
UC Irvine
ICS Technical Reports

Title
Enabling efficient program analysis for dynamic optimization of a family of safe mobile code
formats

Permalink
https://escholarship.org/uc/item/03t3k43q

Authors
Wang, Ning
Dalton, Niall
Franz, Michael

Publication Date
2002

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03t3k43q
https://escholarship.org
http://www.cdlib.org/

Enabling Efficient Program Analysis for
Dynamic Optimization of a Family of

Safe Mobile Code Formats

Ning Wang Niall Dalton Michael Franz

Technical Report 02-24
Department of Information and Computer Science

University of California, Irvine, CA 92697-3425

November 2002

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Enabling
Optimization of

Program
Family of Safe

Ning Wang
wangn@uci.edu

Michael Franz
franz@uci.edu

Niall Dalton
ndalton@ics.uci.edu

Department of Information and Computer Science
University of California
Irvine, CA 92697-3425

ABSTRACT
Modem and likely future architectures require compilers to per­
form extensive restructuring of programs during optimization. We
have been building a system in which JVM bytecode is compiled
off-line into an alternative, enhanced mobile-code format. This al­
ternative format is still fully target-machine independent but can be
more easily verified and compiled into native code. In particular,
our approach permits shifting of analyses and optimizations to the
code producer that, because of the necessity to perform bytecode
verification, could only occur on the code consumer if JVM byte­
code were used. Our approach naturally encompasses irreducible
control flow, which can result from the use of bytecode optimizers,
obfuscators and compilers for source languages other than Java.
Our techniques are applicable beyond JVM bytecode.

Although some optimizations can be moved to the code pro­
ducer, we believe that it will still be unavoidable to perform some
restructuring optimizations on the target machine. For example,
loop transformations, code scheduling, and parallelization are vital
to achieve high performance on EPIC and multithreaded architec­
tures.

In this paper, we introduce the Augmented Dominator Tree (ADT)
as .a candidate mobile code format enabling efficient program anal­
ysis .. The ADT may be quickly validated on the target machine;
':e give an O(E + V) algorithm for this. However, our algo­
nthm not only verifies the validity of the data structure, but also
reconstructs the control flow graph, and computes the dominance
fron~ier. Furtherm?re, we show how to quickly compute the post­
dommator tree, usmg a more efficient variant of Cooper, Harvey,
and Kennedy's iterative dominator algorithm. We intend the ADT
to fo:~ the basis of simple and efficient algorithms for performing
sophisticated program analysis in a just-in-time compiler for high­
performance architectures.

1. INTRODUCTION
When mobile code is transported using Java bytecode, the code

needs to be verified by the code consumer before it can be executed.

This verification step requires a considerable effort that imposes a
delay before execution can commence.

The need for verification also severely limits producer-side opti­
mization of the bytecode, as many of the optimizations that compil­
ers typically employ would not be indistinguishable from malicious
modifications at the code consumer's site.

Just-in-time compilation (from bytecode to native code) imposes
an additional delay, in addition to the verification delay. In an inter­
active context (a user is waiting for the program to start), these de­
lays can become intolerable. As a consequence, just-in-time com­
pilers often don't use the best available algorithms, but instead em­
ploy algorithms that execute quickly, at the expense of code quality
(e.g., linear-scan register allocation rather than graph-coloring).

We have been exploring alternative mobile-code representations
that overcome some of the limitations of the Java Virtual Machine
format. In particular, our aim has been to reduce the verification
effort, enabling more time to be spent on code generation instead,
and to transport code in a format immediately suitable for further
optimizing compilation on the target machine, leaving even more
time for code generation since less pre-processing is necessary for
"lifting" the transport format into a suitable IR for optimization.

Our SafeTSA format (introduced at PLDI 2000 [l]) allows shift­
ing some of the optimizer's workload from the code consumer to
the code producer. Based on Static Single Assignment (SSA) for­
mat, it enables use of more sophisticated optimizations on the client
machine. For example, Budlimic, Cooper, et al.'s recent fast copy
copy coalescing and live-range identification method [] depends
on certain properties of SSA. The methods can potentially make
graph-coloring register allocation fast enough for widespread use
in just-in-time compilers; basing a compiler on SafeTSA allows an
even faster implementation of their method.

Figure 1: Flow of Class Files Through the System

In the meantime, we have been building a system (Figure 1) in
which class files containing ordinary Java bytecode and "enhanced"
class files containing our alternative intermediate representation co­
exist side-by-side. "Enhancement" is offered as an off-line process
by certain web servers in this system, the beneficiaries are certain
"enhanced" clients.

Several flows of class files are identified in Figure 1: all class
files originate in the standard Java bytecode format and are placed
on a server for hosting (1). Some of the hosting servers will provide
an enhancer that will input an ordinary Java bytecode file (2) and
generate an enhanced class file from it (3). Client computers ne­
gotiate with every server they connect to; if an enhancement-aware
server detects an enhanced client, it will send it an enhanced class
file if one is available; otherwise, it will send the standard Java
bytecode file (4).

An enhanced client, on the other hand, can process both regular
Java bytecode files as well as enhanced class files. This enables it
to communicate with all servers on the Internet. If it is communi­
cating with an enhancement-unaware web server, or if no enhanced
class file is available on an enhancement-aware server, then it will
fall back onto the classic Java bytecode format. If an enhanced
class file is available, then it will be used instead, resulting in a
higher level of performance.

In our prototype implementation of an enhanced client, the two
formats (JVM and SafeTSA) actually share the identical low-level
code generator that translates from a low-level intermediate repre­
sentation (LIR) to the final native instruction stream, resulting in
comparable final code quality for the two formats when compila­
tion time is unbounded.

The key point, however, is that compilation time in dynamic
compilation environments is hardly ever unbounded. In this situ­
ation, the enhanced class file format has a substantial advantage,
because fewer steps and less complex operations are needed (Fig­
ure 2 (b)) to verify and preprocess it into the LIR (a variant of Static
Single Assignment form). The time that has thus been saved (es­
sentially by performing analyses at the code producer's site and
transmitting the results within the enhanced mobile-code format in
a tamper-proof manner) can then be expended on high-quality code
optimization.

We now propose a method to enable more highly optimizing
compilation on the client.

2. ENABLING HIGHLY OPTIMIZING COM­
PILATION ON THE CLIENT

Advances in computer architecture have led to a need for in­
creasingly aggressive program restructuring by optimizing compil­
ers. This is necessary for both single-threaded and multi-threaded
processors. We believe it will become increasingly common for
just-in-time compilers to perform some of these restructuring op­
timizations, as we tackle, for example, dynamic compilation for a
multi-threaded EPIC processor.

Figure 2 (c) shows a new compilation path for such a just-in-time
compiler. Assuming we could quickly build the required data struc­
tures (the "Fast Expand" step), we can enable aggressive analy­
sis/optimization and code generation. By building a dedicated code
generator around the format, we can avoid the passes that perform
representation "lifting" and analysis, and thereby minimize over­
head. In this pipeline, aggressive optimizations can be performed
at each stage.

In this paper, we provide a solution to the problem of quickly
building the required data structures in a (both time and space) ef­
ficient manner. Though not addressed in this paper, referential in-

tegrity and type safety of the code can be achieved using the same
techniques as in SafeTSA.

After defining terminology and notation, we introduce the Aug­
mented Dominator Tree (ADT). The ADT is essentially a seri­
alized version of DJ-graphs[IO] with more constraints. It is easy
to verify ADT but not DJ-graphs. DJ-graphs were originally de­
signed to enable the design of simple and efficient algmithms for
sophisticated program analysis in static (or "ahead-of-time") com­
pilers[l l]. Our ADT shares the benefits of the DJ-graph, but is
suitable for use as a mobile code format, and as a basis for opti­
mization in a just-in-time compiler.

In section 4.2.2 we present an algorithm to check that the ADT
is valid, and reconstruct the control flow graph in a single linear
pass. In section 5.1, we modify the algorithm to simultaneously
build the dominance frontier. A second pass can quickly build the
post-dominator tree; we give a more efficient version of Cooper,
Harvey and Kennedy's iterative dominator algorithm in section 5.2
which operates on the ADT.

3. TERMINOLOGY AND NOTATION
In this section, we review all important terminology and nota­

tion, which are used in to prove or describe our approach.

Definition 1. A control flow graph (CFG) G(Va, Ea) is a di­
rected graph in which Va is the set of nodes, and an edge (x, y) E
Ea represents a possible flow of control from x to y. There are two
distinguished nodes: start and end E Va. start has no predeces­
sor and every node is reachable from it. end has no successors and
is reachable from every node. The edge (start, end) E Ea indi·
cates that the surrounding program might not execute G at all.
Each node x E Va has no more than 2 successors or out edges.

The ADT verification algorithm developed in this paper depen­
dens on this restricted CFG defintion. We will deal with more
generic multiple out edges case in section 4.2.4. All G(V, Ea)
mentioned in this paper refer to this defintion.

Definition 2. For nodes x and y E Va, if x appears on every path
from start toy, then x dominates y. Every node dominates itself.
If x appears on every path from y to end, then x postdominates y.

Therefore, start dominates all other nodes, and end postdomi­
nates all other nodes.

Definition 3. Node x strictly dominates node y if x dominates
y, and x '=I y. We write x --« y for strictly dominating and x :::S y
for dominating.

Definition 4. Node x is the immediate dominator of node y,
denoted x = idom(y), if x is the closest strict dominator of y on
any path from start toy. Every node of G(Va, Ea), except start,
has a unique immediate dominator. Every node has no more than
one immediate dominator. We can define immediate postdomina­
tor in the same way, denoted as ipdom.

By the definition 1, idom(end) = start and ipdom(start) =
end, we say start and end are symmetric.

Definition 5. The edges {(idom(x),x)lx E Va - {start}}
form a directed tree rooted at start, called the dominator tree of
G(Va, Ea), such that x dominates y if and only if x is a proper
ancestor of y in the dominator tree. We write the dominator tree
as T(Vr,ET), where ET ={(idom(x),x)/x E Va - {start}}.
Since VT = Va is always true, the subscript of V can be omitted.
We define a function dtree(G(V, Ea)) = T(V, ET). Similarly, we
write Tpast for the postdominator tree.

(a)

- -.. --.... --.. --.. ----.... -..... -............... --... --.. - -......... --.... --- -,
I I

: I

(b)i

I I

: ~ -- --- --- - --!

Figure 2: (a) Typical optimizing JVM implementation. (b)Enhanced class files require significantly reduced effort for verification
and code generation; when compilation time is constrained, this means that better code can be generated in equal available time.
(c) ADT Enhanced class files share the benefits of significantly reduced effort for verification and code generation; they also allow
fast reconstruction of the control flow graph, and computation of the dominance frontier. A fast second pass quickly computes the
post-dominator tree, thus laying the groundwork for efficient aggressive program analysis and optimization

In this paper, we use predecessor, successor, edge and path 1 to
refer to nodes in control flow graph, while parent, child, ancestor,
descendant and depth always refer to nodes in a trees (dominator
tree here). The equations below define these terms.

succ(x)2 d~ {
0
{yl(x,y) E Ea} A 1 s; lsucc(x)I s; 2 x EV - {end}

x =end
(1)

pred(x)3 d~ {
0
{yl(y, x) E Ea} A lpred(x)I ~ 1 x E V - {start}

x =start

The DF(x)[3] can be obtained by combining the two sets DFzacal
and DFup·

DF(x) = DFzocal(x) U u
zEchildren(:n)

Where the D Fzocal (x) is defined by

DFzocal(x) = {y E succ(x)lx -f. y}.

and DFup(z) is defined by

DFup(z) = {y E DF(z)lidom(z) -f. y}.

(9)

(10)

(11)

(2) Similarly, we write P DF(x) to represent the post dominator

h'ld () d~ { {ylidom(y) = x} x EV - {end}
c i ren x - 0 x = end

parent(x);:::::: idom(x)

t ()4 d~ { {YIY =S x} x E V - {start}
ances or x - 0 x = start

descendant(x) d~ {
0
{Ylx =SY} x EV - {end}

x =end

def { 0 x = start
depth(x) = 1 + depth(parent(x)) x EV - {start}

(3)

(4)

(5)

(6)

(7)

Definition 6. Following the terminology from Sreedhar and Gao's
DJ-Graphs [9], we call an edge (x, y) in the CFG a join edge (or .l­
edge) if x -f. y. y is termed a join node. DJ-graphs are comprised
of a program's dominator tree edges CD-edges) and J-edges.

Definition 7. For a node x E Vr, the dominance frontier D F (x)
is the set of all nodes y of G such that x dominates a predecessor
of y but does not strictly dominate y:

DF(x) d;j {yl3p Epred(y),x-j_p/\x -f. y} (8)

1 we use tree path or tree edge to refer to tree.
2 According to definition 1, 1 :s; I succ(x) I :s; 2
:Based on definition I, jpred(x)I ~ 1
x E ancestor(x), while x rf:. proper_ancestor(x). The same

rule applies to descendant.

frontier of x.

4. THE AUGMENTED DOMINATOR TREE
In this section, we first introduce the relationship between a CFG

and its dominator tree and give a definition of "legal" CFGs. Sec­
ondly, we give the definition of augmented dominator tree(ADT).
ADT s are essentially a serialized version of DJ-graph with added
constraints on the order of child nodes and I succ(x) I :s; 2.

We present an algorithm to verify the validity of an ADT and
reconstruct a legal CFG. Finally, we give an improved algorithm
to compute the dominator frontier and a simple, fast algorithm to
compute postdominance directly from the ADT.

4.1 Graph .. Theoretic Characterization of the
Dominator Tree

In the following, we explore the relationship between a CFG G
and its dominator tree T in order to establish the theoretical support
for our algorithm.

LEMMA I. Ify is ajoin node, then (i) lpred(y)I ~ 2 (ii) \Ix' E
pred(y), depth(x') ~ depth(y)

PROOF. Considering assertion (i), by definition 6, there is at
least one edge (x, y) in the CFG, and x -f. y. Suppose y has only
one predecessor, then x appears on every path from start toy, con­
tradicting the fact that x -f. y. Sreedhar and Gao provided a proof
of assertion (ii). D

LEMMA 2. \Ix E V, if children(x) =f. 0, then succ(x) =f. 0

PROOF. (By contradiction) Suppose succ(x) = 0. Then, there
is no path able to go through x, so children(x) = 0 contradicting
the fact that children(x) =f. 0. D

LEMMA 3. Vx EV, ifl:::; ichildren(x)I :::; 2, then
children(x) ~ succ(x). lfy E succ(x)-children(x), theny is
ajoin node.

PROOF. We consider the cases of I children(x) I = 1 and
jchildren(x)I = 2 separately. By Lemma 2, we have succ(x) =/=-

0.

D

1. Let children(x) = {y }. According to the definition of
succ(x) in equation 1, lsucc(x)I can have only two values,
1or2.

Let succ(x) = {y'}. By definition 2, x must appears on
every path from start toy, so all paths from x toy must go
through y' and y' can not have any predecessor other than x.
We can derive that x immediately dominates y'. If y' =/=- y,
then lchildren(x)I = 2, which contradicts the hypothesis
that I children(x) I = 1. So y' has to be y.

Let succ(x) = {y', y"}. Suppose y =j:. y' /\ y =j:. y", Then
there are at least two paths from x to y, every path must go
through either y' or y" and both y' and y" can not have any
predecessor other than x. We can deduce that x immediately
dominates bothy' and y". So lchildren(x)I ~ 2, contra­
dicting the fact that jchildren(x) I = 1. Therefore, either
y' or y" is child of x and the other one is a join node by
Definition 6.

2. Letchildren(x) = {y,z} andx = idom(y) = idom(z).
As with the above proof, we separate the proof into two
cases, lsucc(x)I = 1, and lsucc(x)I = 2.

Suppose succ(x) = {x'}. Since x must appear on every
path from start toy or z, if x has only one out edge(x, x'),
then x' must appear on every path from x toy and z, in other
words, x' must appear on every path from start toy or z. We
can deduce that x' dominates y and z also, which contradicts
the fact x = idom(y) = idom(z). So succ(x) can no~have
only one node.

Suppose succ(x) = { x', x"}. If x has two out edges (x, x')
and (x, x"), and x must appear on every path from start to
y or z, then both x' and x" must appear on every path from x
to y or z and both x' and x" can not have predecessors other
than x. We can derive that x immediately dominates both
x' and x". If y =/=- x' or z =/=- x", then jchildren(x)I > 2,
contradicting the hypothesis lchildren(x)I = 2. Soy, z has
to be x', x" respectively.

A
~~

Figure 3: All dominator tree edges are CFG edges.

Therefore, if a dominator tree node x has only one or two chil­
dren, then those children must appear as successors of x in its CFG,
see Figure 3.

LEMMA 4. Vx E V, lf lchildren(x)I ~ 3, then jsucc(x)l=2,
and succ(x) C children(x)

PROOF. By Lemma 2 and definition of succ(x) in equation 1.
The only possible cases are lsucc(x)I = 1 or lsucc(x)I = 2.

D

1. Let lsucc(x)I = 1, and succ(x) = {x'}. As x must appear
on every path from start to Vy E children(x), if x has only
one out edge(x, x'), then x' must appear on every path from
x to y. In other words, x' must appear on every path from
start to y. We can immediately deduce that x' dominates y,
which contradicts the fact that x = idom(y). So succ(x)
can not have only one node.

2. Let lsucc(x)I = 2, and succ(x) = {x', x"}. Since x must
appear on every path from start to Vy E children(x), then
both x' and x" must appear on every path from x to y. Also,
both x' and x" can not have predecessors other than x. We
can deduce from this that x immediate dominates both x' and
x", so both x' and x" E children(x), that is, succ(x) C
children(x).

LEMMA 5. Vx EV, iflchildren(x)I ~ 3, Vy E children(x)­
succ(x) then (i) jpred(y)I ~ 2 and (ii) y is ajoin node

PROOF. Considering assertion (i), by Lemma 4, let succ(x) n
children(x) = { x', x"}. x has only two out edges (x, x'), (x, x")
and x must appear on every path from start to y E children(x) -
succ(x). Then we can find at least two paths x' -+ ... -+ y and
x" --+ .. . -+ y. Suppose all paths converge at y' and y' =/=- y,
then y' must appear on every path from x' or x" to y and y' can
not have predecessor other than x' and x". We can deduce that x
dominates y' and y' dominates y, which contradicts that fact that
idom(y) = x. So, y' = y and lpred(y)I ~ 2. Considering
assertion (ii), the edge (y', y) is essentially a J-edge, so y is a join
node. D

Figure 4: C is a join node.

Lemma 4 and Lemma 5 imply that if a dominator tree node has
more than two children, then at least two of its children are its suc­
cessors in the CFG, and the remaining nodes are join nodes, see
Figure 4. Intuitively, Lemma 3, Lemma 4 and Lemma 5 imply the
mutual dependence between a dominator tree and its original CFG.

Definition 8. The dominance invariant successors of node z,
denoted by domis(z), is the set of nodes y such that the edge (z, y)
can be safely added, if I succ(z) I :::; 2, to the CFG without changing
the dominance relation.

domis(z) d;j {yjdtree(G(V, Ea U {(z, y)})) = dtree(G(V, Ea))}
(12)

By definition, adding any edge from a node to any node in its
domis, preserves the dominator relation. We call the resulting
CFG "legal" in the sense that it preserves the same dominance
relation as before. All edges from a node z to all nodes y in
its domis is a superset of z's J-edges. Sreedhar and Gao proved

Figure 5: Proving Lemma 6

that the depth of the source node of a valid J-edge must be larger
than or equal to the depth of its target node. But the converse is
not always true; given depth(z) 2:: depth(y), we cannot deduce
y E domis(z). We now show how to find domis.

LEMMA 6. Vx EV - {start}

domis(z) = {yJidom(y) -< z} (13)

PROOF. First we show that if idom(y) strictly dominates z,
then y E domis(x). Let x = idom(y), the edge (z, y) might
affect the dominance relation between x and z, y and the domi­
nator subtrees rooted at z, y respectively. We divide the proof in
several cases, see Figure 5

1. Subtree rooted at z will not be changed: The new edge
(z, y) bypasses all descendant(z), which are strictly domi­
nated by z.

2. Subtree rooted at y will not be changed: The new edge
(z, y) introduces only new incoming paths toy, and y still
appears on every path from start to Vv E descendant(y).

3. Subtree rooted at x will not be changed: Both z and y

are strictly dominated by x. As x appears on every path from
start to z, so x will also appear on path start-+ x ... z-+ y.
Hence, x still immediate dominates y.

We conclude that the subtree rooted at x is same in all cases and
that the dominance relation is preserved.

Secondly, we need to show that no other nodes can be found in
domis(z). Suppose y' E domis(z), idom(y') -/< z, and let y" =
idom(y'). Then we can find a path start -+ ... z -+ y' (Figure 5)
that bypasses y", so y" no longer appears on every path from start
to y'. As y" does not dominate y', this contradicts the assumption
that y' E domis (z). Sreedhar and Gao provide a proof of this in a
similar lemma. D

thmh(Cp(C.0,D,F,A,eiidj
lkmh(0)=(0.0.0.F.A.cnd}
drntili{lJ)=fD.0.F.A.aul)
OOnW(Op:(D.D.F,A,cmlJ
tbrnh(F)=(D,0,F.A.cndl
OOtnllfA)={r\,mdJ

Figure 6: CFG, dominator tree and domis.

Any edge from a node to its domis preserves the dominance
relation, Figure 6 shows all domis for a dominator tree.

We define two axillary operations select2(X), which randomly
selects 2 elements from a set X, and remain(X) = X-select2(X).

select2(X) n X d:J! { 8;_lect2(X)

. (X) n X d!:._f { X - select2(X) remain - 0

IXI > 2
IXI ~2

IXI >2
IXI ~2

(14)

(15)

The purpose of defining these two operations is to show that
whatever child nodes are actually successors in the original CFG
is not important and will not affect the validity of the ADT and the
reconstruction of a legal CFG.

COROLLARY 1. The dominator tree of any tree is the tree itself,
and the tree root node dominates all other tree nodes.

COROLLARY 2. Given a CFG G(V, Ea) and its dominator tree
T(V, Er), we construct Go(Vo, Ea0)

5 by
Vo f- 0
Ea0 f- 0
for all x E V do

Ea0 f- Ea0 U {(x, y)Jy E select2(children(x))}
Vo f- Vo U {x} U select2(children(x))

end for

Let dtree(Go(Vo,Ea0)) = T(Vo,Er0), then Ea0 ~Er and
Ea0 = Er0

Figure 7: Go are computed from the dominator tree in Figure 6

Intuitively, Ea0 +-- Ea0 U {(x, y)jy E select2(children(x))},
so Ea0 ~ Er. Therefore, Go (Vo, Ea0) is a tree. By corollary 1,
Ea0 = Er0 • Figure 7 show a simple example.

THEOREM 1. Any control flow graph Gi(Va;, Ea;)6
, which is

created by
Require: Vi f- Vo
Require: Ea; f- Ea0

for all z E V do
Ea; f- Ea; U {(z, y)IY E target(z) /\ target(z) ~ domis(z)}
Vi f- Vi U target(z)

end for
Ensure: Vz EV - {end}, 1 ~ lsucc(z)I ~ 2
Ensure: V z E V - {start}, jpred(z) I 2: 1
Ensure: 'r./z EV, Vy E remain(children(z)), jpred(y)I 2: 2

has the properties:

1. Let dtree(Gi(Vi, Ea;)) = Ti(Vi, Er;), then Er0 ~ Er;
and Vo ~ Vi ~ V.

2. Vz E V, 3target(z) ~ domis(z) such that
dtree(Gi(Vi, Ea;))= T(V; Er).

5Theoretically, this CFG is a tree and does not conform to Defini­
tion 1.
6This CFG must conform to Definition 1, which is enforced by the
ensure statements.

PROOF. (1). We show that adding edges {(z, y)jy E domis(z)}
will not remove any tree edge from Er0 and might add new tree
edges to Eri or change tree edges of Er; - Er0 • If y E Va0 , then
Er0 is preserved by definition 8. If y rt. Vai' then adding (z, y)
creates a new dominance relation where z dominates y, hence adding
a new edge (z, y) to Er;. If y E Va; - Va 0 , let idom(y) = z',
(z', y) E Eri - Er0 and z" be the lowest common ancestor of z,
z', then adding (z, y) will only change the original dominator rela­
tion idom(y) = z' to idom(y) = z". Therefore, Er0 ~ Eri. Via
the constraint \fz E V, \fy E remain(children(z)), jpred(y)j 2::
2, we ensure that \fy rt. Vo jpred(y)j 2:: 2. (2). Intuitively, If we
choose target(x) = succ(x) - children(x) and target(x) ~
domis(x) is always true, then we actually get Gi(Vi,EaJ
G(V,Ea). Hence dtree(Gi(Vi,Ea;)) = T(V,Er). D

tattel(CJ::jD,F)
tarret(O}=(D,FJ
1111,cHDFll
lattet(D)=:{DI
ta.ri:d(F}=jmJJ
turet(AF(I

Figure 8: A legal annotation scheme of dominator tree.

Theorem 1 implies that for any dominator tree, there are many
CFGs conforming to that dominator tree. In order to get the original
CFO, we need annotate each node x with target(x) = succ(x) -
children(x). Figure 8 shows an annotation scheme from which
we can rebuild the original CFO in Figure 6.

4.2 The Augmented Dominator Tree and Its
Properties

In this section, we give the definition of the Augmented Dom­
inator Tree and show how to build and verify the validity of the
ADT.

4.2.1 Augmented Dominator Tree

Definition 9. Given a CFO G(V, Ea), its Augmented Domina­
tor 'free (ADT) is a tree constructed by the following procedure.

1. Compute the dominator tree T (V, Er).

2. Build an ordered tree from the dominator tree such that \Ix E
V - {end}, 3y E succ(x) and the post order traversal label
of y ::; the post order traversal label of x. 7

3. Label the tree nodes in post order traversal order.

4. \Ix E V, if jchildren(x)I 2:: 2, then label the two nodes
which are successors of x, by Lemma 3 and Lemma 4.

5. \Ix E V - {start, end}, if jchildren(x)I ::; 1, annotate x
with target(x) = succ(x) - children(x).

By applying the above procedure, we can get a safe representa­
tion of a CFO as an ADT. Since the valid order of dominator tree
is not unique, the ADT is also not unique. Figure 9 shows two
valid ADTs. start has only two children, and end is always child
of start.

7This step is not essential, but can speed up the computing of the
post-dominator relation during runtime at the client side.

4.2.2

Figure 9: ADTs of the CFG in Figure 6

Algorithm to Verify the Validity of an ADT and
to Reconstruct a Legal CFG

We now present an algorithm (Algorithm 1), which is essentially
a post-order traversal of the dominator tree, to verify that the target
annotation is valid and that the ADT is a valid ordered tree.

We briefly outline the main idea of this algorithm:
Given a ADT, Taking tree node x in post-order traversal order

and process x in the following step.

1. If node x has uncheckedPred(x) not-empty, this may hap­
pen when some already processed node has an out edge to x,
then we need check if this edge conforms to Lemma 6.

2. Add edges from x to all child nodes labeled as successor to
Ea, by Lemma 3.

3. Add edges from x to all nodes, which have been found in a
post-order traversal, in target(x) and check the validity of
target by Lemma 6. If a target y has not been found in a post
order traversal then add x to uncheckedPred(y). x will be
checked when that y is found.

4. If x is a leaf, then x must have had a target node already
identified, this is due to the ordering requirement of the the
ADT.

Finally, we check the constraints enforced by Lemma 5, Equation 1
and Equation 2.

Figure 10 is a invalid ADT. This example has three errors.
Firstly, target(B) % domis(B), secondly node Dis a leaf node,
but none of it's target nodes has a post order traversal label less than
D's post order traversal label. Lastly F should be a join node but
it has only one predecessor.

We will now illustrate how our verification algorithm will deal
with the illegal ADT in Figure 10. When we traverse to node B,
we find target node 0 has not been found, so we mark B as an
unchecked predecessor of G. When we walk to node C, a leaf node,
we find that its only target has not yet been found. This contradicts
the ordering requirement of the ADT. Assuming we continue the
walk through the ADT, the first error will be detected when we
travere to node G, as G is not in domis(B). If we were to continue
further we will mark Fas a join node by Lemma 5. When we finish
the post order traversal, we next check the constraint enforced by
Lemma 5, but we found F has only one predecessor-and this is
flagged as an invalid ADT.

Alternatively, we can check the validity of an ADT by building
a CFO from the ADT in Figure 10 and computing a dominator tree
of the CFO (Figure 11). The rebuilt dominator does not conform to
the dominance described in original ADT, so the original ADT is
illegal. Hence the reconstructed CFO is also illegal.

Algorithm 1 verify ADT _reconstructCFG:

1: for all x E V in post-order traversal order do
2: for all p E uncheckedPred(x) do
3: if x r/: domis(p) then
4: return false {!*by Lemma 5*/}
5: end if
6: Ea+- Ea U {(p, x)}
7: end for
8: for ally E children(x) do
9: if y is labeled as sucessor then

10: Ea+- Ea U {(x, y)} {/*by Lemma 3, 5*/}
11: else
12: mark y as join node {/*by Lemma 5*/}
13: end if
14: Boolean atleastOneFound +-false
15: for all z E target(x) do
16: mark z as join node
17: if z hasn't been found in post-order traversal then
18: uncheckedPred(z) +- uncheckedPred(z) U {x}
19: else if z E domis(x) then
20: Ea +-Ea U {(x, z)} {/*by Definition 8*/}
21: atleastOneFound +-true
22: else
23: return false
24: end if
25: end for
26: if !atleastOneFound /\ y is leaf node then
27: return false {l*ADT is not proper ordered*/}
28: end if
29: end for
30: end for
31: for all u E V do
32: if u is join node /\ lpred(u) I < 2 then
33: return false {!*by Lemma 1 */}
34: end if
35: if u :/:-end/\ 1 f:. lsucc(u)I f:. 2 then
36: return false {!*by Equation 1 */}
37: end if
38: if u :/:-start/\ lpred(u)I = 0 then
39: return false {!*by Equation 2*/}
40: end if
41: end for
42: return true

4.2.3 Complexity Analysis
The post-order traversal of the ADT takes O(Er). For each

node, as we need check the edge annotated by target, the total is
Ea - Er. The checking(line2-3 in Algorithm 1) for x E domis (p)
where p E uncheckedPred(x) can be done in 0(1), because the
check is equvilent to check for p E descendant(parent(x)), this
is simplely a range test because of the post traversal order labeling
all tree node. Figure 12 shows any edge from B or C subtree's child
p to x is valid and min :::=; postorderlabel of p :::=; max - 1. We
notes that the doms(parent(x)) C domis(x), so the check(line
19 in Algorithm 1) for z E domis(x) can be done by constructing
a bitmap - domis(x) = { x' Ix' is sibling of x and x' has been
found in post order traversal } U domis (parent(x)). The total
time of constructation and deconstruction of domis(x) for all node
x is O(V). After a post-order traversal of all nodes, we also need
to check(line 31-41) some constraints in O(V). Thus, the overall
time complexity is O(Ea + V).

IUJd{C)={DJ
targd{O)=(D.FJ
tqcHDF(O!•
taqd{D)=IDJ
!UJd(f)=fc:ndJ
11.q:;d(t\)=()

Figure 10: An invalid ADT

Figure 11: The dominator tree of illegal ADT in Figure 10

4.2.4 Generic CFGs

Irreducible CFGs
Any CFG, reducible or irreducible, has a dominator tree. So the

modeling of irreducible graph is a natural result of our ADT ap­
proach, no special process is needed to deal with irreducible graph.

Nodes with Multiple Out Edges
Since our definition of the CFG limits the maximum out edges

of each node to 2, an obvious way of modeling nodes with multiple
out edges, such as switch statements, is to translate them to cas­
caded two-way exit nodes (such as an if-else construct). Figure 13
shows one example of an unstructured CFG with multiple out edge
nodes. It might appear that our modeling method will lose the in­
formation carried by multiple out edge nodes, which would affect
code generation on the client. This is not in reality true, as we can
easily recover such information.

COROLLARY 3. If a sequence of cascaded two-way exit nodes
is created by decomposing a multiple-way exit node, then these two­
way exit nodes immediately dominate each other and the ordering
is not essential.

This is true because if these if-else statements are created by
transforming a switch node, then no other edge will jump into this
set of if-else nodes. Hence they immediately dominate each other
and form a path in the dominator tree. See Figure 13.

We can use a simple algorithm to detect this set of two-way exit
nodes and merge them during verification of the ADT. The criteria
are as follows:

1. If a group of nodes immediately dominate each other and
form a tree path in the dominator tree.

2. If each node has only one instruction <beq, Rx, consti,
labeli > 8

These criteria ensure that it is safe to merge this group of nodes
to a multiple out edge node which contains only one instruction
<mbeq, Rx, consti, labeli, ... , consti, labeli, .. .>.

8beq is branch to labeli when Rx== consti. Rx is register, consti
is constant, mbeq is multiple branch.

1nu ',\ ,/~--- ,\

\:/··-.\ \
m"-') >/

/..;j
~- _/_//

Figure 12: Checking the validity of uncheckedPred.

Figure 13: ADT representation of switch statement control flow
graph

5. ENABLING HIGHLY OPTIMIZING COM­
PILATION

Control flow relations, such as dominance and post-dominance
frontiers, control dependences etc., have been beneficially used in
many statically highly optimizing compilers[5]. An example of a
necessary analysis for highly optimizing compilation is loop iden­
tification, which allows application of a variety of loop transforma­
tions. As we stated earlier, ADTs may be considered a variety of
DJ-graph with added constraints. Therefore, it is no surprise that
Sreedhar and Gao's bottom-up loop identification algorithm is ap­
plicable. We recall that their algorithm has the advantage of being
able to identify reducible loops even within irreducible loops of a
flowgraph. We also expect that their incremental algorithms, which
depend on properties of the DJ-graph, can be adapted for use with
the ADT. This will also lead to incremental updating of dominators
and dominance frontiers of arbitrary flow graphs and enable use of
incremental data flow analysis.

We now present how to compute the dominance frontier and
post-dominator trees from the ADT.

5.1 Computing the Dominance Frontier

LEMMA 7. Given a ADT(V, Er), \Ix E V

DFzocal(x) = target(x) (16)

PROOF. This is straight forward. Notethattarget(x) = succ(x)­
children(x) = {yjy E succ(x) /\ x -/, y} and the definition of
D Fzocal in equation 10. D

LEMMA 8. Given an ADT(V, Er), \Ix E V and
Vz E children(x)

DFup(z) = {yjy E DF(z) /\ depth(y) :::; depth(x)} (17)

PROOF. Sreedhar and Gao provide a proof of this lemma. D

We just need to slightly modify our previous algorithm, without in­
creasing the run time complexity, to compute the dominance fron­
tier while validating the ADT and reconstructing a legal CFG.

5.2 Computing Post .. Dominance
Before presenting our algorithm to compute post-dominance, we

briefly introduce Cooper, Harvey and Kennedy's improvement[2]
on the traditional iterative dominator algorithm. Recasting it in
our terms, we development an improvement to their algorithm.

Cooper et al. gave a novel representation of the dominators of
node x.

dom(x) = {start}U ... {}U ... {idom(idom(x))}U{idom(x)}U{x}

This sequence actually represents a tree path in the dominator tree.
We can reasonably assume the dominator tree exists, before we
actually build this tree.

By using the above representation, finding

dom(x) = (n dom(p)) u {x}
pEpred(x)

is equivalent to finding a tree path from the lowest common an­
cestor (LCA) of the. predecessors of x to start in the assumed
dominator tree.

The essence of the iterative dominator algorithm is to build a
forest of dominator subtrees, merge those forests to a single domi­
nator tree and find a stable tree path from each node to start. We
first define stable tree paths and stable nodes.

Definition 10. A stable node is a node which has a stable tree
path to its parent in the assumed dominator tree.

Definition 11. \Ix EV,

1. lfjpred(y)I = 1, andpred(y) = {x}, thenidom(y) = x,
and the tree path y -t x 9 is stable. We term this a sta­
ble minimum tree path and y, x forms a stable minimum
dominator subtree. y is stable node, but x might not be
stable node.

2. If lpred(y) I > 1 and Vx E pred(y), x 4 start is stable,

then y 4 start is stable. Both x and y are stable nodes.

We note that the stable tree path is iteration invariant. Based
on this observation, we can improve Cooper's iterative dominator
algorithm by only iterating over unstable tree paths. This may not
change the complexity of the iterative dominator algorithm, but it
reduces the iteration over all graph nodes to only possibly affected
(unstable) graph nodes. We do not repeat Cooper's algorithm here,
but this improvement will be used in our modified version which is
used to compute the post-dominator tree directly from the ADT.

LEMMA 9. \Ix E V - {end}- if end E target(x), then end
immediately post-dam x.

PROOF. end is reachable from every node, therefore it post­
dominates every node. If there is an edge from x E V - {end} to
end, then end immediately post-dominates x. D

LEMMA 10. Vx E V if lchildren(x)I + itarget(x)I = 1,
y E children(x) or y E target(x), then y immediately post­
dominates x, ipdom(x) = y.

PROOF. Intuitively, end is reachable from every node including
x, and x has only one successor y. Therefore, every path from x to
end must go through y, soy immediately post-dominates x. D

9 -t represents only one directly connected tree edge, while 4
means at least one directly connected tree edge.

Lemma 9, and Lemma 10 help us to find all stable minimum
post dominator subtrees for the post-dominator tree.

COROLLARY 4. The post order traversal of the ADT is a par­
tial order of the post-order of the RCFG.

As each parent has a path to its children in the CFG, its children
are the predecessors of its parent in the RCFG. Hence, we only
need order the child nodes such that every tree leaf node (always
treating end as processed) has at least one successor that is pro­
cessed, which is exactly the ordering of the ADT. This is checked
by atleastOneFound in Algorithm 1. We can thus guarantee each
node has at least one successor that is processed. We have essen­
tially the same guarantee as the reverse post-order of RCFG and
do not need to compute the reverse post-order of the RCFG again
during client-side processing.

Our iterative dominator algorithm(Algorithm 2) has two steps:

1. First, we compute a post-order traversal of the ADT to bu.ild
an array which essentially contains a forest of stable mm­
imum post dominator subtrees, the forests are linked by
unstable tree paths to form a unstable post dominator tree.

2. Next, iterate over all unstable nodes and update ipdom to
the LCA of its predecessors in current post dominator tree
until all paths are stable or no change, that is, we obtain a
tree which contains only stable tree paths.

Figure 14 show a example how to compute a post-dominator t~ee
directly from the ADT. The left side of the figure shows them­
put ADT, the middle of figure shows the contents of node, ipdom
and stable array after each stage of the algorithm. All array are
indexed by node's post order traversal label and node array con­
tains the symbolic name of each node. The right side of the figure
shows the contents of ipdom and stable array in graphic. Dashed
lines represents unstable tree paths or unstable nodes, while solid
lines represent stable tree paths or stable nodes. The end node is
always a stable node.

Post order traversal of ADT: load information to node, ipdom
and stable array respectively as well as finds all stable minimum
post dominator subtrees. { c, b} and {end, F, start} are the only
two stable minimum post dominator subtrees, they are linked
by unstable tree path with other unstable node to form unstable
post dominator tree.

Iteration 1: iterate over all unstable nodes{G,D,C,A} and up­
date their ipdom by the LCA of its successors in current unstable
post dominator tree. For example, at node D in this iteration, D has
sucessors {G, B}, the LCA(B, G) = F so ipdom(D) is changed
toF.

Iteration 2: iterate over all unstable nodes{G,D,C,A} and up­
date their ipdom, but find no one changed. Then done.

The first step-a post order traversal of ADT-can be merged
with the verification of the ADT. Since we limit each iteration to
unstable nodes and propagate stable paths, each iteration costs less
time than Cooper et al.'s algorithm. The complexity of the iterative
dominator algorithm[2] is 0(N + E. D) where D is the size of the
largest Dom set. We can save the time to do the DFS, O(E), and one
iteration that is merged with the verification phase. Such savings
are important for practical implementations of dynamic compilers.
Cooper et al.'s experimental results show that the simple iterative
dominator algorithm is 2.5 times faster than the classic Lengauer­
Tarjan algorithm[6] on real programs.

After obtaining the post-dominator tree, we can use Cooper et
al.'s simple dominance frontier algorithm to quickly compute the

"""" jTYhn s!U>Je

""' ""' I
F "'' I
a F 0
0 a 0
c F 0
D c I
A 0 0

'"" "'' I

nodo Jr.t.-.rn.tt•hle

"'' ""' I
F "'' I
a F 0
0 F 0
c p 0
D c I
A F 0

""' md I

"""" lnMrn n11ble

"'' md l
F "'' l
a F 0
0 p 0
c F 0
D c I
A F 0

''"' "'' I

Figure 14: Computing the post-dominator tree

post-dominator frontier; an important data structure for automatic
parallelization. .

We also note that the post-dominator tree and post-dommator
frontier (Figure 15) is a "no-caching" Augmented Postdominator
Tree (APT)[7, 8].

DF(D?(AD.O.C,.W.,1
DF1C):jAD.O.~)

PF<DP.{AO.C.B.st.-t]
DF(Op/P.C.0.A.>tzrt)
Df(A)oo(u..tf
DF(f)•/ltc\I

Figure 15: No-Caching APT

Pingali and Bilardi introduced the APT to the allow efficient
querying of control dependence relations during compilation. In
particular, they concentrate on the following dependence sets:

1. cd(e): which statements are control dependent on the control
flow edge e

2. conds (w): which edges statement w is control dependent on

3. cdequiv(w): which statements have the same control depen­
dences as statement w

Analysis and optimizations such as loop transformations and schedul­
ing can viewed as requiring the computation of these sets[4]. As
we are aiming to enable advanced optimizations for recent archi­
tectures, such as EPIC, in a just-in-time setting, these sets are in­
valuable. For example, using cdequiv(w) we can identify groups
of basic blocks suitable for region scheduling.

In this case "no-caching" means that no information is stored at
internal nodes to speed processing of control dependence relation
queries. Caching information at internal nodes can speed process­
ing, but at the added cost of extra storage. Although Sreedhar and
Gao did provide procedures to query DJ-Graphs, they did not re­
duce the complexity of the queries when compared to previous ap­
proaches. It may, therefore, be more effective to exploit Pingali
and Bilardi's procedures for an APT style data structure. However,
this choice will require an experimental investigation in a realistic
compiler.

6. SUMMARY AND CONCLUSION

We have introduced the Augmented Dominator Tree (ADT) as
a backbone for a new mobile code format. We intend the ADT to
enable efficient program analysis for highly optimizing just-in-time
compilation for modem architectures. Our algorithm to validate the
ADT runs in O(E + V), and not only validates the ADT but re­
constructs a legal CFG and the dominance frontier. We also gave
an improvement to Cooper, Harvey, and Kennedy's iterative domi­
nator algorithm.

The primary related work to the ADT is Sreedhar and Gao's DJ­
Graph. While the DJ-Graph was invented to enable efficient pro­
gram analysis in a static compiler, our ADT is also a suitable mobile
code format with an efficient verification algorithm. We also have
presented how to efficiently compute the post-dominator tree for an
ADT.

Although we have not stressed the connection between SafeTSA
and ADTs, it should be noted that the techniques can be combined
to gain the advantages of both. In particular, such a combination
(which is the focus of our current implementation effort) enables
an end-to-end mobile code pipeline that allows effective program
optimization at each stage.

7. REFERENCES
[1] W. Amme, N. Dalton, J. von Ronne, and M. Franz. SafeTSA:

a type safe and referentially secure mobile-code
representation based on Static Single Assignment form. In
Proceedings of the ACM SIGPLAN'Ol Conference on
Programming Language Design and Implementation, pages
137-147. ACM Press, 2001.

[2] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast
dominance algorithm. In Software-Practice And Experience,
pages 4:1-10. John Wiley and Sons, Ltd., 2001.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Transactions
on Programming Languages and Systems, 13(4):451-490,
Oct. 1990.

[4] R. Cytron, J. Ferrante, and V. Sarkar. Compact
representations for control dependence. SIGPLAN Notices,
25(6):337-351, June 1990. Proceedings of the ACM
SIGPLAN '90 Conference on Programming Language
Design and Implementation.

[5] R. Cytron, J. Ferrante, and V. Sarkar. Experiences using
control dependence in PTRAN, pages 186-212. The MIT
Press, 1990.

[6] T. Lengauer and R.E.Tarjan. A fast algorithm for finding
dominators in a flowgraph. In ACM Trans. Program. Lang.
Syst., volume 1, pages 115-120, July 1979.

[7] K. Pingali and G. Bilardi. APT: A data structure for optimal
control dependence computation. In Proceedings of the ACM
SIGPLAN'95 Conference on Programming Language Design
and Implementation (PLDI), pages 32-46, La Jolla,
California, 18-21 June 1995.

[8] K. Pingali and G. Bilardi. Optimal control dependence
computation and the Roman chariots problem. ACM
Transactions on Programming Languages and Systems,
19(3):462-491, May 1997.

[9] V. C. Sreedhar and G. R. Gao. A linear time algorithm for
placing ¢-nqdes. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 62-73. ACM Press, 1995.

[10] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. Identifying loops
using DJ graphs. ACM Transactions on Programming

Languages and Systems, 18(6):649-658, Nov. 1996.
[11] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. A new framework

for elimination-based data flow analysis using DJ graphs.
ACM Transactions on Programming Languages and Systems,
20(2):388-435, Mar. 1998.

APPENDIX

A. ALGORITHM TO COMPUTE THE POST­
DOMINATOR TREE FROM AN ADT

Algorithm 2 compute post dominator tree

postOrderTraversalADT(root, stable, ipdom)
iterate (ipdom, stable)

postOrderTraversalADT Node x x ArrayOfBoolean stable x Array­
OtNode ipdom
if lsucc(x)I = 1 then

ipdom[x] +-a sucessor of x.
stable[x] +-true

else if end is one of sucessors of x then
ipdom[x] +-end
stable[x] +-true

else
ipdom[x] +-undefined

end if
for all y E succ(x) do

postOrderTraver salADT(y, stable, ipdom)
if ipdom[x] =undefined/\ y is first processed succ of x then

ipdom[x] +- y
stable[x] +- stable[y]

else
(ipdom[x], stable[x]) +- LCA(y, ipdom[x])

end if
end for
return
iterate ArrayOtNode ipdom x Boolean stable-+ PostDominatorTree
while changed do ·

changed +- false
for all x E unstable nodes do

newidom +- first sucessor of x
for all other sucessor p of x do

if ipdom[p] =j:. undefined then
(newidom, stable[x]) +- LCA(p, newidom)

end if
end for
if ipdom[x] =j:. newidom then

ipdom[x] +- newidom
change +- true

end if
end for

end while
LCA Node bl x Node b2 -+ Node x Boolean
Node xl +-bl
Node x2 +- b2
Booleans+- stable[xl] /\ stable[x2]
while xl =j:. x2 do

while xl > x2 do
xl +- ipdom[xl]
s +- s /\ stable[xl]

end while
while x2 > xl do

x2 +- ipdom[x2]
s +- s /\ stable[x2]

end while
end while
return (x 1, s)

