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ABSTRACT 
Modem and likely future architectures require compilers to per­
form extensive restructuring of programs during optimization. We 
have been building a system in which JVM bytecode is compiled 
off-line into an alternative, enhanced mobile-code format. This al­
ternative format is still fully target-machine independent but can be 
more easily verified and compiled into native code. In particular, 
our approach permits shifting of analyses and optimizations to the 
code producer that, because of the necessity to perform bytecode 
verification, could only occur on the code consumer if JVM byte­
code were used. Our approach naturally encompasses irreducible 
control flow, which can result from the use of bytecode optimizers, 
obfuscators and compilers for source languages other than Java. 
Our techniques are applicable beyond JVM bytecode. 

Although some optimizations can be moved to the code pro­
ducer, we believe that it will still be unavoidable to perform some 
restructuring optimizations on the target machine. For example, 
loop transformations, code scheduling, and parallelization are vital 
to achieve high performance on EPIC and multithreaded architec­
tures. 

In this paper, we introduce the Augmented Dominator Tree (ADT) 
as .a candidate mobile code format enabling efficient program anal­
ysis .. The ADT may be quickly validated on the target machine; 
':e give an O(E + V) algorithm for this. However, our algo­
nthm not only verifies the validity of the data structure, but also 
reconstructs the control flow graph, and computes the dominance 
fron~ier. Furtherm?re, we show how to quickly compute the post­
dommator tree, usmg a more efficient variant of Cooper, Harvey, 
and Kennedy's iterative dominator algorithm. We intend the ADT 
to fo:~ the basis of simple and efficient algorithms for performing 
sophisticated program analysis in a just-in-time compiler for high­
performance architectures. 

1. INTRODUCTION 
When mobile code is transported using Java bytecode, the code 

needs to be verified by the code consumer before it can be executed. 

This verification step requires a considerable effort that imposes a 
delay before execution can commence. 

The need for verification also severely limits producer-side opti­
mization of the bytecode, as many of the optimizations that compil­
ers typically employ would not be indistinguishable from malicious 
modifications at the code consumer's site. 

Just-in-time compilation (from bytecode to native code) imposes 
an additional delay, in addition to the verification delay. In an inter­
active context (a user is waiting for the program to start), these de­
lays can become intolerable. As a consequence, just-in-time com­
pilers often don't use the best available algorithms, but instead em­
ploy algorithms that execute quickly, at the expense of code quality 
(e.g., linear-scan register allocation rather than graph-coloring). 

We have been exploring alternative mobile-code representations 
that overcome some of the limitations of the Java Virtual Machine 
format. In particular, our aim has been to reduce the verification 
effort, enabling more time to be spent on code generation instead, 
and to transport code in a format immediately suitable for further 
optimizing compilation on the target machine, leaving even more 
time for code generation since less pre-processing is necessary for 
"lifting" the transport format into a suitable IR for optimization. 

Our SafeTSA format (introduced at PLDI 2000 [l]) allows shift­
ing some of the optimizer's workload from the code consumer to 
the code producer. Based on Static Single Assignment (SSA) for­
mat, it enables use of more sophisticated optimizations on the client 
machine. For example, Budlimic, Cooper, et al.'s recent fast copy 
copy coalescing and live-range identification method [] depends 
on certain properties of SSA. The methods can potentially make 
graph-coloring register allocation fast enough for widespread use 
in just-in-time compilers; basing a compiler on SafeTSA allows an 
even faster implementation of their method. 

Figure 1: Flow of Class Files Through the System 



In the meantime, we have been building a system (Figure 1) in 
which class files containing ordinary Java bytecode and "enhanced" 
class files containing our alternative intermediate representation co­
exist side-by-side. "Enhancement" is offered as an off-line process 
by certain web servers in this system, the beneficiaries are certain 
"enhanced" clients. 

Several flows of class files are identified in Figure 1: all class 
files originate in the standard Java bytecode format and are placed 
on a server for hosting (1). Some of the hosting servers will provide 
an enhancer that will input an ordinary Java bytecode file (2) and 
generate an enhanced class file from it (3). Client computers ne­
gotiate with every server they connect to; if an enhancement-aware 
server detects an enhanced client, it will send it an enhanced class 
file if one is available; otherwise, it will send the standard Java 
bytecode file ( 4). 

An enhanced client, on the other hand, can process both regular 
Java bytecode files as well as enhanced class files. This enables it 
to communicate with all servers on the Internet. If it is communi­
cating with an enhancement-unaware web server, or if no enhanced 
class file is available on an enhancement-aware server, then it will 
fall back onto the classic Java bytecode format. If an enhanced 
class file is available, then it will be used instead, resulting in a 
higher level of performance. 

In our prototype implementation of an enhanced client, the two 
formats (JVM and SafeTSA) actually share the identical low-level 
code generator that translates from a low-level intermediate repre­
sentation (LIR) to the final native instruction stream, resulting in 
comparable final code quality for the two formats when compila­
tion time is unbounded. 

The key point, however, is that compilation time in dynamic 
compilation environments is hardly ever unbounded. In this situ­
ation, the enhanced class file format has a substantial advantage, 
because fewer steps and less complex operations are needed (Fig­
ure 2 (b)) to verify and preprocess it into the LIR (a variant of Static 
Single Assignment form). The time that has thus been saved (es­
sentially by performing analyses at the code producer's site and 
transmitting the results within the enhanced mobile-code format in 
a tamper-proof manner) can then be expended on high-quality code 
optimization. 

We now propose a method to enable more highly optimizing 
compilation on the client. 

2. ENABLING HIGHLY OPTIMIZING COM­
PILATION ON THE CLIENT 

Advances in computer architecture have led to a need for in­
creasingly aggressive program restructuring by optimizing compil­
ers. This is necessary for both single-threaded and multi-threaded 
processors. We believe it will become increasingly common for 
just-in-time compilers to perform some of these restructuring op­
timizations, as we tackle, for example, dynamic compilation for a 
multi-threaded EPIC processor. 

Figure 2 (c) shows a new compilation path for such a just-in-time 
compiler. Assuming we could quickly build the required data struc­
tures (the "Fast Expand" step), we can enable aggressive analy­
sis/optimization and code generation. By building a dedicated code 
generator around the format, we can avoid the passes that perform 
representation "lifting" and analysis, and thereby minimize over­
head. In this pipeline, aggressive optimizations can be performed 
at each stage. 

In this paper, we provide a solution to the problem of quickly 
building the required data structures in a (both time and space) ef­
ficient manner. Though not addressed in this paper, referential in-

tegrity and type safety of the code can be achieved using the same 
techniques as in SafeTSA. 

After defining terminology and notation, we introduce the Aug­
mented Dominator Tree (ADT). The ADT is essentially a seri­
alized version of DJ-graphs[IO] with more constraints. It is easy 
to verify ADT but not DJ-graphs. DJ-graphs were originally de­
signed to enable the design of simple and efficient algmithms for 
sophisticated program analysis in static (or "ahead-of-time") com­
pilers[l l]. Our ADT shares the benefits of the DJ-graph, but is 
suitable for use as a mobile code format, and as a basis for opti­
mization in a just-in-time compiler. 

In section 4.2.2 we present an algorithm to check that the ADT 
is valid, and reconstruct the control flow graph in a single linear 
pass. In section 5.1, we modify the algorithm to simultaneously 
build the dominance frontier. A second pass can quickly build the 
post-dominator tree; we give a more efficient version of Cooper, 
Harvey and Kennedy's iterative dominator algorithm in section 5.2 
which operates on the ADT. 

3. TERMINOLOGY AND NOTATION 
In this section, we review all important terminology and nota­

tion, which are used in to prove or describe our approach. 

Definition 1. A control flow graph (CFG) G(Va, Ea) is a di­
rected graph in which Va is the set of nodes, and an edge (x, y) E 
Ea represents a possible flow of control from x to y. There are two 
distinguished nodes: start and end E Va. start has no predeces­
sor and every node is reachable from it. end has no successors and 
is reachable from every node. The edge (start, end) E Ea indi· 
cates that the surrounding program might not execute G at all. 
Each node x E Va has no more than 2 successors or out edges. 

The ADT verification algorithm developed in this paper depen­
dens on this restricted CFG defintion. We will deal with more 
generic multiple out edges case in section 4.2.4. All G(V, Ea) 
mentioned in this paper refer to this defintion. 

Definition 2. For nodes x and y E Va, if x appears on every path 
from start toy, then x dominates y. Every node dominates itself. 
If x appears on every path from y to end, then x postdominates y. 

Therefore, start dominates all other nodes, and end postdomi­
nates all other nodes. 

Definition 3. Node x strictly dominates node y if x dominates 
y, and x '=I y. We write x --« y for strictly dominating and x :::S y 
for dominating. 

Definition 4. Node x is the immediate dominator of node y, 
denoted x = idom(y), if x is the closest strict dominator of y on 
any path from start toy. Every node of G(Va, Ea), except start, 
has a unique immediate dominator. Every node has no more than 
one immediate dominator. We can define immediate postdomina­
tor in the same way, denoted as ipdom. 

By the definition 1, idom(end) = start and ipdom(start) = 
end, we say start and end are symmetric. 

Definition 5. The edges {(idom(x),x)lx E Va - {start}} 
form a directed tree rooted at start, called the dominator tree of 
G(Va, Ea), such that x dominates y if and only if x is a proper 
ancestor of y in the dominator tree. We write the dominator tree 
as T(Vr,ET), where ET ={(idom(x),x)/x E Va - {start}}. 
Since VT = Va is always true, the subscript of V can be omitted. 
We define a function dtree( G(V, Ea)) = T(V, ET). Similarly, we 
write Tpast for the postdominator tree. 
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Figure 2: (a) Typical optimizing JVM implementation. (b)Enhanced class files require significantly reduced effort for verification 
and code generation; when compilation time is constrained, this means that better code can be generated in equal available time. 
(c) ADT Enhanced class files share the benefits of significantly reduced effort for verification and code generation; they also allow 
fast reconstruction of the control flow graph, and computation of the dominance frontier. A fast second pass quickly computes the 
post-dominator tree, thus laying the groundwork for efficient aggressive program analysis and optimization 

In this paper, we use predecessor, successor, edge and path 1 to 
refer to nodes in control flow graph, while parent, child, ancestor, 
descendant and depth always refer to nodes in a trees (dominator 
tree here). The equations below define these terms. 

succ(x)2 d~ { 
0
{yl(x,y) E Ea} A 1 s; lsucc(x)I s; 2 x EV - {end} 

x =end 
(1) 

pred(x)3 d~ { 
0
{yl(y, x) E Ea} A lpred(x)I ~ 1 x E V - {start} 

x =start 

The DF(x)[3] can be obtained by combining the two sets DFzacal 
and DFup· 

DF(x) = DFzocal(x) U u 
zEchildren(:n) 

Where the D Fzocal (x) is defined by 

DFzocal(x) = {y E succ(x)lx -f. y}. 

and DFup(z) is defined by 

DFup(z) = {y E DF(z)lidom(z) -f. y}. 

(9) 

(10) 

(11) 

(2) Similarly, we write P DF(x) to represent the post dominator 

h'ld ( ) d~ { {ylidom(y) = x} x EV - {end} 
c i ren x - 0 x = end 

parent(x);:::::: idom(x) 

t ( )4 d~ { {YIY =S x} x E V - {start} 
ances or x - 0 x = start 

descendant(x) d~ { 
0
{Ylx =SY} x EV - {end} 

x =end 

def { 0 x = start 
depth(x) = 1 + depth(parent(x)) x EV - {start} 

(3) 

(4) 

(5) 

(6) 

(7) 

Definition 6. Following the terminology from Sreedhar and Gao's 
DJ-Graphs [9], we call an edge (x, y) in the CFG a join edge (or .l­
edge) if x -f. y. y is termed a join node. DJ-graphs are comprised 
of a program's dominator tree edges CD-edges) and J-edges. 

Definition 7. For a node x E Vr, the dominance frontier D F ( x) 
is the set of all nodes y of G such that x dominates a predecessor 
of y but does not strictly dominate y: 

DF(x) d;j {yl3p Epred(y),x-j_p/\x -f. y} (8) 

1 we use tree path or tree edge to refer to tree. 
2 According to definition 1, 1 :s; I succ( x) I :s; 2 
:Based on definition I, jpred(x)I ~ 1 
x E ancestor(x), while x rf:. proper_ancestor(x). The same 

rule applies to descendant. 

frontier of x. 

4. THE AUGMENTED DOMINATOR TREE 
In this section, we first introduce the relationship between a CFG 

and its dominator tree and give a definition of "legal" CFGs. Sec­
ondly, we give the definition of augmented dominator tree(ADT). 
ADT s are essentially a serialized version of DJ-graph with added 
constraints on the order of child nodes and I succ( x) I :s; 2. 

We present an algorithm to verify the validity of an ADT and 
reconstruct a legal CFG. Finally, we give an improved algorithm 
to compute the dominator frontier and a simple, fast algorithm to 
compute postdominance directly from the ADT. 

4.1 Graph .. Theoretic Characterization of the 
Dominator Tree 

In the following, we explore the relationship between a CFG G 
and its dominator tree T in order to establish the theoretical support 
for our algorithm. 

LEMMA I. Ify is ajoin node, then (i) lpred(y)I ~ 2 (ii) \Ix' E 
pred(y), depth(x') ~ depth(y) 

PROOF. Considering assertion (i), by definition 6, there is at 
least one edge (x, y) in the CFG, and x -f. y. Suppose y has only 
one predecessor, then x appears on every path from start toy, con­
tradicting the fact that x -f. y. Sreedhar and Gao provided a proof 
of assertion (ii). D 

LEMMA 2. \Ix E V, if children(x) =f. 0, then succ(x) =f. 0 

PROOF. (By contradiction) Suppose succ(x) = 0. Then, there 
is no path able to go through x, so children(x) = 0 contradicting 
the fact that children( x) =f. 0. D 



LEMMA 3. Vx EV, ifl:::; ichildren(x)I :::; 2, then 
children(x) ~ succ(x). lfy E succ(x)-children(x), theny is 
ajoin node. 

PROOF. We consider the cases of I children( x) I = 1 and 
jchildren(x)I = 2 separately. By Lemma 2, we have succ(x) =/=-

0. 

D 

1. Let children(x) = {y }. According to the definition of 
succ(x) in equation 1, lsucc(x)I can have only two values, 
1or2. 

Let succ(x) = {y'}. By definition 2, x must appears on 
every path from start toy, so all paths from x toy must go 
through y' and y' can not have any predecessor other than x. 
We can derive that x immediately dominates y'. If y' =/=- y, 
then lchildren(x)I = 2, which contradicts the hypothesis 
that I children( x) I = 1. So y' has to be y. 

Let succ(x) = {y', y"}. Suppose y =j:. y' /\ y =j:. y", Then 
there are at least two paths from x to y, every path must go 
through either y' or y" and both y' and y" can not have any 
predecessor other than x. We can deduce that x immediately 
dominates bothy' and y". So lchildren(x)I ~ 2, contra­
dicting the fact that jchildren( x) I = 1. Therefore, either 
y' or y" is child of x and the other one is a join node by 
Definition 6. 

2. Letchildren(x) = {y,z} andx = idom(y) = idom(z). 
As with the above proof, we separate the proof into two 
cases, lsucc(x)I = 1, and lsucc(x)I = 2. 

Suppose succ(x) = {x'}. Since x must appear on every 
path from start toy or z, if x has only one out edge(x, x'), 
then x' must appear on every path from x toy and z, in other 
words, x' must appear on every path from start toy or z. We 
can deduce that x' dominates y and z also, which contradicts 
the fact x = idom(y) = idom(z). So succ(x) can no~have 
only one node. 

Suppose succ( x) = { x', x"}. If x has two out edges ( x, x') 
and (x, x"), and x must appear on every path from start to 
y or z, then both x' and x" must appear on every path from x 
to y or z and both x' and x" can not have predecessors other 
than x. We can derive that x immediately dominates both 
x' and x". If y =/=- x' or z =/=- x", then jchildren(x)I > 2, 
contradicting the hypothesis lchildren(x)I = 2. Soy, z has 
to be x', x" respectively. 

A 
~~ 

Figure 3: All dominator tree edges are CFG edges. 

Therefore, if a dominator tree node x has only one or two chil­
dren, then those children must appear as successors of x in its CFG, 
see Figure 3. 

LEMMA 4. Vx E V, lf lchildren(x)I ~ 3, then jsucc(x)l=2, 
and succ(x) C children(x) 

PROOF. By Lemma 2 and definition of succ(x) in equation 1. 
The only possible cases are lsucc(x)I = 1 or lsucc(x)I = 2. 

D 

1. Let lsucc(x)I = 1, and succ(x) = {x'}. As x must appear 
on every path from start to Vy E children( x), if x has only 
one out edge(x, x'), then x' must appear on every path from 
x to y. In other words, x' must appear on every path from 
start to y. We can immediately deduce that x' dominates y, 
which contradicts the fact that x = idom(y). So succ(x) 
can not have only one node. 

2. Let lsucc(x)I = 2, and succ(x) = {x', x"}. Since x must 
appear on every path from start to Vy E children( x), then 
both x' and x" must appear on every path from x to y. Also, 
both x' and x" can not have predecessors other than x. We 
can deduce from this that x immediate dominates both x' and 
x", so both x' and x" E children( x), that is, succ( x) C 
children(x). 

LEMMA 5. Vx EV, iflchildren(x)I ~ 3, Vy E children(x)­
succ(x) then (i) jpred(y)I ~ 2 and (ii) y is ajoin node 

PROOF. Considering assertion (i), by Lemma 4, let succ(x) n 
children(x) = { x', x"}. x has only two out edges (x, x'), (x, x") 
and x must appear on every path from start to y E children( x) -
succ(x). Then we can find at least two paths x' -+ ... -+ y and 
x" --+ .. . -+ y. Suppose all paths converge at y' and y' =/=- y, 
then y' must appear on every path from x' or x" to y and y' can 
not have predecessor other than x' and x". We can deduce that x 
dominates y' and y' dominates y, which contradicts that fact that 
idom(y) = x. So, y' = y and lpred(y)I ~ 2. Considering 
assertion (ii), the edge (y', y) is essentially a J-edge, so y is a join 
node. D 

Figure 4: C is a join node. 

Lemma 4 and Lemma 5 imply that if a dominator tree node has 
more than two children, then at least two of its children are its suc­
cessors in the CFG, and the remaining nodes are join nodes, see 
Figure 4. Intuitively, Lemma 3, Lemma 4 and Lemma 5 imply the 
mutual dependence between a dominator tree and its original CFG. 

Definition 8. The dominance invariant successors of node z, 
denoted by domis(z), is the set of nodes y such that the edge ( z, y) 
can be safely added, if I succ( z) I :::; 2, to the CFG without changing 
the dominance relation. 

domis(z) d;j {yjdtree(G(V, Ea U {(z, y)})) = dtree(G(V, Ea))} 
(12) 

By definition, adding any edge from a node to any node in its 
domis, preserves the dominator relation. We call the resulting 
CFG "legal" in the sense that it preserves the same dominance 
relation as before. All edges from a node z to all nodes y in 
its domis is a superset of z's J-edges. Sreedhar and Gao proved 



Figure 5: Proving Lemma 6 

that the depth of the source node of a valid J-edge must be larger 
than or equal to the depth of its target node. But the converse is 
not always true; given depth(z) 2:: depth(y), we cannot deduce 
y E domis(z). We now show how to find domis. 

LEMMA 6. Vx EV - {start} 

domis(z) = {yJidom(y) -< z} (13) 

PROOF. First we show that if idom(y) strictly dominates z, 
then y E domis(x). Let x = idom(y), the edge (z, y) might 
affect the dominance relation between x and z, y and the domi­
nator subtrees rooted at z, y respectively. We divide the proof in 
several cases, see Figure 5 

1. Subtree rooted at z will not be changed: The new edge 
(z, y) bypasses all descendant(z), which are strictly domi­
nated by z. 

2. Subtree rooted at y will not be changed: The new edge 
(z, y) introduces only new incoming paths toy, and y still 
appears on every path from start to Vv E descendant(y). 

3. Subtree rooted at x will not be changed: Both z and y 

are strictly dominated by x. As x appears on every path from 
start to z, so x will also appear on path start-+ x ... z-+ y. 
Hence, x still immediate dominates y. 

We conclude that the subtree rooted at x is same in all cases and 
that the dominance relation is preserved. 

Secondly, we need to show that no other nodes can be found in 
domis(z). Suppose y' E domis(z), idom(y') -/< z, and let y" = 
idom(y'). Then we can find a path start -+ ... z -+ y' (Figure 5) 
that bypasses y", so y" no longer appears on every path from start 
to y'. As y" does not dominate y', this contradicts the assumption 
that y' E domis ( z). Sreedhar and Gao provide a proof of this in a 
similar lemma. D 

thmh(Cp(C.0,D,F,A,eiidj 
lkmh(0)=(0.0.0.F.A.cnd} 
drntili{lJ)=fD.0.F.A.aul) 
OOnW(Op:(D.D.F,A,cmlJ 
tbrnh(F)=(D,0,F.A.cndl 
OOtnllfA)={r\,mdJ 

Figure 6: CFG, dominator tree and domis. 

Any edge from a node to its domis preserves the dominance 
relation, Figure 6 shows all domis for a dominator tree. 

We define two axillary operations select2(X), which randomly 
selects 2 elements from a set X, and remain(X) = X-select2(X). 

select2(X) n X d:J! { 8;_lect2(X) 

. (X) n X d!:._f { X - select2(X) remain - 0 

IXI > 2 
IXI ~2 

IXI >2 
IXI ~2 

(14) 

(15) 

The purpose of defining these two operations is to show that 
whatever child nodes are actually successors in the original CFG 
is not important and will not affect the validity of the ADT and the 
reconstruction of a legal CFG. 

COROLLARY 1. The dominator tree of any tree is the tree itself, 
and the tree root node dominates all other tree nodes. 

COROLLARY 2. Given a CFG G(V, Ea) and its dominator tree 
T(V, Er), we construct Go(Vo, Ea0 )

5 by 
Vo f- 0 
Ea0 f- 0 
for all x E V do 

Ea0 f- Ea0 U {(x, y)Jy E select2(children(x))} 
Vo f- Vo U {x} U select2(children(x)) 

end for 

Let dtree(Go(Vo,Ea0 )) = T(Vo,Er0 ), then Ea0 ~Er and 
Ea0 = Er0 

Figure 7: Go are computed from the dominator tree in Figure 6 

Intuitively, Ea0 +-- Ea0 U {(x, y)jy E select2(children(x))}, 
so Ea0 ~ Er. Therefore, Go (Vo, Ea0 ) is a tree. By corollary 1, 
Ea0 = Er0 • Figure 7 show a simple example. 

THEOREM 1. Any control flow graph Gi(Va;, Ea; )6
, which is 

created by 
Require: Vi f- Vo 
Require: Ea; f- Ea0 

for all z E V do 
Ea; f- Ea; U {(z, y)IY E target(z) /\ target(z) ~ domis(z)} 
Vi f- Vi U target(z) 

end for 
Ensure: Vz EV - {end}, 1 ~ lsucc(z)I ~ 2 
Ensure: V z E V - {start}, jpred(z) I 2: 1 
Ensure: 'r./z EV, Vy E remain(children(z)), jpred(y)I 2: 2 

has the properties: 

1. Let dtree(Gi(Vi, Ea;)) = Ti(Vi, Er;), then Er0 ~ Er; 
and Vo ~ Vi ~ V. 

2. Vz E V, 3target(z) ~ domis(z) such that 
dtree(Gi(Vi, Ea;))= T(V; Er). 

5Theoretically, this CFG is a tree and does not conform to Defini­
tion 1. 
6This CFG must conform to Definition 1, which is enforced by the 
ensure statements. 



PROOF. (1). We show that adding edges {(z, y)jy E domis(z)} 
will not remove any tree edge from Er0 and might add new tree 
edges to Eri or change tree edges of Er; - Er0 • If y E Va0 , then 
Er0 is preserved by definition 8. If y rt. Vai' then adding (z, y) 
creates a new dominance relation where z dominates y, hence adding 
a new edge (z, y) to Er;. If y E Va; - Va 0 , let idom(y) = z', 
(z', y) E Eri - Er0 and z" be the lowest common ancestor of z, 
z', then adding (z, y) will only change the original dominator rela­
tion idom(y) = z' to idom(y) = z". Therefore, Er0 ~ Eri. Via 
the constraint \fz E V, \fy E remain(children(z)), jpred(y)j 2:: 
2, we ensure that \fy rt. Vo jpred(y)j 2:: 2. (2). Intuitively, If we 
choose target(x) = succ(x) - children(x) and target(x) ~ 
domis(x) is always true, then we actually get Gi(Vi,EaJ 
G(V,Ea). Hence dtree(Gi(Vi,Ea;)) = T(V,Er). D 

tattel(CJ::jD,F) 
tarret(O}=(D,FJ 
1111,cHDFll 
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Figure 8: A legal annotation scheme of dominator tree. 

Theorem 1 implies that for any dominator tree, there are many 
CFGs conforming to that dominator tree. In order to get the original 
CFO, we need annotate each node x with target(x) = succ(x) -
children(x ). Figure 8 shows an annotation scheme from which 
we can rebuild the original CFO in Figure 6. 

4.2 The Augmented Dominator Tree and Its 
Properties 

In this section, we give the definition of the Augmented Dom­
inator Tree and show how to build and verify the validity of the 
ADT. 

4.2.1 Augmented Dominator Tree 

Definition 9. Given a CFO G(V, Ea), its Augmented Domina­
tor 'free (ADT) is a tree constructed by the following procedure. 

1. Compute the dominator tree T (V, Er). 

2. Build an ordered tree from the dominator tree such that \Ix E 
V - {end}, 3y E succ(x) and the post order traversal label 
of y ::; the post order traversal label of x. 7 

3. Label the tree nodes in post order traversal order. 

4. \Ix E V, if jchildren(x)I 2:: 2, then label the two nodes 
which are successors of x, by Lemma 3 and Lemma 4. 

5. \Ix E V - {start, end}, if jchildren(x)I ::; 1, annotate x 
with target(x) = succ(x) - children(x). 

By applying the above procedure, we can get a safe representa­
tion of a CFO as an ADT. Since the valid order of dominator tree 
is not unique, the ADT is also not unique. Figure 9 shows two 
valid ADTs. start has only two children, and end is always child 
of start. 

7This step is not essential, but can speed up the computing of the 
post-dominator relation during runtime at the client side. 

4.2.2 

Figure 9: ADTs of the CFG in Figure 6 

Algorithm to Verify the Validity of an ADT and 
to Reconstruct a Legal CFG 

We now present an algorithm (Algorithm 1), which is essentially 
a post-order traversal of the dominator tree, to verify that the target 
annotation is valid and that the ADT is a valid ordered tree. 

We briefly outline the main idea of this algorithm: 
Given a ADT, Taking tree node x in post-order traversal order 

and process x in the following step. 

1. If node x has uncheckedPred(x) not-empty, this may hap­
pen when some already processed node has an out edge to x, 
then we need check if this edge conforms to Lemma 6. 

2. Add edges from x to all child nodes labeled as successor to 
Ea, by Lemma 3. 

3. Add edges from x to all nodes, which have been found in a 
post-order traversal, in target(x) and check the validity of 
target by Lemma 6. If a target y has not been found in a post 
order traversal then add x to uncheckedPred(y). x will be 
checked when that y is found. 

4. If x is a leaf, then x must have had a target node already 
identified, this is due to the ordering requirement of the the 
ADT. 

Finally, we check the constraints enforced by Lemma 5, Equation 1 
and Equation 2. 

Figure 10 is a invalid ADT. This example has three errors. 
Firstly, target(B) % domis(B), secondly node Dis a leaf node, 
but none of it's target nodes has a post order traversal label less than 
D's post order traversal label. Lastly F should be a join node but 
it has only one predecessor. 

We will now illustrate how our verification algorithm will deal 
with the illegal ADT in Figure 10. When we traverse to node B, 
we find target node 0 has not been found, so we mark B as an 
unchecked predecessor of G. When we walk to node C, a leaf node, 
we find that its only target has not yet been found. This contradicts 
the ordering requirement of the ADT. Assuming we continue the 
walk through the ADT, the first error will be detected when we 
travere to node G, as G is not in domis(B). If we were to continue 
further we will mark Fas a join node by Lemma 5. When we finish 
the post order traversal, we next check the constraint enforced by 
Lemma 5, but we found F has only one predecessor-and this is 
flagged as an invalid ADT. 

Alternatively, we can check the validity of an ADT by building 
a CFO from the ADT in Figure 10 and computing a dominator tree 
of the CFO (Figure 11). The rebuilt dominator does not conform to 
the dominance described in original ADT, so the original ADT is 
illegal. Hence the reconstructed CFO is also illegal. 



Algorithm 1 verify ADT _reconstructCFG: 

1: for all x E V in post-order traversal order do 
2: for all p E uncheckedPred( x) do 
3: if x r/: domis(p) then 
4: return false {!*by Lemma 5*/} 
5: end if 
6: Ea+- Ea U {(p, x)} 
7: end for 
8: for ally E children(x) do 
9: if y is labeled as sucessor then 

10: Ea+- Ea U {(x, y)} {/*by Lemma 3, 5*/} 
11: else 
12: mark y as join node {/*by Lemma 5*/} 
13: end if 
14: Boolean atleastOneFound +-false 
15: for all z E target(x) do 
16: mark z as join node 
17: if z hasn't been found in post-order traversal then 
18: uncheckedPred(z) +- uncheckedPred(z) U {x} 
19: else if z E domis(x) then 
20: Ea +-Ea U {(x, z)} {/*by Definition 8*/} 
21: atleastOneFound +-true 
22: else 
23: return false 
24: end if 
25: end for 
26: if !atleastOneFound /\ y is leaf node then 
27: return false {l*ADT is not proper ordered*/} 
28: end if 
29: end for 
30: end for 
31: for all u E V do 
32: if u is join node /\ lpred( u) I < 2 then 
33: return false {!*by Lemma 1 */} 
34: end if 
35: if u :/:-end/\ 1 f:. lsucc(u)I f:. 2 then 
36: return false {!*by Equation 1 */} 
37: end if 
38: if u :/:-start/\ lpred(u)I = 0 then 
39: return false {!*by Equation 2*/} 
40: end if 
41: end for 
42: return true 

4.2.3 Complexity Analysis 
The post-order traversal of the ADT takes O(Er ). For each 

node, as we need check the edge annotated by target, the total is 
Ea - Er. The checking(line2-3 in Algorithm 1) for x E domis (p) 
where p E uncheckedPred(x) can be done in 0(1), because the 
check is equvilent to check for p E descendant(parent(x)), this 
is simplely a range test because of the post traversal order labeling 
all tree node. Figure 12 shows any edge from B or C subtree's child 
p to x is valid and min :::=; postorderlabel of p :::=; max - 1. We 
notes that the doms(parent(x)) C domis(x), so the check(line 
19 in Algorithm 1) for z E domis(x) can be done by constructing 
a bitmap - domis(x) = { x' Ix' is sibling of x and x' has been 
found in post order traversal } U domis (parent( x)). The total 
time of constructation and deconstruction of domis(x) for all node 
x is O(V). After a post-order traversal of all nodes, we also need 
to check(line 31-41) some constraints in O(V). Thus, the overall 
time complexity is O(Ea + V). 

IUJd{C)={DJ 
targd{O)=(D.FJ 
tqcHDF(O!• 
taqd{D)=IDJ 
!UJd(f)=fc:ndJ 
11.q:;d(t\)=() 

Figure 10: An invalid ADT 

Figure 11: The dominator tree of illegal ADT in Figure 10 

4.2.4 Generic CFGs 

Irreducible CFGs 
Any CFG, reducible or irreducible, has a dominator tree. So the 

modeling of irreducible graph is a natural result of our ADT ap­
proach, no special process is needed to deal with irreducible graph. 

Nodes with Multiple Out Edges 
Since our definition of the CFG limits the maximum out edges 

of each node to 2, an obvious way of modeling nodes with multiple 
out edges, such as switch statements, is to translate them to cas­
caded two-way exit nodes (such as an if-else construct). Figure 13 
shows one example of an unstructured CFG with multiple out edge 
nodes. It might appear that our modeling method will lose the in­
formation carried by multiple out edge nodes, which would affect 
code generation on the client. This is not in reality true, as we can 
easily recover such information. 

COROLLARY 3. If a sequence of cascaded two-way exit nodes 
is created by decomposing a multiple-way exit node, then these two­
way exit nodes immediately dominate each other and the ordering 
is not essential. 

This is true because if these if-else statements are created by 
transforming a switch node, then no other edge will jump into this 
set of if-else nodes. Hence they immediately dominate each other 
and form a path in the dominator tree. See Figure 13. 

We can use a simple algorithm to detect this set of two-way exit 
nodes and merge them during verification of the ADT. The criteria 
are as follows: 

1. If a group of nodes immediately dominate each other and 
form a tree path in the dominator tree. 

2. If each node has only one instruction <beq, Rx, consti, 
labeli > 8 

These criteria ensure that it is safe to merge this group of nodes 
to a multiple out edge node which contains only one instruction 
<mbeq, Rx, consti, labeli, ... , consti, labeli, .. .>. 

8beq is branch to labeli when Rx== consti. Rx is register, consti 
is constant, mbeq is multiple branch. 
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Figure 12: Checking the validity of uncheckedPred. 

Figure 13: ADT representation of switch statement control flow 
graph 

5. ENABLING HIGHLY OPTIMIZING COM­
PILATION 

Control flow relations, such as dominance and post-dominance 
frontiers, control dependences etc., have been beneficially used in 
many statically highly optimizing compilers[5]. An example of a 
necessary analysis for highly optimizing compilation is loop iden­
tification, which allows application of a variety of loop transforma­
tions. As we stated earlier, ADTs may be considered a variety of 
DJ-graph with added constraints. Therefore, it is no surprise that 
Sreedhar and Gao's bottom-up loop identification algorithm is ap­
plicable. We recall that their algorithm has the advantage of being 
able to identify reducible loops even within irreducible loops of a 
flowgraph. We also expect that their incremental algorithms, which 
depend on properties of the DJ-graph, can be adapted for use with 
the ADT. This will also lead to incremental updating of dominators 
and dominance frontiers of arbitrary flow graphs and enable use of 
incremental data flow analysis. 

We now present how to compute the dominance frontier and 
post-dominator trees from the ADT. 

5.1 Computing the Dominance Frontier 

LEMMA 7. Given a ADT(V, Er), \Ix E V 

DFzocal(x) = target(x) (16) 

PROOF. This is straight forward. Notethattarget(x) = succ(x)­
children(x) = {yjy E succ(x) /\ x -/, y} and the definition of 
D Fzocal in equation 10. D 

LEMMA 8. Given an ADT(V, Er), \Ix E V and 
Vz E children(x) 

DFup(z) = {yjy E DF(z) /\ depth(y) :::; depth(x)} (17) 

PROOF. Sreedhar and Gao provide a proof of this lemma. D 

We just need to slightly modify our previous algorithm, without in­
creasing the run time complexity, to compute the dominance fron­
tier while validating the ADT and reconstructing a legal CFG. 

5.2 Computing Post .. Dominance 
Before presenting our algorithm to compute post-dominance, we 

briefly introduce Cooper, Harvey and Kennedy's improvement[2] 
on the traditional iterative dominator algorithm. Recasting it in 
our terms, we development an improvement to their algorithm. 

Cooper et al. gave a novel representation of the dominators of 
node x. 

dom(x) = {start}U ... {}U ... {idom(idom(x))}U{idom(x)}U{x} 

This sequence actually represents a tree path in the dominator tree. 
We can reasonably assume the dominator tree exists, before we 
actually build this tree. 

By using the above representation, finding 

dom(x) = ( n dom(p)) u {x} 
pEpred(x) 

is equivalent to finding a tree path from the lowest common an­
cestor (LCA) of the. predecessors of x to start in the assumed 
dominator tree. 

The essence of the iterative dominator algorithm is to build a 
forest of dominator subtrees, merge those forests to a single domi­
nator tree and find a stable tree path from each node to start. We 
first define stable tree paths and stable nodes. 

Definition 10. A stable node is a node which has a stable tree 
path to its parent in the assumed dominator tree. 

Definition 11. \Ix EV, 

1. lfjpred(y)I = 1, andpred(y) = {x}, thenidom(y) = x, 
and the tree path y -t x 9 is stable. We term this a sta­
ble minimum tree path and y, x forms a stable minimum 
dominator subtree. y is stable node, but x might not be 
stable node. 

2. If lpred(y) I > 1 and Vx E pred(y), x 4 start is stable, 

then y 4 start is stable. Both x and y are stable nodes. 

We note that the stable tree path is iteration invariant. Based 
on this observation, we can improve Cooper's iterative dominator 
algorithm by only iterating over unstable tree paths. This may not 
change the complexity of the iterative dominator algorithm, but it 
reduces the iteration over all graph nodes to only possibly affected 
(unstable) graph nodes. We do not repeat Cooper's algorithm here, 
but this improvement will be used in our modified version which is 
used to compute the post-dominator tree directly from the ADT. 

LEMMA 9. \Ix E V - {end}- if end E target(x ), then end 
immediately post-dam x. 

PROOF. end is reachable from every node, therefore it post­
dominates every node. If there is an edge from x E V - {end} to 
end, then end immediately post-dominates x. D 

LEMMA 10. Vx E V if lchildren(x)I + itarget(x)I = 1, 
y E children(x) or y E target(x), then y immediately post­
dominates x, ipdom(x) = y. 

PROOF. Intuitively, end is reachable from every node including 
x, and x has only one successor y. Therefore, every path from x to 
end must go through y, soy immediately post-dominates x. D 

9 -t represents only one directly connected tree edge, while 4 
means at least one directly connected tree edge. 



Lemma 9, and Lemma 10 help us to find all stable minimum 
post dominator subtrees for the post-dominator tree. 

COROLLARY 4. The post order traversal of the ADT is a par­
tial order of the post-order of the RCFG. 

As each parent has a path to its children in the CFG, its children 
are the predecessors of its parent in the RCFG. Hence, we only 
need order the child nodes such that every tree leaf node (always 
treating end as processed) has at least one successor that is pro­
cessed, which is exactly the ordering of the ADT. This is checked 
by atleastOneFound in Algorithm 1. We can thus guarantee each 
node has at least one successor that is processed. We have essen­
tially the same guarantee as the reverse post-order of RCFG and 
do not need to compute the reverse post-order of the RCFG again 
during client-side processing. 

Our iterative dominator algorithm( Algorithm 2) has two steps: 

1. First, we compute a post-order traversal of the ADT to bu.ild 
an array which essentially contains a forest of stable mm­
imum post dominator subtrees, the forests are linked by 
unstable tree paths to form a unstable post dominator tree. 

2. Next, iterate over all unstable nodes and update ipdom to 
the LCA of its predecessors in current post dominator tree 
until all paths are stable or no change, that is, we obtain a 
tree which contains only stable tree paths. 

Figure 14 show a example how to compute a post-dominator t~ee 
directly from the ADT. The left side of the figure shows them­
put ADT, the middle of figure shows the contents of node, ipdom 
and stable array after each stage of the algorithm. All array are 
indexed by node's post order traversal label and node array con­
tains the symbolic name of each node. The right side of the figure 
shows the contents of ipdom and stable array in graphic. Dashed 
lines represents unstable tree paths or unstable nodes, while solid 
lines represent stable tree paths or stable nodes. The end node is 
always a stable node. 

Post order traversal of ADT: load information to node, ipdom 
and stable array respectively as well as finds all stable minimum 
post dominator subtrees. { c, b} and {end, F, start} are the only 
two stable minimum post dominator subtrees, they are linked 
by unstable tree path with other unstable node to form unstable 
post dominator tree. 

Iteration 1: iterate over all unstable nodes{G,D,C,A} and up­
date their ipdom by the LCA of its successors in current unstable 
post dominator tree. For example, at node D in this iteration, D has 
sucessors {G, B}, the LCA(B, G) = F so ipdom(D) is changed 
toF. 

Iteration 2: iterate over all unstable nodes{G,D,C,A} and up­
date their ipdom, but find no one changed. Then done. 

The first step-a post order traversal of ADT-can be merged 
with the verification of the ADT. Since we limit each iteration to 
unstable nodes and propagate stable paths, each iteration costs less 
time than Cooper et al.'s algorithm. The complexity of the iterative 
dominator algorithm[2] is 0( N + E. D) where D is the size of the 
largest Dom set. We can save the time to do the DFS, O(E), and one 
iteration that is merged with the verification phase. Such savings 
are important for practical implementations of dynamic compilers. 
Cooper et al.'s experimental results show that the simple iterative 
dominator algorithm is 2.5 times faster than the classic Lengauer­
Tarjan algorithm[6] on real programs. 

After obtaining the post-dominator tree, we can use Cooper et 
al.'s simple dominance frontier algorithm to quickly compute the 
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Figure 14: Computing the post-dominator tree 

post-dominator frontier; an important data structure for automatic 
parallelization. . 

We also note that the post-dominator tree and post-dommator 
frontier (Figure 15) is a "no-caching" Augmented Postdominator 
Tree (APT)[7, 8]. 
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Figure 15: No-Caching APT 

Pingali and Bilardi introduced the APT to the allow efficient 
querying of control dependence relations during compilation. In 
particular, they concentrate on the following dependence sets: 

1. cd( e): which statements are control dependent on the control 
flow edge e 

2. conds ( w): which edges statement w is control dependent on 

3. cdequiv( w): which statements have the same control depen­
dences as statement w 

Analysis and optimizations such as loop transformations and schedul­
ing can viewed as requiring the computation of these sets[4]. As 
we are aiming to enable advanced optimizations for recent archi­
tectures, such as EPIC, in a just-in-time setting, these sets are in­
valuable. For example, using cdequiv( w) we can identify groups 
of basic blocks suitable for region scheduling. 

In this case "no-caching" means that no information is stored at 
internal nodes to speed processing of control dependence relation 
queries. Caching information at internal nodes can speed process­
ing, but at the added cost of extra storage. Although Sreedhar and 
Gao did provide procedures to query DJ-Graphs, they did not re­
duce the complexity of the queries when compared to previous ap­
proaches. It may, therefore, be more effective to exploit Pingali 
and Bilardi's procedures for an APT style data structure. However, 
this choice will require an experimental investigation in a realistic 
compiler. 

6. SUMMARY AND CONCLUSION 



We have introduced the Augmented Dominator Tree (ADT) as 
a backbone for a new mobile code format. We intend the ADT to 
enable efficient program analysis for highly optimizing just-in-time 
compilation for modem architectures. Our algorithm to validate the 
ADT runs in O(E + V), and not only validates the ADT but re­
constructs a legal CFG and the dominance frontier. We also gave 
an improvement to Cooper, Harvey, and Kennedy's iterative domi­
nator algorithm. 

The primary related work to the ADT is Sreedhar and Gao's DJ­
Graph. While the DJ-Graph was invented to enable efficient pro­
gram analysis in a static compiler, our ADT is also a suitable mobile 
code format with an efficient verification algorithm. We also have 
presented how to efficiently compute the post-dominator tree for an 
ADT. 

Although we have not stressed the connection between SafeTSA 
and ADTs, it should be noted that the techniques can be combined 
to gain the advantages of both. In particular, such a combination 
(which is the focus of our current implementation effort) enables 
an end-to-end mobile code pipeline that allows effective program 
optimization at each stage. 
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APPENDIX 

A. ALGORITHM TO COMPUTE THE POST­
DOMINATOR TREE FROM AN ADT 

Algorithm 2 compute post dominator tree 

postOrderTraversalADT(root, stable, ipdom) 
iterate (ipdom, stable) 

postOrderTraversalADT Node x x ArrayOfBoolean stable x Array­
OtNode ipdom 
if lsucc(x)I = 1 then 

ipdom[x] +-a sucessor of x. 
stable[x] +-true 

else if end is one of sucessors of x then 
ipdom[x] +-end 
stable[x] +-true 

else 
ipdom[x] +-undefined 

end if 
for all y E succ( x) do 

postOrderTraver salADT(y, stable, ipdom) 
if ipdom[x] =undefined/\ y is first processed succ of x then 

ipdom[ x] +- y 
stable[x] +- stable[y] 

else 
(ipdom[x], stable[x]) +- LCA(y, ipdom[x]) 

end if 
end for 
return 
iterate ArrayOtNode ipdom x Boolean stable-+ PostDominatorTree 
while changed do · 

changed +- false 
for all x E unstable nodes do 

newidom +- first sucessor of x 
for all other sucessor p of x do 

if ipdom[p] =j:. undefined then 
(newidom, stable[x]) +- LCA(p, newidom) 

end if 
end for 
if ipdom[x] =j:. newidom then 

ipdom[x] +- newidom 
change +- true 

end if 
end for 

end while 
LCA Node bl x Node b2 -+ Node x Boolean 
Node xl +-bl 
Node x2 +- b2 
Booleans+- stable[xl] /\ stable[x2] 
while xl =j:. x2 do 

while xl > x2 do 
xl +- ipdom[xl] 
s +- s /\ stable[xl] 

end while 
while x2 > xl do 

x2 +- ipdom[ x2] 
s +- s /\ stable[x2] 

end while 
end while 
return ( x 1, s) 




