

mental assumption of BSS that each source is independent from the other. Other

frequency domain methods exist for convolutive BSS that are not ICA-based and

perform separation and permutation correction by exploiting properties of source

nonstationarity 1 [68, 69, 72, 56, 20, 63].

In this chapter we investigate the role that the dynamics of the signals play

in frequency domain BSS and show that in order for the sources to be separable,

they must have a dynamic temporal structure. Fortunately, most signals of in-

terest in BSS like speech, music and EEG/MEG follow such structure. We then

clarify how such dynamic structure results in a Gaussian scale mixture (GSM)

(super-Gaussian shaped) distribution in the frequency domain, therefore, justify-

ing the selection of such distributions that are used in IVA and other ICA-based

frequency domain approaches [36, 32, 78]. Lee et al. proposed using a Gaussian

mixture model (GMM) for the source distributions by extending independent fac-

tor analysis (IFA) to the multivariate case of IVA [40]. IFA is an instantaneous

mixture BSS method in the presence of noise which uses a GMM with unknown

parameters for the source priors, hence enabling the modeling of a wide range

of super-Gaussian, sub-Gaussian and multi-modal distributions [8]. By extending

IFA to the multivariate frequency domain case for convoluted mixtures, the same

1The notion of ”nonstationarity” used in these articles are loose termed and do not follow the definition
of a nonstationarity in random processes. Strictly speaking, what makes these algorithms work is not
the nonstationarity of the signals, but rather the property that each realization of the source signals has
a time varying envelope [71]. In this chapter, we use the same property but we will choose not to use
the term ”nonstationarity” in order to avoid confusion.
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wide range of freedom in the modeling of the sources is allowed. However such

general models are unnecessary when knowledge about the general shape of the

source distributions can be achieved a priori as a consequence of their dynamics,

and could lead to overlearning due to the high number of parameters of the GMM

to be estimated. In this chapter, as we intend to model the noise as well, we ap-

proximate the GSM super-Gaussian source distributions using a fixed GMM with

zero means as they are adequate and tractable.

For standard ICA-based methods, when the number of sources M becomes

greater than the number of sensors L (M > L), i.e. the matrix is overcomplete,

the process of estimating the mixing matrix and the sources are not that straight-

forward. Various methods in the past with different underlying assumptions have

been proposed to deal with overcompleteness (degeneracy) in ICA linear instan-

taneous mixing. Lee et al. used a maximum likelihood approximation framework

for learning the overcomplete mixing matrix and a maximum a posteriori (MAP)

estimator with Laplacian source priors, which can be viewed as a `1 norm mini-

mization problem, to reconstruct the sources[41]. Bofill and Zibulevsky proposed

transforming the observations to the frequency domain to increase sparsity, finding

the mixing matrix using a geometric method and recovering the sources using the

`1 norm mimization[14]. The `1 minimization scheme does not guarantee sparse

solutions when the sources are not disjoint or nearly disjoint, regardless of whether

they are Laplacian distributed or not [14, 80]. In other words when the sources

overlap, the reconstruction could yield leakage from other sources during periods

when it is actually silent. Other methods incorporate geometric/probabilistic clus-

tering approaches to find the mixing matrix while relying heavily on sparsity to

recover the sources, such that it is assumed that at every instant mostly one source

is active [55, 23, 61, 62, 25, 1]. Vielva et al. proposed a MAP estimator that seeks

the best combination of the columns of the mixing matrix, assuming the mixing

matrix is known or estimated beforehand [84]. All such methods, however, do not

take into consideration the temporal dynamic structure of the signals for mixing
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matrix estimation and, especially, source reconstruction.

Methods for overcomplete BSS have also been proposed for convolutive mix-

ing. Some methods in auditory scene analysis[15] use binary masking/clustering in

the time-frequency spectrogram to isolate the sources, assuming that every time-

frequency point belongs to one source [89, 7]. Methods that combine ICA(in each

frequency bin) with binary masking have also been proposed [77, 6, 70]. Other

methods work by performing instantaneous overcomplete BSS on each frequency

bin separately, reconstruct the sources in each frequency bin by either using an `1

minimization approach or only allowing one source component be active at a time,

and correct for permutations afterwards [87, 64, 76].

In this chapter we take our investigation of the dynamic temporal struc-

ture a step further enabling us to build a general IVA-based framework that can

facilitate overcomplete convolutive BSS as an extension to the more trouble-free

undercomplete/complete BSS. One common type of temporal dynamics, especially

present in speech, is that the signals can have intermittent silence periods, hence

varying the set of active sources with time. This feature can be used to improve

separation in well-determined undercomplete (L > M)/complete (L = M) cases,

and to deal with the ill-determined overcomplete (L < M) case. As the set of active

sources for each time period decreases, the degree of overcompleteness (M − L)

decreases locally. Hence, by exploiting silence gaps, one is actually compensat-

ing for the global degeneracy by making use of segments where it is locally less

degenerate. An ICA-based approach to model active and inactive intervals for

instantaneous linear mixing BSS has been proposed by Hirayama et al. [31]. This

method models the sources as a two-mixture of Gaussians with zero means and

unknown variances similar to that of IFA, and incorporates a Markov model on

a hidden variable that controls state of activity or inactivity for each source. A

complicated and inefficient three layered hidden variable (one for the Markov state

of activity and two as in normal IFA) estimation algorithm based on variational

Bayes is implemented. Extending this to IVA for convoluted mixtures proves to be
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even more complicated. In our previous work we proposed a simple and efficient

algorithm to model the states of activity and inactivity in the presence of noise

for the well determined complete/undercomplete cases of convoluted mixing using

a simple mixture model [50]. Unlike the method in [31] where the on/off states

were embedded in the sources themselves, they were modeled more naturally as

controllers turning on and off the columns of the mixing matrices. In this chap-

ter we build upon our previous work to construct a unifying IVA-based framework

that can deal with the challenging overcomplete case as well as the straight-forward

complete/undercomplete case for convolutive mixing BSS. The proposed algorithm

has the following characteristics: 1) utilizing inner-frequency dependencies to re-

duce the occurrence of the well-known permutation problem, 2)incorporating ac-

tive/inactive feature of the dynamic temporal structure of the sources so that the

learning is performed on a local level, 3) incorporating a Markovian support on

top of the active/inactive dynamics to be used for the ill-determined overcomplete

case to allow better separability when the sources overlap, 4) having the capabil-

ity of separating the sources when the number of sources is possibly unknown, 5)

applying an optimal and efficient minimum mean square error (MMSE) estimator

for source reconstruction using the outputs from the estimated mixing matrices

and state probabilities, 6) including white Gaussian noise in the model frame-

work. Various psycho-acoustic studies have confirmed that human listeners use

similar strategies of exploiting silence gaps by ”glimpsing” or listening in the gaps

to identify target speech in adverse conditions of multiple competing speakers [45,

§4.3.2], [21, 22]. Consequently, we name our algorithm ”glimpsing independent

vector analysis (G-IVA)”.

This chapter is organized as follows: Section III.B explains the generative

convolutive model and derives the source distributions in the frequency domain

as a consequence of the dynamic modulations of the signal in the time domain.

Then, estimation procedures for complete/undercomplete and overcomplete convo-

lutive BSS problems are presented and the source reconstruction method is given.
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Section III.C gives some pre-processing and post-processing techniques for faster

convergence and further improvement. In Section V.E, some results are evaluated.

The main focus of the results is on the overcomplete case, since it is more challeng-

ing. Finally, in Section III.E, our conclusions are stated and the main contributions

of this chapter are summarized.

III.B Convolutive Mixing Model

Assuming L sensors and M sources, with no restriction on the relationship

between L and M , the convolutedly mixed observation at the lth sensor is

yl(t) =
M
∑

j=1

R−1
∑

r=0

hlj(r)sj(t− r) + wl(t) (III.1)

where sj(t) is the j
th source in the time domain, hlj(t) is the impulse response of

duration R linking the jth source to the lth sensor and wl(t) is zero mean Gaussian

white noise. The signals are transformed to the frequency domain using the short

time Fourier transform (STFT). The STFT takes the discrete Fourier transform

(DFT) of blocks (frames) of the signal using a sliding window, hence creating a

time-frequency representation of the signal, commonly known as the spectrogram.

We must note that the window length of the STFT should be sufficiently large,

ensuring that the conversion from convolution in the time domain, be approximated

fairly by multiplication in the frequency domain. Using STFT, the lth sensor

observation at time block n and frequency bin k becomes

Y
(k)
l (n) =

M
∑

j=1

H
(k)
lj S

(k)
j (n) +W

(k)
l (n) (III.2)

where S
(k)
j (n) is the frequency domain representation of the jth source at bin k and

frame n, W
(k)
l (n) is the frequency domain noise at bin k and frame n added to the

lth sensor and having variance σwl
. We can arrange Eq. V.2 for all frequency bins

k = 1, ..., d in matrix form as

Y (1:d)(n) = H(1:d)S(1:d)(n) +W (1:d)(n) (III.3)



26

where Y (1:d) =
[

Y
(1)
1 ...Y

(1)
L |...|Y

(d)
1 ...Y

(d)
L

]T

,H(1:d) =











H(1) ... 0
...

. . .
...

0 ... H(d)











(Ld)×(Md)

,

S(1:d) =
[

S
(1)
1 ...S

(1)
M |...|S

(d)
1 ...S

(d)
M

]T

and W (1:d) =
[

W
(1)
1 ...W

(1)
L |...|W

(d)
1 ...W

(d)
L

]T
2.

H(k) is the L ×M mixing matrix for the kth frequency bin with its entries being

H
(k)
lj from Eq. V.2. Since the noise is assumed white, the covariance of the noise can

be written as ΣW =











σW ... 0
...

. . .
...

0 ... σW











(Ld)×(Ld)

where σW = diag (σw1 , ..., σwL
).

III.B.1 Source Distributions

Let sj be the jth source in the time domain. By taking the short time

Fourier transform (STFT) of source sj at time block n, the vector of frequency

coefficients is

S
(1:d)
j (n) =

Q−1
∑

t=0

sj(t+ nJ)e−i
2π(1:d)

d
t (III.4)

where S
(1:d)
j (n) =

[

S
(1)
j (n), ..., S

(d)
j (n)

]T

, e−i
2π(1:d)

d
t =

[

e−i 2π.1
d

t, ..., e−i 2π.d
d

t
]T

, Q is

the STFT sliding window length, d is the DFT length (d ≥ Q) and J is the sliding

window shift size (J < Q). We assume that the time domain signal sj at block n

is a realization of a zero mean stationary time series with a power spectrum vector

defined as

f (1:d)
sjsj

(n) =
∑

u

cn(u)e
−i

2π(1:d)
d

u (III.5)

where f
(1:d)
sjsj (n) = [f

(1)
sjsj(n), ..., f

(d)
sjsj(n)]

T with f
(k)
sjsj ∈ R

≥0, and cn is an absolutely

summable autocorrelation function of the signal for block n defined as

cn(u) = E[sj(t+ nJ)sj(t+ nJ + u)]. (III.6)

2Throughout this chapter AT , A∗ and AH denote the transpose, complex conjugate and conjugate
transpose of matrix/vector A, respectively.
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The spectrum is indexed by the frame index to capture the dynamic nature of the

source signal. i.e. the statistics can vary from frame to frame. Using the central

limit theorem and noting that the DFT bins are uncorrelated from each other, the

frequency domain vector S
(1:d)
j (n) of block n, conditioned on the power spectrum

for that block is asymptotically distributed as a complex zero mean multivariate

Gaussian with diagonal covariance as follows[16, theorem 4.4.1]

P
(

S
(1:d)
j (n)|f (1:d)

sjsj
(n)
)

= N
(

S
(1:d)
j (n); 0, diag

(

Qf (1)
sjsj

(n), ..., Qf (d)
sjsj

(n)
))

(III.7)

Similar to hidden Markov models (HMMs) commonly used in speech, to model

the frame dynamics we associate the power spectrum at block n with a hidden

variable/vector for that block denoted as ξ
n
. Eq. III.7 can be rewritten as

P
(

S
(1:d)
j (n)|ξ

n

)

= N
(

S
(1:d)
j (n); 0, diag

(

σ(1)(ξ
n
), ..., σ(d)(ξ

n
)
))

(III.8)

From Eq. III.8, the unconditional probability density function (PDF) of the Fourier

coefficients vector of the sources for all blocks can be written as

P
(

S
(1:d)
j

)

=

∫

ξ

P
(

S
(1:d)
j |ξ

)

P
(

ξ
)

dξ

=

∫

ξ

N
(

S
(1:d)
j ; 0, diag

(

σ(1)(ξ), ..., σ(d)(ξ)
)

)

P
(

ξ
)

dξ. (III.9)

If the source signal has a dynamic power spectrum, modeled by the hidden variable

ξ, Eq. III.9 can be viewed as a mixture of infinite Gaussians with zero means and

varying diagonal covariances. This is the well known GSM model [3]. Depending

on the distribution of the scaling variable ξ, P
(

S
(1:d)
j

)

(Eq. III.9) may or may

not have a closed-form expression. If it is assumed that the diagonal elements of

the covariance matrix all have the same values , σ(1)(ξ) = ... = σ(d)(ξ) = ξ (i.e

the signal being a white stationary time series for each block), and for instance, ξ

follows an inverse Gamma distribution, then P
(

S
(1:d)
j

)

is the multivariate spheri-

cal Student t-distribution [13, §2.3.7]. A similar spherical GSM model was stated
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in the original IVA papers without much discussion on why the distributions in

the frequency domain followed such form [36, 26, 32]. In [36, 26, 37], a Gamma

prior was employed and the resulting PDF (multivariate K distribution) was ap-

proximated in the heavy tails region to be the multivariate spherical Laplacian

distribution. Palmer et al. derived the GSM format for IVA independently in [66].

The relationship between non-Gaussianity and the dynamic temporal structure

of the sources were also discussed in [69, 71, 87]. For a more rigorous analytic

investigation of frequency domain ICA/IVA methods we direct the reader to our

companion article in [90].

If the time domain source signal sj has no temporal dynamics, then its

power spectrum is constant over time for all frames. This means that the overall

distribution of the variable controlling the power spectrum P
(

ξ
)

is a Dirac delta

function, P
(

ξ
)

= δ
(

ξ − α
)

. Consequently, the overall distribution of the source

P
(

S
(1:d)
j

)

will be Gaussian distributed,

P
(

S
(1:d)
j

)

= N
(

S
(1:d)
j ; 0, diag

(

σ(1)(α), ..., σ(d)(α)
)

)

. (III.10)

Since Gaussian source signals cannot be separated by independence analysis, the

above discussion concludes that conventional frequency domain ICA or IVA ap-

proaches cannot separate mixed sources without time varying amplitudes.

In this chapter we approximate the GSM in Eq. III.9 with a finite number

of Gaussians to form a GMM as follows

P
(

S
(1:d)
j

)

=
C
∑

cj=1

αjcj
N
(

S
(1:d)
j ; 0, diag

(

σ
(1)
jcj
, ..., σ

(d)
jcj

))

(III.11)

where the variances σ
(k)
jcj

and the mixture coefficients αjcj
are learned and fixed

beforehand to approximate a multivariate GSM model (if the model is directly

learned from, say, speech signals, we avoid including prolonged silence periods in

the data because silence information will be learned separately in the next part

of this chapter). For our experiments, the spherical form of Eq. III.11 where

σ
(1)
jcj

= ... = σ
(d)
jcj

= σjcj has been found to be sufficient. This simplifies the density
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function to

P
(

S
(1:d)
j

)

=
C
∑

cj=1

αjcj
N
(

S
(1:d)
j ; 0, σjcj .Id

)

(III.12)

where Id is the d×d identity matrix. This is mainly because whitening is performed

on each frequency bin separately as a preprocessing step which makes the sources

have roughly unit variance for each frequency bin (see section III.C.1). Nonetheless,

for the sake of generality, through the rest of this chapter we express the GMM as

in Eq. III.11.

The joint density of the M independent sources is the product of the

marginal densities. Hence, we have

P
(

S(1:d)
)

=
M
∏

j=1

C
∑

cj=1

αjcj
N
(

S
(1:d)
j ; 0, diag(σ

(1)
jcj
, ..., σ

(d)
jcj
)
)

=
CM
∑

q=1

wqN
(

S(1:d); 0, Vq
)

(III.13)

where
∑CM

q=1 =
∑C

c1=1 ...
∑C

cM=1, wq =
∏M

j=1 αjcj
and

Vq =











v
(1)
q ... 0
...

. . .
...

0 ... v
(d)
q











(Md)×(Md)

with v
(k)
q = diag

(

σ
(k)
1c1
, ..., σ

(k)
McM

)

.

III.B.2 Active and Inactive States

We assume that each source signal will have silence periods and to take

advantage of this knowledge we associate two states with each source. At any

frame each source can take on two states, either active or inactive. For M sources

there will be a total of 2M states. As a convention throughout this chapter we

will arbitrarily encode the states by a number between 1 and I = 2M with a circle

around it. These states are the same for all frequency bins and indicate which

column vector(s) of the mixing matrix is(are) present or absent.

Let the source indices form a set Ω = {1, ...,M}, then any subset of Ω

could correspond to a set of active source indices. For state i , we denote the
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subset of active indices in ascending order by Ωi = {Ωi(1), ...,Ωi(Mi)} ⊆ Ω, where

Mi ≤ M is the cardinality of Ωi (i.e. the number of active sources at a frame).

As an example if M = 2, their will be a total of four states corresponding to the

first source being active, the second source being active, both being active or none

being active. From Eq. V.3 and using the source distribution of Eq. III.11, by

effectively selecting the columns of the mixing matrices that correspond to each

state, it can be easily shown that the observation density function for state i ,

regardless of being overcomplete/complete/undercomplete is

P
i

(

Y (1:d)(n)
)

=
∑

q
i

wq
i

N

(

Y (1:d)(n); 0, A(1:d)
q

i

)

(III.14)

where A
(1:d)
q

i

= ΣW + H
(1:d)

i
Vq

i

H
(1:d)H

i
,

∑

q
i

=
∑C

cΩi(1)
=1 ...

∑C
cΩi(Mi)

=1, wq
i

=

∏Mi

j=1 αΩi(j)cΩi(j)
, H

(1:d)

i
=















H
(1)

i
... 0

...
. . .

...

0 ... H
(d)

i















(Ld)×(Mid)

with H
(k)

i
=
[

h
(k)
Ωi(1)

...h
(k)
Ωi(Mi)

]

being an L×Mi subset of the full matrix containing only the Ωi(1)
th to Ωi(Mi)

th

columns, and Vq
i

=















v
(1)
q

i

... 0

...
. . .

...

0 ... v
(d)
q

i















(Mid)×(Mid)

with v
(k)
q

i

=

diag

(

σ
(k)
Ωi(1)cΩi(1)

, ..., σ
(k)
Ωi(Mi)cΩi(Mi)

)

. When all the sources are active, the observation

density in (IV.3) uses the full mixing matrix and when none of the sources are

active, the observation density reduces to white Gaussian noise.

III.B.3 Complete/Undercomplete case

Log-likelihood

When there are equal or more sensors L than sources M (L ≥ M), each

observation point in the sensor space generated from a specific state of activ-

ity/inactivity is assumed to be independent from the next state in time, estab-

lishing a mixture model for the states (i.e. zero-order Markov model, see Section
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III.B.4 for further discussion). By introducing an indicator function, xi(n), defined

to be equal to unity when at time n it obeys state i and zero otherwise, the joint

log-likelihood of the sensor observations and hidden variables (indicator variables)

of N data points,
(

XN , Y N
)

=
({

x(1), Y (1:d)(1)
}

, ...,
{

x(N), Y (1:d)(N)
})

can be

written as

logP
(

XN , Y N |θ
)

=
N
∑

n=1

I
∑

i=1

xi(n) logP i

(

Y (1:d)(n)|θ
)

+ xi(n) log π i
(θ) (III.15)

where θ is the collection of all the unknown parameters, consisting of the mixing

matrices, the mixing coefficients of the states ( π
i
, i = 1, ...I ) and the noise

covariance matrix. Notice that the number of parameters in this model have not

changed compared to the previous section. However, the mixing matrices have

been broken down into partitions where each will be learned in a more controlled

and specialized manner.

EM Parameter Estimation

The Expectation Maximization (EM) algorithm guarantees to hill-climb the

likelihood of observations by taking the expectation of (III.15) with respect to the

hidden variables conditioned on the observations and the last update of parameters

from the maximization step, indicated as Q(θ, θ̂) [24]. After some manipulation

the E-step becomes

x̂i(n) =
P

i

(

Y (1:d)(n)|θ̂
)

π
i
(θ̂)

∑I

j=1 P j

(

Y (1:d)(n)|θ̂
)

π
j
(θ̂)

(III.16)

The M-step includes updating the mixture coefficients as

π+

i
(θ) =

∑N

n=1 x̂i(n)

N
(III.17)
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and taking a couple of steps in the gradient direction of the mixing matrices and

the noise covariance

∇H(k)Q(θ, θ̂) =
N
∑

n=1

I
∑

i=1

x̂i(n)





∂

∂H
(k)

i

P
i

(

Y (1:d)(n)
)





∗

P
i

(

Y (1:d)(n)
) (III.18)

∇σW
Q(θ, θ̂) =

N
∑

n=1

I
∑

i=1

x̂i(n)

(

∂
∂σW

P
i

(

Y (1:d)(n)
)

)

∗

P
i

(

Y (1:d)(n)
) . (III.19)

The derivation of the numerators on the RHS of Eqs. III.18 and III.19 are shown

in Appendix III.G.1.

III.B.4 Overcomplete case

Hidden Markov Model

In the overcomplete case M > L, since the distribution of the data in the

sensor space is lower in dimension than the source space, data points belonging

to different states of activity can be overlapping. To illustrate such overlapping,

Figure III.1 gives an example of the empirical distribution in the sensor space for

an overcomplete representation of 3 sources using 2 sensors such that each point

is color-coded to represent the ground truth state of activity. In order to compen-

sate for this overlapping, a first-order Markovian state structure is incorporated

using HMMs, enabling us to make use of the temporal dependencies and estimate

the states more accurately compared to the mixture model employed for the com-

plete/undercomplete case provided earlier. In order to assure smooth transitions

between the states, a non-ergodic HMM is used which assumes that at each new

time instant, at most one source can appear or disappear. The HMM transition

diagram is depicted in Figure III.2 for the example of M = 3. It is clear that

for complete/undercomplete case discussed earlier, a similar first-order Markovian

structure can be used instead of the zero-order mixture model. However, our ex-

periments show that for this case the Markovian property does not give us an extra
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advantage and the simpler mixture model is sufficient to find the correct state es-

timates. This is naturally due to the fact that as the problem is upgraded to a

complete/undercomplete setting, the extra dimension(s) that is(are) added to the

sensor space would reduce the overlapping of the states. On the other hand, for

the overcomplete case the zero-order mixture model can also be utilized, however,

due to the mixture model’s discriminative way of state estimation (classification),

the overlap between the states is not taken into consideration resulting in a poor

state estimation.
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Figure III.1 Data in the sensor space of f = 938 Hz(after whitening) for an

overcomplete representation of 3 sources using 2 sensors with ground truth states

of activity.

HMM EM parameter estimation

Again, EM algorithm is used to learn the HMM initial probabilities πi, the

HMM transition probabilities aij = P (x(n) = i|x(n− 1) = j), the mixing matrices

and noise covariance [73]. The E-step consists of finding the probability γn(i) =

P
(

x(n) = i|Y (1:d)(1), ..., Y (1:d)(N)
)

from the forward/backward probabilities

αn(i) = P
(

Y (1:d)(1), ..., Y (1:d)(n), x(n) = i
)

(III.20)
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and

βn(i) = P
(

Y (1:d)(n+ 1), ..., Y (1:d)(N)|x(n) = i
)

, (III.21)

using the relation

γn(i) = αn(i)βn(i)/
I
∑

j=1

αn(j)βn(j) (III.22)

and the forward/backward recursions of

αn(i) =P i

(

Y (1:d)(n)
)

I
∑

j=1

aijαn−1(j)

βn(i) =
I
∑

j=1

P
j

(

Y (1:d)(n+ 1)
)

ajiβn+1(j). (III.23)

with initial values

α1(i) =πiP i

(

Y (1:d)(1)
)

βN(i) =1 , i = 1, ..., I. (III.24)

The M-Step consists of updating the initial and transition probabilities as

π̂+
i = α1(i)β1(i)/

I
∑

j=1

α1(j)β1(j) (III.25)

â+ij =

∑N

n=2 aijαn−1(j)βn(i)P i

(

Y (1:d)(n)
)

∑N

n=2 αn−1(j)βn−1(j)
(III.26)

and taking a couple of steps along the gradient of the auxiliary Q function with

respect to the mixing matrices and the noise covariance

∇H(k)Q(θ, θ̂) =

N
∑

n=1

I
∑

i=1

γn(i)


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(k)

i

P
i

(

Y (1:d)(n)
)





∗

P
i

(

Y (1:d)(n)
) (III.27)

∇σW
Q(θ, θ̂) =

N
∑

n=1

I
∑

i=1

γn(i)

(

∂
∂σW

P
i

(

Y (1:d)(n)
)

)

∗

P
i

(

Y (1:d)(n)
) (III.28)

The entries in the numerators of (III.27) and (III.28) are found the same way as

for the well-determined case (see Appendix III.G.1).
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Figure III.2 State transition diagram forM = 3 assuming that at most one source

can appear or disappear at a time

III.B.5 Source Reconstruction

Once the parameters have been estimated (denoted as Ĥ(1:d) and Σ̂W ), we

reconstruct the signals using the MMSE estimator through Bayesian inference.

Ŝ(1:d)(n) =E
[

S(1:d)(n)|Y (1:d)(n)
]

=
I
∑

i=1

ẑ++
i (n)E

i

[

S(1:d)(n)|Y (1:d)(n)
]

(III.29)

where ẑ++
i (n) is the soft indicator function obtained from the last iteration (con-

verged) of the E-step described as 3

ẑ++
i (n) =







x̂++
i (n) undercomplete/complete L ≥M

γ++
n (i) overcomplete L < M

(III.30)

and

E
i

[

S
(1:d)
Ψ (n)|Y (1:d)(n)

]

=
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



0 Ψ = Ω− Ωi

∑

q
i

λq
i

(n)Λ
(1:d)
q

i
Ĥ

(1:d)H

i
Σ̂−1

W Y (1:d)(n) Ψ = Ωi

(III.31)

3the superscript ++ denotes that it comes from the last iteration of the E-step
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III.C Pre/Post-Processing

III.C.1 Pre-Processing

Whitening

Prior to learning the mixing matrices, whitening is done on each frequency

separately, making it easier for the algorithm to converge to a solution. Because

the whitening matrix for each frequency bin is different, the noise covariances are

scaled differently from one frequency bin to another. Assuming that the L × L

whitening matrix for bin k is D(k), the noise covariance for bin k after whitening

becomes D(k)σWD
(k)H . Therefore, some minor modifications need to be made to

the gradients in the M-Step to ensure that the noise covariance is scaled properly.

The GMM parameters used to model the sources were learned by fitting a spheri-

cal multivariate GMM (Eq. III.12) with 3 mixture components, to a 20-min-long

continuous speech with no prolonged silence periods and normalized to unit vari-

ance speech for each frequency bin. The speech is normalized to unit variance for

each frequency bin separately because whitening is preformed on the sensor data

for each frequency bin separately as well. Doing so, also, makes the distribution

closer to the spherical representation in Eq. III.12.

Initialization of the Mixing Matrices using a Sparser Model

For the overcomplete case where the estimation problem becomes a harder

task and more sensitive to initial values of the mixing matrices, simpler and sparser

intermediate models can be used to create good initial values to be used in the
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proposed EM algorithm that uses the full model (shown in Figure III.2 forM = 3).

For example, one can start with the sparsest model which assumes that at each

time at most one source can be active, and after some iterations, slowly advance

to intermediate sparse models that allow more simultaneously active sources. The

state dynamic diagram for such a progressive model is illustrated in Figure III.3

for M = 3. Running the algorithm using such sparse models as a pre-processing

step would attempt to find the star-like legs associated with the columns of the

mixing matrices (as seen in Figure III.1) without caring about their overlap when

two or more sources are active. This estimate of the mixing matrix is a good

initialization for learning the mixing matrix and state probabilities using the full

dynamic model which eventually leads to better estimates and faster convergence.

This initialization technique is somewhat similar to the bottom-up hierarchical

clustering method used in [87] to estimate the mixing matrices, but just like our

proposed algorithm, it is done on the vector of frequency bins to significantly

reduce permutations in the columns of mixing matrices from one bin to another.

In our experiments we use such a technique to initialize the mixing matrices for

difficult cases for example when we have 2 sensors and 4 sources (Experiment C

in Section III.D.3).

III.C.2 Post-Processing

Adjusting Scales and the Inverse Fourier Transform

One indeterminacy in BSS is that the sources can be multiplied by an

arbitrary scalar without violating the underlying assumption. As a consequence,

the scaling problem needs to be solved in the frequency bins either by adjusting the

source variances or by scaling the estimated mixing matrices. Since the sources are

dynamic with varying variances, it would be simpler to scale the estimated mixing

matrices using the well-known minimal distortion principle [54] in each frequency

bin prior to source reconstruction. After the sources have been reconstructed using

the MMSE estimator described in Section III.B.5, the inverse Fourier transform
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Figure III.3 Bottom-up progressive model for M = 3. It starts with the sparsest

representation assuming that at each time at most one source can be active (left),

then advances to an intermediate case where at most two can be active simultane-

ously (middle). Finally, the full model is used allowing up to three simultaneously

active sources (right). The mixing matrix estimates of each step is used as the

initial values for the next step.

using the overlap add method is used to reconstruct the time domain signals.

Glimpsing across Frequency bins

So far our proposed algorithm was based on ”glimpsing in time” or taking

advantage of the different combination of silence gaps on the local temporal level

where the problem could be less degenerate. This means that our estimated states

of activity are the same for all frequency bins. However, in reality, when a dynamic

signal like speech is active in a time frame, it is not necessarily active across all

frequency bins of the same time frame in the spectrogram. Obviously, when the

signal is inactive in a time frame, it is also inactive across all frequency bins in that

time frame. This means that sparsity in time (”glimpsing in time”) comes before

sparsity in frequency domain (”glimpsing in frequency”). Therefore if one wants

to exploit sparsity in the frequency bins, a rerun of the algorithm can be done

for each frequency bin separately as a post-processing step using the estimated

parameters from our proposed algorithm as initial values. One can also restrict
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Algorithm 1 Glimpsing IVA + Glimpsing in Frequency Post-Processing

Glimpsing IVA: Perform G-IVA described in Section III.B.3/III.B.4 to obtain Ĥ(k), k =

1, ..., d and ẑ++
i (n), i = 1, .., I, n = 1, .., N

Glimpsing in Frequency:

for k = {1, . . . , d} do

Perform glimpsing algorithm described in Section III.B.3/III.B.4 for each frequency dimen-

sion separately using Ĥ(k) as initial conditions and obtain updates Ĥ
(k)
post and ẑ

(k)++

i (n), i =

1, .., I, n = 1, .., N

if ẑ
(k)++

i (n) ≤ ẑ++
i (n) then

ẑ
(k)++

i (n)← ẑ
(k)++

i (n)

else

ẑ
(k)++

i (n)← ẑ++
i (n)

end if

Reconstruct the sources in each bin

end for

Permutation Correction: Use the method in [75] with an option to choose v
(k)
j (n) =prob.

of source activity in bin k obtained from ẑ
(k)++

i (n)

the corresponding bin-wise-state probabilities at a time-frequency block ẑ
(k)
i (n) to

be less than or equal to the converged state probabilities ẑ++
i (n) obtained from the

main approach
(

ẑ
(k)
i (n) ≤ ẑ++

i (n)
)

. This ensures that the states are not declared

active for a time-frequency block when it is declared inactive at that time frame.

Our experiments show that even though such post-processing is done on each

frequency bin separately, little permutation of the sources for different frequency

bins takes place which is due to using estimated matrices from the proposed IVA

method as initial conditions for the bin-wise rerun of the algorithm. To correct

for the permutation that might exist, we use the recent and effective method in

[75]. The pseudo-code in Algorithm 1 displays the steps taken for the ”glimpsing

in frequency” post-processing step. This post-processing method also has a de-

noising effect which suppresses the noise present in the areas of the spectrogram

of the sources where no time-frequency activity is present.
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III.D Experimental results

In this section we perform some experiments using real and simulated data.

Simulated data was created using the image method in [2] which simulates the im-

pulse response between a source and a sensor for a rectangular room environment.

We evaluate the performance for both well-determined complete/undercomplete

and ill-determined overcomplete cases. However, since the overcomplete case is

more difficult and less straightforward, we will focus most of our experiments on

the overcomplete case. For the complete case (M = L), the proposed glimpsing

IVA algorithm (denoted as G-IVA) is compared to the well-known IVA algorithm

[36]. For the overcomplete case, the proposed algorithm is compared to the time-

frequency masking algorithm of Sawada et al. [76]. This algorithm uses the clus-

tering along oriented lines method in [61] in each frequency bin which permits only

one frequency be active at each time, and then uses the method in [75], which is a

simpler and improved version of the method in [78], to effectively correct for per-

mutations of sources in different frequency bins. The performances were evaluated

using the signal to disturbance ratio (SDR) described as

SDRout =

10 log
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where G
(k)
n = R̂(k)(n)H(k) and R̂(k)(n) is the time-varying M × L reconstruction

matrix obtained from the MMSE estimator for bin k and block n described in Sec-

tion III.B.5. SDRout is the total signal power of direct channels versus the signal

power stemming from cross interference and noise combined, therefore giving a rea-

sonable performance measurement for noisy situations. In addition to evaluation

using SDR, for the overcomplete case, we also compare the machine intelligibility

of the separated sources using a continuous speech recognizer.
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We assumed a room size of 8x5x3.5 m with the microphones and the sources

having the same height of 1.5 m. Experiments were carried out using different

sources with different angles with respect to the microphones. Figure III.4 il-

lustrates the simulated room setting along with the microphones used for each

experiment. For all the experiments, we assumed a reverberation time of 200 ms.

Each experiment was repeated for four different noise levels measured by the input

signal to noise ratio (SNRin) defined as

SNRin = 10 log
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To evaluate the performance improvement, a measurement for the input SDR of

the convolutive mixture is needed. Since the contribution of each source in the

mixture comes from each column of the mixing matrices (rather than the diagonal

elements as seen in the output SDR of Eq. III.32 ), the input SDR needs to be

calculated for each source separately based on the columns of the mixing matrices.

Therefore, we define the average input SDR as follows

SDRin =

1

M

M
∑

i=1

10 log
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where ||.|| indicates the vector 2-norm and h
(k)
j is the jth column of matrix H (k).

A 512-point DFT with a STFT window length of 512 with 75% overlap is used at

a sampling rate of 8kHz. The stopping rule for the algorithms was when the log-

likelihood of the ratio between the increase in the log-likelihood over the previous

value of the log-likelihood did not increase by 10−4. Real data was gathered in

a lab/conference room, where loudspeakers were placed on a table in front of the

pair of microphones about 1 m away and each playing a female speech signal.
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Figure III.4 Simulated room setup. The heights of the microphones and sources

are 1.5 m. Three different experiments (A,B,C) using different combinations of

sources 1-10 were carried out for the overcomplete case using two microphones(α

and β). For the complete case two experiments (A,B) were carried out using three

microphones (α, β and γ). Each experiment was repeated for four different noise

levels. Experiments A and B have all female speech sources while experiment C

has one male and three female sources. Reverberation time for all experiments was

200 ms.

III.D.1 Complete case

Experiments A (sources 3,6,8) and B (sources 2,5,9) in Figure III.4 were

performed using the three microphones (α, β, γ). Both Experiments A and B

have female voices for all the sources. The evaluation for Experiments A and

B are shown in Figure III.5, where the performance of proposed G-IVA for the

complete case M = L = 3, denoted as G-IVA 3x3, along with the performance

after post-processing using glimpsing across frequency bins described in Section

III.C.2 , is compared to the performance of the regular IVA method. The SDRin

is also given to illustrate the SDR improvement. These panels show that the

performance of the proposed algorithm is higher than that of standard IVA, even

at the highest SNRin. The advantage of the proposed algorithm is most likely
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due to two factors. One is that it exploits the silent regions in the sources to learn

the mixing matrices in a more specialized fashion, therefore, resulting in a higher

SDRout for even high SNRin. The other is that the proposed algorithm models

noise and learns its level, whereas IVA does not. That is why IVA degrades more

rapidly for low SNRin compared to G-IVA. Figure III.5 also demonstrates that

glimpsing in frequency post-processing boosts the performance of G-IVA. This is

mainly due to the de-noising effect that glimpsing in frequency has and listening to

the separation results before and after the post-processing verifies this de-noising

effect. The advantage of G-IVA over regular IVA comes with a computational cost.

The G-IVA 3x3 algorithm was coded in C and run on an Intel 2.5 GHz processor

with 4GB RAM with an average computation time of around 4.6 minutes ( around

1.2 sec per iteration for 230 iterations). The IVA algorithm was coded in Matlab

(in an efficient matrix form structure to reduce computation time) with an average

computation time of around 1 min (around 0.24 sec per iteration for 250 iterations).

III.D.2 Unknown Number of Sources using a Complete Setting

In BSS approaches for real world problems, it is usually the case that the

total number of sources are unknown. One common approach that is used to deal

with such an issue is to assume a large enough number of sources, hoping that

the assumed number of sources would be larger than the actual number of sources.

Because G-IVA seeks the active and inactive periods of the sources, we expect that

the redundant sources be estimated as completely inactive for all times. To explore

this situation we set up an example where we assume M = L = 3, however, with

the actual number of sources being equal to 2. The sources are located in positions

3 and 6 in Figure III.4 using all three microphones with an SNRin=16(dB). The

separated sources are shown in Figure III.6 using G-IVA and regular IVA. G-IVA

is able to successfully zero out the third redundant source while IVA still outputs

some residue from the noise.
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Figure III.5 Performance evaluation for the complete case. Top: Experiment A.

Bottom: Experiment B

III.D.3 Overcomplete case

For the ill-determined overcomplete case, Experiments A and B carried out

earlier for the complete case are repeated now using only two microphones (α and

β). A more difficult setup of four sources in Experiment C (sources 1, 4, 7, 10)

using only two microphones (α and β) is also carried out. Overcomplete G-IVA is

employed as well as the glimpsing in frequency as a post-processing step. Their per-

formances are then compared to the time-frequency masking method of Sawada

et al.. The overcomplete G-IVA algorithm was coded in C and for Experiment

A took an average computation convergence time of around 5 minutes ( around
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Figure III.6 Case of unknown number of sources. It was assumed that M = 3

where the number of sources was actually equal to 2. Left: separated signals using

IVA. Right: separated signals using G-IVA.

1.2 sec per iteration for 250 iterations). Sawada et al.’s time-frequency masking

method which was implemented efficiently in Matlab took around 45 seconds in

total (around 0.35 sec per iteration for all frequency bins combined for an average

of 100 iterations per bin and about 10 sec for permutation correction) to converge.

As an upper performance measure, cases where extra microphone(s) is(are) added

to turn the problem into a complete problem is considered and separated using the

complete mode of G-IVA . All these performances are illustrated in Figure III.7

for comparison. These plots show that G-IVA in general performs better than the

time-frequency masking method of Sawada et al.. It can also be seen from Fig-

ure III.7 that the glimpsing across frequency post-processing increases the SDR of

overcomplete G-IVA. However, when listening to the reconstructed sources after

this post processing, some synthetic artifacts commonly known as musical noise is

introduced due to its greedy de-noisng effect across frequencies (the same was true

for the experiments of the complete case in Section III.D.1). Because Sawada et

al.’s time-frequency masking method, is a bin-wise separation method similar to

glimpsing across frequencies, it too possesses this musical noise after separation.

Nevertheless, for even high SNRin this musical noise seems to be still present, es-

pecially when using Sawada et al.’s time-frequency masking method for separation.
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This is due to it being greedier than the glimpsing across frequencies method as it

allows each time-frequency block to be active for only one source.

In order to investigate the effect of musical noise on machine intelligibil-

ity, we pass the separated signals using G-IVA (without any post-processing) and

Sawada et al.’s time-frequency masking algorithms through an automatic speech

recognizer. For our experiments we choose a very high SNRin of around 30(dB)

to minimize the effect of the input white noise on the reconstructed sources. In

order to simplify training, we perform the recognition on a limited vocabulary set

of digits 0-9. Cambridge university hidden Markov toolkit (HTK) is used to train

the recognizer. A batch of 36 male English speakers each uttering the digits 0-9

is utilized for the training. A batch of some other 20 male speakers make up the

sources to be separated and tested. Each source comprises of two speakers uttering

a total of 20 digits in a random order with random silence between each utterances.

The average length of the sources in all the experiments was about 11 sec with

a sampling rate of 8 kHz. Figure III.8 illustrates the digit error percentage for

10 experiments where each experiment corresponds to a configuration of different

source angles. Each experiment is repeated twice with different speakers and the

error rate shown in each bar is the average value of the two. Sources were mixed

in the simulated room in Figure III.4 with a reverberation time of 200 ms, micro-

phone spacing of 10cm and distance of sources to microphone of 1.5 m. Figure III.8

demonstrates that G-IVA has less recognition errors in all the experiments com-

pared to Sawada et al.’s time-frequency masking. Since, the speech recognizer was

trained on clean data, a higher recognition of the former algorithm indicates it

has less interference and/or artifacts such as musical noise compared to the latter

algorithm.

Figure III.9 shows the true and recovered sources along with the estimated

probability of each source being active for the overcomplete case of Experiment

A and SNRin = 11.3(dB). The probability of source m being active for frame n

can be found by adding the estimated states γ++
n (i) that correspond to inclusion
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of matrix column m. Also, the estimated state probabilities γ++
n (i) as well as the

local SDRout for each frame are shown next to the true sources in Figure III.10.

Figure III.11 and Figure III.12 illustrate the same information for the harder case

of Experiment C with SNRin = 21.7. These figures show that the proposed

algorithm is able to reconstruct the sources successfully and effectively detect the

silence gaps by incorporating the best model based on the different combinations

of silence gaps. Finally, we recorded real data in an ordinary lab/conference room

setting. The sources consisted of three loudspeakers positioned on a table about

1m away from the two microphones. The sources were also recorded separately

by one of the microphones when played one at a time, and synchronized with

the original recording. This was done in order to create a perceptual comparison

measure. The separation results yielding good perceptual separation are presented

in Figure III.13. Furthermore, the estimated state probabilities γ++
n (i) are shown

next to the sources in Figure III.14. These audio files along with more information

are available at our website 4.

III.E Summary and Discussion

We have proposed a novel approach that can solve for the intricate over-

complete convolutive BSS as an extension to the more straight-forward com-

plete/undercomplete case, using a unifying framework that incorporates the tem-

poral structure of silent gaps present in many dynamic signals, especially speech.

Our proposed method extends the main concept behind IVA which exploits the

inner-frequency dependencies of each source while maintaining the same underly-

ing assumption of independence from one source to another, therefore significantly

reducing the occurrence of wrong permutations. By mimicking the separation

strategy of the human hearing system, this algorithm is able to exploit the local de-

crease of degeneracy during the different combinations of silent gaps of the sources

allowing it to cover all possible states from when all sources are active to when only

4http://dsp.ucsd.edu/∼ali/glimpsing/
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one is active at each instant, therefore doing its best to compensate for the appar-

ent global degeneracy. The algorithm works naturally by learning the columns of

the mixing matrices in a specialized fashion based on the probability of being in

each state and reconstructs the sources using an efficient and optimal (in the mean

square sense) MMSE estimator incorporating the converged state estimates. The

algorithm was able to outperform IVA in the classical complete/undercomplete

cases of convolutive BSS (albeit with longer computation times), especially in

environments with high noise levels (due to it having the extra feature of mod-

eling additive noise). Furthermore, for the more challenging overcomplete case,

improved separation results were achieved compared to a robust sparsity-based

time-frequency masking method, using both SDR and machine intelligibility of a

speech recognizer as the performance measurements. The hard on-off switching

of the source activities is a good benefit for automatic speech recognition systems

since it avoids wrong insertions due to residual interfering noise. On the other

hand, if the BSS system is intended for human listeners the on-off switching effect

could make the speech sound choppy and perceptually undesirable, hence solutions

to this issue is worth being investigated.

A drawback of the proposed algorithm is that the number of states, and

along with it the computational cost, will grow exponentially as the number of

sources increases. This intractability for large number of sources, of course, is not

unique to G-IVA and is shared by other state-based models. For large number

of sources, in general, approximations can be made to make it computationally

tractable. One way is to reduce the maximum number of active sources (in each

frequency bin separately or for all bins) based on the sparsity present in the signals.

For example if there are M = 10 sources but the activity patterns present in the

sources are sparse enough that, roughly speaking, at most 2 sources are active

simultaneously, then by limiting the model to allow maximum of 2 sources active at

each time, the number of permissible states reduces dramatically and the problem

becomes somewhat tractable. Similar constraints on sparsity is used in the domain
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of dictionary learning for sparse signal recovery [17]. In the general case, in order

to ease the complex patterns possible in the state transitions for the overcomplete

case, we have utilized a non-ergodic trellis that allows for at most one source to

appear or disappear at each transition. This, to some limited degree, reduces the

complexity as well. Other approximations using variational methods (as in [8])

might also be useful.

Another issue that deserves a discussion is the problem of unknown number

of sources. The algorithm showed it has the ability of effectively zeroing out

redundant sources in case the true number of sources is unknown. In order to

do this an overkill strategy of using a large enough number of sources with equal

number of sensors (L = M complete setting) is assumed. The experiment that

was carried out assumed an overkill of three sources and three sensors while the

number of true sources was two. Similar experiments were also carried out for

a more challenging problem of unknown sources using an overcomplete setting.

For example, the true number of sources is two while we assume three sources

but recorded using only two sensors. This problem becomes extremely hard and

sensitive to initial values, and even intelligent initializations using the bottom-

up progressive model that we proposed, does not often result in zeroing out the

redundant source. This indicates that some refinements are needed to make the

approach more robust for such situations.

III.F Acknowledgments

The text of Chapter III, in full, is based on the material as it appears

in: Alireza Masnadi-Shirazi, Wenyi Zhang and Bhaskar Rao, ”Glimpsing IVA: A

Framework for Overcomplete/Complete/Undercomplete Convolutive Source Sep-

aration,” IEEE Transactions on Audio, Speech and Language Processing, vol. 18,

no. 7, Sept. 2010. The dissertation author was a primary researcher and an author

of the cited material.



50

III.G Appendix

III.G.1 Derivation of the gradients
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where ⊗, vec and |.| stand for Kronecker product, column-wise vectorization and

absolute value of the determinant, respectively. Similarly, the gradient with respect

to the noise covariance is
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Figure III.8 Digit error percentage of separated sources in an overcomplete setting

of three speakers and two microphones using a continuous speech recognizer. The

left bar is the error rate after separating using Sawada’s time-frequency masking

algorithm and the right bar is the error rate after separating using G-IVA algo-

rithm. Each source comprises of two speakers uttering a total of 20 digits in a

random order with random silence between each utterances. The average length

of the sources in all the experiments is about 11 sec with a sampling rate of 8 kHz.

Each experiment is repeated twice with different speakers and the error rate shown

in each bar is the average value of the two. The Sources were mixed in the simu-

lated room in Figure III.4 with a reverberation time of 200 ms, microphone spacing

of 10 cm and distance of sources to microphone of 1.5 m. The error percentage

of the original sources before mixing was around %1. Each experiment refers to

a different configuration of the sources with respect to the vertical centerline be-

tween the microphones. 1: [−50o 5o 20o]; 2: [−55o − 5o 45o]; 3: [−60o 0o 25o];

4: [−45o − 20o 5o]; 5: [−10o 10o 30o]; 6: [−50o − 20o 0o]; 7: [−10o 5o 20o]; 8:

[−45o 2o 45o]; 9: [−60o 5o 40o]; 10: [−50o − 25o 40o].
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Figure III.9 Experimental results of a simulated room mixing of 3 sources using

2 microphones (Experiment A, SNRin = 11.3dB). Top: true sources. Middle:

separated sources. Bottom: estimated probability of source activity
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Figure III.10 Experimental results of a simulated room mixing of 3 sources using

2 microphones (Experiment A, SNRin = 11.3dB). First row: local block-wise

SDRout. Second row: estimated state probabilities. Third to fifth row: true

sources



55

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.5

0

0.5

0 5 10 15

0

0.5

1

time(s)

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.5

0

0.5

0 5 10 15

0

0.5

1

time(s)

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.5

0

0.5

0 5 10 15

0

0.5

1

time(s)

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.5

0

0.5

0 5 10 15

0

0.5

1

time(s)

Figure III.11 Experimental results of a simulated room mixing of 4 sources using

2 microphones (Experiment C, SNRin = 21.7dB). Top: true sources. Middle:

separated sources. Bottom: estimated probabilities of source activity
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Figure III.12 Experimental results of a simulated room mixing of 4 sources using

2 microphones (Experiment C, SNRin = 21.7dB). First row: local block-wise

SDRout. Second row: estimated state probabilities. Third to sixth row: true

sources
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Figure III.13 Experimental results of real recording of 3 sources in a lab room

using 2 microphones. Top: true sources (recorded separately). Middle: separated

sources. Bottom: probability of source activity
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Figure III.14 Estimated state probabilities (top) with the true sources for a real

room recording of 3 sources using 2 microphones
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IV.A Introduction

Passive localization and tracking of multiple acoustical sources is of great

interest in the field of microphone arrays. Antonacci et al. first proposed a method

that uses a quasi-online time-domain-based convolutive ICA method that attempts

to (partially) separate the speakers and from that estimate the time difference of

arrival (TDOA) for each speaker using the extrema of the demixing filters. The

same is repeated for different microphone arrays in different positions in the room

resulting in multiple TDOAs for each source. The location of the sources is then

estimated by triangulation of the TDOA hyperbola locus points. However, because

the sources could be permuted for each array and because they might have not

been fully separated, TDOAs from the arrays can’t be matched to a specific source,

resulting in false localizations. Therefore, more than one extra array (or auxiliary

arrays using microphones within different array sets) is needed in order to reject

such false positions. This localization method is accompanied by a particle filter

on the source dynamics in order to track the sources [5, 81].

In this chapter we intend to both fully separate and track the multiple

speakers using an online algorithm. Sawada et. al has shown that for static

sources, estimating correct mixing matrices in the frequency domain using ICA

can lead to accurate estimations of the directions of arrival (DOA) [79]. The as-

sertion of this chapter is that for maneuvering sources, if one is able to track the

mixing matrices accurately in the frequency domain to ensure full separation in-

stead of partial separation, the accurate localization of the sources based on DOAs

can be a straightforward consequence. This is in contrast to the aforementioned

methods based on TDOA where the focus was on localization using already exist-

ing online BSS algorithms that might be able to only achieve partial separation.

Moreover, similar to the previous chapter, we exploit a common form of temporal

dynamics, especially present in speech, wherein the signals have silence periods

intermittently, hence varying the set of active sources with time. By doing so we
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enable the algorithm to ”glimpse” or listen in the gaps [52]. Utilizing such glimps-

ing strategy is essential in an online algorithm because if a source becomes silent

but assumed active by the model, the update to the column of the mixing matrix

corresponding to that source can diverge or fluctuate unstably [35]. In this chapter

we track the mixing matrices at each bin in the frequency domain by employing a

multiple model particle filter (MMPF) method that is able to switch between the

different combinations of silence gaps present in the sources. The proposed algo-

rithm can also maintain track in the more challenging situation where the sources

are silent but move around. We denote these periods as silence blind zones (SBZ).

Moreover, in the localization phase using triangulation, because the sources can

be fully separated, a correlation based method can be used to match the separated

sources of each microphone array avoiding the problem of false positions due to

permutations. Therefore, the need for and an auxiliary or more than one extra

microphone array is eliminated.

IV.B Generative Model

We assume there are L microphones in the array and M sources. After

taking the short time Fourier transform (STFT) (with d frequency bins) of the

convolutedly mixed (due to reverberance) signals corrupted with white Gaussian

noise, the observations would end up having a linear mixture in each frequency bin

k = 1, .., d described as

Y (k)(t) = H(k)(t)S(k)(t) +W (k)(t) (IV.1)

where H(k)(t) is the L×M time varying mixing matrix for the kth frequency bin.

Since the noise is white it will have the same energy in all frequency bins. Hence

the covariance of the noise can be written as σW = diag(σw1
, ..., σwL

). Throughout the

rest of this chapter all operations are carried out in each individual frequency bin, therefore the

superscript (k) is omitted for brevity. Each source is modeled as a multivariate GMM

with C mixtures. The joint density of the sources is the product of the marginal

densities, based on independency. Hence, we have
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PS (S) =

M
∏

j=1

C
∑

cj=1

αjcj
G
(

Sj , 0, σjcj

)

=

CM

∑

q=1

wqG
(

S, 0, vq
)

(IV.2)

where
∑CM

q=1 =
∑C

c1=1 ...
∑C

cM=1, wq =
∏M

j=1 αjcj
and vq = diag

(

σ1c1
, ..., σMcM

)

. The pa-

rameters αjcj
and σjcj for j = 1, ...,M are fixed beforehand corresponding to a

Gaussian mixture model (GMM) with zero means and varying variances (Gaus-

sian scaled mixtures), hence having the shape of a symmetric multivariate super-

Gaussian density [52]. Since each source can take on two states, either active or

inactive, forM sources there will be a total of 2M states. As a convention through-

out this chapter we will encode the states by a number between 1 and I = 2M

with a circle around it. Because we consider each bin separately, these states can

vary across the frequency bins and indicate which column vector(s) of the mixing

matrix is(are) present or absent for each bin.

Let the source indices form a set Ω = {1, ...,M}, then any subset of Ω could

correspond to a set of active source indices. For state x(t) = i , we denote the

subset of active indices in ascending order by Ωi = {Ωi(1), ...,Ωi(Mi)} ⊆ Ω, where

Mi ≤ M is the cardinality of Ωi. It can be easily shown that the observation

density function for state i is

P
i
(Y (t)|H (t)) =

∑

q
i

wq
i

G

(

Y (t), 0, Aq
i

(t)

)

(IV.3)

where Aq
i

(t) = σW +H
i
(t)vq

i

H
i
(t)

H

,
∑

q
i

=

∑C
cΩi(1)

=1 ...
∑C

cΩi(Mi)
=1, wq

i

=
∏Mi

j=1 αΩi(j)cΩi(j)
, H

i
=
[

hΩi(1)
...hΩi(Mi)

]

being a subset

of the full matrix containing only the Ωi(1)
th to Ωi(Mi)

th columns and vq
i

=

diag

(

σΩi(1)cΩi(1)

, ..., σΩi(Mi)cΩi(Mi)

)

. When all the sources are active, the observation

density in (IV.3) uses the full mixing matrix and when none of the sources are

active, the observation density reduces to white Gaussian noise [52].

We represent the evolution of the columns of the mixing matrices with

indices m = 1, ...,M as a random walk model of
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hm(t) = hm(t− 1) + νm(t− 1) (IV.4)

where νm(t) is a white Gaussian random variable with a diagonal covariance. We

assume that the transition from one state to another follows a Markovian property

with transition matrix Π = [πij] where πij = Pr
[

x(t) = j |x(t− 1) = i

]

. In

the next section we describe a MMPF algorithm capable of tracking the mixing

matrices and the sources’ activity pattern.

IV.C Multiple Model Particle Filtering

Particle filtering is an online Bayesian state estimation technique widely

used for nonlinear/nonGaussian state estimation. From Eqs. IV.1 and IV.3, it

is clearly evident that the relationship between the observations and the states is

nonlinear and nonGaussian. Particle filtering in junction with ICA for time-variant

mixing has been proposed before for linear instantaneous mixing while assuming

the sources were active at all times [53, 28]. In this section we describe a frequency

domain MMPF for convolutive mixing capable of switching between states corre-

sponding to different source activity patterns. Assuming N particles are used, the

main steps of the MMPF is summarized as follows [74]:

1. Initialize the state particles {hn
m(0),m = 1, ...M}Nn=1 and {xn(0)}Nn=1

based on a intial prior and using uniform weights {wn
m(0) = 1/N,m = 1, ...,M}N

n=1 and

{rn(0) = 1/N}N
n=1.

2. Classify the particles to sets corresponding to different activity states,

denoting ni = {n|x
n(t) = i } for i = 1, ..., I. Next predict the new set of particles

by drawing a new set of samples at time t according to state transitions described

by






hni
m (t) = hni

m (t− 1) + νni
m (t− 1) state i contains column m

hni
m (t) = hni

m (t− 1) state i excludes column m
(IV.5)

for m = 1, ...,M , i = 1, ..., I and n = 1, ...N . This model assumes that columns of
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the mixing matrices vary only when the corresponding sources are active. The rea-

son for this is to avoid the particles from drifting when no information is available

and the sources are silent. However, by keeping a memory of the silence patterns of

the sources based on previous frames, the covariance of the cloud of particles can

be increased virtually. This way the clouds of particles during the SBZs would be

large enough to find the track once the sources become active again. After that if

the sources remain active enough the covariances can be decreased back to normal

(similar to recovering track in blind Doppler zones in radar signal processing [74]).

Also, the activity pattern is predicted according to the rule that if xn(t− 1) = j

then xn(t) = i with probability πji.

3. In this step the weights for the culumns of the mixing matricies are

updated as










wni
m (t) = wni

m (t− 1)P
i

(Y (t)|Hni(t)) i contains column m

wni
m (t) = wni

m (t− 1) i excludes column m

(IV.6)

for m = 1, ...,M , i = 1, ...I and n = 1, ...N . The activity weights are updated as

rni(t) = rni(t− 1)P
i
(Y (t)|Hni(t)) (IV.7)

for i = 1, ...I and n = 1, ...N .

4. Normalize the activity weights so their sum is unit value

rn(t)←
rn(t)

∑

n r
n(t)

(IV.8)

and from that obtain the probability of each activity state

p(x(t) = i |Y (1, ..., t)) =
∑

ni

rni(t) (IV.9)

The column weights is then normalized as

wni
m (t)← wni

m (t)p(x(t) = i |Y (1, ..., t))/
∑

ni

wni
m (t) (IV.10)
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5. If the particles become degenerate resample them and reassign the

weights to uniform.

6. Estimate the matrix columns using

ĥm(t) =
∑

n

wn
m(t)h

n
m(t) (IV.11)

and from that the sources can be reconstruced using a minimum mean square error

(MMSE) estimator [52].

7. Permutation in the frequency bins is corrected using a correlation method

on the activity patterns by keeping a memory of the past estimates of the sources

in each frequency bin [75]. After that the sources are converted to the time domain.

IV.D Localization and tracking

Once an estimate of the time varying mixing matrices is found, the DOAs

can be found using the method in [79]. If the same procedure is repeated in

parallel for another microphone array placed at a different position in the room

the sources can be located and tracked using triangulation (similar to a multiple

bearings-only framework with static sensors in radar signal processing [74]). For

simplicity we assume that the secondary DOA estimates are synchronous to the

primary estimates and that zero delay transmission delay exists between the two.

Because the DOA estimates can be jittering especially when the sources are silent

for some time and suddenly become active, we propose to smooth the localization

process of triangulation by incorporating kinematic dynamics for the motion of

the sources. Therefore, another tracking stage is added where the DOA estimates

are treated as measurements and the positions and velocities of the sources are

treated as states. Because the relationship between the DOAs and the position
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of the sources is nonlinear [74], a method based on particle filtering is proposed

again. Moreover, in order to model maneuvering sources a MMPF (similar to the

tracking of the mixing matrices in the previous section) incorporating constant

velocity and constant acceleration models in the x and y directions is employed.

We note that because the algorithm is able to to first fully separate the sources

and then localize them, the DOA estimates from the two arrays can be matched

to a specific source by evaluating the correlation of the separated sources activity

patterns [75], avoiding the problem of false positions due to possible permutations.

IV.E Computer Simulations

The proposed algorithm was put to test in a simulated room settings using

the image method. We assumed a room size of 8x5x3.5m with a reverberation time

of 200ms. We picked the simple case ofM = 2 speakers and L = 2 microphones for

each array. The two arrays were placed facing each other. The sampling frequency

for speech sources was 8kHz and the spacing between the microphones in both

arrays was 4cm in order to avoid spatial aliasing. The two sources moved in the

same direction (one chasing the other) in a maneuvering radial pattern with an

angular speed of around 6.4 deg/sec with respect to the primary microphone array.

The total duration of the sources was 12.5 seconds with them being active only

for an average of about 5.5 seconds. The data was corrupted with white Gaussian

noise, with the noise level resulting in an input signal to noise ratio (SNRin) of

14(dB). Signal to disturbance ratio (SDR) is used as the performance measure for

the separation phase. SDR is the total signal power of direct channels versus the

signal power stemming from cross interference and noise combined. Number of

particles used was N = 1000. Position root mean square error (RMSE) is used as

a performance measure for the tracking phase.

In order to evaluate the results, the proposed method was compared to

an online independent vector analysis (IVA) method with a normalized natural



65

gradient nonholonomic constraint (NNGNC) [35]. Both algorithms were initialized

the same way by performing batch IVA [52] on the first 2 seconds of data. The SDR

using the proposed method measured to be 11.4 (dB) while the SDR of the online

IVA algorithm came out to be 6.8 (dB). Figure IV.1 shows the true positions of the

sources along with the estimated positions using the proposed method. Figure IV.2

compares the average position RMSE for the sources using the proposed algorithm

and the online IVA algorithm. Because of the high jitter in the DOAs when using

the online IVA method, tracking with a motion model failed to work. Therefore

the positions found based on simple intersections of DOAs, without applying any

motion model on the sources, was used to compute the RMSE of the online IVA

algorithm. The audio files along with the video of the tracking phase are available

at our website1.
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Figure IV.1 True (cyan and magenta) trajectories and estimated (blue and red)

trajectories using the proposed method.

IV.F Summary and Discussion

We have proposed a novel frequency domain particle filtering method ca-

pable of tracking the mixing matrices of maneuvering sources in a reverberant

environment. A glimpsing approach is also incorporated to switch between differ-

1http://dsp.ucsd.edu/~ali/tracking/
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Figure IV.2 Average position RMSE of trajectories.

ent combinations of tracks when the source(s) become inactive, therefore avoiding

losing track during such periods. The algorithm is also capable of recovering tracks

during silence blind zones (SBZ) where the sources are moving while silent. Once

the mixing matrices are correctly estimated, obtaining the directions of arrival

(DOA) becomes a straightforward post-processing step. Using a secondary array

positioned elsewhere in the room, the DOAs are matched up and triangulated

by incorporating a multiple motion model on the source trajectories. Improved

separation and tracking results were achieved in the simulations.
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V.A Introduction

As discussed in the previous chapter, passive localization and tracking of

multiple acoustical sources is of great interest in the field of microphone arrays

which is driven by applications such as automatic camera steering for telecon-

ferencing and surveillance. Speaker localization is also very useful in aiding sys-

tems achieving the task of separating concurrent speakers or a desired speaker

from background interference with applications such as high-quality hearing aids,

speech enhancement and noise reduction for smart phones. By localization, one

can refer to finding the bearings of the speakers or their Cartesian coordinate. In

this chapter we are particularly interested in estimating the bearing information of

multiple sources or their direction of arrival (DOA) by means of the time difference

of arrival (TDOA).

TDOA estimation is the first stage for many speaker localization algorithms

involving one or more microphone pairs. In the case of a single speaker, TDOA

can be reliably estimated using the generalized cross-correlation phase transform

(GCC-PHAT) using one microphone pair [38, 65]. GCC-PHAT is a scanning

method that computes the correlation of the microphone pair inputs for a range

of TDOAs with an arbitrary resolution, resulting in peaks where the correlation is

high. In case of multiple speakers, GCC-PHAT does not always provide reliable

TDOA for all the sources since one of the sources can dominate over the others [11].

This means that as the concurrent sources increase in number, multiple TDOA es-

timation using GCC-PHAT becomes less reliable. Also, multipath propagation

due to reverberation can cause additional peaks in the GCC-PHAT that corre-

spond to multi-path propagations. This results in the situation where for example

in the case of two sources, the first and second peak do not always correspond to

the first and second source and sometimes the third or subsequent peaks need to

be considered [46]. Extensions of the GCC-PHAT for multiple sources have been

proposed [19, 83, 39, 88]. However, they require microphone pair redundancy and
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high sampling rates to increase the reliability of the TDOA estimates.

Multiple TDOA estimation using frequency domain independent compo-

nent analysis (ICA) was first proposed in [79]. In the context of blind source

separation (BSS), ICA is a well known tool for the separation of linear and in-

stantaneous mixed signals picked up by multiple sensors [34]. ICA estimates a

de-mixing matrix for the separation task and does so by assuming the sources

are statistically independent and non-Gaussian distributed. For many real world

problems, the signals undergo a convoluted mixing due to reverberation. By trans-

forming the mixture to the frequency domain by applying the short-time Fourier

transform (STFT), convolution in the time domain translates to linear mixing

in the frequency domain. Subsequently, ICA can be performed on every single

frequency bin. Since ICA is indeterminate of source permutation, further post

processing methods are necessary to correct for possible permutations of the sepa-

rated sources in each frequency bin [78, 75]. In [79], multiple TDOAs are calculated

directly from the columns of the estimated mixing matrix. However, this method

works well only if the possible source permutations in the frequency bins have been

corrected and there are no frequency bins affected by spatial aliasing (hence a min-

imal microphone spacing). Recently an extension to [79] has been proposed under

the name of state coherence transform (SCT) that does not require permutation

correction and is insensitive to spatial aliasing [57, 59]. Similar to GCC-PHAT,

SCT is a scanning method. However, instead of finding the correlation between

the two microphone input signals for TDOA points in the scan, it forms a pseudo-

likelihood between a propagation model for the different TDOA scan points and

the TDOA observations pertaining to the columns of the mixing matrices, result-

ing in peaks where the scan points in the model and observations best match.

One attractive feature of SCT is that by exploiting the frequency sparsity of the

sources, it is effective even when the number of simultaneous sources is larger than

the number of sensors. Also, since SCT uses ICA outputs which attempt to sep-

arate the sources, it is more suitable for TDOA estimation for multiple sources
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compared to GCC-PHAT [59].

Assuming that the number of sources is known and fixed in time, some

methods exist that track the location information for each source by incorporating

a separate tracker for each source [18]. However, in many real world problems,

not only do the states of the sources change with time, the number of concur-

rent sources is unknown and varies with time as new speakers can appear and

existing speakers can disappear or undergo long silence periods. Moreover, the

measurements can receive a set of spurious peaks (clutter) due to the multi-path

propagation caused by reverberation and spatial aliasing, resulting in false alarms.

In addition, not all of the sources are detected giving rise to missed detections

as well. Therefore, the passive scanning methods discussed earlier result in an

assortment of indistinguishable observations where only a subset of them are gen-

erated by the sources. Recently, methods based on random finite sets (RFS) have

presented promising and mathematically elegant solutions to the problem of multi-

target tracking (MTT) for time-varying number of targets [48, 47]. Using RFSs,

the collection of indistinguishable observations in the presence of clutter is treated

as a set-valued observation while the multi-target states and the number of targets

are integrated to form a set-valued state. The goal becomes to estimate the target

states and the target number while rejecting clutter and accounting for missed

detections. The RFS formulation allows the problem to be posed in an optimal

multi-target Bayesian filtering framework, and is an extension of the well known

single target Bayes filter. However, the optimal RFS Bayes filter is computation-

ally intractable as it becomes a combinatorial problem on the number of targets

involving high dimensional integrals. The probability hypothesis density (PHD)

filter is a suboptimal approximation to the RFS Bayes filter which propagates the

first moment of multi-target posterior density rather than the full posterior density

[48]. This said, the PHD filter still involves multiple integrals with no closed form

solution in general. Also, the PHD filter in itself, does not solve the data associ-

ation problem indicating which estimate belongs to which target. The Gaussian
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mixture implementation of the PHD filter (GM-PHD) alleviates these two difficul-

ties: It provides a closed form solution of the PHD filter when the target states

and observations follow a linear and Gaussian dynamic model (which is a reason-

able model for the problem of interest in this chapter) [85]. It also solves the data

association problem intrinsically and provides track labels which are imperative to

the separation task of interest [67].

The problem of extracting location information of unknown time-varying

number of speakers using RFSs and PHD filtering has been proposed before. These

methods, however, use GCC-PHAT in the front-end to obtain the measurements

and bear the inherent limitations of GCC-PHAT for multiple sources including

being inherently incapable of source separation [46, 9]. For the same problem, a

method exists that uses ICA/SCT in the front-end and uses a naive thresholding

approach to estimate the number of targets [44, 43]. This method, however, is

sensitive to the selected thresholds and relies solely on the thresholds to reject

clutter. Another class of methods uses a steered beamformer for acquiring the

measurements and then applies a variable-dimension particle filter or track-before-

detect filtering scheme for the tracking and source activity detection [30, 29]. These

methods cannot perform the separation task inherently and don’t quite estimate

the number of targets but estimate the activity pattern of a limited few number

of sources. In the previous chapter, we have proposed an ICA-based approach

to separate and track multiple sources for when the sources can experience short

silence periods [51]. This method, while being able to separate the sources, only

estimates the activity patterns and cannot handle new sources being born or com-

pletely dying out. In this chapter we propose the use of the GM-PHD to filter the

measurements obtained from short time blocks using ICA/SCT. By doing so we

are able to track the DOA of multiple time-varying number of sources and from

the track labels we are able to go back to the ICA outputs and perform the sepa-

ration task by associating each separated time-frequency block with its estimated

corresponding track. The separation scheme exploits the frequency sparsity of the
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sources and enables the separation of more concurrent sources than sensors. Com-

puter simulations on the DOA tracking using the proposed method is compared

with the first two aforementioned existing approaches and the results are favorable

and promising.

Overall, this chapter demonstrates how a mixture/superposition model in

the framework of BSS can be easily represented as a standard detection model in

the framework of multi-target tracking, assuming that the sources have frequency

sparsity. Such an idea of transforming a mixture/superposition model to a de-

tection model, was first presented in [10], where the sources were assumed to be

narrowband audio tones and the STFT representation was enough to execute such

transformation. As it turns out, the approach in [10] is a special case of the pro-

posed method for when the sources have a super-sparse representation to a degree

where they will be non-overlapping and occupy a single frequency bin, making the

ICA separation scheme unnecessary. The proposed method offers a solution for

executing the transformation from the mixture model to the detection model for

broadband signals that have some sort of frequency sparsity, such as speech and

communication signals. Recently, in the context of multi-target tracking, other

methods have been proposed that deal with the mixture/superposition model di-

rectly and perform a moment-based RFS filtering [49, 82, 12, 4]. These methods,

however, are either computationally intractable or do not enjoy the relative sim-

plicity of the PHD filter.

This chapter is organized as follows: Section V.B explains the front end of

the system consisting of ICA in junction with SCT where the mixture representa-

tion of the sources are transformed to a DOA multi-target detection representation,

regardless of permutation, spatial aliasing and the number of sources being more

than the sensors. Section V.C explains the back-end of the system and gives a

background theory on multi-target filtering using a RFS framework along with

implementations and appropriate extensions of the PHD filter. We present all the

formulations of this section in a summarized way while maintaining a consistent
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context. In Section V.D, we present how the front-end and back-end are synergisti-

cally combined to perform both the tracking and separation tasks. In Section V.E,

some experimental results are evaluated. Finally, in Section V.F, our conclusions

are stated and the main contributions of this chapter are summarized.

V.B Frequency Domain BSS and SCT

Assuming L sensors and M sources, the convolutedly mixed observation at

the lth sensor at time u is

yl(u) =
M
∑

j=1

R−1
∑

r=0

hlj(r)sj(u− r) (V.1)

where sj(u) is the j
th source in the time domain, hlj is the finite impulse response

(FIR) approximation of duration R linking the jth source to the lth sensor. The

signals are transformed to the frequency domain using the short time Fourier trans-

form (STFT). The STFT takes the discrete Fourier transform (DFT) of frames of

the signal using a sliding window, hence creating a time-frequency representation

of the signal, commonly known as the spectrogram. We must note that the window

length of the STFT should be sufficiently large, ensuring that the conversion from

convolution in the time domain, is approximated fairly by multiplication in the

frequency domain. Using STFT, the lth sensor observation at time frame n and

frequency bin k = 1, ..., K becomes

Yl(n, k) =
M
∑

j=1

Hlj(k)Sj(n, k) (V.2)

where Sj(n, k) is the frequency domain representation of the j th source at bin k

and frame n. Omitting n for simplicity, we can arrange Eq. V.2 for frequency bin

k in matrix form as

Y (k) = H(k)S(k) (V.3)

where Y (k) = [Y1(k)...YL(k)]
T , S(k) = [S1(k)...SM(k)]T and H(k) is the L ×M

mixing matrix corresponding to the kth frequency bin.
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For the case of L = M , any complex-valued ICA algorithm [34] can be

applied to each frequency bin to estimate the inverse of the mixing matrix H(k) .

Denoting the estimate of the separated sources at the kth bin as Ŝ(k), from ICA

we get

Ŝ(k) = Ŵ (k)Y (k) (V.4)

where Ŵ (k) denotes the estimate of the demixing matrix up to scaling and per-

mutation ambiguities:

Ŵ (k) = Λ(k)Π(k)Ĥ−1(k) (V.5)

where Λ(k) is a diagonal scaling matrix, Π(k) is a permutation matrix and Ĥ(k)

is the estimate of the true mixing matrix H(k).

Without loss of generality, for simplicity, we consider a configuration of two

sources and two sensors. In an ideal anechoic setting the true mixing matrix can

be modeled as

H(k) =





|h11(k)|e
−j2πfkT11 |h12(k)|e

−j2πfkT12

|h21(k)|e
−j2πfkT21 |h22(k)|e

−j2πfkT22



 (V.6)

where Tqp is the propagation time from the pth source to the qth microphone and

fk is the frequency in Hz for the kth frequency bin. By neglecting the permutation

problem for now but taking into account the scaling ambiguity, the estimate of the

inverse of the demixing matrix becomes

Ŵ−1(k) =





|ĥ11(k)|e
−j2πfkT̂11 |ĥ12(k)|e

−j2πfkT̂12

|ĥ21(k)|e
−j2πfkT̂21 |ĥ22(k)|e

−j2πfkT̂22









1
η1(k)

0

0 1
η2(k)





=





1
η1(k)
|ĥ11(k)|e

−j2πfkT̂11 1
η2(k)
|ĥ12(k)|e

−j2πfkT̂12

1
η1(k)
|ĥ21(k)|e

−j2πfkT̂21 1
η2(k)
|ĥ22(k)|e

−j2πfkT̂22



 (V.7)

where ηi(k) represents the diagonal entries of the arbitrary scaling matrix Λ(k) in

(V.5). Neglecting reverberation, the TDOA information emerges when taking the

ratios of the entries of each column in (V.7)

r1(k) =
|ĥ11(k)|

|ĥ21(k)|
e−j2πfk∆̂t1 , r2(k) =

|ĥ12(k)|

|ĥ22(k)|
e−j2πfk∆̂t2 (V.8)
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where ∆̂ti are the TDOAs of the sources with respect to the microphone pair. As

it can be seen from (V.8), such ratios are invariant to the scaling ambiguities of

the estimation process. Since the TDOA information resides only in the phase of

the ratios in (V.8) and is invariant to scaling and magnitude, the ratios can be

simplified as

r̄1(k) =
r1(k)

|r1(k)|
, r̄2(k) =

r2(k)

|r2(k)|
(V.9)

If the permutation of the sources can be somehow corrected and if the mixing does

not undergo spatial aliasing, the TDOAs of the sources can be estimated directly

from phase information of (V.9) by exploiting the linear relationship between the

TDOAs and the true frequencies along the different bins [79]. However, solving

the permutation problem and dealing with spatial aliasing can prove to be difficult

in practice. SCT is a method that can sidestep these issues by forming a pseudo-

likelihood between the TDOA observations in (V.8) and a propagation model that

can intrinsically account for both permutations and spatial aliasing [57]. The prop-

agation model that results in TDOA of a source with respect to the microphones,

denoted as τ , is assumed to be

c(k, τ) = e−j2πfkτ (V.10)

The SCT for the configuration of two sources and two microphones is formulated

to be

SCT (τ) =
∑

k

2
∑

m=1

[

1− g

(

‖c(k, τ)− r̄m(k)‖

2

)]

(V.11)

where the transform is scanned for different values of τ with an arbitrary resolution

and g(.) is a function of the Euclidian distance. A good option for g(.) is shown

to have a sigmoidal shape such as the following

g(ξ) = tanh(αξ) (V.12)

where α is a real positive constant that defines the inter-source resolution of the

spatial likelihood, i.e. the capability of the system to spatially discriminate TDOAs
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related to different sources and is usually set empirically. The sigmoidal shape

gives more emphasis when the observations r̄m(k) are close to the model c(k, τ)

while ignoring the other values. It can be easily understood from (V.11) that one

could expect to see higher mappings of SCT for values of τ which r̄m(k) and the

model c(k, τ) are closer in some Euclidian form of distance, thus creating peaks

for values of τ matching the TDOAs. One important feature of SCT is that it is

invariant to source permutations since it jointly utilizes the TDOA information of

all the ratios in (V.9) across all frequencies. On the other hand, since the model

c(k, τ) incorporates the 2π phase wrap-arounds (i.e. it is periodic for 2π shifts)

caused by spatial aliasing, its sensitivity towards spatial aliasing is greatly reduced.

Moreover, the most important feature of SCT that makes it an attractive platform

for tracking unknown time-varying number of sources is that it is able to map

the TDOA peaks for the underdetermined or overcomplete case which involves

having more sources than microphones. This is achieved by partitioning the data

(STFT frames) into small blocks and performing ICA/SCT on each data block.

For example for the case explored so far of two microphones, by exploiting the

frequency sparsity of the sources (which is typical of speech) in each data block,

and assuming that at each frequency bin and each data block at most two sources

are active, a complete TDOA mapping of all the sources (whose number in total

can be greater than two) becomes possible. From the far-field assumption, one can

convert TDOA detections into DOA using

θ = cos−1(c∆t/∆q) (V.13)

where c is the speed of sound and ∆q is the distance between the microphone pair.

In case the number of microphones is greater than two, the generalized state

coherence transform (GSCT), which is a multi-dimensional extension to SCT, is

used. In GSCT each dimension of the domain pertains to a τp variable, where p

is the index of the microphone pair [57]. In this chapter we use two microphones

for our experiments, hence the multi-dimensional TDOA mapping using GSCT

is not discussed. It is noteworthy to say that even though the SCT propagation
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model only considers the direct path in an anechoic setting, nonetheless, it is still

shown to be effective for multi-path propagation due to reverberation. The reason

for this is that in a reverberant environment the direct path between the source

and the microphone is usually dominant over other multi-path propagations. As

the amount of reverberation increases the chance of multi-paths creating peaks in

the SCT increases as well. Consequently, for dealing with unknown time-varying

number of sources, as considered in this chapter, a suitable filtering technique is

needed to reject clutter caused by multi-path propagations.

V.C Bayesian Multi-Target Tracking and PHD Filtering

In the previous section we explained how to effectively transform a mix-

ture representation of multiple concurrent sources in the framework of ICA into

a detection representation of the source DOAs by extracting significant peaks of

the SCT. In the detection framework, hereafter, we will call the SCT peaks that

originate from a source as ”target”, assuming that each source only gives rise to

one target. Let’s assume that at time t, the sensor makes Nt observations (detec-

tions) z
t,1 , ..., zt,Nt

each taking values in the state space Z. These detections are

ambiguous in the sense that it is not known whether they have originated from

targets or are false detections (clutter). Moreover, due to the imperfections in

the sensor resolution it is possible that an arbitrary subset of targets do not get

detected (missed detections). Our goal is to process such detections in order to

reject clutter, account for missed detections, identify the number of sources and

track the target states. Now let’s consider the multi-target scenario where at time

t − 1 there exist Mt−1 targets with states x
t−1,1 , ..., xt−1,Mt−1

taking values in the

state space X . At the next instance of time, t, some of the targets can die, some

new targets can be born and the surviving targets can evolve according to some

dynamic model. This results in Mt targets at time t with states x
t,1 , ..., xt,Mt

∈ X .

Assuming that the respective ordering of the measurements and the state estimates
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have no significance, the multi-target states and observations can be represented

as finite sets such as

Xt ={xt,1 , ..., xt,Mt
} ∈ F(X ) (V.14)

Zt ={zt,1 , ..., zt,Nt
} ∈ F(Z) (V.15)

where F(X ) and F(Z) are finite subsets of the spaces of X and Z, respectively. By

assuming that the multi-target RFS state X(t) is the union of surviving targets,

spontaneous births and spawned targets, and the multi-target detection RFS state

Z(t) is the union of target-generated detections and clutter, the goal of Mahler’s

RFS multi-target filtering [48] is to estimate the number of targets and their states

while rejecting clutter and accounting for missed detections. The RFS formulation

for multi-target Bayesian filtering is the extension of the well known single-target

Bayesian filtering which can be computed sequentially via the prediction and up-

date steps as following

ft|t−1(Xt|Z1:t−1) =

∫

ft|t−1(Xt|Xt−1)ft−1|t−1(Xt−1|Z1:t−1)δXt−1 (V.16)

ft|t(Xt|Z1:t) =
ft|t(Zt|Xt)ft|t−1(Xt|Z1:t−1)

∫

ft|t(Zt|X ′
t)ft|t−1(X ′

t|Z1:t−1)δX ′
t

(V.17)

where ft|t−1(Xt|Z1:t−1) is the multi-target predictive density, ft|t(Xt|Z1:t) is the

multi-target posterior density, Z1:t is the concatenation of all previous measure-

ments up to time t and δ is an appropriate reference measure on F(X ) which

indicates that the integrals are set-integrals. A set-integral is a non-trivial exten-

sion of a regular integral which is defined as a mixture of regular integrals over all

different subsets of the multi-target states. This accounts for the uncertainty in the

target number which can vary over time as new targets enter and old ones vanish.

The exact definitions of set-integrals and set-derivatives is part of Mahler’s Finite

Set Statistics (FISST) [48] which provides a systematic calculus-based approach

to multi-target filtering using RFSs.

Due to the use of combinatorial set-integrals in the optimal Bayesian re-

cursions of (V.16-V.17), they involve multiple high dimensional integrals on the



79

space F(X ) rendering it computationally intractable. The PHD filter is a subop-

timal approximation to the mutli-target Bayesian recursions of (V.16-V.17) which

instead of propagating the full posterior density, propagates the FISST-based first

moment of multi-target posterior density, known as the posterior intensity [47, 48].

This is analogous to the well known constant-gain Kalman filter in single-target

tracking, which also only propagates the first moment (mean) of the target.

Let Dt|t−1(xt|Z1:t−1) and Dt|t(xt|Z1:t) denote the respective PHD intensities

of the multi-target predictive posterior ft|t−1(Xt|Z1:t−1) and the multi-target pos-

terior ft|t(Xt|Z1:t) of equations (V.16-V.17). It is worthy to note that due to the

first order moment mapping of the PHD filter, the finite set-valued random vari-

able state Xt ∈ F(X ) of the multi-target posterior is represented by an ordinary

random variable xt ∈ X0 with dimensions pertaining to the dimensions of a single

target, i.e. Dt|t(xt|Z1:t) is an intensity function on the single target space X0. This

PHD intensity function is not in the form of a probability density function (pdf) as

its integral does not equate to unity. Under certain assumptions and using FISST

[48, 47], the PHD intensities can be recursively estimated as follows

Dt|t−1(xt|Z1:t−1) = bt(xt)+
∫

Ft|t−1(xt|xt−1)Dt−1|t−1(xt−1|Z1:t−1)dxt−1 (V.18)

Dt|t(xt|Z1:t) = [1− pD(xt)]Dt|t−1(xt|Z1:t−1)+

∑

zt∈Zt

ψzt(xt)Dt|t−1(xt|Z1:t−1)

κt(zt) +
∫

ψzt(ζ)Dt|t−1(ζ|Z1:t−1)dζ
(V.19)

In the prediction equation (V.18)

Ft|t−1(xt|xt−1) = pS(xt−1)ft|t(xt|xt−1) + βt|t−1(xt|xt−1) (V.20)

where ft|t(xt|xt−1) is the single target transition pdf, pS is the probability of target

survival and βt|t−1 is the intensity of target spawned from targets at time t − 1.

Also in (V.18), bt is the intensity of spontaneous new births at time t. In the
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update equation (V.19),

ψzt(xt) = pD(xt)g(zt|xt) (V.21)

where pD is the probability of detection, g(zt|xt) is the single target detection

likelihood model (i.e. observation model in the space of X0) and the intensity of

clutter points κt(zt) is given as

κt(zt) = λct(zt) (V.22)

where λ is the average number of Poisson-distributed false alarms and ct(z) is the

spatial distribution of clutter. As we mentioned before the PHD intensity function

is not a pdf and in fact it turns out that the integral of the PHD intensity gives

the expected number of targets as follows [48]

M̂t|t =

∫

Dt|t(xt|Z1:t)dxt (V.23)

At the end, the state estimates for each target are extracted by finding the M̂t|t

peaks of intensity Dt|t(xt|Z1:t). In the case where only a single target is present,

the formulations above reduces to the constant-gain Kalman filter.

Even though the PHD filter is much less computationally expensive com-

pared to the multi-target recursions of (V.16-V.17), due to the fact that it operates

in the space of a single target X0, the integrals present in the PHD recursions of

(V.18-V.19) result in it not having a closed form solution in general. Therefore,

Sequential Monte Carlo (SMC) methods are usually used to approximate the inte-

grals in general [86]. However, for the special case where the target dynamics follow

a linear Gaussian Model, a Gaussian mixture (GM) implementation can provide a

closed form solution to the PHD filter [85]. The GM-PHD does not suffer from the

complexities of sampling and resampling in SMC methods and due to its closed

form solution, it is more accurate. In this chapter, since it is reasonable to assume

that our measurements and target state dynamics follow a linear and Gaussian

model, GM-PHD is used for the multi-source filtering.
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V.C.1 GM-PHD Implementation

Assuming that the target dynamics and sensor model follows a linear and

Gaussian form, we have

ft|t−1(xt|xt−1) =N (xt;At−1xt−1, Qt−1) (V.24)

g(zt|xt) =N (zt;Btxt, Rt) (V.25)

where N (.; a, C) denotes a Gaussian pdf with mean a and covariance C, At−1 is

the state transition matrix, Bt is the observation matrix, Qt−1 is the transition

process noise covariance and Rt is the observation noise covariance. The GM-

PHD requires that the survival and detection probabilities be state independent,

therefore pS(xt) = pS and pD(xt) = pD. Another assumption is that the birth

and spawn intensities are Gaussian mixtures [85]. For simplicity we neglect the

spawning of new targets from previous targets and just rely on spontaneous births

to model new targets. Therefore we have

bt(xt) =

Jb,t
∑

i=1

ω
(i)
b,tN

(

xt;m
(i)
b,t, P

(i)
b,t

)

(V.26)

where Jb,t, ω
(i)
b,t , m

(i)
b,t, P

(i)
b,t , i = 1, ..., Jb,t, are given model parameters that determine

the shape of the birth intensity. Usually one adapts these parameters to model

regions in the state space which correspond to detection persistences. Again, we

make note that equation (V.26) is not a pdf, in general. That is because there is

no restriction on the coefficients ω
(i)
b,t ,i = 1, ..., Jb,t, adding to unity.

Assuming that the posterior PHD at time t − 1 is a Gaussian mixture of

the form

Dt−1|t−1(xt−1|Z1:t−1) =

Jt−1
∑

i=1

ω
(i)
t−1N

(

xt−1;m
(i)
t−1, P

(i)
t−1

)

, (V.27)

then the predicted intensity at time t is a Gaussian mixture given by

Dt|t−1(xt|Z1:t−1) = bt(xt) + pS,t

Jt−1
∑

j=1

ω
(j)
t−1N

(

xt;m
(j)
S,t|t−1, P

(j)
S,t|t−1

)

(V.28)
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where

m
(j)
S,t|t−1 =At−1m

(j)
t−1 (V.29)

P
(j)
S,t|t−1 =Qt−1 + At−1P

(j)
t−1A

T
t−1 (V.30)

As the predicted intensity for time t can be rearranged to have a Gaussian mixture

of the form

Dt|t−1(xt|Z1:t−1) =

Jt|t−1
∑

i=1

ω
(i)
t|t−1N

(

xt;m
(i)
t|t−1, P

(i)
t|t−1

)

, (V.31)

the posterior intensity at time t also becomes a Gaussian mixture as follows

Dt|t(xt|Z1:t) = (1− pD,t)Dt|t−1(xt|Z1:t−1) +
∑

zt∈Zt

DD,t(xt; zt) (V.32)

where

DD,t(xt; zt) =

Jt|t−1
∑

j=1

ω
(j)
t (zt)N

(

xt;m
(j)
t|t (zt), P

(j)
t|t

)

(V.33)

ω
(j)
t (zt) =

pD,tω
(j)
t|t−1q

(j)
t (zt)

κt(zt) + pD,t

∑Jt|t−1

l=1 ω
(l)
t|t−1q

(l)
t (zt)

(V.34)

q
(j)
t (zt) =N

(

zt;Btm
(j)
t|t−1, Rt +BtP

(j)
t|t−1B

T
t

)

(V.35)

m
(j)
t|t (zt) =m

(j)
t|t−1 +K

(j)
t

(

zt −Btm
(j)
t|t−1

)

(V.36)

P
(j)
t|t =

[

I −K(j)
t Bt

]

P
(j)
t|t−1 (V.37)

K
(j)
t =P

(j)
t|t−1B

T
t

(

BtP
(j)
t|t−1B

T
t +Rt

)−1

(V.38)

Similar to the Gaussian sum filter in single target tracking [74], as time progresses,

the number of Gaussian components in GM-PHD increases without bound. To fix

this, a simple pruning and merging technique can be used to limit the growth of

number of Gaussians [85]. It works by discarding Gaussians whose weight ω
(i)
t , i =

1, ..., Jt falls below some threshold and then normalizes the weights of the surviving

Gaussians so that the sum of the weights, which from (V.23) is the expected number

of targets, remains the same. Then it uses a Mahalanobis distance measure to

merge Gaussians that are close to each other.
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Once the expected number of targets M̂t|t is found, estimating the multi-

target states at first glance appears to be straightforward since the peaks in the

posterior intensity Dt|t(xt|Z1:t) correspond to the means of the Gaussians, given

that they are well-separated. However, since the height of peaks in the posterior

intensity depends on both weight and covariance, selecting the M̂t|t highest peaks

may result in state estimates that correspond to Gaussians with weak weights.

This is not desirable since the expected number of targets due to these peaks is

small even though the magnitudes of the peaks are large. A better alternative is

to select the means of the Gaussians with weights greater than some threshold,

say 0.5 [85].

V.C.2 Data Association using the GM-PHD

The PHD filter, in itself, does not solve the data association problem, there-

fore one cannot tell which state estimates belong to which target. However, by

associating tags to the mixture components of the GM-PHD filter, a data associa-

tion scheme can be utilized providing us with distinct tracks on the sources. The

tag labeling steps for GM-PHD filter with track management is as follows [67]:

Initialization

At time t = 0, J0 Gaussians are distributed across the state space to form

the intensity

D0(xt) =

J0
∑

j=1

ω
(j)
0 N

(

xt;m
(j)
0 , P

(j)
0

)

(V.39)

A unique tag is assigned to each Gaussian to form the set

T0 = {Υ
(1)
0 , ...,Υ

(J0)
0 } (V.40)

Prediction

After predicting forward the PHD intensity, Gaussians associated with new

births receive new tags and Gaussians that are associated with surviving ones
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retain previous tags, i.e. the set of tags is as follows

Tt|t−1 = Tt−1|t−1 ∪ {Υ
(1)
b,t , ...,Υ

(Jb,t)

b,t } (V.41)

where Υ
(j)
b,t is the jth new tag associated with the spontaneous birth intensity in

equation (V.26) and Tt−1|t−1 contains the tags of targets at time t−1 such that the

predicted Gaussian with mean m
(j)
S,t|t−1 in equations (V.28-V.29) retains the tag of

the Gaussian with mean m
(j)
t−1|t−1.

Update

The predicted intensity is updated according to equation (V.32). Hence,

each Gaussian component of the predicted intensity gives rise to 1+|Zt| components

in the updated intensity, where |A| denotes the cardinality of set A. Hence, the

tags of the predicted Gaussian components get propagated to the updated Gaussian

components, i.e. the Gaussian with meanm
(j)
t|t (zt) in equation (V.33) gets the same

tag that the Gaussian with mean m
(j)
t|t−1 had in equation (V.31).

Pruning and merging

At this step the tags of the Gaussians that get pruned vanish. For the

Gaussian that are merged, the tag of the one with the largest weight is retained.

Multi-target state estimation

At this step the means and tags of the Gaussians with weights higher than

the aforementioned threshold (see end of Section V.C.1) are reported as state

targets and track labels, respectively. Hence, there is an identifying tag associated

with each estimate. If the target is a new born one, it has a new tag and if it is a

surviving target it retains its previous track label.
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V.C.3 Incorporating Amplitude Information in the PHD Likelihood

In target tracking applications, the detection step consists of extracting

local peaks in the observations that are higher than some certain threshold. These

detection points either come from targets or from clutter. The standard PHD

filter discussed treats all detections equally and relies on the track continuity of

the targets to reject clutter. However, in most cases the amplitude of detections

generated from targets are higher than clutter and carry reliability information.

This information about the amplitudes can be incorporated in the PHD tracking

algorithm to further assist the discrimination of targets from clutter [20]. This is

done by introducing an augmented measurement vector z̄t = [zTt a]
T , where a ≥ 0

is the detection amplitude. Assuming that the amplitudes are independent of the

target states, the respective target and clutter likelihood functions ψzt and κt(zt)

in equation (V.19) are modified to become

ψ̄z̄t(xt) =g(zt|xt)ga(a|d) (V.42)

κ̄t(z̄t) =λct(zt)ca(a) (V.43)

where d is related to the signal-to-noise ratio (SNR), i.e. the ratio between target

amplitude and clutter amplitude. SNR is defined in the log scale as

SNR(dB) = 10log10(1 + d) (V.44)

and is assumed to be the same for all targets. For the case of d = 0 the amplitude

of the targets and clutter become the same, hence it is reduced to the standard

PHD filter. In equations (V.42-V.43), ga(a|d) and ca(a) are the amplitude likeli-

hood densities for targets and clutter, respectively. Assuming that the detection

threshold is τo in which all peaks above τo are reported, the amplitude likelihoods

for measurements that exceed τo are denoted as gτoa (a|d) and cτoa (a). Hence, due to

normalization we have

ga(a|d) =g
τo
a (a|d)pτoD (d) (V.45)

ca(a) =c
τo
a (a)p

τo
FA (V.46)
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where

pτoD (d) =

∫ ∞

τo

ga(a|d)da (V.47)

pτoFA =

∫ ∞

τo

ca(a)da (V.48)

are the probability of detection and probability of false alarm, respectively. By

incorporating the amplitude likelihoods, the PHD update of (V.19) becomes

Dt|t(xt|Z1:t) = [1− pτoD (d)]Dt|t−1(xt|Z1:t−1)+

∑

z̄t∈Z̄t

ψ̄z̄t(xt)Dt|t−1(xt|Z1:t−1)

κ̄t(z̄t) +
∫

ψ̄z̄t(ζ)Dt|t−1(ζ|Z1:t−1)dζ
(V.49)

For the case of known d, it is common to model the amplitude likelihoods with

Rayleigh distributions

gτoa (a|d) =
a

1 + d
exp

(

τ 2o − a
2

2(1 + d)

)

, pτoD (d) = exp

(

−τ 2o
2(1 + d)

)

(V.50)

cτoa (a) =aexp

(

τ 2o − a
2

2

)

, pτoFA = exp

(

−τ 2o
2

)

(V.51)

Note that the Rayleigh parameter for the clutter model in (V.51) is assumed to be

unity which might not be true in general. However, given that the clutter level is

known, the amplitudes of the detections can be scaled so that the parameter for

the clutter Rayleigh distribution becomes unity while the parameter for the target

Rayleigh distribution conforms with the SNR level corresponding to (1 + d). On

the other hand, for the case of unknown d, one can marginalize equation (V.50)

over a range of possible values [d1 d2] and find a distribution for ga that is not

conditional on d , hence

ga(a) =

∫ d2

d1

p(γ)ga(a|γ)dγ (V.52)

pτoD =

∫ d2

d1

p(γ)pτoD (γ)dγ (V.53)

By picking a suitable prior distribution p(d) and assuming ga(a|d) is Rayleigh dis-

tributed with parameter (d+ 1), one can obtain a closed form solution to (V.52).

The probability of detection pτoD in (V.53) can then be found using numerical inte-

gration offline since it does not need to be computed for every iteration [20].
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V.D System Integration

V.D.1 Tracking Task

In the previous two sections we described the front-end (ICA/SCT) and the

back-end (PHD filtering) of our system model, respectively. The front-end uses

the output of ICA to perform the SCT mapping where peaks that are above some

detection threshold are selected. These peaks are declared as DOA measurements

or detections and are fed into the PHD filter. The PHD filter then filters the

measurements and estimates the DOA and number of targets using the GM-PHD

filter assuming that the state dynamics and sensor model for a single source follow

a linear and Gaussian model according to equations (V.24-V.25) so that

xt =At−1xt−1 + νt−1 (V.54)

zt =Btxt + ϑt (V.55)

where νt ∼ N (0, Qt), ϑt ∼ N (0, Rt) and xt is the vector of states at time t for a

single target model. The dimensions of xt depends on the number of microphone

pairs since each microphone pair has a separate TDOA. Also information about the

velocity information of the DOA (denoted as θ̇t) can be incorporated in the state

to represent a constant velocity model. In the most simple case where only one

microphone pair is present (L = 2) and the velocity information is not considered,

the state reduces to xt = θt with a dimension of unity and the model parameters

in equations (V.54-V.55) reduce to At−1 = 1 and Bt = 1.

Figure V.1 illustrates the system model incorporating ICA/SCT with PHD

filtering. As depicted in Figure V.1, ICA is performed on blocks of data in which

each block is a collection of a certain number of STFT frames. Note that the time

index of the sensor raw data is u, the frame index after converting to the frequency

domain using STFT is n and the block index for a collection of frames is t. Any

complex-valued ICA algorithm can be used on the blocks. An important note

is that the initialization of the ICA iterations for each block should be done from
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scratch and not based on the previous block converged values. This is to encourage

diversity in the ICA estimates so that if a source dies out or a new source is born,

such dynamics can be picked up by ICA and translated to meaningful location

information via SCT. To better distinguish between clutter and targets, the GM-

PHD filter incorporates the detection amplitudes as described in section V.C.3.

Also, the GM-PHD tracker enables data association and track labels as described

in section V.C.2. The track labeling is crucial for the separation task, since the

track labels will be used to stitch together the ICA outputs from the blocks enabling

a separated source for each track.

V.D.2 Separation Task

The key notion that allows us to perform the separation task even for the

overcomplete/underdetermined case is assuming block-frequency sparsity of the

sources in which the number of source components at each frequency-block segment

does not exceed the number of sensors even though the overall number of sources

can exceed the number of sensors. However, the estimated mixing matrices, i.e.

the immediate output of the ICA stage, contain no valuable separated information

of the mixed sources. This is due to the fact that at that stage no inference

on number of sources is achieved and the ordering of the columns of the mixing

matrices across the frequency bins and time blocks are indeterminate. Since, SCT

is invariant to such mismatch in ordering, it is able to translate the mixture model

of ICA into a detection model similar to that commonly used in radar/sonar (hence

the use of the term ’sources’ in the mixture model and ’targets’ in the detection

model) and from there the GM-PHD filter determines the expected number of

sources and provides distinct tracks on the DOA of the sources. Now one can use

this information obtained from the output of the PHD filter and feed it back to the

output of the ICA stage to effectively carry out the separation task in the following

two steps:
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Permutation correction in each block across frequencies

The expected number of sources and the estimates of TDOAs obtained from

the PHD filter is used to correct for possible permutations. Let’s consider the case

where we have L sensors and at time block t the PHD filter has declared M̂t|t ≥ L

sources to be active with corresponding TDOAs τ̂1, ..., τ̂M̂t,t
. The mixing matrix in

each bin for block t has dimensions L×L. From the sparsity assumption, this means

that at block t, each frequency bin has at most L columns of its mixing matrix

that are active, however at this stage, the ordering of which L out of M̂t|t sources

being active is not known. We introduce M̂t|t − L virtual null columns of zeros to

represent inactivity. Therefore, for each frequency bin there are a total of
M̂t|t!

(M̂t|t−L)!

possible permutations of the mixing matrix columns with augmented null columns.

We can now use the PHD filter estimates of the TDOA as reference to align the

columns of the null augmented mixing matrix for frequency bins k = 1, ..., K as

following (similar to [58])

Π̄(k) = argmin
Π

M̂t|t
∑

m=1

||c(k, τ̂m)− r̄Πm
(k)|| (V.56)

where Π is a permutation of the mixing matrix as described in (V.5) and r̄Πm
(k)

is the normalized ratio of the mth column of the matrix affected by permutation

Π as described in (V.9). We make the note that for the null columns, the value

of such ratios are not defined and one can replace them with a single constant as

it does not effect the minimization of (V.56). Once the ordering of the sources

is estimated from (V.56), one can perform the separation in the time block for

each frequency bin by rearranging the rows of the demixing matrix (inverse of the

aforementioned L × L mixing matrix) to align with their corresponding L active

source components and forcing the remainder of inactive source components to

zero. Next step would be to determine whether the separated sources at the

current block t are newborn sources or surviving ones, and if surviving, to stitch

it to the corresponding segments of the same source from the previous block t− 1.
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Stitching segments across blocks

In the previous step we explained how for each time block, the mixing ma-

trix for each frequency bin can be aligned so that each column is linked to a single

DOA obtained from the PHD filter. In this step we explain how the components

from one time block are stitched to the components from the previous block. If the

DOAs of the sources do not undergo any dynamics, then one can use the DOAs

themselves to link the ICA components of one block to the previous block. In the

case where the DOAs undergo dynamics in terms of both values and birth/death

occurrences, then some kind of data association scheme is required to link the

DOAs of surviving sources and initiate a new track for newborn sources. The

track labeling algorithm described in section V.C.2 using the GM-PHD implemen-

tation effectively accomplishes the task of data association, therefore enabling the

stitching of sources from one block to another. We note that in such a separation

scheme, any newborn source is declared as new source even though, for example,

it might be coming from a previous source that underwent a silence period. The

feedback arrows in Figure V.1 illustrate the separation task where the PHD tracks

are used to go back and perform the alignment of the mixing matrices across the

frequencies and the stitching of the source components across the blocks. At the

end, in order to regularize the scaling ambiguity of the ICA outputs we use the well-

known minimal distortion principle [54] for each block and frequency bin. Once

the stitching and scaling of the ICA outputs are performed, the inverse Fourier

transform using the overlap add method is used to reconstruct the time domain

signals.

V.E Experimental Results

In this section we present some experiments on simulated data for both tasks

of interest: Quasi-online tracking and separation of multiple moving sources with

birth/death dynamics. The simulated data was obtained using Lehmann’s image
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method [42] which simulates the impulse response between a source and a sensor

for a rectangular room environment. For each task we use a different experimental

set-up since each task has a different level of difficulty with the separation task

being more difficult in general than the tracking task. Thus we try to introduce

experiments so that it would push the complexity envelope for each task in its own

context independently.

V.E.1 Tracking Results

We evaluate the performance for the DOA tracking task and compare the

proposed method mainly with the two alternative approaches discussed earlier.

One method uses the GCC-PHAT at the front-end to acquire detection measure-

ments and the same PHD filter as the proposed back-end for the filtering. The

other method uses the same ICA/SCT of the proposed front-end and a naive

thresholding method to post-process the detections in the back-end. For the first

experiment, the room dimensions used in the simulation are 8m× 5m× 2.5m with

a reverberation time of T60 = 600ms. Signals were sampled at fs = 16kHz and

the STFT frequency-frame segments were obtained using a Hanning window of

size 2048 samples with 87.5% overlap. The blocks in which the ICA was con-

ducted on had a 50% overlap with each block being 0.64 seconds (40 frames) in

length. The experiment lasted for a total duration of 15.04 seconds. Only L = 2

microphones were used which were placed 36cm apart. The speakers could ap-

pear and disappear at any time. There were a total of 7 different speakers with

the maximum number of 6 concurrent speakers in this experiment. The speak-

ers all moved along a semi-circular path about 1.5m from the microphone pair

as depicted in Figure V.2. The ICA algorithm carried out for each block was a

standard complex valued maximum likelihood Infomax algorithm [34]. Figure V.3

shows the DOA detections and the true source DOAs along with their estimated

tracks using the proposed method: front-end (ICA/SCT) + back-end (GM-PHD

with amplitude information). The tag or label for each track is represented using a
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unique colored shape. Figure V.4 illustrates the results using the ”GCC-PHAT +

proposed back-end” approach (similar to [46, 9]) while Figure V.5 and Figure V.6

show the results using two variations of the ”proposed front-end + naive thresh-

olding” method ([44, 43]). The first variation uses a higher detection threshold

compared to the second variation, hence resulting in fewer clutter but bearing the

risk of more missed detections. In contrast the second variation results in more

clutter but with less missed detections. In addition to [44, 43], we also disregard

non-persistent peaks using some distance measure in order to reject isolated clut-

ter. We note that the ”proposed front-end + naive thresholding” method is not a

tracking technique (but a peak selection scheme), and thus does not solve the data

association problem inherently and requires an additional module to do so. That is

why the estimates in Figure V.5 and Figure V.6 are not color-shape coded. In order

to highlight the importance of incorporating amplitude information in our method,

we also run our proposed method without considering any amplitude information:

”proposed front-end + GM-PHD without considering amplitude information” and

show the result in Figure V.7.

Wasserstein miss distance which is an optimal multi-target error metric

for time-varying number of targets is used to evaluate the performances of such

experiments [33]. Wasserstein miss distance is optimal in the sense that it intrin-

sically considers the mismatch in target number and state values. Assuming that

Xt = {x1, ..., xn} is the subset of true states at time t and X̂t = {x̂1, ..., x̂m} is the

estimated subset of states, the Wasserstein miss distance is defined as

d(Xt, X̂t) = min
C

√

√

√

√

n
∑

i=1

m
∑

j=1

Ci,j||xi − x̂j||2 , (V.57)

where the minimum is taken over all n ×m transportation matrices C = {Ci,j}.

An n×m matrix C is a transportation matrix if for all i = 1, ..., n and j = 1, ...,m

Ci,j ≥ 0,
n
∑

i=1

Ci,j =
1

m
,

m
∑

j=1

Ci,j =
1

n
. (V.58)
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The minimization in (V.57) means that it gives the distance for the best associ-

ation between true and estimated set of states, and can be done using standard

linear programming algorithms. For the aforementioned experiment with results

illustrated using the different methods in Figure V.3-Figure V.7, we present the

point-wise and mean-valued Wasserstein distance in Figure V.8. In addition to

the methods discussed earlier, Figure V.8 also shows the Wasserstein distance

using the raw peaks of the proposed front-end as the DOA estimates. For this

experiment, Figure V.8 shows that the proposed algorithm outperforms the other

methods. In order to get a better quantification of the robustness and versatility

of the proposed method compared to the other methods, the mean Wasserstein

distance error is computed for other experiments varying the input signal-to-noise

ratio (SNRinput
1), T60 and maximum number of concurrent speakers. Two differ-

ent noise types were considered. One being additive white Gaussian noise (WGN)

and the other being Babble noise. Babble noise was simulated using 9 speakers

speaking from 9 different locations distributed across the room, at least 3m away

from microphone pair, as depicted in Figure V.2. The probability of activity of

each one of these babble sources was 80%. The SNRinput was computed as follows

SNRinput(dB) = 10log10

(

∑2
i=1

∑

u |yi,target(u)|
2

∑2
i=1

∑

u |yi,noise(u)|
2

)

(V.59)

where yi,target(u) and yi,noise(u) are the microphone inputs due to the target sources

and the noise (additive WGN or babble sources), respectively. Two different re-

verberation times T60 = 600ms and 300ms were considered along with two differ-

ent scenarios with maximum number of concurrent sources being 6 and 4. The

trajectories for the maximum 6 concurrent sources being the same as those de-

picted in Figure V.3 and the trajectories for the maximum 4 concurrent sources

being the ”blue”, ”dark green”, ”green”, ”magenta” and ”cyan” solid lines of Fig-

ure V.3. The results of the experiments for all such different variations in input

noise values/types, T60 and maximum number of concurrent speakers are presented

1note that SNRinput is different than the SNR in (V.44) which defines the detection amplitude of the
targets compared to clutter
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in Figure V.9 and Figure V.10. These figures show that the proposed method out-

performs the other methods for most scenarios. As the problem becomes least

challenging, for example when T60 = 300ms with maximum 4 concurrent speakers

and SNRinput ≥ 26dB ( Figure V.10-Right), the method that uses the ”proposed

front-end + naive thresholding (high)” performs slightly better compared to the

proposed method. In such scenarios the amplitudes of the SCT peaks originating

from clutter and targets are more discriminative/separable compared to the more

challenging scenarios. Thus by choosing the right threshold, one could effectively

reject clutter while keeping the peaks belonging to the targets. As a result, simple

peak selection methods, like that of naive thresholding (high), can perform pretty

well in such cases and sometimes even perform better compared to multi-target

tracking methods. The reason the better performance in such scenarios is that

multi-target tracking methods can lose some accuracy in the track initiation and

termination (can lag behind 1-3 time updates when initiating and terminating a

track), while peak selection methods can promptly identify a target’s initiation

and termination given that the threshold is correct and the amplitudes of targets

and clutter are separable.

We note that the parameters d1 and d2 in (V.52) which characterize the am-

plitude information of the targets in the proposed back-end and the thresholding

parameters for the naive thresholding methods were fixed and obtained by inspec-

tion based on the physical properties such as the room’s T60, STFT frame window

size and percentage overlap. Also, as explained in Section V.C.3, it is assumed that

the clutter level is known and amplitudes of the detections are scaled so that the

parameter for the clutter Rayleigh distribution in (V.51) becomes unity. The as-

sumed clutter level effects the sensitivity of the algorithm: the lower it is, the more

likely the algorithm is in declaring a detection as a target and vice versa. More-

over, for all experiments the average number of Poisson-distributed false alarm

was λ = 10, the probability of detection was pD = 0.5, the probability of target

survival was pS = 0.99, birth rate was
∑

i ω
(i)
b,t = 0.1, the process and observation
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noise covariances Qt and Rt were both set to 10I, where I is the identity matrix.

V.E.2 Separation Results

In this section the separation capabilities of the proposed method is in-

vestigated. The room dimensions used in all the simulations in this section were

6m× 4m× 2.5m and the signals were sampled at fs = 16kHz. We experimented

with a total of four scenarios and increased the level of difficulty with each sce-

nario. For the first scenario a reverberation time of T60 = 200ms was considered.

The STFT frequency-frame segments were obtained using a Hanning window of

1024 taps with 75% overlap. The blocks in which the ICA was conducted on had a

50% overlap with each block being 0.64 seconds (40 frames) in length. Again, only

L = 2 microphones were used which were placed 6cm apart. Since separating the

sources is our focus here, we use the recursively regularized ICA algorithm [60] for

our ICA module as it has been shown to achieve better separation results for short

duration mixtures when compared to regular infomax ICA. A total of 3 speakers

were involved in this experiment. Speaker 1 and 3 are active for the total experi-

ment which lasted for 15.04 seconds. Speaker 2 enters the conversation at around

the 3 second mark and leaves the conversation at around the 11 second mark. All

three speakers moved along a semi-circular path 1m from the microphone pair, i.e.

with radii ri = 1m, i = 1, ..., 3. Figure V.11 illustrates the DOA detections and

the true source DOAs along with the estimated tracks for all three speakers. The

PEASS toolbox which is a perceptual BSS evaluation software, was used for the

performance evaluation of the separated sources [27]. The signal to disturbance

ratio (SDR), source image to spatial distortion ratio (ISR), signal to interference

ratio (SIR) and signal to artifact ratio (SAR) metrics with the decomposition esti-

mated by the PEASS tool was used for the evaluation of our separated sources. At

first no assumption on the number of sources was made. As seen in Figure V.11,

the proposed method was able to identify the correct number of sources at the

appropriate intervals. Next, in order to create a benchmark for comparison of the
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separation results of our proposed algorithm we conduct another experiment where

we mute speaker 2 for the entire duration and assume the number of sources is

known and equal to two, while all the other settings remain the same. Since now

the number of sources is assumed to be known, we use a separate gated Kalman

filter for each source to track the DOAs (similar to [18]) which is necessary for

permutation correction and stitching across blocks in the separation task. Table

V.1 shows the separation performances for the controlled benchmark experiment

and the main experiment. The performances indicate that even though the main

experiment compared to the benchmark one had an uncertainty factor in the num-

ber of sources and also had to deal with more sources than sensors for most of the

duration of the experiment, the performance only degraded marginally, suggest-

ing robustness and versatility of the algorithm in coping with dynamic scenarios.

For our second scenario, the same is repeated for a set-up where the radii of the

sources increase with the source number e.g. r1 = 1m, r2 = 1.7m, r3 = 2m while

all the other settings remain the same, with results shown in Table V.2. In this sce-

nario the separation of the more distant sources becomes more challenging as the

tracking algorithm assumes all sources have roughly the same detection amplitude

compared to clutter. Table V.2 shows the farthest source experiences the largest

drop in performance from the benchmark experiment as expected, nevertheless it

does not fail in carrying out the separation task.

Next we consider four sources using two microphones 8cm apart and the

total experiment lasting for 16.32 seconds. We start with a reverberation time of

T60 = 200ms for this scenario and jump to T60 = 300ms for the last scenario.

The radii of the sources were ri = 1m, i = 1, ..., 4 with the DOA trajectories

depicted in Figure V.12. All the other elements in this scenario were the same as

the previous scenarios. Similar to the previous cases we start with the benchmark

case of known 2 sources with S1 and S4 being only active, then progress upwards

to a setting with unknown/time-varying number of sources with S1, S3 and S4

active and finally to a case with unknown/time-varying number of sources with all
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Table V.1 Separation results for ri = 1m, i = 1, ..., 3, using 2 microphones,

T60 = 200ms

2 Sources, Known

S1 N/A S3 mean
SDR (dB) 5.0 − 5.6 5.3
ISR (dB) 5.9 − 6.2 6.05
SIR (dB) 13.8 − 17.4 15.6
SAR (dB) 17.1 − 18.6 17.85

3 Sources, Unknown/Time-varying

S1 S2 S3 mean
SDR (dB) 4.6 5.4 4.3 4.77
ISR (dB) 5.8 8.8 5.9 6.83
SIR (dB) 12.2 7.8 10.5 10.17
SAR (dB) 17.1 16.8 17.1 17.0

4 sources Si, i = 1, ..., 4 active. Figure V.12 shows the estimated DOA tracks for

the latter case using the proposed method. Table V.3 presents the performance

evaluation results for this scenario. In the last scenario the same is repeated but

for a more challenging scenario with T60 = 300ms. In order to better cope with the

increase in reverberation, a larger STFT window size of 2046 samples with 87.5%

overlap was utilized. The results of the last scenario are shown in Table V.4.

Table V.3 and Table V.4 demonstrate the flexibility of the proposed algorithm

in separating unknown time-varying number of moving sources for overcomplete

situations with twice as many concurrent sources as sensors.

V.F Summary and Discussion

In this chapter we present a novel framework to solve the problem of track-

ing and separation of unknown time-varying number of speakers using minimal

number of microphones in a reverberant environment. We proposed the integra-

tion of a powerful and versatile ICA-based scanning method for multiple DOA

estimation with a well known method in multi-target tracking. Such combination
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Table V.2 Separation results for r1 = 1m, r2 = 1.7m, r3 = 2m, using 2 micro-

phones, T60 = 200ms

2 Sources, Known

S1 N/A S3 mean
SDR (dB) 5.9 − 3.5 4.7
ISR (dB) 6.8 − 5.3 6.05
SIR (dB) 15.8 − 8.9 12.35
SAR (dB) 17.3 − 14.7 16.0

3 Sources, Unknown/Time-varying

S1 S2 S3 mean
SDR (dB) 5.5 4.3 2.2 4.0
ISR (dB) 6.7 6.2 4.6 5.83
SIR (dB) 13.2 8.3 5.3 8.93
SAR (dB) 18.3 15.7 15.2 16.4

Table V.3 Separation results for ri = 1m, i = 1, ..., 4 using 2 microphones, T60 =

200ms

2 Sources, Known

S1 N/A N/A S4 mean
SDR (dB) 3.6 − − 3.9 3.75
ISR (dB) 4.8 − − 4.5 4.65
SIR (dB) 11.7 − − 13.6 12.65
SAR (dB) 14.6 − − 16.5 15.55

3 Sources, Unknown/Time-varying

S1 N/A S3 S4 mean
SDR (dB) 3.4 − 4.0 3.5 3.63
ISR (dB) 4.7 − 7.4 4.5 5.53
SIR (dB) 11.1 − 6.4 10.7 9.4
SAR (dB) 15.1 − 14.7 15.6 15.13

4 Sources, Unknown/Time-varying

S1 S2 S3 S4 mean
SDR (dB) 2.8 4.4 3.3 3.4 3.46
ISR (dB) 4.6 7.3 6.6 4.4 5.73
SIR (dB) 8.4 7.3 5.4 10.4 7.86
SAR (dB) 15.4 15.2 14.4 15.9 15.23
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Table V.4 Separation results for ri = 1m, i = 1, ..., 4 using 2 microphones, T60 =

300ms

2 Sources, Known

S1 N/A N/A S4 mean
SDR (dB) 2.4 − − 3.7 3.05
ISR (dB) 3.8 − − 4.9 4.35
SIR (dB) 9.2 − − 11.5 10.35
SAR (dB) 10.2 − − 12.1 11.15

3 Sources, Unknown/Time-varying

S1 N/A S3 S4 mean
SDR (dB) 1.6 − 2.5 2.6 2.23
ISR (dB) 3.6 − 5.0 4.2 4.27
SIR (dB) 7.0 − 4.8 7.6 6.47
SAR (dB) 9.8 − 10.9 10.8 10.5

4 Sources, Unknown/Time-varying

S1 S2 S3 S4 mean
SDR (dB) 1.0 1.1 1.9 2.3 1.58
ISR (dB) 3.5 3.3 4.2 4.0 3.75
SIR (dB) 4.3 2.0 3.4 7.1 4.2
SAR (dB) 10.1 10.2 11.2 11.7 10.8
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showed promising results in both the tracking and separation tasks using only

two microphones for relatively high reverberant environments and in challenging

dynamic scenarios involving moving sources and spontaneous births/deaths.

This chapter demonstrates how a mixture/superposition model in the frame-

work of BSS can be easily represented as a standard detection model in the frame-

work of multi-target tracking, assuming that the sources have block-frequency spar-

sities. The solution involves, first, performing frequency-domain ICA on the sen-

sor measurements, then utilizing a permutation-invariant TDOA scanning method

such as SCT on the ICA outputs, therefore enabling the mixture model obser-

vations to be represented as source location observations in a detection model.

The PHD filter, which has proven to be a highly effective method for multi-target

tracking when observations are posed in a detection model, is then used for the

tracking of the location detections. The post-filtered DOAs are then used to align

and stitch the ICA outputs across frequencies and blocks, respectively.

As part of our future work we would like to extend our work performing

tracking and separation using multiple sensor pairs hence representing the TDOA

measurements in a multidimensional framework using GSCT. One advantage of

incorporating multiple dimensional TDOAs is that one can provide more detailed

location information and possibly extract the Cartesian location information of the

sources. Also the extra dimensions in the measurement model can provide better

discrimination in track labeling when sources cross over or get very close. The

other advantage would be in the separation task since the extra sensors used can

allow for the improvement in the separation performance.
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Figure V.1 Block diagram of proposed method: STFT, ICA and SCT segments

form the front-end and the PHD filtering segment form the back-end. The feedback

from the back-end to the front-end describes the separation task which uses the

distinct estimated tracks to perform permutation correction across frequencies for

each block and to stitch together the separated components from one block to

another.
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Figure V.2 Room set-up (not drawn to scale). Note that the source trajectories

are not shown but rather the area of motion is illustrated. The reason for this is

that their activities are time-varying. Refer to Figure V.3 for their true activities

and trajectories in terms of DOA.
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Figure V.3 Proposed method: front-end (ICA/SCT) + back-end (GM-PHD with

amplitude information). True DOA (colored lines), SCT peaks (dots) and esti-

mated DOA tracks(colored shapes).
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Figure V.4 GCC-PHAT+proposed back-end: True DOA (colored lines), GCC-

PHAT peaks (dots) and estimated DOA tracks (colored shapes).
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Figure V.5 proposed front-end + naive thresholding (high): True DOA (colored

lines), SCT peaks after thresholding (dots) and selected peaks (squares).
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Figure V.6 proposed front-end + naive thresholding (low): True DOA (colored

lines), SCT peaks after thresholding (dots) and selected peaks (squares).
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Figure V.7 proposed front-end + GM-PHD filtering without considering amplitude

information: True DOA (colored lines), SCT peaks (dots) and DOA estimates

(triangles).
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proposed: front−end (ICA/SCT) + back−end (GM−PHD with amplitude info), mean=12.3403
proposed front−end + naive thresholding (high), mean=21.8439
propsed front−end + naive thresholding (low), mean=20.8098
proposed front−end + raw peaks, mean=25.4445
proposed front−end+GM−PHD without amplitude info, mean=22.9396
GCC−PHAT+proposed back−end, mean=23.9859

Figure V.8 Wasserstein miss distance error for different methods of Figure V.3-

Figure V.7, maximum 6 concurrent sources, T60 = 600ms.
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Figure V.9 Performance evaluation for different noise values/types for maximum

6 concurrent sources. Top: T60 = 600ms, Bottom: T60 = 300ms.
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Figure V.10 Performance evaluation for different noise values/types for maximum

4 concurrent sources. Top: T60 = 600ms, Bottom: T60 = 300ms.
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Figure V.11 Separation experiment with 3 unknown time-varying sources and

2 microphones, T60 = 200ms: True DOA (colored lines), SCT peaks (dots) and

estimated tracks (colored shapes).
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Figure V.12 Separation experiment with 4 unknown time-varying sources and

2 microphones, T60 = 200ms: True DOA (colored lines), SCT peaks (dots) and

estimated tracks (colored shapes).
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In this thesis we have presented three methods based on frequency domain

independent component analysis (FD-ICA) that tackle the problem of separation

and tracking of multiple speakers in typical real world but adverse scenarios such

as having more speakers than microphones (overcomplete case), speakers experi-

encing temporal dynamics (silence periods in the speech or new speakers entering

the room and existing speakers leaving the room) and spatial dynamics (speakers

moving/maneuvering). The first method deals with the case where the number of

speakers exceeds the number of microphones and speakers can have silence periods

intermittently but are spatially static. By mimicking the separation strategy of the

human hearing system, it is able to exploit the local decrease of degeneracy during

the different combinations of silent gaps of the speakers allowing it to cover all

possible states from when all speakers are active to when only one is active at each

instant, therefore doing its best to compensate for the apparent global degeneracy.

The algorithm works naturally by learning the columns of the mixing matrices in a

specialized fashion based on the probability of being in each state. One downside

of the first method is that the number of states, and along with it the computa-

tional cost, will grow exponentially as the number of speakers increases. This issue

is fixed by shifting to a new paradigm in the third method.

The second method, is an online extension of the first algorithm for when

the speakers are moving in space. It uses a multiple model particle filter (MMPF)

to track the mixing matrices while being able to switch between different combi-

nations of states when the speaker(s) become inactive, therefore avoiding losing

track during such periods. The algorithm is also capable of recovering tracks dur-

ing silence blind zones (SBZ) where the speakers are moving while silent under the

condition that the silence gaps are not too long. Once the mixing matrices are

correctly estimated, obtaining the directions of arrival (DOA) becomes a straight-

forward post-processing step. Using a secondary array positioned elsewhere in

the room, the DOAs are matched up and triangulated by incorporating a motion

model on the speaker trajectories. A drawback of the second method is that it if
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the silence period of a speaker is too long it can lose track once the speaker comes

back on. Also, it has to know the maximum number of speakers it is tracking

otherwise it completely breaks down. In many real world problems the number of

speakers at each given time is not known as speakers can either enter the scene or

leave. These issues are solved in the third method.

The third method deals with the case where not only the speakers can be

moving in space, but also the number of speakers is unknown in an overcomplete

setting and can vary with time as new speakers can be born and existing speakers

can die out. This is done by introducing a new paradigm where we transform

the mixture/superposition model in the framework of ICA to a standard detection

model in the framework of multi-target tracking, by exploiting the sparse spec-

tral dynamics of speech. More precisely, the solution involves, first, performing

frequency-domain ICA in a quasi-online manner in blocks of data, then utilizing a

permutation-invariant TDOA scanning method such as state coherence transform

(SCT) on the ICA outputs, therefore enabling the mixture model observations

to be represented as speaker location observations in a detection model. The

probability hypothesis density (PHD) filter, which is proven to be a highly effec-

tive method for multi-target tracking when observations are posed in a detection

model, is then used for the tracking of the location detections. The post-filtered

DOAs are then used to align and stitch the ICA outputs across frequencies and

blocks, respectively, thus enabling the separation task to be carried out. It is wor-

thy to note that the PHD filter, unlike the previous two methods discussed earlier,

does not suffer from a combinatorial problem where the computational costs grows

exponentially as the number of speakers increases. Also, in contrast to the second

method, the third method does not model the silence periods explicitly but rather

focuses on the birth and deaths of the speakers. However, since it incorporates

a quasi-online method that considers missed detections in the PHD filter phase,

short pauses in the speakers are implicitly taken care of and if the pause/silence

period become too long, the speaker will be assigned a new track once it becomes
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active again.



Bibliography

[1] F. Abrard and Y. Deville, “a timefrequency blind signal separation method
applicable to underdetermined mixtures of dependent sources,” Signal Pro-
cessing, vol. 85, no. 7, pp. 1389–1403, 2005.

[2] J. Allen and D. Berkley, “Image method for efficiently simulating small room
acoustics,” J. Acoust. Soc. Amer., vol. 65, 1979.

[3] D. Andrews and C. Mallows, “Scale mixtures of normal distributions,” Journal
of the Royal Statistical Society, vol. 36, 1974.

[4] D. Angelosante and M. L. E. Biglieri, “Multiuser detection in a dynamic
environment: part II: Joint user identification and parameter estimation,”
IEEE Trans. on Information Theory, vol. 55, no. 5, 2009.

[5] F. Antonacci, D. Riva, D. Saiu, A. Sarti, M. Tagliasacchi, and S. Tubaro,
“Tracking multiple acoustic sources using particle filtering,” in Proc. of EU-
SIPCO, 2006.

[6] S. Araki, S. Makino, A. Blin, R. Mukai, and H. Sawada, “Underdetermined
blind separation for speech in real environments with sparseness and ICA,”
in Proc. ICASSP, 2004, pp. 881–884.

[7] S. Araki, H. Sawada, R. Mukai, and S. Makino, “A novel blind source sepa-
ration method with observation vector clustering,” in Proc. IWAENC, 2005,
pp. 117–120.

[8] H. Attias, “Independent factor analysis,” Neural Comp., vol. 11, 1999.

[9] S. S. B.-N. Vo and W. K. Ma, “Tracking multiple speakers using random sets,”
in Proc. of ICASSP, 2004, pp. 357–360.

[10] B. Balakumar, A. Sinha, T. Kirubarajan, and J. P. Reilly, “PHD filtering for
tracking an unknown number of sources using an array of sensors,” in IEEE
Workshop on Stat. Sign. Proc., 2005, pp. 43–48.

[11] D. Bechler and K. Kroschel, “Considering the second peak in the GCC func-
tion for multi-source TDOA estimation with microphone array,” in Proc. In-
ternational Workshop on Acoustic Echo and Noise Control, 2003, pp. 315–318.

115



116

[12] E. Biglieri and M. Lops, “Multiuser detection in a dynamic environment part
I: User identification and data detection,” CoRR, 2007.

[13] C. Bishop, Pattern Recognition and Machine Learning. New York, Springer,
2006.

[14] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation using
sparse representations,” Sign. Process., vol. 81, no. 11, pp. 2353–2362, 2001.

[15] A. Bregman, Auditory Scene Analysis. Cambridge, MA: MIT Press, 1990.

[16] D. Brillinger, Time Series: Data Analysis and Theory. Holt, Rinehart and
Winston, Inc., 1975.

[17] A. Bruckstein, D. Donoho, and M. Elad, “From sparse solutions of systems of
equations to sparse modeling of signals and images,” SIAM Review, vol. 51,
2009.

[18] A. Brutti and F. Nesta, “Multiple source tracking by sequential posterior
kernel density estimation through GSCT,” in Proc. of EUSIPCO, 2011, pp.
259–263.

[19] A. Brutti, M. Omologo, and P. Svaizer, “Multiple source localization based on
acoustic map de-emphasis,” EURASIP Journal on Audio, Speech, and Music
Processing, 2010.

[20] D. Clark, B. Ristic, B.-N. Vo, and B.-T. Vo, “Bayesian multi-object filtering
with amplitude feature likelihood for unknown object SNR,” IEEE Trans. on
Signal Processing, vol. 58, no. 1, 2010.

[21] M. Cooke, “Glimpsing speech,” J. phoetics, vol. 31, pp. 579–584, 2003.

[22] ——, “Making sense of everyday speech: a glimpsing account,” in Speech
Separation by Humans and Machines, P. Divenyi (Ed.). Kluwer Acedemic
Publishers, 2005, pp. 305–314.

[23] M. Davies and N. Mitianoudis, “Simple mixture model for sparse overcomplete
ICA,” Proc. IEE Vision, Image, Signal Process., vol. 151, no. 1, pp. 35–43,
2004.

[24] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete
data via the em algorithm,” Journal of the Royal Statistical Society, vol. 39,
no. 1, pp. 1–38, 1977.

[25] Y. Deville, “Temporal and time-frequency correlation-based blind source sep-
aration methods,” in Proc. ICA, 2003, pp. 1059–1064.

[26] T. Eltoft, T. Kim, and T.-W. Lee, “Multivariate scale mixture of gaussians
modeling,” in Proc. ICA, 2006, pp. 799–806.



117

[27] V. Emiya, E. Vincent, N. Harlander, and V. Hohmann, “Subjective and ob-
jective quality assessment of audio source separation,” IEEE Trans. on Audio,
Speech, and Language Processing, vol. 19, no. 7, 2011.

[28] R. Everson and S. Roberts, “Particle filters for non-stationary ICA,” in Inde-
pendent Component Analysis, Principles and Practice, 2001.

[29] M. Fallon and S. Godsill, “Multi target acoustic source tracking using track
before detect,” in Proc. of WASPAA, 2007, pp. 102–105.

[30] ——, “Multi target acoustic source tracking with an unknown and time vary-
ing number of targets,” in Proc. of HSCMA, 2008, pp. 77–80.

[31] J.-I. Hirayama and S.-I. M. S. Ishii, “Markov and semi-markov switching of
source appearances for nonstationary independent component analysis,” IEEE
Trans. on Neural Networks, vol. 18, no. 5, pp. 1326–1342, 2007.

[32] A. Hiroe, “Solution of permutation problem in frequency domain ica, using
multivariate probability density functions,” in Proc. ICA, 2006, pp. 601–608.

[33] J. Hoffman and R. Mahler, “Multi-target miss distance via optimal assign-
ment,” IEEE Trans. Syst. Man Cybermetics, vol. 3, no. 9, 2004.

[34] A. Hyvarinen, J. Karhunen, and E. Oja, Indepedent Component Analysis.
New York, Wiley Interscience, 2001.

[35] T. Kim, “Real-time independent vector analysis for convolutive blind source
separation,” IEEE Trans. on Circuits and Systems, vol. 57, no. 7, 2010.

[36] T. Kim, H. Attias, and T.-W. Lee, “Blind source separation exploiting higher-
order frequency dependencies,” IEEE Trans. Speech, Audio and Language
Processing, vol. 15, no. 1, pp. 70–79, 2007.

[37] T. E. T. Kim and T.-W. Lee, “On the multivariate laplace distribution,” IEEE
Signal Processing letters, vol. 13, no. 5, pp. 300–303, 2006.

[38] C. H. Knapp and G. C. Carter, “The generalized correlation method for esti-
mation of time delay,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 24,
no. 4, 1976.

[39] G. Lathoud and J. Odobez, “Short-term spatio-temporal clustering applied to
multiple moving speakers,” IEEE Trans. Audio, Speech and Lang. Process.,
vol. 15, no. 5, 2007.

[40] I. Lee, J. Hao, and T.-W. Lee, “Adaptive independent vector analysis for the
seperation of convoluted mixtures using EM algorithm,” in IEEE Proc. of
ICASSP, 2008, pp. 803–806.



118

[41] T. Lee, M. Lewicki, M. Girolami, and T. Sejnowski, “Blind source separation
of more ssources than mixtures using overcomplete representations,” IEEE
Sign. Process. Letters, vol. 6, no. 4, 1999.

[42] E. Lehmann and A. Johansson, “Prediction of energy decay in room impulse
responses simulated with an image source model,” J. of the Acoustical Soc. of
America, vol. 124, no. 1, 2008.

[43] B. Loesch and B. Yang, “Adaptive segmentation and separation of determined
convolutive mixtures under dynamic conditions,” in Proc. of LVA/ICA, 2010,
pp. 41–48.

[44] ——, “Blind source separation based on time-frequency sparseness in the pres-
ence of spatial aliasing,” in Proc. of LVA/ICA, 2010, pp. 1–8.

[45] P. Loizou, Speech Enhancement: Theory and Practice. CRC Press, 2007.

[46] W.-K. Ma, B.-N. Vo, S. Singh, and A. Baddeley, “Tracking and unknown time-
varying number of speakers using TDOA measurements: a random finite set
approach,” IEEE Trans. Signal Process., vol. 54, no. 9, 2006.

[47] R. Mahler, “Multi-target Bayes filtering via first-order multi-target moments,”
IEEE Trans. on Aerospace and Electronic Systems, vol. 39, no. 4, 2003.

[48] ——, Statistical multisource multitarget information fusion. Norwood, MA,
Artech House, 2007.

[49] ——, “CPHD filters for superpositional sensors,” O. E. Drummond (ed.),
Sign. and Data Proc. of Small Targets 2009, SPIE Proc., vol. 7445, 2009.

[50] A. Masnadi-Shirazi and B. Rao, “Independent vector analysis incorporating
active and inactive states,” in IEEE Proc. of ICASSP, 2009, pp. 1837–1840.

[51] ——, “Separation and tracking of multiple speakers in a reverberant environ-
ment using a multiple model particle filter glimpsing method,” in Proc. of
ICASSP, 2011, pp. 2516–2519.

[52] A. Masnadi-Shirazi, W. Zhang, and B. Rao, “Glimpsing IVA: a framework for
overcomplete/complete/undercomplete convolutive source separation,” IEEE
Trans. on Audio, Speech, and Language Processing, vol. 18, no. 7, 2010.

[53] M. A. Masnadi-Shirazi, S. Banani, A. Masnadi-Shirazi, and R. Rezaie, “Sepa-
ration and tracking of maneuvering sources with ica and particle filters using
a new switching dynamic model,” IEEE Trans. on Aerospace and Electronic
Systems, vol. 46, no. 3, 2010.

[54] K. Matsuoka and S. Nakashima, “Minimal distortion principle for blind source
seperation,” in Proc. ICA, 2001, pp. 803–806.



119

[55] N. Mitianoudis and T. Stathaki, “Batch and online underdetermined source
separation using laplacian mixture models,” IEEE Tran. on Speech, Audio
and Language Processing, vol. 15, no. 6, pp. 1818–1832, 2007.

[56] N. Murata, S. Ikeda, and A. Ziehe, “An approach to blind source separation
based on temporal structure of speech signals,” Neurocomputing, vol. 41, pp.
1–24, 2001.

[57] F. Nesta and M. Omologo, “Generalized state coherence transform for multi-
dimensional TDOA estimation of multiple sources,” IEEE Trans. on Audio,
Speech, and Language Processing, vol. 20, no. 1, 2012.

[58] F. Nesta, M. Omologo, and P. Svaizer, “Multiple TDOA estimation by using
a state coherence transform for solving the permutation problem in frequency-
domain BSS,” in Proc. of MLSP, 2008.

[59] F. Nesta, P. Svaizer, and M. Omologo, “Robust two-channel TDOA estimation
for multiple speaker localization by using recursive ICA and a state coherence
transform,” in Proc. of ICASSP, 2009.

[60] ——, “Convolutive BSS of short mixtures by ICA recursively regularized
across frequencies,” IEEE Trans. on Audio, Speech, and Language Process-
ing, vol. 19, no. 3, 2011.

[61] P. D. O’Grady and B. A. Pearlmutter, “Soft-lost: EM on a mixture of oriented
lines,” in Proc. ICA, 2004, pp. 430–436.

[62] P. O’grady and B. A. Pearlmitter, “Hard-lost: modified K-means for oriented
lines,” in Proc. Irish Signals Syst. Conf., 2004.

[63] R. Olsson and L. Hansen, “Probabilistic blind deconvolution of non-stationary
sources,” in Proc. EUSIPCO, 2004, pp. 1697–1700.

[64] ——, “Blind separation of more sources than sensors in convolutive mixtures,”
in Proc. ICASSP, 2006, pp. V657–V660.

[65] M. Omologo and P. Svaizer, “Acoustic event localization using a crosspower-
spectrum based technique,” in Proc. of ICASSP, 1994, pp. 273–276.

[66] J. A. Palmer, K. Kreutz-Delgado, and S. Makeig, “Probabilistic formulation of
independent vector analysis using complex gaussian scale mixtures,” in Proc.
ICA, 2009, pp. 90–97.

[67] K. Panta, D. Clark, and B.-N. Vo, “Data association and track management
for the Gaussian mixture probability hypothesis density filter,” IEEE Trans.
on Aerospace and Electronic systems, vol. 45, no. 3, 2009.



120

[68] L. Parra and C. Spence, “Convolutive blind separation of non-stationary
sources,” IEEE Trans. Speech and Audio Processing, vol. 8, no. 3, pp. 320–327,
2000.

[69] ——, “Separation of nonstationary natural signals,” in Independent Compo-
nents Analysis: Principles and Practice, C. Roberts and R. Everson (Eds.).
Cambridge Univ. Press, 2001, pp. 135–157.

[70] M. Pedersen, D. Wang, J. Larsen, and U. Kjems, “Separating underdeter-
mined convolutive speech mixtures,” in Proc. ICA, 2006, pp. 674–681.

[71] D.-T. Pham and J.-F. Cardoso, “Blind separation of instantaneous mixtures
of nonstationary sources,” IEEE Trans. Signal Processing, vol. 49, no. 9, pp.
1837–1848, 2001.

[72] D.-T. Pham, C. Serviere, and H. Boumaraf, “Blind separation of speech mix-
tures based on nonstationarity,” in Proc. Seventh International Symposium
on Signal Processing and Its Applications, vol. 2, 2003, pp. 73–76.

[73] L. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286,
1989.

[74] B. Ristik, S. Arulampalam, and N. Gordon, Beyond the Kalman filter: Par-
ticle filters for tracking applications. Artech House, 2004.

[75] H. Sawada, S. Araki, and S. Makino, “Measuring dependence of bin-wise
separated signals for permutation alignment in frequency domain BSS,” in
Proc. ISCAS, 2007, pp. 3247–3250.

[76] ——, “A two stage frequency-domain blind source separation method for un-
derdetermined convolutive mixtures,” in 2007 IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics, 2007, pp. 139–142.

[77] H. Sawada, S. Araki, R. Mukai, and S. Makino, “Blind extraction of domi-
nant target sources using ICA and time-frequency masking,” IEEE Trans. on
Speech, Audio and Language Processing, vol. 14, no. 6, pp. 2165–2173, 2006.

[78] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and precise method
for solving the permutation problem,” IEEE Trans. on Speech, Audio and
Language Processing, vol. 12, no. 5, pp. 530–538, 2004.

[79] H. Sawada, R. Mukai, and S. Makino, “Direction of arrival estimation for
multiple source signals using independent component analysis,” in Proc. of
ISSPA, 2003.

[80] I. Takigawa, M. Kudo, and J. Toyama, “Performance analysis of minimum l1
norm solutions for underdetermined source separation,” IEEE Trans. Signal
Processing, vol. 52, no. 3, pp. 582–591, 2004.



121

[81] P. Teng, A. Lambard, and W. Kellermann, “Disambiguation in multidimen-
sional traking of multiple acoustic sources using a gaussian likelihood crite-
rion,” in IEEE Proc. of ICASSP, 2010, pp. 145–148.

[82] F. Thouin, S. Nannuru, and M. Coates, “Multi-target tracking for measure-
ment models with additive contributions,” in Proc. of Int’l Conf. on Informa-
tion Fusion, 2011.

[83] J.-M. Valin, F. Michaud, and J. Rouat, “Robust localization and tracking of
simultaneous moving sound sources using beamforming and particle filtering,”
Robotics and Autonomous Systems Journal (Elsevier), vol. 55, no. 3, 2007.

[84] L. Vielva, D. Erdogmus, , and J. C. Principe, “Underdetermined blind source
separation using a probabilistic source sparsity model,” in Proc. ICA, 2001,
pp. 675–679.

[85] B.-N. Vo and W. K. Ma, “The Gaussian mixture probability hypothesis den-
sity filter,” IEEE Trans. Signal Process., vol. 54, no. 11, 2006.

[86] B.-N. Vo, S. Singh, and A. Doucet, “Sequential Monte Carlo methods for
multi-target filtering with random finite sets,” IEEE Trans. on Aerospace and
Electronic Systems, vol. 41, no. 4, 2005.

[87] S. Winter, W. Kellermann, H. Sawada, and S. Makino, “Underdetermined
blind source separation of convolutive mixtures by hierarchical clustering and
L1-norm minimization,” in Blind Speech Separation, S. Makino, T.-W. Lee
and H. Sawada (Eds.). Springer Netherlands, 2007.

[88] J. A. wnd G. Lathoud and L. McCowan, “Clustering and segmenting speakers
and their locations in meetings,” in Proc. ICASSP, 2004, pp. 605–608.

[89] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via time-
frequency masking,” IEEE Trans. Signal Process. Letters, vol. 52, no. 7, pp.
1830–1847, 2004.

[90] W. Zhang, A. Masnadi-Shirazi, and B. Rao, “Insights into the frequency do-
main ICA/IVA approach,” submitted to IEEE Trans. on Audio, Speech and
Language Processing.




